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ABSTRACT With the increase in globalization, the degree of electronic communication increases. Such
an increase is also experienced by many sectors including the medical sector, which communicates and
generates large amounts of data related to the spread of diseases as observed in the case of the COVID-19
pandemic. This has led to the deployment of Internet of Things (IoT) networks in many medical centers.
However, one main challenge is how to maintain the security of the data and devices in the network.
In this study, we discuss the cybersecurity risk associated with IoT networks used for medical services and
provide a solution for protecting medical data and devices using an agent-based approach. Unlike most
conventional cybersecurity models that use agents based on deterministic logic or independent learning
agents to detect and prevent cybersecurity attacks, we propose a cybersecurity model using a collaborative
network of learning agents, called Collabo, that share both mutual and causal values regarding their actions
on a common security target. Our experimental results demonstrate the significance of our model over
conventional models.

INDEX TERMS Cybersecurity, medical IoT, intelligent agents, multi-agent system, machine learning, deep

learning, collaborative learning.

I. INTRODUCTION

The amount of medical data generated from medical devices
has surged in recent years owing to the increase in medical
attention and digital requirements imposed by the COVID-19
pandemic [1]. Coupled with the increase in electronic
communication due to globalization, this increase in digital
requirements also increases the risk of security threats to
medical devices as well as their generated data.

Several techniques have been used to implement security
solutions for medical devices and data [2]. Generally, the
conventional approach uses a deterministic process based on
a set of logical rules. This approach is used in conventional
information and cybersecurity software, particularly for
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signature-based detection. Another approach is the use of a
stochastic process, such as a machine learning process.

With the improvement of learning algorithms in recent
years, the latter has gained much attention from research
and industry, especially in behavioral detection. In some
cases, a hybrid approach consisting of both deterministic and
stochastic processes is employed.

One problem with medical data is that they are generated
by devices with different properties, whose values may
have little or no correlation with each other; that is, they
are highly heterogeneous. Observation from a thermometer
and from an Electrocardiogram (ECG), for example, may
have little or no correlation with each other, and using
one to interpret the other may lead to incorrect medical
decisions. Managing such unrelated types of data is con-
ventionally performed using non-relational databases such as
big data [3].

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

VOLUME 11, 2023

For more information, see https://creativecommons.org/licenses/by/4.0/

142663


https://orcid.org/0009-0005-5502-9091
https://orcid.org/0000-0001-9303-5250
https://orcid.org/0000-0002-6502-472X

IEEE Access

Z. E. Ekolle et al.: Collabo: A Collaborative Machine Learning Model and Its Application

In medical big data, data sources mostly originate from
medical devices. Once collected from these sources, the data
can be processed in batches or streamed. Analytics can be
performed on the data to enable decision-making. For remote
medical devices, there is a high requirement for their data
to be collected and transferred to a centralized server that
hosts the big data database, where most of the analytics is
performed.

To support the high requirement for the transfer of medical
data from one location to another, there is a need for an
efficient communication network to interconnect the devices
that generate the data. This requirement to interconnect
medical devices has led to the use of Internet of Things (IoT)
technology in most medical institutions.
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FIGURE 1. Medical loT network with benign and malicious traffic.

The IoT is a communication technology that enables
the interconnectivity of all types of devices. A simple
architecture of an IoT network for medical devices is shown
in Figure 1 where body sensors, a gateway (e.g mobile
phone), cloud, local servers, and personal computers are inter-
connected. Similar to any other communication technology,
IoT technology relies on different communication protocols
organized in layers to maintain interconnectivity between
devices. These protocols include Extensible Messaging and
Presence Protocol (XMPP) and Message Queuing Telemetry
Transport (MQTT). A comprehensive list of IoT protocols for
medical device networks is provided in [4].

Using network technology such as IoT to connect and
transfer data from different devices implies that the security
requirement of the data depends not only on the devices but
also on the network technology. A vulnerability to network
protocols and devices puts the generated data in a vulnerable
state, and a threat to the network protocols is a threat to the
devices and data. In Table 1, a list of common threat profiles
for Medical IoT networks is presented.

Developing a solution to detect and prevent medical IoT
attacks is important in medical cybersecurity, and different
approaches have been described in the literature [2]. These
approaches can be classified as signature-based, behavior-
based, or hybrid. Moreover, the solution logic can be
deterministic, stochastic, or both.
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From the list of security attacks presented in Table 1,
we focus on the detection of a Distributed Denial of Service
(DDoS) attack on medical IoT devices and networks.

DDoS is a security attack on data availability and integrity.
It involves an attacker who uses a command and control
system to recruit remote devices in a network by inflicting
them with malware and later uses these recruited (or zombie)
devices to launch an attack simultaneously on a target device,
as illustrated in Figure 1.

A. RELATED WORKS

A DDoS attack on a medical IoT network is an attack
on unauthorized access during DDoS malware propagation
to recruit zombie devices, and also on availability, during
DDoS traffic to the target device using the zombie devices.
Thus, it poses a threat to both data and device security.
Therefore, an unauthorized access prevention technique for
an IoT device is required to achieve device security, whereas
an availability-protection technique is required for data
security.

In general, most techniques for medical IoT and big data
security focus on approaches based on machine learning,
statistics, software-defined networks (SDN), and fog comput-
ing. This study focuses on the machine learning approach.

Ilhan et al. [5] proposed a detection model of cybersecurity
attacks in healthcare systems using recursive feature elimi-
nation (RFE) and multilayer perception (MLP). Their model
uses logistic regression and extreme gradient boosting models
for optimal feature selection. Their proposed model has high
performance on different IoT and medical IoT datasets as
compared to other models in their work.

Hussain et al. [6] developed a framework for malicious
traffic detection in IoT healthcare environments. They first
created a framework for IoT data generation called IoT-Flock
and then used the framework to generate medical IoT data
for machine learning applications in medical environments.
The models include Naive Bayes (NB), K-Nearest Neigh-
bors (KNN), Random Forest (RF), Adaboost (AB), Logistic
Regression (LR), and Decision Tree (DT) classifiers. Their
results validate the use of the models and generated data in
IoT healthcare environments.

Khan et al. [7] proposed a model named XSRU-IoMT,
for the effective and timely detection of sophisticated attack
vectors such as DDoS in internet of medical things (IoMT)
networks. The model uses bidirectional simple recurrent
units (SRU) to achieve a fast training process in recurrent
networks. The proposed model has a higher performance on
the TON_IoT dataset as compared to other models.

