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ABSTRACT Vehicle Type Recognition (VTR) is a significant segment within the vehicle recognition field.
It provides an alternative identification method aside from license plate recognition and vehicle make and
model recognition. Most of the recent studies use Convolutional Neural Networks (CNNs) to perform
VTR. However, the feature responses obtained from CNNs are not recalibrated based on saliency and this
hinders the classification performance. In this study, we propose a Spatial Attention Module (SAM) that is
compatible with the existing CNNs. We aim to exploit the spatial relationship between feature responses
by scaling them according to their relative importance to increase classification accuracy. The results
reveal the exceptional performance of SAM on Beijing Institute of Technology (BIT)-Vehicle, Stanford
Cars and web-nature Comprehensive Cars (CompCarsWeb) with 96.92%, 84.48% and 95.96% accuracies,
respectively. A qualitative inspection of the learned feature embedding suggests the high cohesivity of
the features within the group. Furthermore, an ablation study is conducted to justify the hyperparameters
of choice for SAM. SAM is also modular where it is highly compatible with other CNNs and it leads
to considerable performance improvement. A comparison with existing attention modules suggests our
proposal prevails in the VTR application. The inference times of 1 ms and 10 ms for CaffeNet-SAM and
ResNet-SAM also make them suitable for real-time classification tasks.

INDEX TERMS Convolutional neural network, multi-head self-attention, spatial attention module, trans-
former, vehicle type recognition.

I. INTRODUCTION
Advancement in technology induces drastic changes to the
human’s way of life, especially for mobility. Traveling from
one place to another in a vehicle has become a norm since
several decades ago and this has translated to an enor-
mous increase in vehicle volume. To safeguard the safety
of all road users, traffic monitoring and regulation are now
a necessity so that users can continue enjoying a seamless
traveling experience. Vehicle Type Recognition (VTR) is
considered one of the essential elements that makes traf-
fic monitoring viable [1]. Knowing the types of vehicles
helps the officials estimate the wear-out rate of tar roads
and thereby schedule pavement maintenance work in time.
Moreover, VTR can be implemented in toll collection booths
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to collect tolls automatically based on vehicle types [2],
[3], [4]. Vehicle type information also serves as supplemen-
tary information in tracking down the identity of a vehicle,
especially during criminal investigations where license plates
are normally forged [5], [6], [7]. Despite its importance,
deploying a human workforce to perform VTR is not
sensible due to the massive traffic volume. As the task
is repetitive, laborious and tedious, the probability of a
human committing a mistake will increase over time due to
fatigue [5]. In addition, VTR requires a certain level of exper-
tise for accurate judgment since there are various vehicle
types.

Sensing equipment and Computer Vision (CV) are among
the techniques used for VTR. As compared to CV, sensors
are less favorable due to stringent operating conditions. For
instance, the performance of piezoelectric sensors is affected
by the vehicle speed and road surface temperature whereas
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LiDAR is sensitive to ambient conditions such as weather and
lighting [1]. These disadvantages have driven the adoption
of CV-based techniques which are more versatile and yet
demonstrate stronger classification performance. The early
CV-based VTR solutions exploit the raw vehicle features
by examining the gradient orientation information of the
vehicle [2], [8], [9], [10], [11], [12]. Since these raw fea-
tures are less intolerant to environmental disturbances, their
performances suffer when deployed to the actual environ-
ment. Deep learning algorithms, particularly Convolutional
Neural Networks (CNNs), underwent rapid development
a decade ago due to their astounding learning capability.
They perform feature extraction hierarchically and eventually
generate the global features that carry strong semantic infor-
mation [13], [14], [15], [16], [17], [18], [19]. The advent of
deep learning algorithms has lifted the experience-based fea-
ture engineering process practiced in the local feature-based
techniques and consistently achieved state-of-the-art perfor-
mance. Another line of work focuses on unsupervised filter
learning techniques. Unsupervised filter learning serves two
purposes, either to reduce training complexity [4], [20], [21]
or to learn superior convolutional kernels [22]. Although
these works bring competitive results, more studies need to
be done to validate the generalization ability of the networks.

Despite the remarkable performances of the existing
works, we realize that most of them do not implement differ-
ential learning which treats the feature responses according
to information saliency. We reckon that every vehicle part
does not assume the same importance level. They should
be treated differently so that the discriminative parts are
given higher attention. In this regard, many studies focus on
exploiting the channel and spatial relationship to highlight
the salient features [23], [24], [25], [26]. Inspired by their
encouraging results, we propose a Spatial Attention Mod-
ule (SAM) to enhance the high-level features deduced from
the convolutional operation. SAMaims to quantify the feature
relativeness by computing the attention maps. The deduced
attentionmaps are then used to tune the top-level featuremaps
through element-wise multiplication and a softmax classifier
is used to perform classification. The contributions of this
work are stated as follows:

• Exhibited the ability of SAM to compute spatial rela-
tionships among global features and thus underscore the
exclusive features

• Demonstrated SAM can be integrated into existing clas-
sification models to improve classification accuracy and
it is trainable end-to-end

• Proved that SAM is better than existing attention mech-
anisms in terms of classification accuracy

The rest of this paper is organized as follows. We review
several relevant works in Section II. In Section III, we unravel
the architecture of the proposed SAM and how it is com-
bined with available classification models. Details of the
experiments and comprehensive analysis of our results are
elaborated in Section IV.We conclude this work in Section V.

II. RELATED WORK
In this section, we present a brief review of existing works
in the vehicle recognition domain. Based on the nature of the
proposed methodologies, they can be broken down into local
feature-based, deep learning, unsupervised filter learning and
attention mechanism.

