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ABSTRACT EEG is a common and safe test that uses small electrodes to record electrical signals from
the brain. It has a broad range of applications in medical diagnosis, including diagnosis of epileptic seizure,
Alzheimer’s, brain tumors, head injury, sleep disorders, stroke, and other seizure and neurological disorders.
EEG can also be used to help diagnose death in people who are in a persistent coma. The use of digital signal
processing and machine learning to improve EEG analysis for medical diagnosis has gained traction in recent
years. This is because EEG visual analysis can be complex and time-consuming, as it mostly involves high
dimensions and consists of large datasets. The development of novel sensors for EEG recording, digital
signal processing algorithms, feature engineering, and detection algorithms increases the need for efficient
diagnostic systems. An extensive review of the recent approaches for EEG preprocessing, extraction of
features, and diagnosis of brain disorders is provided. In this paper, the main focus is to identify reliable
algorithms for preprocessing, feature engineering, and classification of EEG, applied to medical healthcare
and diagnosis, providing practitioners with insights into the most effective strategies, as well as potential
future directions for improving accuracy of the automatic diagnostic systems. The study of reliable feature
extraction and classification algorithms is crucial for a more accurate analysis of EEG signals. This paper
can provide valuable information to researchers and practitioners working in the fields of EEG analysis
and machine learning, as it provides a summary of recent developments and highlights key areas for future
research. This paper can help researchers and clinicians to stay up-to-date on the latest developments in this
field.

INDEX TERMS Classification, electroencephalogram (EEG), feature extraction, machine learning,
preprocessing.

I. INTRODUCTION

According to the World Health Organization (WHO), of the
one billion people affected by neurological disorders world-
wide, 50 million are affected by epilepsy and 24 million by
other brain diseases and dementias [1]. These Neurological
and brain disorders can affect individuals of all ages, genders,
educational backgrounds, and income levels regardless of
where they live in the world. Figure 1 depicts a report of
the main causes of death globally, as published by WHO on
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December 9, 2020. Women are disproportionately affected by
Alzheimer’s disease and other forms of dementia, accounting
for two-thirds of the cases Globally. The neurological and
brain disorders and other non-communicable diseases claim
about 43.5% of deaths globally.

The main brain disorder epilepsy is characterized by
recurrent seizures, which can affect people of all ages.
About 4-10 people per 1000 individuals experience active
epilepsy at any given time [1]. In addition to epilepsy and
Alzheimer’s, the WHO estimates that 1 in 100 children has
autism, which is a disorder that affects the development of
the nervous system and brain and can cause problems with
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behavior, sociability, and intercommunication [2]. Mental
disorders are also prevalent worldwide, with approximately
1 in 8 individuals, or 970 million people, living with
a form of mental disorder. Anxiety and depression are
the most common disorders, and the COVID-19 pandemic
has led to an increase in persons living with these
conditions [3].

TOP 10 CAUSES OF DEATHS AS PER WHO REPORT

2019 = 2000 = 2023

FIGURE 1. Summary of the statistical report of WHO regarding leading
causes of deaths globally for the year 2000 and up to 2023.

Psychiatric disorders, including bipolar disorder, schizophre-
nia, eating disorders, ADHD, and autism spectrum disorder
(ASD), are characterized by significant difficulties in
thinking, emotional regulation, and behavior.

Various projects have been conducted globally to manage
these disorders and identify potential prevention strategies
by diagnosing brain activity. However, the brain consists of
billions of cells, with neurons and non-neuron cells called
glia being the most common types of cells [4]. Neurons in
the brain are closely linked, with synapses as entryways for
either inhibitory or excitatory activity. Activity at a synaptic
junction generates tiny voltages known as a postsynaptic
potential [1]. While it is impossible to detect the burst
of a single neuron without direct contact due to its small
size, the synchronous activity of hundreds of millions of
neurons with similar spatial orientations can be recognized
on the scalp’s surface. During volume conduction, many
neurons simultaneously push ions, and the energies of the
ions push and pull electrons onto the electrodes. Voltmeters
can measure the difference between any two electrodes’
push and pull voltages because metals conduct electrons
efficiently. The differences in voltage between electrodes in
the brain create EEG signals, which are used to analyze brain
activity [2].

EEG signals are vital in biomedical healthcare because
these represent brain activity mainly utilized for the iden-
tification of epilepsy, Alzheimer’s, mental stress, autism,
ADHD, and other brain and neurological disorders. Early
detection and precise identification of these brain conditions
can help save lives across the globe. We were motivated to
conduct a comprehensive assessment of EEG signals by the
desire to save lives and reduce the symptoms and disabilities
associated with brain disorders.
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The EEG signal is very low amplitude and is commonly
enhanced with amplifiers during acquisition. Due to low
amplitude, noise sources usually contaminate the signal; thus,
denoising is applied to get a clean signal. Sometimes, if the
noise is dominant and deficient, the signal is discarded and
recorded by experimenting again. Further, depending on the
application, filtering and processing are applied to EEG. EEG
signals are then analyzed by extracting features that consider
the complexity of brain dynamics. EEG signals are currently
being studied to improve preprocessing and feature extraction
methods, which can be applied to EEG processing, enabling
the extraction of reliable features [3].

In this study, we aim to develop a comprehensive reference
tool for EEG researchers by covering various topics related to
EEG signal processing, feature extraction, and classification.
The paper’s contents are organized as follows: Section II
begins with a brief history of EEG, its techniques and
applications, and a description of the mechanisms and
methods involved. This section also provides an overview
of the current challenges associated with EEG processing.
Section III presents the available datasets, Section IV reviews
EEG artifacts and their types, and Section V discusses the
preprocessing techniques used to remove these artifacts. Sec-
tion VI focuses on the features of EEG and the methods used
for their extraction. Section VII discusses the most commonly
used classification techniques, and Section VIII presents
an overview of existing review papers. Finally, Section IX
discusses future research directions and concludes the paper.
Overall, this study provides up-to-date and comprehensive
references based on influential articles published in scholarly
journals and prime academic conferences after 2017 while
highlighting open challenges and possibilities that should be
addressed to enhance the accuracy of the models.

A. MAIN CONTRIBUTIONS OF THIS STUDY

This study provides new insights into the potential of EEG
signals for diagnosing, monitoring, and managing brain
disorders. While many survey articles have been published on
EEG signal processing, these articles often focus on general
aspects of the field and do not provide a comprehensive
overview of EEG for medical diagnosis. In 2022, Orban et al.
[5] provided a comprehensive review of EEG; however, it also
discusses the development of natural interaction strategies,
with a specific emphasis on EEG recording, preprocessing,
classification of diseases, and control strategies. It does not
provide insight into EEG in medical healthcare and diagnosis.
In [6], the researchers presented an extensive review of EEG
signaling but mainly focused on the general applications of
EEG-controlling devices. Reference [7] provides a review of
using DL models for EEG signal processing; however, it only
focuses on signal denoising and processing. The literature
review reveals a lack of an extensive review of EEG signals
for medical diagnosis, healthcare, and monitoring; this study
presents a comprehensive review with the following main
contributions.
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1) Ascribe a detailed review of all the stages of the EEG
Analysis for medical diagnosis,

2) Describes the types of common artifacts that contam-
inate EEG signals and the techniques for attenuating
them.

3) Outlines the preprocessing techniques applied to EEG,

4) Discusses the EEG filtering and feature extraction
techniques for medical diagnosis.

5) Provides a comprehensive examination of EEG-based
traditional ML/DL approaches for medical diagnosis
and healthcare, 6) Additionally, we furnish a synopsis
of the common datasets employed in EEG signal pro-
cessing and the existing challenges within EEG signal
processing methods are underscored, accompanied by
proposed remedies and promising avenues for future
research.

Il. EEG BACKGROUND

The invention of the electroencephalogram (EEG) is
attributed to Hans Berger, a German scientist, who acquired
the EEG from human subjects for the first time, marking
the beginning of clinical electroencephalography. Gibbs,
Davis, and Lennox further characterized interictal signals
and patterns of clinical seizures, contributing to the growth
of EEG’s clinical and scientific use. The development of
machine learning in the 1960s [8] led to increased usage
of EEGs in research and medical practice, culminating
in the invention of the recurrent neural network in 1982
[9]. Since then, mathematical frequency analysis [10],
frequency reduction [11], and classification techniques [9],
[12] have advanced EEG analysis, alongside technical
improvements such as videotape recording and remote
real-time reading in the 1990s. Complex algorithms such
as multi-class support vector machines and probabilistic
neural networks were introduced in the 2000s, aimed
at reducing artifacts and improving classification [13],
complementing the feature extraction techniques described in
Section II.

A. OVERVIEW OF EEG

EEG is a painless procedure that uses electrodes placed on the
scalp to measure the electric current by neurons in the brain
to study its operation [14]. Each electrode is connected to a
single wire to detect voltage fluctuations or electric potential
differences resulting from the flow of ionic currents inside the
neurons of the brain [15], [16].

EEG signals show oscillations at various frequencies,
which can be classified into five main bands as shown in
Table 1 [17]. Different frequency bands of EEG are linked
to various brain activities and functions, and their amplitudes
and relative power can help detect neurological and brain
disorders.

To measure EEG signals, electrodes are placed on specific
scalp locations following a 10-20 international system,
as shown in Figure 2, which maintains consistency in
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laboratory procedures worldwide [18]. The EEG from the
electrodes is fed into amplifiers that filter and amplify the
signal before being displayed. EEG is typically used to detect
brain activity in a bandwidth from 0.1 Hz to 100 Hz, as shown
in Figure 3.

However, EEG processing faces various challenges,
including artifact removal, signal processing and analysis,
individual differences, and interpretation and validation.
Despite these challenges, EEG has multiple applications in
clinical practice, such as diagnosing and monitoring epilepsy,
sleep disorders, and other neurological and psychiatric
conditions. EEG also studies brain function and connectivity,
including memory, attention, and language. Therefore, EEG
has become a vital tool in neuroscience and clinical practice.

/\

FIGURE 2. The actiCAP: a 32-electrode EEG cap that uses the
international 10-20 system for electrode placement [18].