Zachos et al. [8] proposed an anomaly-based intrusion
detection system (IDS) for (Io0MT) networks. Their model
is focused on both host-based and network-based techniques
to collect log files from the IoMT devices and the gateway.
They used DT, NB, LR, RF, KNN, and support vector
machines (SVM) models in the central detection (CD)
component of their proposed anomaly-based IDS. The result
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TABLE 1. Common cybersecurity threat profile for medical 1oT networks.

Target Assets Vulnerabilities Threat Types Description Consequences
It encrypts files in ice and renders . . Lo .
Lencrypts files in a device and e de. S o1t endangers the integrity of patient information
. Unencrypted Ransomware them unusable unless a ransom is paid. . .
Medical data . encapsulated in the transmitted data and
stored data attack After payment, the attacker provides - . .
. . prevents the availability of such information.
instructions to decrypt the data.
Medical IoT devices ‘Weak or no Backdoor It exploits the.weakness Of asystem to It bridges authentication protocol and endangers
A bypass authorized authentication . . L X
and protocols authentication attack . the integrity of patient information.
standards. Usually acts as a rootkit.
. . Low memory an Denial of It floods the tar; i ith - .
Medical IoT devices oW memory a d enial o .t O,O.d the ta get device w t. It prevents the availability of information and
computational service (DoS)  illegitimate traffic to exhaust its .
and network traffic . X exhausts memory and computational resources
devices attack computational and memory resources
. . Low memory and  Distributed Flood target device with illegitimate It excessively exhausts memory and
Medical IoT devices . - . .
N computational DoS (DDoS) traffic to exhaust its computational and ~ computational resources and prevents the
and network traffic . I . .
devices attack memory resources availability of information.
. . Attacker secretly relays and alters It bridges authentication protocols and
Medical IoT network Unsecure Man in the y refay L & . uon proto .
. through eavesdropping, the private endangers the integrity and privacy of patient
traffic protocol middle attack o . . . . .
communication between two parties. information encapsulated in the transmitted data
Involves L he ex_plonat_lon of It endangers the integrity of the systems that
Code vulnerabilities in devices, protocols, . L
. Unsecure NS ? support the collection, transmission, and
Medical IoT systems injection and software through their bugs, by S N .
protocol S . . visualization of patient data, hence endangering
attack injecting codes that will upset their . .
R the security of patient data.
manner of operation.
. Involves the random guess of device or It bridges authentication protocols, thereb
Medical IoT systems weak system Password . g . £es onp L y
network passwords using different endangering the security of medical systems and
and password password attack .
techniques such as brute-force. data.
. I 18 a search op cration car‘ned outona e jone by an attacker, it will lead to a bridge in
. . weak or no Scanning device or network using different s :
Medical IoT device L - ) communication protocols, hence endangering
authentication attack properties such as network port, etc, to . .
: . S the security of medical systems and data.
identify vulnerabilities.
It is a malicious code or software that Depending on its purpose, it can endanger the
. Unsecure Malware . X . . . . .
Medical IoT software software attack executes unauthorized actions on a integrity, privacy, and availability of medical IoT
system to cause harm or damage. systems and data.
It is a technique used to steal sensitive
Medical IoT data and Unsecure data Phishing 1nfor.mat10n about a device or user by It endangers the integrity and privacy of patient
) sending fraudulent messages that :
system and system attack and device data.

source.

appear to come from a legitimate

shows that the DT, RF, and KNN models are more suitable
for their proposed solution.

Kaur and Gupta [9] proposed a DDoS detection model for
IoT-based healthcare systems. Their solution, which involves
the use of the density peak-based covariance matrix KNN
(DPTCM-KNN), is based on the combination of a statistical
approach and the KNN machine learning technique. This
solution was tested on the Beut and NSL KDD datasets and
proved to outperform the SVM in the same process.

Awan et al. [10] proposed a real-time DDoS detection
using RF and multi-layer perceptron (MLP) machine learning
models. Their solution was implemented with and without big
data, but the big-data solution outperformed the non-big-data
solution.

Mona et al. [11] proposed a solution based on mutual
information and random forest feature importance. They used
these methods for feature selection to reduce the DDoS
misclassification of different machine learning models. Their
results showed that such feature selection methods lead
to a higher detection accuracy of DDoS using machine
learning models. Maslan et al. [12] proposed a similar feature
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selection technique that uses a regression model called max-
dependency.

Neto et al. [13] proposed a collaborative DDoS detection
solution for a general IoT system, including e-health, by using
federated learning. They wused different deep-learning
instances for each pool of data sources to generate
the local parameters. To obtain a global result for the
overall system, all local parameters were combined and
optimized using federated learning techniques. A similar
approach was proposed by Popoola et al. [14] for botnet
attacks, such as DDoS, on data privacy. Federated learning
approaches are on the rise in collaborative IoT security
because of their distributed framework; however, the risk
of such an approach is enormous, as explained in [15]
and [16].

Furthermore, Ferrag et al. [17] present a comprehensive
survey with an experimental analysis of federated deep learn-
ing approaches for cybersecurity in IoT networks. The main
experimental finding in the paper is that federated learning
models, specifically federated deep learning models, provide
higher IoT device and data privacy than centralized models,
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and do so with higher detection accuracy on the Bot-IoT,
MQTTset, and the TON_IoT dataset.

Finally, Bhayo et al. [18] presented a machine learning-
based framework for DDoS attack detection in software-
defined IoT (SD-IoT) networks. They built a machine
learning framework based on NB, SVM, and DT into
the SDN-WISE controller to detect DDoS attacks. Their
framework proved to be superior in detection performance
than other DDoS detection models used in SDN-WISE
controllers.

For a general understanding of the related literature,
a number of qualitative properties were used to categorize
and compare the different related works in their signif-
icance on DDoS attack detection in medical IoT using
machine learning. These properties include the use of
DDoS attacks, machine learning models, medical datasets,
and IoT datasets. This categorical comparison is presented
in Table 2.

In this paper, we focus on both data and IoT device security
in medical information technology (IT) infrastructure, using
a machine learning approach based on collaborative agents
that use heterogeneous data sources, defined using different
input features. The importance of a collaborative approach to
cybersecurity was presented in [19].