A. LOCAL FEATURE-BASED
Local feature-basedmethods look out for the texture, gradient
orientation, or interest points information for feature extrac-
tion. These features are normally fed to machine learning
algorithms for classification. A cascade two-stage classi-
fier ensemble was proposed by Zhang [8] where Gabor
Wavelet Transform and Pyramid Histogram of Oriented Gra-
dient (PHOG) were utilized to characterize vehicles. The
feature vectors were subsequently fed into an ensemble
of 25 models to perform classification through majority
voting. Despite achieving 98.65% accuracy for 21 vehicle
models, having numerous models may impact the feasi-
bility of real-time implementation. Peng et al. [11] applied
a clustering technique for VTR. K-means clustering was
performed on the features deduced from Principal Com-
ponent Analysis (PCA) and 88.8% accuracy was reported.
Sun et al. [2] derived global and local features from an
improved canny edge detector and Gabor wavelet. A two-
stage classification framework, namely the k-Nearest Neigh-
bor Probability Classifier (KNNPC) and Discriminative
Sparse Representation-Based Classifier (DSRC), was then
used as the classifier. Their framework was tested on a
limited number of images and reported an average accu-
racy of 93%. Derrouz et al.’s work [9] was based on stereo
vision. Using the disparity map generated from stereo vehi-
cle images, they derived actual vehicle dimensions. Next,
HOG was applied to enrich the feature representation and
the feature vector was downsized through PCA. Eventually,
the feature vector together with vehicle dimensions served
as input to SVM. They reported 95.2% on Beijing Institute
of Technology (BIT)-Vehicle dataset [20]. Sathyanarayana
and Anand () [10] described vehicles through Gabor filters,
HOG and Local Optimal Oriented pattern [27]. Then, Ant
Colony Optimization [28] was utilized to select the top 30%
best features, thus reducing features from 12,260 to 3,676
before feeding into a deep neural network. Their framework
recorded 97.88% accuracy on the MIO-TCD dataset [29]
and outperformed other deep CNNs such as ResNet50 [30]
(96.9%), DenseNet [31] (97.0%) and Xception [32] (97.6%).
Wang et al. [12] improvised the Spatiotemporal Sample Con-
sistency algorithm (STSC) to reduce lighting interference in
the background subtraction technique during vehicle detec-
tion. The segmented vehicle was then fed into a cascade
classifier to predict vehicle type based on the ratio of
the license plate and vehicle dimensions, HOG features,
passenger face as well as vehicle area. However, their net-
work is not easily scalable as the inputs include the actual
dimensions of license plates that can vary from country to
country.
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Although these works reported high accuracy, dependency
on handcrafted features causes them to be less robust. The
network performance can be highly swung by translation,
rotation, scaling and change in light illumination [21], [33].

B. DEEP LEARNING
Deep learning has garnered attention in the image classifica-
tion domain since AlexNet [34], a variant of CNN, reported
astounding results on ImageNet. Convolutional architecture
is used to deduce hierarchical features by generating global
features from local features. CNN is robust [33] as compared
to handcrafted features as it is relatively invariant against
external disturbances such as geometric transformation and
brightness variation. Jung et al. [13] studied an ensemble
technique based on deep learning models. They proposed
Joint Fine-tuning (JF) to train several CNNs through joint
loss function. They also implemented DropCNN to randomly
drop CNN from the logits averaging process to prevent
overfitting. An ensemble of 8 ResNet18 reported 97.95%
accuracy on the MIO-TCD dataset. Rachmadi et al. [17]
modeled image classification as a time series problem by
attending to different parts of vehicles sequentially. ResNet18
was used to describe every image partition as well as the orig-
inal image before they were attended in turn by Long-Short
Term Memory (LSTM). They achieved 97.98% accuracy on
the MIO-TCD dataset. Despite the high recognition rate,
frameworks by [13] and [17] are memory intensive and they
are not fit for deployment on lightweight devices. Boon-
sirisumpun and Surinta [18] fine-tuned MobileNet [35] to
differentiate 5 vehicle types and reported 93.40% accuracy.
Arinaldi et al. [19] applied Faster Region-Based CNN which
uses region proposal network, region of interest pooling and
convolutional architecture to carry out detection and clas-
sification for 6 vehicle classes. They reported an accuracy
of 69.4% based on theMITTraffic dataset. Another technique
by Li et al. [14] is the combination of the compressed sensing
technique and ResNet [30]. Compressed sensing which has
the advantage in terms of faster computational speedwas used
to generate a saliencymap for vehicle detection andResNet50
was used to carry out classification. Accuracies of 94.12%
and 95.04%were reported for 3 vehicle classes based onMIT
CBCL and Caltech Database, respectively. With inference
time as the primary focus, Tajar et al. [15] performed prun-
ing for YOLOv3-tiny to reduce the number of parameters.
Zhao et al. [16] improvised YOLOv4 [36] by integrating the
Convolutional Block Attention Module (CBAM) [26] and
modifying Path Aggregation Network [37]. Tajar et al. [15]
and Zhao et al. [16] attained mAP 95.05% and mAP 83.45%
for 6 vehicle types, respectively.