B. EEG APPLICATIONS

EEG applications are diverse and range from clinical to
non-clinical settings. Clinical applications of EEG include
studying sleep patterns, seizures, comas, brain death, atten-
tion deficit hyperactivity disorder (ADHD), disorders of
consciousness, and the depth of anesthesia [17], [19] [20],
[21], [22]. EEG is also used to diagnose and monitor various
neurological and psychiatric conditions alongside these brain
disorders.

In addition to clinical applications, EEG is used in
neuromarketing and psychological studies to evaluate a
patient’s cognitive state, such as mood and anxiety. For
example, brain-computer interface (BCI) involves moving
the cursor on the screen using the brain, wheelchairs, and
military scenarios [21]. EEG is recognized as one of the most
efficient imaging methods for detecting brain electric currents
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FIGURE 3. EEG of a healthy subject recorded for 200 seconds, broken
down into the five main frequency bands of cerebral oscillations, also
called brainwaves.

TABLE 1. The five bands of EEG signals.

Waves Frequency band  Brain State
Hz
Deltawaves(d) 0.5 — 4 slowest Deep sleep
Dreaming

Mental Comma State
Creative thought
Stress

Deep Meditation
Drowsiness

Calm Mental states
Relaxation

Restful

Busy active mind
Attention
Coordination

Motor functions
Problem solving
Concentration
Simultaneous/ Multitask-
ing work

Thetawaves(d) 4 —38

Alphawaves(a) 8 — 12

Betawaves(3) 12 - 30

Gammawaves(y) > 30

due to the coordinated actions of hundreds of neurons.
This approach offers high temporal resolution, which may
be viewed on the screen as a digital representation of
a continuous voltage flow. This technique can determine
cortical activity even at the lowest time intervals. EEG
is an essential tool for clinical and non-clinical settings,
and ongoing research continues to explore its potential
applications.

C. CURRENT CHALLENGES IN EEG PROCESSING

Processing EEG signals poses several challenges that must be
addressed for accurate analysis. One of the most significant
challenges is the Signal to Noise Ratio (SNR), and the
presence of different noise sources, such as artifacts or
interference, which makes signal preprocessing difficult [23],
[24]. The SNR of the EEG is sensitive to external factors,
including light, smells, blinking, movement, temperature,
and controlled lab environments. These inherited noise
sources complicate their analysis as the EEG processing

VOLUME 11, 2023

algorithms work on an adequate quality of the signals.
Various techniques can be utilized to overcome the challenge
of low SNR and external noise sources in EEG processing.
These techniques include using high-quality electrodes,
optimal electrode placement, advanced signal filtering and
denoising algorithms, and improved experimental setups and
stimulation techniques [22].

Additionally, EEG signals are unique in nature, making
their processing complex due to non-stationarity, non-
linearity, and the higher likelihood of artifacts, which makes
it challenging to study their internal relationships directly.
Therefore, preprocessing steps are required to remove
artifacts from the signal before post-processing, commonly
called artifact subtraction (AS) [25].

Another challenge is the data dimensionality that arises
from collecting numerous electrodes. Thus, fusion and
merging of data are critical for reducing dimensionality and
improving classification results. Noise reduction algorithms
and methods like multiple-source Electrooculography (EOG)
[26], non-linear recursive least squares [27], Fisher scores,
and principal component analysis (PCA) are commonly
applied to remove noise and decrease data dimensions, with
PCA being the most widely used method for separating the
data into independent components.

The lack of data is another challenge as statistics
change over time for the same patient, and physiological
differences between patients can lead to high inter-subject
variability [28], negatively affecting the generalization of
models. Various processing pipelines, such as adaptive and
Riemannian-geometry-based classifiers [29], are applied to
EEG for denoising, feature engineering, and classification,
although this area of research remains active. The stages of
EEG data analysis as shown in Figure 4, are discussed in the
following sections.

Subjects
AD - Alzheimer’s Disease
ED - Epilepsy Disease
<® HS - Healthy Subject

Classification
By Machine
Learning

Signal
Acquisition

Signal pre- Feature

3 — q —
processing Extraction

Cl
by Deep Learning

FIGURE 4. Various steps used in EEG digital signal processing and
classification for medical diagnosis.

lll. DATASETS

Freely downloadable EEG datasets make them more accessi-
ble to researchers, medical doctors, and clinicians for medical
diagnosis and research. Numerous well-known EEG datasets
have been made available for research purposes and have
been utilized by researchers. These datasets are publicly
available and have been used in many research studies.
Some of these datasets include Melbourne, CHB-MIT, Bonn,
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European Epilepsy datasets, EEG dataset for Alzheimer,
American Epilepsy Society dataset, and other datasets as
listed in Table 2. The details of these datasets are summarized
in the following subsections.

A. CHB-MIT DATASET

EEGs of children were acquired at the Boston Children’s
Hospital and Massachusetts Institute of Technology (MIT)
[30]. The data are publicly accessible and are available on
the website Physionet.org. EEG is recorded for 916 hours
from 22 pediatric participants with intractable seizures for a
total of one hour or four hours. Five males and 17 females
participated in this research, ranging in age from 3-22 years
and 1.5-19 years, respectively. The number of electrodes
varied between 23 to 28 electrodes for different patients. The
sampling rate for EEG was set to 256 samples per second,
with 23 EEG signals per file, and 198 seizures were annotated
with their beginning and end times. There are 23 channels
in most records, with a few having 24 and 26; Figure 5
shows seizures and non-seizures records. The files can be
downloaded as ZIP files (42.6 GB) using European Data
Format (.edf) [31], which can be accessed via a terminal or
Google Cloud Storage Browser. Preictal and interictal labels
were not included in this dataset, but could be extracted
from the meta-data files for each patient [32]. It is a widely
used dataset for epilepsy research. However, there are several
challenges associated with this dataset. One of the main
challenges is the presence of artifacts, including motion
artifacts, electrode artifacts, and muscle artifacts, which can
affect the accuracy of the analysis. Another challenge is
the interictal and ictal classification of EEG signals, which
requires domain knowledge and can be time-consuming.
Additionally, the dataset only contains a limited number of
patients, which can limit the generalizability of the findings
to a larger population.

B. UNIVERSITY OF BONN DATASET

Bonn dataset has five sub-datasets (A-E) for healthy people
and patients with epilepsy. The data can be downloaded
for free from http://epileptologie-bonn.de/. 100 EEG signal
recordings last for 23.6 seconds per channel in each dataset.
Four phases are measured: surface EEG with open and closed
eyes and intracranial EEG with interictal and seizure phases.
Each channel contains 4097 samples, sampled at a rate of
173.61 samples per second. The zip files of the datasets are
available with labels. The Bonn dataset is not chosen for the
development of epilepsy prediction algorithms as it is only
one channel and recorded for a shorter duration.

C. AMERICAN EPILEPSY SOCIETY DATASET

This dataset [33] consists of EEG recordings of seven
participants for 1300 hours. The subjects are two humans and
five canines with channels from 15 to 24 per subject. The
EEG recordings include a line noise of 60 Hz that could be
fixed using a notch filter [34].
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FIGURE 5. Two records for EEG tracing of CHB12_23: (a) no seizure,
(b) seizure [31].

D. EUROPEAN EPILEPTIC DATASET

The European Epileptic Dataset, part of the EU-funded
project “EPILESIAE” [35], is one of the most comprehen-
sive data sources currently available. This dataset contains
EEG signals recorded for 300 subjects aged 13 to 67 years,
representing a wide spectrum of epilepsy symptoms. A total
of 6488 hours of EEG recordings with more than 250 seizures
were included in the dataset, of which 50 included intracra-
nial recordings with up to 122 channels. Datasets are
available on http://epilepsy-database.eu/, but they must be
paid for. They are saved in.edf format. Moreover, the
dataset is not labeled as preictal, ictal, or interictal but
can be analyzed based on the timing information of the
seizures.

E. EEG DATASET FOR ALZHEIMER

Alzheimer’s disease (AD) is a neurodegenerative disorder
that causes memory loss, changes in behavior, and other
cognitive problems. They are most common in people over
65 but can occur at younger ages. Recently a new dataset
of EEG signals for Alzheimer’s has been developed by
Miltiadous et al. [36]. The EEG dataset has signal acquired
for 88 subjects resting with closed eyes. Of these, 36 were
AD patients, 23 with frontotemporal dementia (FTD), and
29 with cognitive normal. The neurological state of each
participant was evaluated using a test called Mini-Mental
State Examination (MMSE)—this standardized test scores
cognitive decline from 0 to 30, where 0 is for more severe
cases.

VOLUME 11, 2023



N. S. Amer, S. B. Belhaouari: EEG Signal Processing for Medical Diagnosis, Healthcare, and Monitoring

IEEE Access

F. EEG DATASETS FOR PARKINSON'S DISEASE

The open-source and publically available dataset of EEG for
Parkinson’s disease is the San Diego dataset (31 subjects,
93 min) [37]. EEG is recorded from subjects sitting in a
comfortable state with their eye relaxed while focused on
a screen. The dataset has two sub-datasets: the first subset
has EEGs from 16 healthy individuals, and the second group
contains EEGs from 15 Parkinson’s disease (PD) persons,
which were similar to the healthy subjects in terms of
gender, right-handedness, cognition, and age, as recognized
by MMSE.

G. EDPMSC DATASET

Another dataset analyzed in this study is the Perceived Mental
Stress Classification (EDPMSC) dataset [38]. The data is
available for anyone to use and contains EEG signals labeled
with one of two categories: stress or not stress. The data is
collected from 28 subjects aged between 18 and 40 years,
comprising 13 men and 15 women, using a Muse headband
with only four channels (AF7, AF8, TP9, TP10). Signals were
acquired using a sampling frequency of 256 samples/s for
three minutes across three experiments: a pre-active phase
consisting of three minutes of recording in a quiet room
with a relaxed position and open eyes, an activity phase
during a presentation in front of people, and a post-activity
phase involving three minutes of recording in the same room.
To categorize the groups as stressed or not stressed, the
Perceived Stress Scale (PSS) was employed. The groups
were classified as either stressed (PSS>=20) or not stressed
(PSS20) based on their PSS scores.