Literally, collaboration is the process where two or more
entities work together, with the same or different purpose,
to complete a common action (e.g., mission or task) or
achieve a common target (e.g., vision, goal, objective,
outcome, or output). Thus, agents can collaborate on a target
or on an action, but since target and action are linked by a
purpose, the collaboration on an action entails a collaboration
on a target, and vice-versa. In this way, a collaborative action
on a target may be divided into multiple partial actions
defined by the nature of the target perceived by the agent.
In this study, we use classification as the partial action on
the target, to achieve a collaborative prediction on the target.
However, partial regression and classification can also be
used collectively.

The proposed model in this study distinguishes itself from
the others in that it considers the environmental diversity
and value exchange process of interactive logical agents. The
model can be easily scaled for various applications.

B. CONTRIBUTIONS
The contributions of this paper are listed as follows:

o We propose a collaborative learning model based on
causal and mutual value exchanges between agents
with different input properties (i.e., distributed envi-
ronments). These values are generated and learned by
the agents. This is different from other collaborative
learning approaches such as ensemble learning where
there is no value exchange between the agents during
learning, and federated learning where the exchange
value between agents during learning is an accumulation
of their parameters by a central agent. Our proposed
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approach uses a peer-to-peer value exchange mechanism
between the agents in distributed environments.

« We propose a specific algorithm to implement the
model. The algorithm is based on collaborative pre-
diction and the learning of causal and mutual values.
This is completely different from conventional methods
because conventional methods are based on the opti-
mization of causal values.

C. ORGANIZATION

The rest of the paper is organized as follows: Section II
presents the conventional approach based on deep neural
network (DNN). Section III focuses on modeling the
proposed approach. These include feature segmentation,
agent design, and detection processes. Section IV presents
experimental results. This study is concluded in Section V.

Il. CONVENTIONAL APPROACH
In this section, we present an approach to solving the medical
IoT security problem using deep neural networks.

A deep neural network requires a vector of input properties
(or features) to make predictions and training about an output
(or target) property.

Consider a dataset denoted by Q, with each element
(i.e., instance) {Q1, Q2, ...} in the set Q consisting of two
tuples of input and output, expressed as Q; = (X, i),
where X; and y; represent the ith input instance and the
corresponding output instance.

Generally, the prediction operation of such a model is
mathematically defined for each instance Q; of Q as

3i £ f(Xi; 0) (LT)
where y; is the predicted output value corresponding to
the input X;. Note that f(X;0) is a fixed function that
represents the prediction operation of the model, where X is
an input vector and 6 is a set of parameters that define the
function.

Next, a learning mechanism is defined for the model to
optimize a set of parameters 6 such that the output value y;
approaches the true output value y;. Let 60 denote the initial
set of the parameters. The training proceeds from k = 0 as
follows:

30 =rxi0®) 112)
z® =13 (IL3)
e(k-l-l) — L(Zl(k)) (114)

where y is the true output value, 0 is the optimized parameter,
L(Z) is an abstraction of the learning operation of the model,
Z is the learning value (i.e., the cost value), I'(y, y) is the
function (i.e., the cost function) defining the learning value,
and the superscript k in each variable represents the learning
epoch.

As a specific example, based on the five input properties in
the ECU-IoHT medical dataset [20], a deep neural network
model with input property X defined by five input vectors
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TABLE 2. Comparison of existing literature on machine learning approaches to DDoS attack in Medical loT Networks.

DDoS Machine Medical

References Year attack Learning dataset .IOT dataset Main focus/contributions
. . . involved
involved involved involved
Detection of cybersecurity attacks in healthcare systems
Tlhan et al. [5] 2023 Yes Yes Yes Yes using RFE and MLP based on LR and XGB.
A framework for malicious traffic detection in IoT
. healthcare environments using data generated from the
Hussain et al. [6] 2021 Yes Yes Yes Yes IoT-Flock framework and based on NB, KNN, RF, AB,
LR, and DT machine learning models.
Detection of sophisticated attack vectors such as DDoS
Khan etal. [7] L2 Yes Yes No Yes in JoMT networks using bidirectional SRU in RNN.
Host-based and network-based anomaly IDS for [oMT
Zachos et al. [8] 2021 Yes Yes No Yes networks using a combination of DT, NB, LR, RF, KNN,
and SVM machine learning models.
DDoS detection model for IoT-based healthcare system
Kaur et al. [9] 2022 Yes Yes No Yes using DPTCM-KNN model.
Awan et al. [10] 2021 Yes Yes No No }Qeal—'nme DDoS detection using RF and MLP machine
earning models.
Reduction of DDoS misclassification using a feature
Mona etal. [11] 2022 Yes Yes No No selection technique based on mutual information and RF.
Reduction of DDoS misclassification using a feature
Maslan et al. [12] 2020 Yes Yes No No selection technique based on a regression model called
max-dependency.
Collaborative DDoS detection for IoT systems using
Neto et al. [13] 2022 Yes Yes No Yes different deep-learning instances based on a federated
learning approach.
Collaborative botnet attack detection for data privacy
Popoola et al. [14] 2022 Yes Yes No Yes using different deep-learning instances based on a
federated learning approach.
A comprehensive survey with experimental analysis of
Ferrag et al. [17] 2021 Yes Yes No Yes federated deep learning approaches for cybersecurity in
IoT networks.
A machine learning-based framework for DDoS attack
Bhayo et al. [18] 2023 Yes Yes No Yes detection in SD-IoT networks.
(x1, X2, X3, X4, Xx5) 1s described as follows:
X = (x1, X2, X3, X4, X5) (IL5)
(9] .k
) =f X 0%) (IL6)
(k) (k)
Zi = F()’i, yi ) (II7)
(k+1) _ (k)
0 =Lz (IL8)

where y is the true security state of the medical device
with respect to a DDoS attack and can take a binary value
representing DDoS or Bagnin traffic, x1 is the time stamp of
the packet, x; is the source IP address, x3 is the destination IP
address, x4 is the protocol type, x5 is the length of the packet
frame in bytes, and 0 is a vector of parameters.

Figure 2 illustrates the structure of a deep neural network
with four layers operating in the medical IoT environment
defined by the ECU-IoHT medical dataset.

Different predictive functions can be used for each layer of
a deep neural network. This includes the sigmoid function,
softmax function, and ReLU function. In addition, the
main learning mechanism of a deep neural network is
backpropagation, and the learning values (i.e., the cost value)
include cross entropy and mean square error.

Conventional deep neural networks are not capable of
handling single or multiple output properties collaboratively,
which is a limitation on their role as collaborative agents.