C. UNSUPERVISED FILTER LEARNING
Instead of optimizing convolutional kernels through back-
propagation, some studies suggested unsupervised tech-
niques. Dong et al. [20] proposed a semi-supervised CNN that
learns convolutional kernels through Sparse Laplacian Filter
Learning (SLFL) and multitask learning. Their technique

delivered 88.11% accuracy for 6 vehicle classes but was not
discriminative enough between Sport Utility Vehicle (SUV)
and sedan. Similarly, Huang et al. [21] made use of PCA to
deduce convolutional kernels and the feature maps were used
by SVM for classification. Their framework which delivered
99.07% accuracy on 10 vehicle makes has a longer inference
time than CNN which uses backpropagation. The network
proposed by Soon et al. [4] also adopted PCA filters to
derive vehicle features and they reported 88.52% for 6 vehi-
cle types. In addition, Local Tiled CNN was proposed by
Gao and Lee [22] in which Topographic Independent Com-
ponent Analysis was used to deduce the convolutional kernels
and 98.5% accuracywas reported. Although the unsupervised
filter learning technique shows promising results, it is dis-
puted by [38] and [39] due to low robustness.

D. ATTENTION MECHANISM
Works categorized under the attention mechanism treat the
feature maps according to information saliency. A recalibra-
tion operation is carried out to adjust the feature responses so
that the distinctive information is given more focus whereas
the inconsequential information is suppressed. Our work
falls under this category. Ma and Boukerche [40] proposed
a Lightweight Recurrent Attention Unit (LRAU) that suc-
cessively refines the feature maps based on the attention
state matrices deduced from image pyramids. Despite report-
ing 93.9% accuracy on Stanford Cars [41], the utilization
of 1× 1, stride 2 convolution to deduce attention state causes
information loss. In SAM, we preserve the completeness of
the learned contextual information by sending the top-level
feature maps in full form into SAM to render more accurate
classification results. In Attention Pyramid (AP) CNN [42],
the Feature Pyramid Network (FPN) [43] is used to gener-
ate multi-scale features and they are further refined by the
spatial and channel gates. APCNN achieves 95.3% accuracy
on Stanford Cars but we conjecture that the learned features
are suboptimal due to the limited receptive field of convo-
lutional kernels. With Multi-Head Self Attention (MHSA),
SAM is able to track long-range dependencies and generate
more holistic features. Attentive Pairwise Interaction Net-
work (APINet) [44] identifies the salient region of the image
by comparing and contrasting an object pair. A careful design
of image pair construction strategy is essential to ensure the
convergence of loss function. On the contrary, the training
pipeline of SAM is relatively simpler and it has higher gen-
eralization ability when being applied to different datasets.

III. PROPOSED FRAMEWORK
In this study, we carry out experiments on SAM using
CaffeNet [45] due to its relatively shallow architecture as
compared to VGG [46], GoogLeNet [47] and ResNet [30].
Shallow architecture results in lower floating-point opera-
tions (FLOPs) and hence shorter model training time.

CaffeNet is a CNN that is responsible for producing
low-level and high-level features from raw image pixels
through convolution operations. The high-level features are
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subsequently enhanced by the proposed SAM upon consid-
ering the spatial relationship among feature responses.

It is worth noting that the proposed SAM can be embedded
into any CNNs and thus it is handy to use. We demonstrate
this in Section IV-D-4 and its benefit is validated through
classification accuracy.

FIGURE 1. CaffeNet architecture. The value before and after @ indicates
the number of channels and the size of feature maps, respectively.

A. CaffeNet
CaffeNet consists of 5 convolutional layers, 3 local response
normalization (LRN) layers and 3 fully connected layers as
shown in Fig. 1. Denoting an input to a layer as

{
Isi
}N
i=1 ∈

RH×W×C , where H is height, W is width, C is the number
of channels, s is layer index and N is the total number of
images, convolution is performed on Isi using convolutional
kernels. The convolutional kernels capture the local rela-
tionship within the local receptive field and subsequently
aggregate the local features into global features. The con-
volutional kernels are shared across the entire feature maps
and the number of trainable parameters is reduced as a result.
A convolution operation is formulated as

I s+1
i = I si ∗W s

conv (1)

where ∗, W s
conv and I

s+1
i are 2D-convolution, convolutional

kernels and output at layer s, respectively. Group convolution
is performed on ‘Conv2’, ‘Conv4’ and ‘Conv5’ in which I si is
first split into I si,1 and I

s
i,2 along the channel axis. Convolution

is then performed separately to get I s+1
i,1 and I s+1

i,2 and they are
concatenated to form I s+1

i . To introduce non-linearity to the
network, the Rectified Linear Unit (ReLU) is opted as the
activation function. It is a piecewise linear function given by
ReLU (x) = max(0, x) where x is a single feature response
on the feature maps. Pooling operation is also implemented
to provide translation and rotational invariance. Maximum
pooling is chosen to retain the most salient feature within
the pooling kernels. Besides, the pooling operation reduces
the size of feature maps and hence results in a shorter model
training time. Apart from the above, LRN provides lateral
inhabitation. by performing normalization over neighboring
feature maps. Denoting an activity of a neuron in feature map
i as ai, the response-normalized activity bi is computed as

bi =
ai(

k + α
∑min(C−1,i+ r

2 )
j=max(0,1− r

2 )
a2j

)β
(2)

where bias k = 2, alpha α = 10−4, beta β = 0.75 and
radius r = 5 for all LRN layers. CaffeNet culminates with
fully connected layers and a softmax classifier. The input
to the fully connected layer is the flattened feature vector
from the previous layer. It should be noted that ReLU is used
as the activation function for the first two fully connected
layers whereas softmax is used in the last fully connected
layer to compute the class probability. The output of the last
fully connected layer is represented as

P
(
Class = m | x;W L

;BL
)

=
exp

(
wTmx + bm

)∑M
i=1 exp

(
wTi x + bi

) (3)

where x ∈ RK×1 is the K -dimensional feature vector and
K = 4, 096 for CaffeNet, M is the number of classes, m ∈