IV. EEG ARTIFACTS

Several physiological and non-physiological sources of noise
attenuate EEG. These artifacts refer to signal records that
are not of neural origin. Detecting and removing artifacts is
crucial to ensure adequate quality of EEG signals, as they can
often mimic actual brain abnormalities or seizures. Artifacts
can be classified into two types: physiological, which are
from the body of the subject, and non-physiological, due
to the surroundings [51]. Figure 6 illustrates the most
common types of EEG artifacts. The details are in the next
subsections.

A. PHYSIOLOGIC ARTIFACTS

1) ELECTROMYOGRAM (EMG)

EMG refers to the electrical noise produced by muscle
movements. Myogenic potentials are the most common
artifacts generated by the muscles near the scalp, like the
frontalis, orbicularis, and temporalis muscles surrounding
the eyebrows, eyelids, and jaw [53]. Muscle artifacts
that mimic cerebral activity are due to different disorders
like essential tremor, PD, and hemifacial spasm and can
be identified based on their duration, morphology, and
frequency [54]. An example of such artifacts is depicted in
Figure 7.
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FIGURE 6. Common EEG Artifacts: (A) Superposition of 50Hz main waves
of EEG appears as thickened signal, (B) Movement Artifact causes sudden
deviation from the EEG background, (C) The EEG could be cut short by
sudden movement, (D) When the ECG’s pulses are overlapped on the EEG,
a pulsed EEG is the visible result, (E) Sweat artifacts show up on EEGs as
a little shift in the baseline [52].

2) ELECTROOCULOGRAPHY (EOG)

Electrical impulses called electrooculograms (EOGs) are
generated by eye movements and blinking. These artifacts are
only helpful in determining sleep modes [55]. Otherwise, the
EEG is affected by these artifacts, leading to inaccurate inter-
pretations [56]. EOG and EEG contaminated by movement
artifacts from an infant are shown in Figure 7 [57].

A B

MMJ\%»

E0G, {w
€06, {—W‘"N\'\/*"

SctSipinenn,” il

EEG -

il

i d
R
Sl

2001V ] A s A A
—_

1cec

FIGURE 7. Panel: (A) Eye movement, (B) Eye Blink, (C) Head Movement,
(D) Comforter/nursing Movement [57].

3) GLOSSOKINETIC ARTIFACTS

These artifacts are caused by tongue movement during the
acquisition of EEG while talking, chewing, or sucking,
as depicted in Figure 7. These artifacts are commonly seen
in young patients and those with dementia [53].

4) ELECTROCARDIOGRAM (ECG OR EKG) ARTIFACT

Electrocardiogram artifacts refer to the heart activity that may
be detected on the scalp during EEG recordings [58]. Sharp
waves or spikes characterize them and are most prominent
in individuals with short and wide necks. These artifacts can
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TABLE 2. A list of EEG public datasets for various brain and neurological disorders.

Name Kind Length Year Size # Patients # Channels Sampling Fre-  EEG segments, States
quency
Physionet [39] Motor/imagery ~ Two 1-min 2008 109 64 160Hz Eyes open, Eyes closed
DEAP [40] Emotion 40 (1-minlong) 2012 5.8GB 32 48 512Hz Arousal, Valence, Like, Dis-
Recognition like, Dominance, Familarity
Physionet [41] Motion Artifact - 2013 649.9 MB - 2 200 Hz
contaminated
EEg data
SEED [42] Emotion 4 min 2015 15 62 200Hz Negative,Positive,Neutral
Recognition
SEED IV [42] Emotion 4s sessions 2019 15 62 200Hz Happy, Sad, Neutral, Fear
Recognition
EDPMSC [38] Emotion 3min 2019 28 4 256Hz Non-stressed, stressed,
Recognition mildly-stressed
Kaggle [43] Autism 200ms 2020 6GB 15 - 250Hz
DREEM [44] Miscellaneous 10 sec epochs 2020 25 - 125Hz 0,1,2
Nx1261 matrix
NEMAR [45] Recognition 20ms 2020 4GB 14 32 1000Hz Go-no
Mendeley [46] Emotion 5 min- total 20 2020 1737MB 28 14 Arousal, Valence
Recognition min
DEAR- Emotion recog- 4 clips<33s to 2020 18 4 256Hz Valence, Arouse,9-point
MULSEMEDIA nition 58s scale
[47]
Zenodo Epilepsy - 2021 16GB 24 24 - Ictal, Pre-ictal, Post-ictal,
Non seizure
SEED-V [48] Emotion 50 min 2021 16 62 200Hz Happy, Sad, Disgust, Neu-
Recognition tral, Fear
Openneuro [49] Sleep,emotion, 20ms 2021 30.67GB 60 - 500Hz Health, control
mental health
King Abdulaziz =~ Autism 12-40 min 2012 18 16 156Hz Autistic, Non Autistic
University [50] (autistic)
5-27(non
autistic)
EEG  Alzheimer ALzheimerand  13.5 min 2023 88 19 500Hz ALzheimer and FTD
[36] FTD
San-Diego dataset  Parkinson 93 min 2021 31 32 512Hz Alzheimer and FTD

[37]

be distinguished based on duration and morphology unless
the EEG signal coincides with abnormal cerebral activity,
making it difficult to differentiate the two [59].

5) EEG PULSE ARTIFACT

The placement of an electrode over a pulsating blood vessel
can cause an EEG pulse artifact, resulting in the appearance
of slow waves on the EEG graph. The main QRS spike
in the ECG represents the heart’s electrical component,
which appears between 200 and 300 ms before the pulse
artifact [59]. To address this issue, the electrode can be
repositioned to a different location.

6) SKIN ARTIFACTS

The large baseline is a skin artifact observed in EEG and is
primarily due to sweating. Other potential causes may include
skull defects and subgaleal hematomas [58].

B. NON-PHYSIOLOGIC ARTIFACTS

These types of artifacts are often referred to as non-biological
or technological artifacts. Powerline interference, electrode
pop, cable movement, improper reference positioning, and
erroneous placement of electrodes are all potential causes
of such artifacts that degrade the quality of EEG and thus
limit its applications. An example of EEG signals with these
artifacts is depicted in Figure 8.
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1) ELECTRODE ARTIFACTS

The sudden disconnection or movement of the electrode
is one of the most common electrode artifacts. This can
result in either incorrect acquisition of the EEG signal or
a transient vertical path associated with a single electrode
due to an abrupt change in impedance and can be visually
identified [59].

2) MOVEMENTS IN THE ENVIRONMENT

Movements in the environment, such as the movement of a
person around the patient, electrostatic effects on the drops,
respirators, radio, and television radiation, or interference of
other equipment, such as electromagnetic sources like infu-
sion pumps that use electricity, can affect EEG signals [61].
This can result in the deflection of the pens and make it
difficult to record EEG signals unless the interfering devices
are turned off [62].

3) ALTERNATING CURRENT ARTIFACT

An alternate current artifact refers to a specific type of
artifact that arises from technical complications, such as
unintentionally high impedance [63]. These complications
can lead to the emergence of a 50 Hz or 60 Hz artifact,
depending on the frequency standards followed. Notably,
countries like the USA operate on a frequency of 60 Hz.
Therefore, any technical issues resulting in artifacts within
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(a) Electrode pop (b) Cable movement

(c) Reference Incorrect (d) Powerline Interference

Placement

(e) Body Movements

FIGURE 8. (a) Electrode Pop with a distortion in F3 produced by touching
the sensor, (b) Cable Movement producing distortion in Cz or Pz that are
not eeg-related, (c) Reference Incorrect Placement producing a high
amplitude abrupt, (d) Powerline Interference with a peak at 50Hz
overlapping the EEG data, (e) Head Movement effect overlaps low
frequencies of eeg in all channels [60].

the USA would typically produce a 60 Hz artifact. It is
essential to recognize that this frequency disparity stems from
variations in electrical systems and standards across different
countries.

V. EEG PREPROCESSING AND FILTERING

To prepare raw EEG signals for feature extraction and
classification, it is crucial to clean them from noise and
artifacts through preprocessing and proper filtering to
enhance the extraction of relevant information. EEG signals
are biomedical signals that reflect brain activity and are
susceptible to external interference during collection because
of their high time-varying nature and low amplitude. This
interference can come from eye movement, blinking, ECG,
and EMG sources. These interferences are often called
artifacts.

EEG analysis is complex in the presence of these artifacts.
They can also affect EEG features, detection, and classifi-
cation if not attenuated. Due to the low amplitude and the
complex nature of EEG signals, attenuating them is also more
complex. Thus, it is expected to perform some preprocessing
and filtering on the signal before using it to classify diseases.
To make it convenient, first, the frequency contents of the
EEG are visualized to check for the existence of noises.
As depicted in Figure 9, the 3D plot shows the contents
of the signals with respect to time and frequency. At this
stage, the spatiotemporal characteristics of EEG signals [64]
play a significant role since they can help select a suitable
preprocessing and filter technique [23], [65], [66], [67] [68],
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[69]. Artifacts originate from external sources, including
physiologic and non-physiologic sources,

Filters are systems that attenuate unwanted frequencies from
EEG signals, amplify desired frequencies, or do both. A high-
pass filter passes high frequencies of EEG while attenuating
lower frequencies (noises), while a notch filter stops power
line interference. Low-pass filters smooth the input signals
by removing high-frequency noises. Thus, filtering provides
a tool for improving the signal SNR, which measures how
much of the signal is to noise. By removing noise from a
signal, the SNR can be improved.

Filters work by taking advantage of the difference between
the frequency spectrum of the noise and that of the target
signal. Frequency spectra is a graphical representation of the
frequencies that are present in a signal. Filters attenuate those
frequencies in the spectrum that are dominated by noise more
than those frequencies that are dominated by the target signal.
This can significantly improve the SNR of the signal. Some
of the filter and preprocessing techniques used for EEG are
discussed in detail in the next sections and are summarized in
Table 3.