VOLUME 11, 2023

l\_Y_)

T T
Input layer Hidden layer Output layer

FIGURE 2. DDoS attack detection in an loT network using deep neural
network model.

In this regard, we propose a model that considers a
collaborative mechanism, which can lead to more accurate
prediction results than the conventional model.

llIl. PROPOSED METHOD

In this study, we focused on the use of collaborative learning
agents to detect security attacks. Unlike the conventional
learning model that uses independent learning agents,
we introduce a mutual value exchange between agents to
enhance their collaboration regarding the security target.
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This approach is intuitive as it is analogous to how humans
collaborate on a target; they share knowledge about each
other’s experiences on the target as they work independently
on the target. The problem is defined below.

Consider a medical IoT traffic dataset denoted by Q,
with each element (i.e., instance) {Q1, Q», ...} in the set O
consisting of two tuples of input and output, expressed as
0; = (X;,yi), where X; and y; represent the ith input and
the corresponding output instance. The output instance can
be Bagnin or DDoS, but not both at the same input instance.

All input instances corresponding to Bagnin output are
considered legitimate while those corresponding to DDoS are
considered illegitimate. The research problem is to build an
agent that can learn to detect if an instance is Bagnin or DDoS.
Our proposed solution is depicted in Figure 3.

‘ F?atureI Extrlaction and segmlentatilon | ‘
IR IR IR
Agent 1 Agent 2

f—t— | ——
Benigm——'; ) [ + | I
DDoS ! | |

|  ——  —

v oy oy

Prevention phase

|
!

Detection phase
TR -

——DDos traffic DDoS detection
— Benign traffic —— Benign detection

Traffic flow within
collaborative processes

FIGURE 3. Detection and prevention of DDoS attack in network traffic.

The proposed solution involves the following four steps:
1) feature extraction and segmentation of incoming network
traffic, 2) agent design, 3) intrusion detection, and 4) intru-
sion prevention. These steps are illustrated in Figure 3.
In this study, we focus only on the first three steps. The
proposed solution can be installed on a front-end server
as a network-based security system for medical IoT edge
(i.e., fog) networks.

A. FEATURE EXTRACTION AND SEGMENTATION
In the feature extraction and segmentation step, each instance
of the input properties from traffic data X is extracted and
segmented into two (or multiple) sub-vectors X, and Xp,
creating a data subset Q, = Xz, y) and Qp = (Xp,y),
respectively. Each sub-vector is considered as the input
property of the security target y for a given agent.

If the extracted data are those provided in the ECU-IoHT
medical dataset [20] described in Section II, we arbitrarily
segment the five properties into two groups, as follows:

X = (X, Xp) (IIL1)

where X, = (x1, x2, x3) and X, = (x4, x5).

The output property y defines the state of the target; in this
case, it corresponds to the security state of a medical IoT
device. This can include the state of DDoS or other related
attacks on the same or different devices.

In the case of the ECU-IoHT medical dataset, we consider
y as the true security state of the medical device with regard to
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aDDoS attack and can take a binary value representing DDoS
or Bagnin traffic. Therefore, this output property is dedicated
to each agent during the collaborative process.

B. AGENT DESIGN
We consider an agent as an entity that seeks a target. It takes
actions (or beliefs) on the target. The actions taken by the
agent can be causal or non-causal. In this study, causal
action is considered as a conditional action [21], [22] while
non-causal action is considered as a mutual action [23].

Consider a causal and mutual action defined using
probabilistic functions. Given a vector of input property
X;; and an output y; in a dataset Q;;, where [ € {a, b}
represents the index of a data subset or the agent, we can
define the causal and mutual action instances of agent / in
a collaborative network as follows:

Yeri = P(yilX1.i; 6c1)  (causal action) (1I1.2)

PGilX1,i; Om,1)
~ on (I11.3)
where y; is an instance of the target (or output) property, X ;
is an instance of the vector of input properties of agent [, y. ; ;
is an instance of the causal action of agent / on the target,
Ym.1.i is an instance of the mutual action of agent / on the
target, 6. ; is the parameter of agent / that enables the causal
action, 6y, ; is the parameter of agent / that enables the mutual
action, and P(.) denotes a probability function.

1>

Ym.1.i (mutual action)

=
=
s
o
2
=

Agent a | Agent b

[
I
|
|
|

Layer 4 (<

Layer 3 [ = | —— —
Layer 2 [— | — |
Layer 1 [— [ —

X, Mutual network Xy
Causal network Causal network

M causal intelligence |
[ Mutual intelligence |

Causal network

— Causal dependency |
—> Mutual dependency |

Xy
§ Causal network (ii)
i)

FIGURE 4. A causal and mutual relationship flow in the proposed
multi-agent collaborative learning model. (a) Transversal view (b) Lateral
view.

Consider Figure 4, which represents a collaborative
network of two neural network agents, a and b. Each agent
takes a sequence of causal and mutual action pairs arranged
in layers. Each causal action of an agent depends on those in
the agent’s previous layer, and each mutual action depends on
those in the agent’s previous layer.

Layers 1, 2, 3, and 4 represent pairs of causal and
mutual actions for each agent. Layer 1 is the input layer,
layers 2 and 3 are the hidden layers, and layer 4 is the
output layer. The outputs of each layer are the causal and
mutual values that propagate in the collaborative network in
a particular order.
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The relationship that defines the collaborative action of the
two agents on the target y, and their causal and mutual actions
as shown in Figure 4 are represented as the joint causal actions
Ye.ab of the two agents on the target y based on their partial
causal action y. 4, and y. 5, while interchanging their mutual
actions ¥y, » and ¥y, 5. The following axiom and proposition
(proven in Appendix A) define the collaborative action:

Axiom 3.1: (Conditional Independence of Input Properties)

P(Xaly, Xp) = P(Xaly) and P(Xply, Xa) = P(Xply)
Proposition 3.1:
j}c,ab = P(y| X4, Xp; 96,a7 ec,bs em,as em,b)

-1
P(Xq|Xp: 9,;)] 1

= POy|Xy; 0)P(y| Xp; Qc,b)[ P o) (111.4)

where P(y|X4; 04) = Je.a and P(y|Xp; 0p) = Jc.p are partial

. P(Xp|X4:06! N
causal actions of agents a and b, % = Ym,q and
P(Xalxb;e},,) o

P, = Ym.b are mutual actions of agents a and b, and
P(y) = y is a prior collaborative action of the agents.
For mutual collaboration to exist between the agents,
we defined a mutual equivalence property given as
P(Xq|Xp; Gm,b) P(Xp|Xa; em,a)
PXa) P (I-5)
Using this collaborative framework, it is easy to observe
that if the causal action of one agent (i.e., partial causal
action) is independent of the causal action of the other agent,
this will lead to an ensemble learning model [24] when they
share segmented input instances rather than input properties.
In addition, the same situation leads to a federated learning
model [25] when they share their parameters on a vertically
or horizontally decentralized dataset.