{1, 2, . . .M}, W L
= [w1,w2, . . . ,wM ] ∈ RK×M and BL =

[b1, b2, . . . , bM ] ∈ R1×M are neuron weights and biases.
To increase the sensitivity of CaffeNet towards spatial

importance, SAM is embedded after the ‘LRN3’ since the
feature map size at this stage is the smallest and richest
in information. Using MHSA as the core building block,
SAM allocates higher weightage to the spatial positions cor-
responding to crucial vehicle parts guided by the attention
matrices. In particular, the scaled dot-product attention is
employed to deduce the attention matrices that quantify the
correlation of the spatial positions. To promote diversified
learning, the attention matrices are computed in multiple
feature spaces via different attention heads and they are even-
tually used to scale the feature responses appropriately. More
deliberations about SAM are provided in Section III-B.

B. SPATIAL ATTENTION MODULE (SAM)
SAM is inspired by MHSA in the transformer architec-
ture [48]. MHSA is first applied in Natural Language
Processing (NLP) for machine translation tasks and its advent
has since challenged the status quo of recurrent neural net-
works. It allows parallel computation and the modeling of
long-range dependency. Motivated by the success of MHSA
in NLP, various research issues are steered toward the appli-
cation of MHSA in the image classification domain. Vision
Transformer (ViT) [49] and Perceiver [50] were proposed
recently and they rendered comparable classification results
against CNNs. Nevertheless, the lack of inductive bias lands
the transformer at a disadvantage, especially in the low data
regime. In regard to this, we decide to build our work based
on CNN and augment its understanding at the global level
through the incorporation of SAM. SAM leverages MHSA
to gain a global understanding of the vehicles. This eases
the exploitation of spatial relationships within the high-level
feature maps to further enrich the feature embeddings. Gen-
erally, SAM will be inserted after the last feature maps of the
backbone CNN and the underlying operations are depicted
in Fig. 2.

1) FEATURE MAP PREPROCESSING
As MHSA works with one-dimensional input, we first
reshape the feature maps I si into Ipatchi =

{
Ipatchi,1 , Ipatchi,2 , . . . ,
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FIGURE 2. Spatial attention module.

Ipatchi,P

}
∈ RP×(kH×kW×C) where kH is the height of the patch,

kW is the width of the patch and P = (H ×W )/(kH × kW ) is
the number of patches.

Subsequently, each image patch is linearly projected
such that Iproji =

{
Iproji,1 , Iproji,2 , . . . , Iproji,P

}
∈ RP×(kH×kW×C)

where Iproji,p = Ipatchi,p Wp, p is the patch index and Wp ∈

R(kH×kW×C)×(kH×kW×C).

2) INJECTING POSITIONAL INFORMATION
The position of image patches is important in comput-
ing the spatial relationship. However, MHSA does not
account for positional differences as the attention opera-
tion is carried out in parallel. Being permutation invariant
makes MHSA less competitive in modeling highly struc-
tured data like images [24] and injecting the positional
information into the image patches can bring MHSA more
clues regarding the object structures. In SAM, we choose
positional encodings to incorporate positional informa-
tion and we reason this in Section IV-D-I based on our
dataset.

Positional encodings inject positional information into Iproji
using sine and cosine functions. The benefit of positional
encodings is it involves no training parameters. The operation
to generate positional encodings Penc ∈ RP×(kH×kW×C) is as
follows:

Penc (p, 2d) = sin

(
p

10, 000
2d
D

)
(4)

Penc (p, 2d + 1) = cos

(
p

10, 000
2d
D

)
(5)

where d ∈ {0, 1, . . . , (kH × kW × C − 2) /2} and D =

kH × kW × C . Penc is then added to Iproji such that Iposi =

Iproji + Penc.

3) MULTI-HEAD SELF-ATTENTION
MHSA computes the attention distribution among Iposi by
using query Q, key K and value V where Q,K ,V ∈

RP×(kH×kW×C). In self-attention, Q, K and V are essen-
tially Iposi . As stated by Vaswani et al. [48], instead of using
single-head, it is advantageous to adopt multi-head by lin-
early projectingQ,K andV forH number of timeswhereH is
the number of heads. MHSA performs the attention computa-
tion amongQ,K ,V matrices that have been linearly projected
into different subspaces. In particular, scaled dot-product
attention is calculated in which the output is the weighted
sum of V and weight is the degree of compatibility betweenQ
andK . Mathematically, a single-head self-attention operation
for Head i is represented as follows:

Head i = Softmax

[
QWQ

i

(
KWK

i

)T
√
d i

](
VWV

i

)
∈ RP×di (6)

where di = (kH × kW × C) /H is the dimension of lin-
early projected Q, K and V per head, WQ

i ,WK
i ,WV

i ∈

R(kH×kW×C)×di are projection matrices for Q, K and V ,
respectively. Upon computing scaled dot-product attention,
allHead i are concatenated and reshaped into a tensor of shape
(P, kH × kW × C) before being sent to the final projection
layer.

IMHAi = Reshape (Cat (Head1,Head2, . . . ,HeadH ))WO

(7)

where Cat (·) is concatenate operation, WO
∈

R(kH×kW×C)×(kH×kW×C) and IMHAi ∈ RP×(kH×kW×C).

4) INJECTING SPATIAL RELATIONSHIP
After capturing the attention information, we embed this
information into I si . As the output of MHSA is one-
dimensional, we first reshape it back into two dimensions
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such that IMHA
′

i = Reshape
(
IMHAi

)
∈ R

√
P×

√
P×(kH×kW×C).