3D-original 3D-filtered
N TN — Noise

e ™ Delta

1000~ Theta
i Alpha
600, L i

— Noise

Amplitude( j1v)
Amplitude 1)

Frequency(Hz) Time(sec)

(a) EEG with Noise

Frequency(Hz) Time(sec)

(b) Filtered EEG

FIGURE 9. Time-frequency 3D plot of EEG: (a) Not filtered,
(b) Filtered [92].

A. POWER LINE INTERFERENCE REMOVAL

The frequency of line noise artifact is typically found in
the gamma band of the EEG at 50 Hz or 60 Hz, as shown
in Figure 10. A notch filter, which blocks off a specific
frequency range, is commonly used to eliminate this artifact.
However, the use of a notch filter can introduce spurious
oscillations with parasitic frequencies and potentially distort
the signal [70], [71], [93]. Spectral interpolation [70] is
also a good option however, it also sometimes introduces
extra frequencies in the signal while performing the phase
interpolation.

A smoothing filter of cut-off frequency less than 50 Hz
or 60 Hz can be a solution. However, it can lead to an
incorrectly denoised signal with missed causalities [95] and
alteration of the signal’s temporal structure [96]. To overcome
this issue, a multi-taper decomposition can be utilized
to estimate the spectral energy, which helps to minimize
broadband variations [97], as depicted in Figure 11. The
entire process is carried out in three key stages: Firstly,
a short-time window is slid over the data using discrete
prolate spheroidal sequences (DPSS) tapers, and multiple
independent projections of the data are extracted [98].
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TABLE 3. A Summary of the preprocessing, Artifacts Removal, and digital filtering techniques applied to EEG signals.

S. No. Type and Ref. preprocessing, Artifact removal, and Filtering Tech- Limitations Concluding remarks
niques
1 Spectrum inter- FFT and spectrum interpolation to remove 50 or 60 Phase interpolation sometimes introduce new A good alternative to Notch fil-

polation [70] Hz and its harmonics

2 Noise Cancel-
lation [71]

Adaptive noise cancellation (ANC) method with Lin-
ear regression and modified Independent Component
Analysis (ICA)

3 Regression Estimation of regression coefficients on epoch data
[72] with the evoked response subtracted out
4 Blind  source ICA
Separation CCA
[73] [74] [75] MCA
separation PCA
(BSS)
5 Wavelet Analy- DWT
sis (WT) [77] CWT
WPT
SWT
6 Empirical EEMD
Mode MEMD
Decomposition
(EMD) [78]
7 Adaptive LMS
Filtering [82] RLS
8 Digital 1IR, FIR, Notch filters
Filtering
[83]
9 Hybrid BSS- WT [85]
methods BSS-WT-combined with EMD or SVM [86] [87]
[72] Wavelet and adaptive filter [82]

EMD-adaptive filter [88]
‘WT and Kalman filter [89]
EEMD-CCA [80]
VMD-CCA [90]

frequencies in the signals

Although good but very sensitive to the SNR of
the signal

Reference channel required
Not feasible for EEG
Limited artifact sources
Can work automatically

Signals should be statistically independent
Computational complexity

Automation problem for selecting artifacts,
Solution: using kurtosis, temporal, spatial, and
spectral features for ICs detection [73] [76]
MCA is limited to morphology

Not sufficient as an individual method [76]

Time frequency-based analysis
Based on a selection of mother wavelets
DWT-ST is best for single-channel applications

Flexible and adaptive

Best for highly contaminated signals and EMG
noise [78] [79]

Overlapping of modes

Data - driven

Not good for online applications

High sensitivity to noise

Computational complexity

Self-modifying system

A reference signal is required

Uses optimization algorithms (ex: least mean
square)

Good for stationary signals

Not good for EEG as it introduces dc offset [84]
Uses regression analysis

Very time-consuming for ocular artifacts

Extra complicated calculations [91]

ter as it removes the signal 60
Hz also

According to statistical evalua-
tion, ANC method shows good
results. The lowest residual of
the simulated line noise artifact
corresponds to 0.0005 micro-
volts squared per hertz.
Limited artifacts

Not feasible for muscle
artifacts

ICA, PCA, Ocular artifacts
CCA, Muscle artifacts

Ocular artifacts
DWT-ST fastest execution time

EEMD best works on a single
channel with reduced computa-
tional complexity [80]
MEMD for muscle artifacts us-
ing few channels [81]

Ocular artifacts

EMG artifacts are unsuitable
for real-life applications unless
used with other features (spa-
tial, spectral)

ocular artifacts

muscular artifacts only if the
initial methods are a type of
regression or adaptive filtering
[72]

Secondly, the single-taper spectra for each projection are
computed, representing the spectral energy within each band.
Finally, a regression-based model is utilized to calculate the
component’s mean and approximate phase and amplitude (50
Hz or 60 Hz).

The following equation describes multi-taper analysis:

N
B () = D wilk)xie T (1)
1

where:

wy(k): k orthogonal taper functions N: length of taper w:
frequency brandwidth parameter

The third step involves using the Thompson F-test to deter-
mine the statistical significance of the non-zero regression
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coefficient since the precise frequency and phase of the
sinusoidal component (50 Hz or 60 Hz) could slightly vary
over time in the second step. This method can identify
frequencies with maximum F-statistics above a defined
significance threshold (> 0.05), and the sinusoid can be
removed from the affected time series, as shown in Figure 12
[23].

B. REFERENCING

Referencing is a crucial step in EEG preprocessing since it
affects the amplitude measurement of the signal. When one
electrode is used as a reference for another electrode, it can
introduce a mixture of brain activity and noise. To address
this issue, different referencing methods can be used, such
as the Average Reference (AV) and the Common Average
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FIGURE 10. Electromagnetic interference at 50 Hz (Take into account that
certain nations, such as the USA, operate on a 60Hz frequency.). To get rid
of them, a notch filter can be applied to the raw signal with MNE to cut
off frequencies at or around 50 Hz and their multiples [94].
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FIGURE 11. The difference in the frequency spectra of the F3 (left) and Cz
(right) electrodes before (blue) and after (green) multi-taper line
noise-cleaning [99].
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Reference (CAR), which are commonly used in BCI design,
where a single reference point is positioned distantly from
the other electrodes. However, this can lead to a single-point
failure, so detecting and removing outlier channels should
be done first. The AR method subtracts the average brain
activity across all EEG electrodes, with the assumption that
the sum of the overall brain activity is zero at a particular time.
Another referencing method is the current source density
(CSD) estimation, which uses Laplacian to calculate the
changing rate of current in the scalp. However, this method is
only valid if the electrodes are positioned at equal distances
in a 2-D plane. Selection of the referencing method can
change the interpretation of EEG, thus should be selected
carefully [98], [100], [101], [102].

C. BAD CHANNELS DETECTION

An electrode popping up from its location on the scalp or
movement artifacts can cause bad channels [103]. Noise
information is propagated to all channels, thereby making
it difficult to detect and remove artifacts. To eliminate
bad channels, statistical characteristics, including power
spectral density(PSD), kurtosis, and variance, must be
considered. A bad channel can also be detected by using
the robust z-score, correlation, soft F1 score, and binary
cross-entropy to calculate the loss function for a given
channel. A series of interpolation schemes are then employed
to replace high-frequency components above the threshold,
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including radial basis functions [104], nearest neighbor
averaging [105], and spherical spline interpolation [106].

==

=
=

=

FIGURE 12. The original time series is fitted with the major line
component (identified by the F-test). From the original, noisy time series,
this signal will be removed [99].

D. ARTIFACT REMOVAL

Several factors must be considered while eliminating artifacts
from EEG data, which necessitates a significant amount
of processing power and computing time, which becomes
problematic when employed in “‘real-world applications.”
[91]. As an area of investigation within the field of artifact
removal, there is still no optimal approach that can be used
for the effective removal of artifacts. In terms of the methods
that are currently in place can be categorized as follows:

1) REGRESSION ANALYSIS

Regression analysis can be applied to EEG in any domain
and is based on estimating the artifacts from the EEG data
and subtracting them from the data [72]. This method has
some limitations, including the need for a channel to serve
as a reference and the in-feasibility of its use for applications
involving EEG-like signals that are non-stationary. It is
limited to certain artifacts rather than all categories of
artifacts.

2) DIGITAL FILTERING
1) Time domain filters: attenuate either very high- or
low-frequency bands while leaving behind the required
frequencies [107]. Temporal filters de-noise the EEG
and improve its quality by avoiding artifacts caused by
interference from power lines and improper polariza-
tion of scalp electrodes [108].
Long-duration brain signals are filtered using DFT
or FFT by eliminating all coefficients that do not
correspond to the frequency band of EEG signals.
Subsequently, a backward DFT is used to convert it
back into a time domain signal.
To generate a filtered EEG signal s(n)rg, FIR filters
use last M input samples from a recorded EEG signal
s(n) as follows:
M1
spk = Y axs(n — k) )

k=0
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where:

{ay} represents the filter coefficients and M represents
the total number of coefficients of the FIR filter.

Similarly, recursive IIR filters use the most recent N
output samples and the most recent M input samples
from a raw EEG signal, requiring fewer coefficients
than FIR filters [109].

M—1 N—1
sm)r = Z ags(n — k) + Z brs(n —kKyr - (3)
k=0 k=1

where

{ax} and {b;} are filter coefficients and M and N
respectively represent the recent input samples and the
most recent recursive, i.e., feedback output samples.
A review of the state-of-the-art digital filtering applied

to EEG is summarized in Table 3.

2) Spatial Filters: Utilize CAR and the surface Laplacian
(SL) filters to eliminate the noise from the background
brain activity for pattern recognition, especially imag-
ined motor activities [110]. A spacial filter is used
for space reduction, signal filtering, and original brain
signal recovery [62]. This is defined as follows:

X = Zwixi =wX 4)
i

where:

X: spatial filtered signal x;: Signal from EEG channel i
w;: channel weight in a spatial filter and w is a vector
representing all channel weights X: original EEG
brain signal matrix from all channels

3) Surface Laplacian Filtering: uses topographical power
spectral distributions with respect to frequency [111]
to differentiate between the brain and muscle signals.
These techniques approximate the localized current
density passing perpendicularly into the scalp [111].
The surface Laplacian can also be used to estimate
the cortical surface potential and source identification.
Laplacian methods are all reference-independent [112].