1) PREDICTION ACTION

According to (II.4), the joint causal action . ., of the
collaborative agents defines the collaborative prediction of
the agents and is a combination of their respective causal and
mutual actions. This can be expressed as

j)c,aj}c,b 1

)A’ )A’m,b

The collaborative action y. 5 is optimized by simulta-
neously optimizing the causal and mutual actions of each
agent as described in Section III-B2, and implemented
using Algorithm 1. In addition, y and J,,  are respectively
used as the regularizer and normalizer of the partial causal
predictions.

Furthermore, y can also be used to define the global cost of
the collaboration during learning. This may not be necessary
because our approach is based on partial learning to achieve
a joint value rather than directly learning the joint value.

In fact, y can be omitted and J. 4, can be predicted and

learned using the following approximation of (II1.6):
n

Yeab = (111.6)

5}6‘,(117 = 5}6‘,(15)C,b ~ (IH7)

Ym,b
where n corresponds to the number of agents in collaboration
and n = 2 in our example model.
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The value of n influences the complexity, flexibility, and
uncertainty in the collaborative network. The analysis of these
properties is reserved as future work.

2) LEARNING ACTION DEFINITION

The learning process of agents in the collaborative network
presented in Figure 4 involves the simultaneous optimization
of their causal and mutual values about the target y by learning
the parameters 6. ; and 6,,; of each agent I € {a, b}. If the
learning process is closed in each agent, it follows that

)A’Elff?i = P(ygk”)le,i; 96({(,")) (causal action) (111.8)
(km) (km)
lkm Py " 1X1i56,,77) .
5,1,1?,- = W))l (mutual action) (II1.9)
Z% = (i, 3% (causal learning value)  (II1.10)
el =10 Ve i g .
Z,Efj}” = T, )331(";)1) (mutual learning value) (IIL11)
ke+1 ke kn+1 ko
05 = Loz, 0% = Lz (IIL12)

where L.(Z. ;) and L;,(Z,, ;) are the abstractions of the causal
and mutual learning models, Z ; and Z,, ; are the causal and
mutual learning values, T'c(y, ¥c;) and Ty,(y, Y1) are the
functions of the causal and mutual learning values, and k. and
ky, are the causal and mutual learning epochs, respectively.
Considering a backpropagation learning mechanism based
on gradient descent optimization of the learning value, the

learning process for each agent is defined as
97,

pretl = ghe — n,;,,?’ (causal learning) (I11.13)
3 k) 8 CyL‘l
km+1 __ pkm 0Z,1 .
Ont =0 — Nm,i o (mutual learning) (I11.14)

m,l

where 1. ; and 71, ; are the causal and mutual learning rates.

C. DETECTION PROCESS

The cyber attack detection process entails both causal and
mutual actions in the learning and prediction processes. The
algorithm for the detection process is as follows:

Algorithm 1 Collaborative Batch Learning and prediction

Require: Y, i, Oc, O, X1, ks ks Zey Zpy.
Ensure: min(Z.), min(Z,,)
ke < ki,
n < num(l)
for t = 1to k. do
57 < POOIX; 087)

() POOIX0)
Ym <~ P(y(r))m

7z, 7P Lo, 5, T, )
T T
Ocy Om < L(Ze), Lin(Zp, ")
end for
)A’c,ab <~ )A’c O] n@m)_l

> Initializing the learning epoch
> number of collaborative causal agents
> learning cycle

> collaborative prediction

where © represents element-wise multiplication of two
vectors, k. is the causal learning epoch, k;, is the mutual
learning epoch, and t is the collaborative learning epoch.
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Different learning techniques can be used for causal and
mutual learning. In addition, apart from the minmin synchro-
nized optimization used in Algorithm 1, the optimization
can also be a maxmax, maxmin or minmax optimization
depending on the target and learning value of the agents.

It should be noted that this learning technique can also
be used to explain other multi-agent machine learning
models such as the Generative Adversarial Networks (GAN)
model [26], which consists of a set of sequentially synchro-
nized learning agents.

D. PERFORMANCE EVALUATION

We present different types of performance metrics that
can be used to evaluate the proposed model. We group
these into three categories: predictive performance, learning
performance, and system performance.

1) PREDICTIVE PERFORMANCE

We consider the predictive performance to be the per-
formance of the agents in taking a prediction action on
the target compared to that of the correct action on the
target, for single or multiple observation instances. Prediction
performance measures can be distinguished for both discrete
and continuous target output. These are mostly statistical
measures.

For a discrete target output, the measures include accuracy,
precision, recall, Fl-score, and Area under the receiver
operating characteristic curve (AUC ROC), which can all
be evaluated using the confusion matrix. For a continuous
target output, the performance measures include the mean
square error, mean absolute error, root mean square error, and
R? coefficient of determination. The prediction performance
measures are discussed in more detail in [27].

2) LEARNING PERFORMANCE
We consider the learning performance as the predictive value
with respect to the true value that the collaborative agents
have optimized over the learning epoch. This value can be
measured using any learning value (i.e., the cost value),
such as root mean square error, cross-entropy, and Kullback-
Liebler (KL) divergence over a learning epoch. This enables
us to capture the generalization error of the model, which is
a combination of the bias and variance errors.

In this study, we used cross entropy as the learning value
for both causal and mutual actions.

n
Cross Entropy = — Z P(y;)log P(3;)
i=1
where n is the number of classes, y is the true label, y is the
predicted label, and P(.) is the probability of a label.

(IIL.15)

3) SYSTEM PERFORMANCE

We consider the system performance as the implementation
performance of the model as a system. This is related to
the computational complexity performance of the model.
In this category are measures such as the Big O notation,
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floating-point operations (FLOPs), floating-point opera-
tions per second (FLOPS), multiply-accumulate opera-
tions (MAC:s), latency, throughput, response time, robustness,
stability, memory operations, and energy usage of the model
as a system.