When kH or kW is larger than 1, it causes
√
P to be smaller

than H and W and hence bilinear interpolation is carried out
so that the resultant dimension matches that of I si .

IMHA
′

i = BilinearInterpolation
(
Reshape

(
IMHAi

))
(8)

It is important to note that interpolation is an optional oper-
ation and it is needed only when kH ̸= 1 or kW ̸= 1.
Subsequently, the channel information of IMHA

′

i is aggregated
using channel-wise mean operation and the feature responses
are kept within 0 to 1 by applying the sigmoid function.
Finally, the attention information which contains the spatial
information is incorporated into I si by

I s
′

i = I si ⊗ σ
(
Mean

(
IMHA

′

i

))
∈ RH×W×C (9)

where Mean (•) is channel-wise mean, ⊗ is element-wise
multiplication and σ is the sigmoid function.

FIGURE 3. Sample images from BIT-Vehicle dataset.

IV. EXPERIMENTS
A. DATASET
We carry out the experiment for VTR using the BIT-Vehicle
dataset [20]. It consists of 9,850 images of different view-
points captured by surveillance cameras and they are subject
to external disturbances such as lighting variations, scal-
ing and rotation, etc. This serves as a good reference
point to examine the robustness of the proposed framework.
Since some images contain more than one vehicle and to
suit the vehicle classification task, we utilize the provided
annotations to segment individual vehicles. The class dis-
tribution among SUV, sedan, microbus, minivan, truck and
bus are 1,372, 5,776, 860, 467, 820 and 555, respectively.
Fig. 3 shows some sample images from the BIT-Vehicle
dataset.

Aside from using the full BIT-Vehicle dataset, we perform
random sampling to sample 400 images from each class in
which 200 are used for training and 200 for testing to produce

a balanced dataset. In other words, this subset contains a total
of 2,400 images and the ratio of training to testing images
is 50:50. It is worth noting that we report the performance of
SAM based on this subset unless stated otherwise.

To ensure SAM is highly generalizable, we validate further
the framework on two publicly available datasets, namely
Stanford Cars [41] and web-nature Comprehensive Cars
(CompCarsWeb) [51]. The particulars of these datasets are
shown in Table 1. The labels for Stanford Cars are pickup,
convertible, sports car, hatchback,MPV, sedan, SUV,minibus
and wagon whereas CompCarsWeb has fastback, hardtop and
crossover as additional labels.

TABLE 1. Statistics of Stanford cars and CompCarsWeb.

B. TRAINING OF PROPOSED FRAMEWORK
Firstly, we resize the images to 224×224 before normalizing
the pixel values based on the ImageNet dataset. We then
initialize CaffeNet with weights pretrained on the ImageNet
dataset. For SAM, we set kH = kW = 1 and H = 8. On the
BIT-Vehicle dataset, CaffeNet-SAM is fine-tuned based on
cross entropy loss using Adam [52] for 50 epochs. The learn-
ing rate α is set as 1e-4 for the first 25 epochs and it is
decayed by factor of 10 at 26th epoch. For Stanford Cars and
CompCarsWeb datasets, we train the network for 90 epochs
since they are larger in quantity. Stochastic gradient descent is
chosen as the optimizer with 0.9 momentum and 5e-4 weight
decay. The learning rate is set as 0.01 and decays by a factor
of 10 for every 40 epochs. We also perform random cropping
to prevent overfitting during training.

The experiment is performed on a machine with the spec-
ification of Intel Core i7-9750H 2.6GHz, 32GB RAM and
NVIDIA Quadro T1000 4GB video memory.

C. RESULTS AND ANALYSIS
Fig. 4 shows the training curve of CaffeNet-SAM. The train-
ing process for 50 epochs takes about 5 minutes on the GPU.
Due to the fine-tuning strategy, our proposed framework
records satisfactory accuracy during the first few epochs and
it has a high convergence rate. The highest testing accuracy
occurred at 6th epoch, recording 94.17%. The accuracy is
calculated using the following equation

Accuracy =

∑M
m

TPm
Nm

M
× 100 (10)

where TPm and Nm are true prediction count and total image
count in mth class.
To examine the learned deep features, we apply

t-distributed Stochastic Neighbor Embedding (TSNE) [53]
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FIGURE 4. Training curve of CaffeNet-SAM. Maximum testing accuracy
of 94.17% is recorded at the 6th training epoch.

FIGURE 5. TSNE plot of deep features from CaffeNet-SAM.

to project the 4,096-dimensional features extracted from the
penultimate fully connected layer into two dimensions for
visual inspection. The TSNE plot of the deep features is
shown in Fig. 5 and each point is labeled with the actual class
label.

We observe that the bus is distinctive from the rest of
the classes as it forms an independent cluster far away from
others. We reckon that this is due to its prominent large
vehicle size and the rigid rectangular shape which present
a large visual difference from the rest. As for SUV, sedan
and microbus, separation is less clear but the three clusters
are still clearly visible. Besides, we notice that minivan and
truck share a higher inter-class similarity as compared to other
classes due to similar vehicle fronts.

We tabulate the confusion matrix in Fig. 6 to show the
breakdown analysis of the prediction. The confusion matrix
shares similar findings with our deep features interpretation
based on the TSNE plot. The accuracy of SUV, sedan and
microbus are 89%, 97% and 94.5%, respectively. Most of the
wrong predictions for SUV fall into sedan and vice versa.
There are 7 samples of microbus being misclassified into
SUV and they account for 3.5%. None of the minivans and
trucks are misclassified into small-size vehicle categories
(SUV and sedan) and this suggests that the framework is

FIGURE 6. Normalized confusion matrix.

distinctive at least between different sizes of vehicles. Similar
to the observation from the TSNE plot, the bus is a distinctive
category and 100% accuracy is reported.