4) Adaptive filtering: a self-modifying system that uses an
optimization algorithm to adjust filter parameters while
comparing the reference and output signals [91]. As a
result, it estimates noise and subtracts it from the raw
EEG signals through feedback.

3) BLIND SOURCE SEPARATION (BSS)

The BSS is a commonly used method for ocular artifact sup-
pression. Reference [113] from statistically independent [73]
signals, incorporates the following:

1) Independent component analysis (ICA): A method
of analyzing data that involves first centering and
whitening the data. This is followed by optimization,
which aims to minimize the nongaussianity of the
independent sources. The advantages of ICA include
its independence from reference channels [114]. One of
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the major drawbacks of ICA is that it is computationally
complex and must be manually selected in terms of its
artifacts. This can be fixed by the use of kurtosis, along
with spatial, spectral, and temporal features to detect
ICs automatically [73].

2) Canonical Correlation Analysis (CCA): utilizes corre-
lation; it splits the contaminated signals while utilizing
statistics of the second order (SOS) [75] to calculate
the maximized correlation by canonical variables.
It is efficient in detecting muscle artifacts but still
has automation with fewer complexity problems than
ICA [115].

3) Morphological component analysis (MCA): depends
on the artifact database that has been decomposed
according to its morphological properties, thus mak-
ing it insufficient as an individual technique on its
own [76].

4) Principle Component Analysis (PCA): transforms a
correlated signal in the time domain into uncorrelated
principal components via orthogonal transformation
(PCs) [74]. Artifacts can be removed only if they are
uncorrelated with the EEG [75].

4) FREQUENCY DECOMPOSITION

Wavelet transform decomposition is a time-frequency anal-
ysis method that decomposes a signal into a series of
wavelets localized in both time and frequency. This allows for
separating highly correlated wavelets from artifacts that are
not correlated with the basis mother wavelet [116]. Several
wavelet transforms exist, including continuous wavelet trans-
form (CWT), wavelet packet transform (WPT), stationary
wavelet transform (SWT), and discrete wavelet transform
(DWT). DWT with statistical threshold (ST) functions is
suitable for ocular artifacts removal [77], with a fast execution
time when working on single-channel applications.

5) EMPIRICAL MODE DECOMPOSITION

A method that can adapt to different datasets and tasks [78].
To remove the noisy intrinsic mode functions (IMFs) from
the signals, these are divided into IMFs and use complex
computations. This method is most suitable for highly
contaminated data [79]. However, the model overlap is one
of its significant drawbacks. An ensemble-EMD approach
(EEMD) is used to overcome this issue in which the IMF
component is determined by averaging the ensembles of
trials [80] in one channel, while a multivariate empirical mode
decomposition (MEMD) is based on identifying muscle
artifacts over a small number of channels.

6) HYBRID METHODS

A combination of multiple methods is often used to obtain
superior outcomes. For instance, BSS-AF, and (BBS-WT)
[85], [117], [118] have been found to be more effective than
using the BSS technique alone, particularly when combined
with EMD or SVM [86], [119], [120]. Additionally, the
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combined use of wavelet and adaptive filters can miti-
gate certain limitations and eliminate ocular artifacts [82].
Moreover, VMD-CCA [90] has shown superior performance
over EEMD and ICA and EEMD and CCA across various
SNRs and channels, while AWCCR has demonstrated higher
efficacy than CCR [121].

VI. EEG FEATURES AND FEATURE EXTRACTION
METHODS

EEG data often has long recordings of multiple channels, thus
generating massive data. The use of feature extraction helps
simplify this dataset by identifying attributes. This approach
has the advantage of reducing burdens and minimizing over-
fitting risks. When studying brain activity, EEG recordings
are typically collected from individuals with brain function
and those with conditions, resulting in a large amount of data
for analysis. EEG signal features represent values that capture
signal characteristics observed at sampling frequencies
ranging from 100 to 1000 Hz. The individual features are
then aggregated into a feature vector. Extraction of features
from either an EEG signal or a collection of signals requires
the application of diverse methodologies. Feature engineering
methods prepare the data for classification stages, enabling
the identification of synchronization instances, recognition
of prominent low-frequency bands during peak periods,
and identification of frequencies indicative of specific
pathologies, like epilepsy, tumors, and injuries. Figure 13)
depicts time-frequency and non-linear features. A summary
of the features used for automatic diagnosis of various brain
disorders is summarized in Table 4.

A. TIME-DOMAIN FEATURES

Variable features of time-domain parameters [122] include
mean, median, variance, RMS, peak-to-peak, standard devia-
tion, auto-correlation, absolute value, and zero-crossing (ZC)
[147]. Below are a few more time domain features:

1) EEG histogram: It demonstrates the typical spread of
EEG.

2) The kurtosis of a frequency distribution curve repre-
sents the peak’s sharpness compared with that of a
Gaussian curve.

3) Skewness: The degree to which the distribution curve
deviates from what would be expected if the data were
distributed according to a Gaussian distribution.

4) Fractal dimensions: This term is also known by its other
name, the Hurst exponent, and it refers to the capacity
of a time series to store information for a longer time.

5) Entropy characterizes the degree of randomness in the
time series. It simultaneously specifies the uniformity
of the waves and the uncertainty of the alterations.

6) The Hjorth parameter measures the variability of
EEG derivatives, such as mobility coefficient and
complexity coefficient [148].

7) K-complexes [136] are standard waveforms in
non-rapid eye phase two.

VOLUME 11, 2023

sinusoid 1
2 / \VAVAVAVA
S sinusoid 2
< WWAWWWWAWY
£
<2
\ sinusoid 3
1s
Time
(a) Time-Domain
T [ Asinusoid 1
€
S 0.8m sinusoid 2
17)
§ 0.6m
'_ . .
o 04m sinusoid 3
5
P o.2mn
0
2 8 20 30

Frequency (Hz)
(b) Frequency-Domain

FIGURE 13. Representation of Signals (a) with respect to time and
(b) with respect to frequency [146].

B. FREQUENCY-DOMAIN FEATURES

The frequency domain is where signals are analyzed
based on frequency rather than time. A frequency-domain
representation has amplitude and phase of the signal’s
frequency components. Specifically, this representation can
include information on the phase shift required to recombine
the frequency components and obtain the original time
signal [137].

The power spectral density (PSD) [129] can also be used
to get the features of the signal in the frequency domain.
Fourier transforms [149], convert signals into sinusoidal
components, where wavelet decomposition, as explained in
Section C incorporates a mother wavelet function into the
decomposition process [134].

Fourier Transform It involves decomposing the signal into
sub-spectral components covering the frequency spectrum.
These subspectral components represent peaks with respect
to frequency. The peaks in this domain are then collected
and computed using the FFT algorithm, as given in Figure 14
[130].

C. TIME FREQUENCY FEATURES

Analyzing a two-dimensional signal in both time and
frequency domains is powerful because it can exhibit
non-stationary characteristics [131], [148]. The spectral
characteristics of a signal can change over time, and it
is essential to observe frequency changes over time to
understand the signal better.

Time-frequency analysis provides a way to analyze signals
in time-frequency domains. One of the most straightfor-
ward techniques for observing a signal and calculating its
frequency components is the short-time Fourier transform

143127



IEEE Access

N. S. Amer, S. B. Belhaouari: EEG Signal Processing for Medical Diagnosis, Healthcare, and Monitoring

TABLE 4. A review of the features and feature extraction methods used for classification of brain disorders from EEG.

Reference Feature Extraction Methods and Features Brain disorder/state Accuracy
[122] multimodal signal decomposition Sleep stage -
[123] Entropy (ApEn), Fuzzy Entropy (FuzzyEn), Epelipsy 100%
Sample Entropy (SampEn), and Standard De-
viation (STD)
[124] Spatio-temporal features Parkisnson’s Disease 99.2%
[125] Scalogram images using CWT Parkinson’s Disease 99.46%
[126] automated tunable Q wavelet transform fea- Parkinson’s Disease 98.56%
tures
[127] wavelet coherence and quantile graphs Alzheimer Disease 100%
[128] Discrete Wavelet Transform and Fourier Trans- Alzheimer Disease 92%
form features
[129] Frequency and Time-Frequency Domains Fea- Epilepsy -
tures
[130] peaks of FFT Epilepsy 99.96%
[131] twelve time-frequency features (TFFs) - 96.67%
[132] discrete short-time Fourier transform Epileptic Seizure 97.9%
[133] wavelet transform features Schizophrenia  (SCH), 71%
and Obsessive
Compulsive  Disorder
(OCD)
[134] continuous wavelet transform features - -
[135] min-entropy-based feature, wavelet packet Eye open Close classifi- -
transformation cation
[136] K-complex occurences as features, Multitaper- Sleep Monitoring 82.1%
based KC detection
[137] Fourier Transform, Wavelet features General purpose -
[138] Singular Value Decomposition, Rhythmic ab- Autism Diagnosis 92.66%
solute energy, alpha peak freq
[139] Deep feature using one-dimensional local bi- Autism Diagnosis 96.44%
nary pattern
[140] Multi-feature fusion of power spectrum analy- Autism Diagnosis 91.38%
sis, bicoherence, entropy, and coherence meth-
ods
[140] Multi-feature fusion of power spectrum analy- Autism Diagnosis 91.38%
sis, bicoherence, entropy, and coherence meth-
ods
[141] The neighbor composition analysis (NCA), en- Sleep Apnoea 95.24%
tropy, and variance of each sub-band.
[142] Alpha band Energy, Beta band energy, PCA, Brain Disorders -
ICA
[143] Time-frequency analysis of PSD approach ap- Insomnia Sleep Disorder -
plied on EEG signals using channel ROC-LOC
[144] Discrete wavelet transform (DWT), the loga- epilepsy and an autism 99.9%, 97%
rithmic band power (LBP), standard deviation, spectrum disorder
variance, kurtosis, and Shannon entropy (SE)
[145] Connections between two brain regions are Alzheimer’s disease and 75%, 55.5%

quantified by three different methods: (i)
Granger causality test, the Pearson’s, Spear-
man’s correlation measures

schizophrenia

(STFT), which uses uniform separation and obtains a
spectrogram [131]. More sophisticated methods have also
been developed for data with uneven spacing, such as
wavelet transform [134], which uses variable window
sizes based on spectral frequencies and least-squares spec-
tral analysis. These techniques provide valuable insight
into the spectral characteristics of a signal with respect
to time.
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1) SHORT TIME FOURIER TRANSFORM

STFT, as illustrated in Figure 15, enables the description of
the frequency information of a signal with respect to time,
thereby improving classification accuracy [132]. Unlike the
standard FT, which evaluates the whole signal at once, STFT
uses time-shifting window frames [146] to divide the data
into several short signals and then find its frequency contents
individually.
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FIGURE 14. An EEG signal with its Fourier Transform [150].
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FIGURE 15. (a) EEG signal, (b) STFT of the signal [151].