Apart from performance evaluation measures, other eval-
uation measures such as statistical significance, confidence
interval, sensitivity analysis, and model comparison measures
can also be used to evaluate the model. Some of these
evaluation measures used in this study are the Akaike
Information Criterion (AIC) for model comparison and the
20 uncertainty measure for sensitivity analysis.

IV. EXPERIMENT AND RESULT

The aim of the experiment is to demonstrate the performance
of our proposed collaborative learning model in detecting
DDoS attacks in medical IoT networks and compare the
performance results with conventional models. To validate
the generalization of our proposed model in different
environments, we perform a simulation on different datasets
and compare the results with those of other models.

A. EXPERIMENTAL SETUP

The dataset for the experiment is based on the ECU-IoHT
dataset [20], which has been used for analyzing cyberattacks
on the Internet of Health Things [28]. The Intensive Care
Unit (ICU) dataset [6] created using the IoT-Flock tool [29]
and the ToN_IoT dataset [30] were used to validate the
generalization of our model in different environments.

1) DATASET AND FEATURE PRESENTATION
The ECU-IoHT dataset [20] has eight fields: time stamp
of packet, source address of packet, destination address of
packet, network protocol of packet, length of packet frame in
bytes, information of packet, network status, and attack type.
The type (or network status) field and type of attack field
represent the attack labels of the dataset. The network status
field was used as the label. Regarding the input features,
we excluded the packet information field because it contains
packet information reports that may not be helpful in attack
detection. Therefore, we used five input features to train the
model. Table 3 presents statistics of the dataset.

TABLE 3. List of attacks and input fields used in the ECU-IoHT dataset.

Attack types Instances Input fields used
ARP Spoofing 2359 5

DoS 639 5

Nmap Port scan 6836 5

Smurf Attack 77920 5

No Attack 23454 5

Total instance 111207

Denial of Service (DoS), and Address Resolution Protocol (ARP).

A DDoS attack constitutes both a DoS attack and a port
scanning attack. In addition, a Smurf attack is a type of DDoS
attack that uses DDoS.smurf malware to render network
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service inoperable by flooding Internet Control Message
Protocol (ICMP) packets to targeted network devices. In this
regard, we used DoS, Nmap port scanning, and Smurf attack
instances in this experiment.

Therefore, 85395 attack instances and 23454 no-attack
instances were used during this experiment, resulting in a
total of 108849 attack instances.

Related to the ICU [6] and ToN_IoT [30] datasets, their
contents are described in Tables 4 and 5, respectively.

TABLE 4. List of classes and input fields used in the ICU dataset.

Dataset classes Instances Input fields used
Attack 80126 50

Environment monitoring 31758 50

Patient monitoring 76810 50

Total instance 188694

Each class represents a separate csv file which we merge into one file.

TABLE 5. List of attacks and input fields used in ToN_loT (Network)
dataset.

Attack types Instances | Input fields used
Backdoor 20000 |43
DDoS 20000 |43
DoS 20000 |43
Injection 20000 |43
Man in the middle(mitm) 1043 43
Password 20000 |43
Ransomware 20000 |43
Scanning 20000 |6
Cross site scripting(xss) 20000 |43
Normal 300000 {43
Total instance 461043

The ToN_IoT file used is the Train_Test Network dataset.

2) DATASET PRE-PROCESSING
The first step in pre-processing is to encode categorical
information in the dataset. The label encoding technique was
used to encode the target output y, whereas One-Hot encoding
was used to encode the source IP, destination IP, and network
protocol fields.

Next, normalization operations were performed on the
dataset using minmax scaling.

X — Xmnin
Xinax — Ximin
where X is a field in the dataset.

The 108849 attack instances of the dataset were split into
training and testing instances, as shown in Table 6.

Xnew = av.n

TABLE 6. Partition of attack instances into training and test instances.

Attacks Attack instances |Training instances|Testing instances
(70%) (30%)

DoS 639 447 192

Nmap Port scan |6836 4785 2051

Smurf Attack 77920 54544 23376

No Attack 23454 16418 7036

Total instance 108849 76194 32655

The five input fields are divided into two groups. One
group consists of the time stamp and the length of the
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packet fields, whereas the other group consists of the
remaining fields. Each collaborative agent was assigned one
group of input fields.

We also split the ICU and ToN_IoT datasets into 70%
training instances and 30% test instances. One-Hot encoding
was used to encode categorical data, while label encoding was
used to encode the labels.

3) AGENT MODELS AND PARAMETERS
Table 7 presents the simulation parameters of the models used
in this experiment.

TABLE 7. Simulation parameters of our model and conventional models.

DNN Ensemble Federated Our model
# of causal net. 1 2 2 2
# of mutual net. 0 0 0 2
# of layers per net. |4 4 4 4,4
Nodes per layer per|5,3,2,1 netl:5,3,2,1; |netl:3,3,2,1; |netl:3,3,2,1;
causal net. net2:5,3,2,1 |net2:2,3,2,1 |net2:2,3,2,1
Nodes per layer per netl:3,3,2,1;
mutual net. net2:2,3,2,1
Node type Sigmoid |Sigmoid Sigmoid Sigmoid
Learning algorithm |GD GD,Bagging |GD,FedAvg |[GD,GS
Learning rate 0.61 0.61 0.61 0.61
# of learning cycle 300 300 300 300
Learning value CE CE CE CE

Deep Neural Network (DNN), Gradient Descent (GD), Gibbs Sampling
(GS), Cross Entropy (CE), and # indicates "number".

These parameter settings are for the ECU-IoHT dataset.
For the other datasets, only the number of input nodes was
changed with respect to their number of features whereas the
remaining parameters and hyperparameters were unchanged.

For the ICU dataset, the following number of input nodes
per network was used: (50) for DNN, (50, 50) for Ensemble,
(25, 25) for Federated, and (25, 25, 25, 25) for our model. For
the ToN_IoT datasets, the following number of input nodes
per network was used: (43) for DNN, (43, 43) for Ensemble,
(20, 23) for Federated, and (20, 23, 20, 23) for our model.

Also, the hyperparameters such as the learning rate,
learning cycle (i.e., epoch), the number of layers per network,
and the number of nodes per layer, were selected without
rigorous hyperparameter turning (optimization) technique.
We will investigate hyperparameter training in future work.