D. DISCUSSION
1) EFFECT OF POSITIONAL INFORMATION ON SAM
By nature, MHSA takes no notice of the order of image
patches [48]. However, the sequence information is impor-
tant as it avoids permutation equivariance and reinforces
the contextual understanding of an object. In our pro-
posal, we explicitly insert the positional information using
positional encodings. We also experiment with alterna-
tive ways to inject the positional information. Specifically,
one-dimensional learnable positional embeddings [49] is
adopted and it is initialized using uniform distribution
U (−0.05, 0.05).
Table 2 shows the performance of SAM using different

approaches to inject the positional information. It is observed
that positional information is important in SAM and posi-
tional encodings performs better than positional embeddings
by 0.42% on our dataset. Comparing positional encodings
and embeddings, we conjecture that the sinusoidal waveform
utilized by positional encodings retains the inter-patch rela-
tivity and thus allows the spatial structure of the vehicle to
enrich the feature representation. On the contrary, positional
embeddings encodes only the absolute positional information
and it fails to model the patch-to-patch relationship. Another
additional benefit of positional encodings is it reduces the
trainable parameters of the network since the positional
information is calculated explicitly rather than being learned
during the training process.

TABLE 2. Effect of positional information on SAM.
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2) EFFECT OF PATCH SIZE ON SAM
In this section, we are interested to find out the optimal
value for kH and kW to restructure the feature maps into
patches. Based on our implementation, since CaffeNet per-
forms convolution to achieve spatial reduction, we set kH , kW
to be significantly smaller than ViT [49] i.e. 16 to prevent
overboard generalization over a large number of feature
responses. It is worth noting that we adopt the same values
for both kH and kW to produce square-size patches.
Table 3 presents the classification results for different

values of kH and kW . Our results suggest that setting kH ,
kW = 1 reaches the highest classification accuracy and the
performance declines with increasing patch size. Increasing
patch size from 1 to 3 brings close to 1% reduction in accu-
racy. This is because each feature response on the feature
maps produced by the last convolutional layers corresponds
to large receptive fields. Setting kH , kW > 1 is detrimental to
the feature distinctiveness as the over-integration of vehicle
parts results in the loss of fine-grained vehicle cues.

TABLE 3. Effect of patch size on CaffeNet-SAM.

3) EFFECT OF NUMBER OF HEADS ON SAM
In SAM, we choose multi-head over single-head self-
attention. MHSA provides the flexibility of attending to
different subspace representations. Nevertheless, there are
no standard methods to determine the optimum number of
heads. Hence, we determine it empirically and the results are
presented in Fig. 7.

Conforming to our expectation, MHSA indeed performs
better than single-head self-attention. MHSA promotes diver-
sified learning where each attention head models different
intricate vehicle parts to improve the feature expressive-
ness. Furthermore, computing the attention in different
subspaces provides better generalization ability and eventu-
ally reduces the chances of overfitting. The optimum number
of heads for CaffeNet-SAM is 8 in this study. Setting H as
4 and 16 delivers the same performance.

4) EFFICACY OF SAM ON EXISTING CNNS
Fig. 8 shows the accuracy of different CNNs tested on our
experimental dataset. These CNNs are implemented using the
open-source PyTorch framework and they are trained in the
same fashion as described in Section IV-B.

Based on the results, it is observed that before incor-
porating SAM, the lowest accuracy is recorded by
the shallowest CNNs, namely AlexNet [55] and Caf-
feNet [45]. This is followed by GoogLeNet (93.67%) [47]
which adopts Inception Module. VGG16 [46] which uses

FIGURE 7. Effect of number of heads on CaffeNet-SAM.

FIGURE 8. Efficacy of SAM on existing CNNs.

fixed-size 3 × 3 convolutional kernels reports 94.50% accu-
racy. ResNet50 [30] which implements a skip connection
strategy has the largest number of layers among all. It shares
the same accuracy with VGG16.

To test the efficacy of SAM,we incorporate it intoAlexNet,
VGG16, GoogLeNet and ResNet50. Specifically, we insert
SAM into AlexNet and VGG16 before the first fully con-
nected layer. As for GoogLeNet and ResNet50, the SAM
is positioned before the global average pooling GAP layer.
Upon incorporating SAM, all networks show improvement
by an average of 0.7%. CaffeNet records the largest leap in
accuracy, which is by 1.25% followed by 0.92% of ResNet50.
The results indicate that due to the limited receptive field of
convolutional kernels, the feature maps fail to gain a holistic
understanding of the vehicles and hence the learned embed-
dings are still weak semantically. With SAM, the inter-spatial
relationship is computed by MHSA which exerts a global
receptive field. The thorough propagation of all spatial infor-
mation enables the distinctive features to be pinpointed and
recalibrated to elevate the classification performance.

5) PERFORMANCE OF SAM AGAINST EXISTING
ATTENTION MODULES
As SAM employs the concept of attention, we bench-
mark its performance against the existing attention modules.
Hu et al. [23] introduced a Squeeze-and-Excitation (SE)
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block to exploit the inter-channel relationship. The squeezing
operation first encapsulates each feature map using GAP.
Subsequently, the excitation operation models the nonlin-
ear inter-dependency between the channels and the fea-
ture maps are recalibrated according to channel impor-
tance. The operations of the SE block are represented as
follows

I s
′

i = I si ⊗ σ
(
W2ReLU

(
W1GAP

(
I si
)))

(11)

where GAP
(
I si
)

∈ RC×1,W1 ∈ R
C
r ×C ,W2 ∈ RC×

C
r and r is

the reduction ratio. In this study, we use r = 16 as suggested
in [23].