2) PROGRESSIVE FOURIER TRANSFORM (PFT)

The Progressive Fourier Transform (PFT) [152], as depicted
in Figure 16, is an innovative technique in time-frequency
analysis based on the concept of the Short-Time Fourier
Transform (STFT). It efficiently converts time-domain sig-
nals into the frequency domain by adaptively considering
a specific window of values. PFT gradually computes the
STFT by sliding a predetermined window size across the
signal, focusing solely on the values within the window.
The rest of the signal values outside the window are
effectively disregarded. PFT is a valuable tool for analyzing
time-frequency characteristics in signals using the following
equation:

u
X(F,u) = / eIy (0) 1 <y dt 5)
—o0

where f and u represent the signal frequency and time; e is a
mathematical constant that represents the base of the natural
logarithm; j is an imaginary unit; and 1;¢;(¢) is equal to one
if # belongs to the interval I and is zero otherwise [152]

3) WAVELET TRANSFORM (WT)

The WT is an extension of the Fourier transform that
overcomes the limitations of STFT by providing multi-
scale analysis, as shown in Figure 17. In WT, the signal is
divided into a family of basis functions known as wavelets,
which are then used to reconstruct the original signal. This
decomposition process allows for identifying low-frequency
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and high-frequency components of the signal at different
scales.

Wavelets can be created from an existing wavelet by
stretching, compressing, and reshaping the mother wavelet,
which makes it possible to customize wavelets to fit specific
signal characteristics [133]. This flexibility, combined with
the ability to analyze signals at different scales, makes
wavelet analysis a powerful tool for signal processing and
analysis.

Time ()

FIGURE 16. PFT [152].
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where a is the scale parameter and b determines the location
of the wavelet [153].

The WT delivers precise frequency information at low
frequencies and accurate time information at high frequencies
using 3D representations. Numerous mother wavelets are
used in a wide variety of WT types used in practice. Below
are some types used with EEG signals.

b: CONTINUOUS WAVELET TRANSFORM (CWT)

The Continuous Wavelet Transform (CWT) technique ana-
lyzes non-stationary signals by examining signal portions at
different scales and positions. Unlike the traditional Fourier
Transform, which focuses on frequency components, the
CWT captures the frequency content of the signal at varying
resolutions by convolving it with a scaled and translated
version of a mother wavelet function, often the ‘“Morlet”
function [154]. This adaptability enables the CWT to
accommodate the dynamic characteristics of non-stationary
signals, making it a valuable tool in signal processing, image
analysis, time-series analysis, and biomedical signal analysis.
The resulting scalogram provides a visual representation of
the signal’s energy distribution across different scales and
times [134] as seen in Figure 18, aiding in the identification of
localized frequency variations and time-frequency patterns.
By continuously varying the location and scale parameters,
the CWT allows for selecting and examining different signal
parts for different scale variations. Overall, the CWT and
scalograms offer valuable insights into the complex dynamics
of time-varying signals.

Wra,b) = [ fOW,(0dt = 2 [ wa, (F52) f (Dt
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(b) Wavelet Transform

FIGURE 17. (a) EEG signal- awake, (b) Wavelet Transform [155].
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FIGURE 18. Scalograms for Alzheimer and Parkinson.

c: DWT
Different mother wavelets can be used with DWT, and
wavelet scales and translations can be customized depending
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on the sampled value for an efficient signal decomposi-
tion [153]. An important difference between the DWT and
CWT is that the signal is broken up into a collection of
wavelets that are orthogonal to one another across all discrete
scales by using the DWT transform. This is expressed as
follows:

Yik() =272y (27u — k)
The coefficients are obtained using the following expression:
Wik =W (21, k2) =272 [ fw)y (2~'u — k)du

d: WAVELET PACKET DECOMPOSITION (WPD)

WPD is a general form of the wavelet decomposition, Fig-
ure 19, it gives a richer signal analysis and a higher frequency
resolution [156], decomposing both the approximation and
detail components of the signal at every level using two-scale
equations [157].

. 1, (2k— ;
Vi = sz' (Tt) D ILOURENG

Yk
I//'21+1(t) — fw21+1 (T) zg(n)d’] 12k n(t)

where i is the node’s counter, j is the level of decomposition;
h and g represent filters used as quadrature mirrors. The
coefficients are computed using recursion equations [157].
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FIGURE 19. Wavelet packet decomposition of an electroencephalogram
(up to level 3) [135].

D. NON-LINEAR FEATURES

The complex nature of the brain’s electrical activity and
its non-linear dynamic characteristics result in diverse EEG
patterns. Breaking down the signal into smaller subsystems
can potentially modify the irregular patterns and dynamic
attributes of the signal. Thus, different non-linear statistical
features are extracted from EEG [215]. Fractal geometry
provides a perspective for studying EEG signals due to
the property of self-similarity or scaling invariance. Several
fractal dimensions can be estimated in EEG signal analysis
using multifractal time-series analysis, such as the Hurst
exponent [158], [159], Renyi scaling exponent [148], [160],
[161], Katz fractal dimension (KFD) [162], Petrosian fractal
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dimension (PFD) [163], and Higuchi fractal dimension
(HFD) [164]. Similarly, Hjorth’s parameters can discriminate
EEG based on their slope, amplitude, and complexity [165].
These features are helpful in EEG analysis for medical
diagnosis and achieve high accuracy in classifying diseases.

The Lyapunov exponent (LE) [166] is a number that
measures the linearity, complexity, and stability of a dynamic
system by evaluating the exponential divergence between
two trajectories over time [119]. Non-linear features of the
Lyapunov exponent can be extracted using WT [167], EMD,
and multivariate EMD [168]. These features can then be fed
into the Hilbert transform [169] for classification. Similarly,
the divergence (Div) follows a similar trend [170]. Another
measure is the entropy of the recurrence plot.

E. ENTROPIES

The entropy, first introduced by Shannon [171] in 1948,
measures the randomness or uncertainty of the data using
the equations —sum;p;log (p;), where p; is the pdf of the
signals. Different forms of information entropy are utilized
in EEG analysis to isolate relevant data from the background
noise [172]. Several entropies can be used to analyze
EEG data. These include Renyi’s entropy [173] given as
— 12 2. logp¥, with @ > 0 and & # 1 and Tsallis’
entropy [174] given by qf_l (1 - p?), with k as a positive
constant and ¢ is the nonextensity parameter. Later entropies
serve as a basis for calculating other entropies such as
Kraskov’s entropy [50], spectral entropy [175], and Renyi’s
spectral entropy [176]. Log energy entropy (LogEn) and
wavelet entropy (WE) are similar to spectral entropy but
differ in a few important aspects. Meanwhile, Kolmogorov’s
entropy [177] is calculated by adding the positive Lyapunov
exponents, which makes it computationally difficult. Entropy
is the rate at which information is lost, as well as the regularity
of the attractor. There are several methods to estimate Kol-
mogorov’s entropy [178] with less computational expense,
including non-linear forecasting entropy [179], maximum-
likelihood entropy [180], and approximate entropy (ApEn)
[181].

VII. CLASSIFICATION OF BRAIN DISORDERS USING
TRADITIONAL ML AND DL APPROACHES

ML techniques can be applied to classify EEG for various
brain disorders. This can be done using supervised or
unsupervised learning methods. Supervised learning (SL)
methods use input and output data to train models that can
estimate the outcome of unseen data. Unsupervised learning
uses data to find patterns or clusters in it.

SL methods are typically more accurate than unsupervised
for diagnosing brain disorders from EEG signals. However,
the accuracy of a single classification method can be limited
to specific use cases. Multimodal integration algorithms that
combine multiple classification methods can also be used to
improve accuracy.
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ML algorithms can lead to bias, which can affect accuracy.
ML methods have been used to classify EEG signals for
diagnosing diseases (e.g., epilepsy, Alzheimer’s, Parkinson’s,
depression, stroke) and rehabilitation interventions.

Reliable classification techniques are pivotal in enhancing
our comprehension of real-world signal analysis applications
in medical diagnosis. Various supervised machine learn-
ing classifiers are frequently employed for this purpose,
encompassing linear/non-linear classifiers, non-linear Bayes
classifiers, neural networks, nearest-neighbor classifiers, and
hybrid classifiers such as Support Vector Machines (SVM)
combined with nearest-neighbor methods [8]. SVM and
nearest neighbors are used in almost 40 percent of the studies.
A detailed list of the classification methods used for
classifying various brain disorders is listed in Table 5.

A. LINEAR CLASSIFIERS

Linear classifiers employ algorithms based on linear discrim-
inants to classify a collection of data points by combining
the predictor variables linearly to distinguish between various

classes. Examples of such linear classifiers include SVM and
LDA.

1) LINEAR DISCRIMINANT ANALYSIS (LDA)

It is an approach that employs hyperplanes to classify EEG
data, as illustrated in Figure 20. This method involves seg-
regating classes by leveraging their respective mean values
while maximizing their separation distance. Nevertheless,
LDA’s effectiveness diminishes when dealing with intricate
non-linear EEG signals, and it can also be susceptible to
overfitting issues [182].
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FIGURE 20. Feature separation using LDA [183].