B. RESULTS AND DISCUSSION

1) ECU-IOHT DATASET RESULTS

The learning and the receiver operating characteristic (ROC)
curves for the ECU-IoHT datasets for each model in Table 7
are presented in Figures 5, 6 and 7.

Figure 5 illustrates the learning curves of our collabora-
tive agent model compared with the conventional models.
From the learning curve, the proposed model reduces the
normalized cost value to a lower point of stability than the
others. The corresponding accuracies during learning are
shown in Figure 6. The proposed model turns out to learn
more accurately than the other models on the dataset.

However, to confirm the degree of generalization on
the dataset, we also performed a prediction performance
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FIGURE 5. Cost-based learning curve of our model on DDoS attack
detection compared to other models using ECU-IoHT training dataset.
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FIGURE 6. Accuracy-based learning curve of our model on DDoS attack
detection compared to other models using ECU-IoHT training dataset.

1.04
0.8
[
©
4
v 0.6
=
E>
&
5 044
2
=
—— Our Collaborative model, AUC=0.8633
021 —— DNN model, AUC=0.8301
—— Bagging Ensemble model, AUC=0.8595
0.0 1 —— Federated Averaging model, AUC=0.8115
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

FIGURE 7. ROC curve of our model on DDoS attack detection compared
to other models using ECU-IOHT test dataset.

measurement using the ROC function. The results are
presented in Figure 7, where we observe that our model has
a higher AUC ROC than the conventional models and hence
can distinguish between target classes more accurately than
the other models.

2) ICU AND TON_IOT DATASETS RESULTS

The learning and ROC curves obtained by the ICU datasets
are shown in Figures 8, 9 and 10, whereas those by the
ToN_IoT datasets are shown in Figures 11, 12 and 13,
all evaluated for each model in Table 7. For both datasets,
we observe that our model has a higher AUC, accuracy, and
a lower normalized cost value than the conventional models
and generalizes on the dataset better than the other models.
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FIGURE 8. Cost-based learning curve of our model on DDoS attack
detection compared to other models using ICU training dataset.
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FIGURE 9. Accuracy-based learning curve of our model on DDoS attack
detection compared to other models using ICU training dataset.
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FIGURE 10. ROC curve of our model on DDoS attack detection compared
to other models using ICU test dataset.

3) NUMERICAL COMPARISONS

Table 8 compares the models in terms of their accuracy,
precision, recall, F-score, and AIC delta score (AAIC) on
the prediction of the test datasets. It demonstrates that our
model performs well under most of the prediction metrics on
all the datasets. Due to its large number of parameters, it turns
out to have a higher AAIC value than the other models.
However, such a large number of parameters is due to the
collaborative framework, which is more of a merit than a
demerit as explained in Section III.

Apart from these predictive performance results, we also
evaluated the computational performance on the prediction
actions of the models based on the FLOPs, FLOPS,
and MACs computational measures. The experiments were
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FIGURE 11. Cost-based learning curve of our model on DDoS attack
detection compared to other models using ToN_loT training dataset.
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FIGURE 12. Accuracy-based earning curve of our model on DDoS attack
detection compared to other models using ToN_loT training dataset.
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FIGURE 13. ROC curve of our model on DDoS attack detection compared
to other models using ToN_loT test dataset.

performed on a quadcore 4GHz processor with 16 double-
precision (DP) FLOPs per cycle (i.e., 256 GFLOPS DP), but
the required FLOPS of the models were estimated using the
latency (execution time) and FLOPs of their predictions.

Furthermore, the uncertainties (epistemic) of the models
for each dataset were also evaluated using the ensemble
method with 25 ensembles for each model.

As shown in Table 9, the FLOPs, latency, FLOPS, and
MAC:s values of our model are higher than the other models.
This is due to its collaborative framework consisting of many
computing agents. However, the generalization (i.e., error)
and generalization uncertainty (i.e., error variability) of our
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TABLE 8. Predictive performance and comparison of the models.

Datasets Models Acc(%) |Prec(%)|Rec(%) |F-s (%) | AAIC
ECU-IoHT |[DNN 98.17 [95.10 ([89.04 |[91.21 |[36.83
ECU-IoHT |[Ensemble [98.78 [93.03 [96.08 [94.26 |74.54
ECU-IOHT |[Federated |97.59 |94.10 [90.74 [92.36 |65.16

ECU-IoHT |Our model |99.99 (99.99 [99.86 |99.57 |110.78
ICU DNN 99.19 [93.73 [86.91 [96.55 |37.14
ICU Ensemble [99.48 (96.89 [91.99 [97.93 |75.32
ICU Federated [99.01 (96.32 [90.28 [95.59 |66.07
ICU Our model [99.96 [99.97 [99.87 (99.64 |109.02
ToN_IoT  |DNN 98.80 9491 [90.89 [93.90 |37.10
ToN_IoT  |Ensemble |98.99 [98.19 |94.57 |99.99 |[72.11
ToN_IoT  |Federated |98.92 (9581 9291 |97.80 [63.52
ToN_IoT Our model [99.98 [99.95 [99.65 (99.97 [112.78

Accuracy (Acc), Precision (Prec), Recall (Rec), F-score (F-s), and
Akaike Information Criterion delta score (AAIC) with AIC,,,;,, = 0.

TABLE 9. Computational performance and uncertainty of the models.

Datasets Models FLOPs |Latency| FLOPS [MACs |ME 20-U
ECU-IoHT |DNN 1.IM |2lms |51.90M|0.55M [94.09 [0.053
ECU-IoHT [Ensemble |2.2M [23ms |94.74M|[1.1IM [101.12 |0.081
ECU-IoHT |Federated | 1M 30ms [33.3IM|0.5M  |105.69 [0.094
ECU-IoHT |Our model |2M 27ms |74.12M|1IM 69.27 [0.032

ICU DNN 18.86M |38ms |0.53G [9.43M |112.55 [0.074
ICU Ensemble [37.72M|41ms [0.90G |18.86M|120.93 |0.052
ICU Federated |18.86M|45ms [0.41G [9.43M |118.01 |0.071
ICU Our model |37.75M |42ms  [0.94G |18.88M|70.04 |0.023

ToN_IoT |DNN 29.24M|56ms |0.54G |14.62M|93.90 |0.094

ToN_IoT |Ensemble [58.48M|57ms [1.02G [29.24G [134.90 |0.063
ToN_IoT |Federated [29.24M|61ms [0.52G |14.62M|125.14 [0.081
ToN_IoT |Our model |58.51M|539ms |[1.18G [29.26M|89.04 [0.051

Floating-point operations (FLOPs), Floating-point operation per second
(FLOPS), Multiply accumulate operations (MACs), median error (ME),
20 uncertainty (20-U), Mega (M), millisecond (ms), Giga (G).