Bottleneck Attention Module (BAM) [25] is introduced
to reweight the feature responses by examining both spatial
and channel relationships. The channel and spatial attention
are carried out independently and they are combined even-
tually to jointly adjust the feature responses. Similar to the
SE block, the channel attention branch within BAM models
the inter-channel relationship. As for the spatial attention
branch, it makes use of 1× 1 convolution and dilated convo-
lution to aggregate the contextual information, respectively.
Mathematically, the operations carried out by BAM are rep-
resented as

I s
′

i = I si + I si ⊗ σ
(
Mc

(
I si
)
+Ms

(
I si
))

(12)

whereMc
(
I si
)

∈ R1×1×C is the channel attention branch and
Ms
(
I si
)

∈ RH×W×1 is the spatial attention branch. We set the
reduction ratio as 16 and the dilation value as 4, which are the
optimal values found empirically in [25].

CBAM [26] is an improved version of BAM. The chan-
nel attention and spatial attention operations are carried
out sequentially. On top of GAP, it adopts global maxi-
mum pooling in the channel attention branch to preserve
the salient object features. In the spatial attention branch,
the inter-spatial relationship is computed using channel-wise
average pooling and channel-wise maximum pooling fol-
lowed by a convolution operation. CBAM operation is
denoted as

I s
′

i =
(
I si ⊗Mc

(
I si
))

⊗Ms
(
I si ⊗Mc

(
I si
))

(13)

The reduction ratio and convolutional kernel size are set
as 16 and 7, respectively as suggested in [26].

Table 4 compares SE, BAM, CBAM and SAM when
integrated with CaffeNet in terms of classification accuracy.
We insert SE, BAM and CBAM after every LRN layer of
CaffeNet. In other words, there are a total of three attention
blocks being added. As SE, BAM and CBAM are origi-
nally proposed based on ResNet, we also integrate them into
ResNet50 following the practices in [23], [25], and [26].

The results show that although SE outperforms BAM and
CBAM, its performance falls behind SAM by an average
of 0.46%. Similar to the SE, SAM exploits the inter-channel
dependency through linear projection operation. Neverthe-
less, we reckon that channel recalibration alone leads to less
conclusive results since the spatial context information is

not considered. Therefore, following channel recalibration,
SAM leverages the scaled dot-product attention to com-
pute the correlation of the spatial positions before scaling
the feature responses based on their relative importance.
Our results unravel that spatial feature refinement based on
MHSA is pivotal to discriminating against different types of
vehicles.

TABLE 4. Performances of various attention modules.

TABLE 5. Comparison with state-of-the-art on BIT-Vehicle dataset
(subset).

6) COMPARISON WITH STATE-OF-THE-ART
We benchmark our proposed framework against the existing
works on the BIT-Vehicle dataset [20] in Table 5. CaffeNet-
SAM reports 94.17% accuracy whereas ResNet50-SAM tops
the ranking with 95.42% accuracy. Santos et al.’s work [56]
which fed the images projected by 2D Linear Discrimi-
nant Analysis into the Boltzmann Machine reported 80.62%
accuracy. Baser and Altun [57] used the Haar Cascade Clas-
sifier to both detect and classify vehicle types and achieved
81.83% accuracy. Dong et al. [20] used a semi-supervised
method to learn the convolutional kernels of CNN. Specif-
ically, they experimented with Sparse Filtering (SF) [63]
to optimize the convolutional kernels for sparsity. SLFL
method is an improvisation over SF by taking reconstruction
error, sparsity and manifold assumption into account [20].
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Accuracies of 86.82% and 88.11% were reported by
SF and SLFL, respectively. Soon et al. [4] used PCA to learn
the convolutional filters and they reported 88.52% accuracy.
Although both Dong et al. [20] and Soon et al. [4] achieved
remarkable accuracy, their frameworks are not trainable
end-to-end as the convolutional kernels need to be opti-
mized beforehand separately. Work by Sun et al. [2] deliv-
ered 90.10% accuracy. Their network was trained to first
classify the vehicles into heavy or light before recognizing
the types and hence additional labels are required. Bai et al.’s
work [58] with 91.08% accuracy is required to produce
deformable part models (DPM) for each vehicle type and this
may impact the requirement for real-time inferencing when
the number of vehicle types increases.

Additionally, we include more works, especially those
from the attention mechanism domain, for comparison pur-
poses. Since these works did not report the performances
on the BIT-Vehicle dataset originally, we perform the train-
ing as elucidated in Section IV-B and report the results
in Table 5. ViT-B [49] which has around 86M parameters
delivers 94.50% accuracy. It is criticized for the inability
to encapsulate information from all image patches into the
class embedding token [64], [65], [66]. APINet [44] which
leverages pairwise contrastive clues achieves 94.83% accu-
racy. We hypothesize that better performance can be achieved
by customizing a dataset-specific pair construction strategy
for training. SwinV2-T [59] is a transformer network that
employs a shifting windowing scheme for MHSA and it
reports 94.92% accuracy. Although the devised MHSA has
linear complexity, the capability to model global dependency
is compromised.