2) SUPPORT VECTOR MACHINE(SVM)

SVMs use a discriminant hyperplane to determine classes
with higher speed, better performance, and better generaliza-
tion abilities while maximizing the margin and varying the
kernel value, as shown in Figure 21.

When the hyperplane dimension changes from 1D to the nth
dimension, differentiation becomes challenging. However,
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FIGURE 21. SVM classification of ictal and non-ictal EEG data [184].

with the kernel trick, SVM can be used for non-linear data
classifications [103]. The Kernel function G(x,y) provides
a mapping to a higher dimension. Generally, three types
of kernels are selected for data: linear kernels, polynomial
kernels, Gaussian kernels, and radial basis functions.

Clly—vl2
K(xy) = exp (<531)

B. NON-LINEAR BAYESIAN CLASSIFIERS

These are classifiers based on Bayes’ theorem and involve
probabilistic reasoning. They are employed for predict-
ing probabilities of class membership, thereby facilitating
class classification. However, their computational demands
become significant when dealing with numerous items and
situations involving zero probabilities, which represents
their main limitation. The two prevalent forms of Bayesian
classifiers are Bayesian quadratics and Markov models, also
known as Hidden Markov Models (HMM) [182]. These
classifiers are used for EEG classification for various brain
disorders, including epilepsy and Alzheimer’s.

1) BAYES QUADRATIC

The Bayes Quadratic algorithm is used to determine the most
likely class for the feature vector [182]. It is mostly used in
mental task classification.

2) HIDDEN MARKOV MODEL (HMM)

It is an intelligent classifier for social network sequence clas-
sification, speech recognition, and analysis [185]. It predicts
unknown data points from given input data points.

C. NEAREST NEIGHBOR CLASSIFIERS

Nearest-neighbor classifiers are successful for a large number
of classification problems. It uses uniform weights, which
means looking at the samples closest in the distance to the
new point to predict its label.

K-Nearest Neighbor (KNN) is a straightforward method to
gauge the probability of a data point’s association with a
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particular group. This determination is based on the nearest
neighbor principle, as depicted in Figure 22. However,
KNN’s efficacy diminishes when confronted with datasets
that possess high dimensions or are substantial in size, owing
to the considerable prediction expenses involved. Primarily,
KNN finds its utility in pattern recognition and statistical
estimation [8].

Class1 | 35 f
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{:} New example

x1

FIGURE 22. K-nearest neighbor [186].

These classifiers are utilized by the researchers to automat-
ically diagnose brain disorders, including ADHD, epilepsy,
Alzheimer’s, Parkinson’s, sleep apnea, etc. The use of these
state-of-the-art classifiers for automatically detecting these
diseases is discussed in the next section.

D. DEEP LEARNING-BASED CLASSIFICATION OF BRAIN
DISORDERS FROM EEG

Due to the non-stationary nature of EEG, a classifier trained
on a smaller dataset from one particular individual may
not be able to generalize well to data collected from the
same subject at a different time. This is a challenge for
traditional machine learning classifiers to classify brain
disorders from EEG, which may have to work with a limited
number of data. Another problem with EEG signals is the
high degree of inter-subject variability, which degrades the
performance of traditional ML algorithms discussed in the
above subsections. The reason for this phenomenon is that
there are physiological differences between individuals. The
variability of EEG signals across subjects can be challenging
for models trained to generalize to new subjects [187].
Traditional machine learning methods for processing EEG
data have limitations, such as limited generalization capabil-
ities and flexibility. Deep learning (DL) could significantly
improve the processing of EEG data by automatically learn-
ing end-to-end pipelines that include automatic extraction
of features and diagnosis of diseases directly from EEG.
This could lead to better performance in diagnosis of various
diseases. DL models are very effective in dealing with
complex data, such as text, audio images, and biomedical
signals/images. DL models have high performance on
multiple public benchmark challenges [188], Deep Learning
delves into the exploration of computational models that
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acquire layered representations of input data. These repre-
sentations are constructed by means of sequential non-linear
conversions [188]. Deep neural networks are frameworks
in which (1) successive tiers of artificial ‘neurons’ employ
linear transformations on incoming data, and (2) the output of
each tier is channeled across non-linear activation functions.
Significantly, the parameters steering the transformations are
fine-tuned by minimizing a defined cost function. Figure 23
depicts the architecture of a deep learning model having
EEG signals as input, with deep layers and the output
classification layer, which give the classification probabilities
for each class, i.e., the brain disease. Different DL models like
auto-encoders (AE), Generative adversarial networks (GAN),
Transformers, Recurrent Neural Networks, etc., are different
variants of the DL that are used for EEG analysis. Some of
the DL model diagnoses of brain disorders like Alzheimer’s,
Parkinson’s, epilepsy, etc. are listed at the bottom of
Tables 4 and 5. Graph neural networks (GNN), auto-encoders
(AE), Recurrent neural networks (RNN), Deep belief net-
works (DBN), Convolutional neural networks (CNN), Long
short term memory (LSTM), and optimized deep neural
networks are used for diagnosis of epilepsy and other brain
disorders. These are discussed in the next subsections.

1) CONVOLUTIONAL NEURAL NETWORKS (CNNS)

CNNs have four primary feature layers, with the first layer
being a convolutional layer that comprises multiple feature
maps [189] and a ReLU layer that trains several times faster
by changing all negative activation values to zero using the
formula f(x) = max(x,0) [190]. Pooling layers reduce the
dimensionality of feature maps, which makes the feature
extraction more robust to noise and distortions. The fully
connected layer is the final output layer, which incorporates
all neurons from previous layers. An example of CNN is
shown in, Figure 23.

EEG Signals

Scalogram images

T
Deep convolution layers

FIGURE 23. Architecture of CNN for automatic diagnosis of brain
disorders using EEG.

2) GRAPH NEURAL NETWORKS (GNNS)

GNNs are ANNSs that can learn from data hat is organized
as a graph. In recent years, GNNs have been applied to
detect brain disorders from EEG signals. In [191], the author
used GNN to classify Alzheimer’s Disease from EEG. They
used Functional-Connectivity-Based Brain Graph Inference
as input to GNNs. The EEG is used to represent the brain as
a graph network, with the electrode as a node, and the time
samples recorded for each electrode are the features of that
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node. They achieved an accuracy of 98.4% for Alzheimer’s
detection.

3) RECURRENT NEURAL NETWORKS (RNNS)

RNNs are deep-learning models that have been around for
decades. However, their full potential was not realized until
the 1990s when long short-term memory (LSTMs) were
advanced. LSTMs are able to learn longer dependencies,
which is essential for time series classification like EEG and
other biomedical signals. RNNs are similar to the human
brain in their behavior because they can process sequential
data, which is something that the human brain is very good
at. An example of RNN models is shown in Figure 24.
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FIGURE 24. Structure of RNNS.

VIIl. CURRENT STATE-OF-THE-ART

This section provides an extensive review of the current
state of the art in EEG analysis for seizure and other
brain disorders detection from 2017 to 2023, focusing on
the studies published in Science Direct, Web of Science,
PubMed, and IEEE Xplore databases, summarized in Table 5.
The studies were screened and filtered in three iterations to
exclude duplicates and articles outside the scope according
to their titles, abstracts, and domain.

Sharma and Pachori [192] proposed a tunable Q-wavelet-
transform (TQWT) method based on a single-channel dataset
from the University of Bonn. This method decomposes the
EEG signals into subbands, and the fractal dimensions (FDs)
are computed for each subband. The features are then fed to
the least squares SVM. The authors achieved 100% accuracy
for automatic detection of epilepsy, but the method was not
tested on multi-channel EEG datasets.

Gupta et al. [193] developed an automated system based on
difference and flexible analytic wavelet transform for the
Bern Barcelona database. After decomposing the signal into
sub-bands, cross correntropy, SURE entropy, and Log Energy
Entropy are entered into an SVM. The accuracy was 94.4%
for this method. Similarly, the authors proposed a sparse
discriminative ensemble learning paradigm for emotion
recognition from EEG [194], where kernel-based represen-
tations were calculated from training EEG recordings and
linear discriminant objective functions for ensemble learning.
SVM showed better accuracy of 77.27% and 74.53% in the
2-class classification setting using the DEAP dataset.
Furthermore, Chen et al. [119] developed a new model that
identifies the optimized DWT to improve the performance on
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TABLE 5. Summary of Machine and Deep Learning based methods for classification of brain disorder from EEG signals.

Author(s) Method Dataset(s) Classifier Accuracy Brain disorder
[192] TQWT University of Bonn LS-SVM 98.5% Epelipsy
[193] FAWT Ben Barcelona Database SVM with RBF Kernel 94.4% Epelipsy
[194] SDEL DEAP dataset SVM 77.27% and 74.53% Emotions
[195] Wavelet based appraoch University of Bonn K-NN 97.50% Epelipsy
[196] DWT based on Hurst ex- Bonn dataset SVM 99% Epelipsy

ponent
[197] CAD based on Hurst ex- Bonn dataset k-NN 100% Epelipsy
ponent
[198] Hamsi-Pat Bonn dataset k-NN 99% for 4 classes- 100% Epelipsy
for others
[199] DWT Bonn dataset SVM - ANN 100%-two class prob-
lems and 98.7% three-
class problem
[200] WPD TUH EEG Corpus GBDT 87.68%
[201] EMD SVM, KNN, naive Bayes, 94.56%, 95.63%, 96.8%,
EEMD and logistic regression and 96.25%
classifiers 96.06%, 97%, 97%, and
96.25%
[202] EMD CHB MIT dataset 5 classifiers 99.6%, 99.8%, and
99.6%
[203] EMD Bonn dataset IMFs, FD, SVM 99.7%
[204] EMD CHB MIT dataset PHA 98.84%
[205] DFT with sliding win- SVM 98.45%
dow
[206] TQWT TUH dataset ANN 95.1% accuracy, 97.4%
accuracy, and 88.8% ac-
curacy
[207] Novel method TQWT- Bonn dataset ANFIS 99.46%
autoencoder Freiburg dataset 99.28%
[208] NeuCube DEAP dataset SNN 74%, 18%, 80%, and
SEED 86.27% over DEAP
dataset and 96.76% over
SEED dataset
[130] FDM BONN and CHB-MIT datasets SVM 99.96% and 99.94% Mental Stress
[123] CNN and Random Forest Bonn and New Delhi datasets CNN and Random Forest 100% and 100% Epelipsy
[126] Q wavelet transform openneuro dataset SVM, LDA, KNN 92% , 96%,85% Parkinson
[209] Hybrid Model CNN 99.2% Parkinson
[124] Deep learning own dataset CRN,GRU CNN 99.2% Parkinson
[125] Gabor transformation OpenNeuro CNN 100% and 100% Parkinson
[128] Fourier and Wavelet OpenNeuro Decision Tree 92% Alzheimer
Transform
[127] Wavelet and fractal fea- Florida State University dataset Statistical analysis 100% Alzheimer

tures

the test data. To create an optimal setting for DWT, the authors
combined factors: the mother wavelet, the frequency band,
the decomposition level, and the features. The CHB-MIT
datasets and UBonn were tested using this method. They
achieved 92.3% and 99.33% accuracy, respectively on these
datasets.