TABLE 10. Comparison of our model with models from other research
works.

References Models |Datasets Acc(%) | Prec(%)|Rec(%) | F-s(%)
Tlhan et al. [5] MLP ECU-IoHT [99.99 [99.99 [99.9 99.99
Current work Collabo |[ECU-IoHT [99.99 [99.99 [99.86 [99.57

Ilhan et al. [5] MLP ICU 99.94 199.94 [99.92 [99.93
Hussain et al. [6] |NB ICU 52.18 [79.67 [99.70 |68.50
KNN |ICU 99.48 199.65 [99.68 [99.58
RF ICU 99.51 199.70 [99.79 |99.65
AB ICU 99.50 [99.55 [99.44 [99.47
LR ICU 99.50 [95.28 [90.35 [94.70
DT ICU 99.47 199.69 [99.79 [99.63

Current work Collabo [ICU 99.96 [99.97 [99.87 |99.64
Tlhanetal. [S] |MLP ToN_IoT [98.12 |98.15 [98.12 |98.12
Khanetal. [7] [XSRU |[ToN_IoT {99.38 [99.39 [98.99 [99.37
Zachos et al. [8] |DT ToN_IoT |99.97 [99.97 (9991 |99.94
NB ToN_IoT |34.44 (2791 [99.97 |43.64
LR ToN_IoT [98.70 [95.52 [99.55 |97.50
RF ToN_IoT [99.96 [99.89 [99.95 [99.92
KNN |ToN_IoT [99.98 [99.98 [99.97 [99.96
SVM  |ToN_IoT [98.73 |95.30 [99.93 |97.56
Current work Collabo [ToN_IoT [99.98 [99.95 [99.65 [99.97
Multi-Layer Perceptron (MLP), Naive Bayes (NB), K-Nearest Neighbor
(KNN), Random Forest (RF), AdaBoost (AB), Logistic Regression (LR),
Decision Tree (DT), Explainable simple recurrent units Internet of Medical
Things (XSRU-IoMT), and Support Vector Machine (SVM)

model are better than those of the other models on all the
datasets because of its lower median and 20 uncertainty
values, respectively. This can also be confirmed by the graphs
of the normalized cost values in Section IV-B1-IV-B2.

Also, the fact that the required FLOPS of the models are
less than the 256 GFLOPS can be due to many factors such
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as computational overload, memory operations, and latency
degradations of the computing platform.

Lastly, in Table 10 we compare the statistical performance
results of our model with those of other studies using the same
datasets in medical IoT security.

From the prediction results in Table 10, our model
outperforms most of the other models on the ICU and
ToN_IoT datasets under most of the metrics, but the model
proposed by Ilhan et al. [5] has a better recall and F-score
on the ECU-IoHT dataset and a better recall on the ICU
dataset. In addition, the DT and KNN models proposed
by Zachos et al. [8] have better precision and recall. These
are some of the few instances in which the other models
outperformed the proposed model.

V. CONCLUSION

This study aimed to detect DDoS attacks on medical IoT
systems using a collaborative machine learning approach.
We defined the agents for this purpose and established a
mutual value exchange mechanism among the agents on their
separate causal actions on the target.

The drawback of the proposed model is that it requires
higher design complexity than conventional feedforward
neural networks, making it more computationally expensive.

Nevertheless, apart from having a better generalization
on a given dataset, joining two networks to collaborate
synchronously or asynchronously on a target is an important
feature of our model. This is because such a collaborative
technique is a type of multi-task learning that can be
used to solve spatial and temporal identical multi-label
problems in machine learning by attributing each agent in
the collaborative network an instance of the same target,
in a temporal and/or spatial domain, and letting them share
mutual values with other agents during learning to enhance
their performance on the target. Insofar as they exchange
mutual value between themselves, their collaborative action
on the target, given in Proposition 3.1, will be their partial
actions on their respective target instances irrespective of
space and time.

Furthermore, related to the security and privacy of medical
IoT data, devices, and networks, one of the advantages of this
model is the use of information from distributed (segmented)
environments. Similar to federated learning, this provides
high data and device privacy that enhances data and device
security properties such as integrity and confidentiality. This
is because one of the major cyber security vulnerabilities
for medical IoT networks is the heterogeneity of their data
sources. If any data source is compromised, the whole system
is atrisk of an attack. The challenge with conventional models
is that they involve the building of different independent
solutions for a common attack based on the data sources.
The Collabo approach provides a single model that takes into
account all the different segments of the data sources used by
any given medical IoT network.

In both the collabo and federated model, the prediction
of a security attack such as DDoS further provides security
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related to the availability and integrity of the data, device,
and network. But unlike federated learning which approaches
the security problem by exchanging learning parameters via
a central server, the collabo approach uses a mutual value,
which is exchanged between the agents without the use of
any central agent. This explains its low latency as compared
to federated learning in Table 9.

Finally, the proposed collaborative machine learning
model, where multiple learning agents are used to learn
and predict a target in a heterogeneous environment, may
be deployed in different applications where heterogeneity
is present such as in signal processing, natural language
processing, and autonomous driving.

APPENDIX A PROOF OF PROPOSITION 3.1
Consider the joint probability distribution P(X4, X, y), which
can be expressed as

P(Xa, Xp, y) = P(Xp)P(Xa|Xp)P(y X, Xp) (A1)
or
P(Xa, Xp. y) = POIP(Xa|y)P(Xp|Xa, y) (A2)
Equating (A.1) and (A.2), we obtain
1
P(y| Xy, Xp) = PO)PXyIPXplXa, y) —————— .
O1Xa. Xp) = POPKalPXplXa: V) prspes (A3)
Applying Axiom 3.1, we obtain
P(y|Xa. Xp) = PO)P(Xa|y)P(X, DL (A4)
YitaTb) = ALY X P (Xl Xp) '
Applying Bayes rule to P(X,|y) and P(Xp|y), we have
PXalXp) 1! 1
PO|Xa, Xp) = POIX)POIXp) | —o | —— .
O1Xa: Xp) = PGIXa)PO w[ ) ] ) (A5)
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