LRAU [60] outperforms our shallow architecture i.e.
CaffeNet-SAM but its accuracy is 0.34% lower than
ResNet50-SAM. APCNN [42] reports 95.25% accuracy
based on multi-level classification heads. It is reckoned
that attaching a classification head at early convolution
layers leads to contradiction in feature learning as the
low-level feature maps have to learn both high-level seman-
tic information and low-level fine-grained information at
the same time. ResNet50-based High-temperaturE Refine-
ment and Background Suppression (HERBS) [61] is as
competitive as APCNN. With the help of the selector mod-
ule, it identifies the salient feature responses from various
pyramid levels and channels them into a Graph Convolu-
tional Network-based combiner module for cross-granularity
information exchange. For Cross-Layer Mutual Attention
Learning (CMAL) [62], it trains multiple classification
experts that first segment the vehicle from the image in
a weakly supervised manner through feature maps bina-
rization before performing the classification. Building upon
TResNet-L [67], CMAL has parameters as many as 63.2M.
Although ResNet50-SAM is smaller than CMAL by close
to 20M, it renders the same performance level.

We also examine the proposed framework on a larger
image pool. To compare with the works that do not report the
performance based on (10), we attach the overall accuracy

TABLE 6. Comparison with state-of-the-art on BIT-Vehicle dataset (full).

figure calculated using (14) in Table 6

Overall Accuracy =
TPTotal
NTest

× 100 (14)

where TPTotal is the total true prediction count and NTest is
testing image count. The accuracy calculated based on (10)
is equivalent to (14) when the images from each class have
equal proportions.

Liu et al. [68] reported 97.1% overall accuracy based on
Inception-v3 [71]. Derrouz et al. [9] reported 95.2% overall
accuracy using vehicle dimensions and HOG as features.
Their stereo vision-based work requires two cameras and
this results in higher installation costs. A novel CNN
introduced by Roecker et al. [69] reported 93.94% accuracy
and 93.90% overall accuracy. Hedeya et al. [70] proposed a
super-learner ensemble technique based on Xception [32]
and DenseNet [31]. In particular, the logits of two deep
learning models were merged via a fully connected layer
and 96.77% accuracy and 97.62% overall accuracy were
reported. The transformer-based ViT-B [49] achieved 95.92%
accuracy and 97.66% overall accuracy. APINet [44] and
SwinV2-T [59] are on par by reporting 97.56% overall accu-
racy. For HERBS [61], a drop in ranking is seen as its
performance is poorer than LRAU [60] and APCNN [42]
in terms of overall accuracy. This is caused by the selector
module which constrains the feature representation learning
from the most discriminative responses. Consequently, other
complementary visual cues are forgone and the embeddings
become less diverse. APCNN consistently outflanks LRAU
by claiming 96.37% accuracy and 97.82% overall accuracy.
CMAL [62] remains the best network after ResNet50-SAM.
It is worth noting that CMAL has high computational costs
which stand at 14.04 GFLOPs since 5 forward passes are
required to deduce a superior vehicle segmentation mask.
For our proposal, CaffeNet-SAM achieves 95.44% accuracy
and 97.41% overall accuracy. ResNet50-SAM achieves the
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best performance with 96.92% accuracy and 98.17% overall
accuracy.

TABLE 7. Computational complexity of SAM.

To render a holistic evaluation, a comparison between the
vanilla CNN and post-SAM insertion in terms of the num-
ber of parameters, FLOPs and inference speed is tabulated
in Table 7. Incorporating SAM brings negligible effect on
the network size and computational cost to CaffeNet. This
is attributed to the low channel count of the top-level features
i.e. 256 channels. On the contrary, incorporating SAM almost
doubles the size of ResNet50 and this is due to the top-level
featuremaps that have 2048 channels. The high channel count
also translates to a larger increment in FLOPs as compared
to CaffeNet and the increment approximates 1 GFLOPs,
Nevertheless, ResNet50-SAM is still considered moderate
in size.

In terms of inference time, CaffeNet-SAM outflanks the
framework proposed by Soon et al. [4] as it is 7 times faster,
which is 1 ms against 7 ms whereas the inference time of
ResNet50-SAM is 10ms. Nevertheless, we are aware that this
should just serve as a reference as the machine specification
is not considered. The inference time for the rest of the works
is unreported.

TABLE 8. Evaluation of Stanford cars and CompCarsWeb.

7) EVALUATION OF SAM ON STANFORD CARS
AND COMPREHENSIVE CARS
As both Stanford Cars [41] and CompCarsWeb [51] datasets
are considerably large, we choose to work with a deep CNN
i.e. ResNet50 [30] in this section. The results are tabu-
lated in Table 8. We demonstrate the benefits of SAM on
these datasets where it identifies and pays more attention to
critical spatial positions to render better classification perfor-
mance than the baseline. ResNet50-SAM achieves 84.48%
and 95.96% accuracy on Stanford Cars and CompCarsWeb.
The improvement brought by SAM is 1.54% and 3.08%,
respectively.

V. CONCLUSION
In this work, we propose SAM that treats each spatial position
on the feature maps according to the information relevancy.
It places a higher focus on spatial positions that correspond
to key vehicle parts and attenuates the insignificant infor-
mation to better differentiate vehicle types. We fuse SAM
with CaffeNet and report 95.44% accuracy for 6 vehicle types
based on the BIT-Vehicle dataset. The framework takes 1 ms
during inference and it is fit for real-time implementa-
tion. Integrating SAM into deeper CNN renders even better
classification performance where ResNet50-SAM achieves
96.92% accuracy. In addition, SAM leads the state-of-the-art
solutions, especially those that originate from the attention
domain by a considerable margin. It also exhibits a high
generalization ability where it brings improvement over the
baseline network by an average of 2.31% accuracy on Stan-
ford Cars and CompCarsWeb datasets.
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