Harender and Sharma [195] tested a wavelet-based tech-
nique over the University of Bonn single channel, where
three statistical features were determined after the wavelet
decomposition. The authors claimed that KNN got an average
accuracy of 97.50%, but they did not test their approach
on CHB-MIT or any other multi-channel dataset. Madan
et al. [196] employed a DWT to extract features from the
Bonn dataset based on the Hurst exponent (HE). As a result
of their approach, the SVM produced a higher accuracy
of 99% compared to the KNN. Similarly, Lahmiri and
Shmuel [197] presented a new automated detection system
(computer-aided diagnostic-CAD system) based on the Hurst
exponent to differentiate intracranial EEG with non-seizure
and seizure periods. Using KNN with tenfold cross-validation
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and testing on the Bonn dataset, they achieved 100%
accuracy. Tuncer [198] developed a novel biomedical EEG
classification method called Hamsi-Pat that uses a non-linear
feature extractor based on the Hamshi hash function of the
substitution box. A Hamsi-Pat feature generator, TQWT
decomposition method, iterative neighborhood component
analysis (INCA), and a kNN classifier were used in the
proposed method. The authors claimed 99.20% accuracy
for five class cases and 100% accuracy for others on the
Bonn dataset. Selvathi and Meera [210] achieved 95.6%
accuracy over the CHB MIT dataset by decomposing the EEG
signal into seven levels using DWT and extracting statistical
characteristics of the alpha band for SVM classification.
Within the same context, Omidvar and colleagues [199]
used DWT to divide the Bonn University dataset into
five sub-bands and achieved 100% accuracy in two-class
problems and 98.7% accuracy in three-class problems
by combining SVM and ANN. Similarly, using wavelet
packet decomposition (WPD) to extract statistical features,
Albaqami et al. [200] utilized WPD to decrease the feature’s
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dimension and demonstrated that GBDT could achieve an
accuracy of 87.68% on the TUH EEG Corpus dataset. EMD
and its derivatives were used in many studies as a baseline
method to divide EEG signals into intrinsic mode functions
(IMFs) and extract relevant features from those derivatives
to classify the signal. According to Cura et al. [201], using
EMD analysis, they achieved, 95.63%, 96.25%, 94.56% and
96.8%for KNN, logistic regression SVM and Naive Bayes
respectively. Meanwhile, 96.06%, 97%, 97%, and 96.25% of
the classifications were achieved using the EEMD and the
same classifiers, respectively. Kaleem et al. [202] used a new
model on the CHB-MIT scalp EEG dataset, with accuracy,
sensitivity, and specificity values to achieve accuracy values
of 99.6%, 99.8%, and 99.6%, respectively. Wijayanto et
al. [203] claimed to achieve 99.7% accuracy using the
Bonn University dataset with five IMFs, FD, and SVM in
combination with EMD. Belhadj et al. [204] used the EMD
tool and the rapid potential-based hierarchical agglomerative
(PHA) clustering technique. The Euclidian, Batacharay, and
Kolmogorov distances between the IMFs were calculated and
fed into the PHA cluster to achieve an accuracy of 98.84%
over the CHB-MIT datasets. In their study, Wang et al. [205]
used a directed transfer function-based method for detecting
epilepsy. They used the sliding window technique and the
DFT method to determine cerebral function connectivity
and calculate the brain’s information outflow. The SVM
classifier was later utilized to differentiate between ictal and
interictal EEG signals with 98.45% accuracy. Multi-channel
EEG datasets such as those from Bonn.

George et al. [206] proposed a tunable Q-wavelet transform-
based method that divides a signal into sub-bands, entropies
based on the non-linear features are calculated, optimal
features are then selected using particle swarm optimization,
and ANN is then used to classify the signals. Over the Temple
University Hospital (TUH) dataset, the method achieved
95.1% accuracy, 97.4% accuracy, and 88.8% accuracy.
Shoeibi et al. [207] also proposed a novel procedure on
the basis of deep learning and fuzzy logic. A tunable-Q-
wavelet transform is proposed to decompose the EEG into
sub-bands, and 13 different entropies are calculated and
their computational complexity is considered for the purpose
of choosing the best one. The dimensionality was reduced
using a six-layer autoencoder (AE). Finally, for classification,
the classic adaptive neuro-fuzzy inference system (ANFIS)
techniques of the grasshopper optimization (ANFIS-GOA),
particle swarm optimization (PSO), and breeding swarm
optimization (BSO) were utilized to achieve an accuracy
of 99.46% for the Bonn EEG dataset and 99.28% for the
Freiburg EEG dataset.

The classification technique NeuCube on the basis of spiking
ANN was put forward by Luo et al. [208]. The authors
integrated Ben’s spiker rule with other rules. The EEG data
were processed using DWT and FFT for feature extraction.
An SNN classifier was then used, with accuracies of 96.76%
for the SEED dataset and 86.27% for the DEAP dataset.
In their study, Mehla et al. [130] proposed the Fourier
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decomposition method (FDM) for EEG classification. FDM
was used to divide EEG data into Fourier intrinsic band
functions (FIBFs), and the Kruskal-Wallis test was applied
for feature extraction. SVM was trained with the features and
99.96% and 99.94% accuracies were obtained for BONN and
CHB-MIT datasets.

In [123], the authors proposed a model for epileptic EEG
classification. The method combines random RF and CNN
for the classification of epileptic seizures. The model was
validated using EEG signals of the Bonn dataset and Indian
New Delhi dataset. The accuracy, specificity, and sensitivity
were 99.9%, 99.80%, and 100%, respectively for the C-E
case.

Many studies have used EEG signals and machine learning
techniques to detect Parkinson’s disease (PD). 5, also summa-
rizes these studies, the models, and the results they obtained.
Most of these studies in used DL methods [124], [125], [209].
Khare [126] got higher accuracy using a smoothed pseudo-
Wigner-Ville distribution of EEG combined with CNN with
an accuracy of 100%.

Several studies have demonstrated encouraging outcomes in
the identification of neurological disorders like Alzheimer’s
disease. Although there is no specific cure for AD, the
timely identification of the condition may help enhance the
quality of life for those affected. Fiscon and Weitschek
implemented a methodology that leverages techniques for
extracting distinctive attributes and categorizing EEG [128].
They differentiate between patients afflicted with AD, those
experiencing mild AD, and individuals in a healthy group.
A total of 109 samples spanning AD, MCI, and HC categories
are converted to scalograms using both Fourier and Wavelet
Transforms. Through the utilization of Wavelet-based feature
extraction, they attained classification accuracies of 83% for
AD and normal cases,92% for health and mild AD cases, and
79% for Mild and AD classification scenarios.

In [127], authors employed six computational techniques for
analyzing time-series data i.e. EEG of 160 subjects with AD
and 24 with HC. Findings derived from both the original and
wavelet-filtered EEG signals to sub-bands indicate that some
validated methods, such as wavelet-coherence and quantile
graphs, exhibit a robust capacity to differentiate between AD
patients and healthy elderly participants with high accuracy.
The authors of [211] proposed graph theoretical approaches
to analyze brain functional or cortical connectivity from
EEG signals. Brain networks were modeled as graphs
based on super edges [212], which take all possible paths
between a pair of nodes, allowing the characterization of
the properties of the networks within the graphs. In the
proposed method, current densities of various dipoles were
averaged using linear inverse problems (distributed inverse
methods) and Brodmann’s mapping criterion based on MRI
images and EEG recordings. In the later stages, multivariate
autoregressive models (MVAR) were used to estimate the
frequency domain, which was then modeled by a graph. After
using PCA for dimensionality reduction and decorrelation
of heavily correlated measurements, each frequency band
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was projected into a three-dimensional space, allowing for
further analysis and interpretation of the data. According to
the results obtained for the dataset [213], [214], the p-value
yielded a value of 0.066.

In the study titled “PFT: A Novel Time-Frequency Decompo-
sition of BOLD fMRI Signals for Autism Spectrum Disorder
Detection,” the authors of [152] proposed a new approach
called Progressive Fourier Transform (PFT) for detecting
Autism Spectrum Disorder (ASD) using fMRI signals. They
utilized the temporal dynamics of the BOLD (blood oxygen
level-dependent) data from specific brain areas for ASD
categorization. The PFT was employed to derive the temporal
dynamic features of the BOLD signals. This approach aimed
to address the limitations of existing ASD detection systems
by incorporating time-frequency components and improving
feature extraction and classification. The study used the
Autism Brain Imaging Data Exchange dataset for model
validation, demonstrating better results with the proposed
PFT model compared to existing models, including an
increase in accuracy to 96.7%. This research highlights the
potential of the PFT technique for analyzing rs-fMRI data
from various brain diseases of the same type.

In summary, various methods have been proposed for EEG
signal processing and classification for various brain disor-
ders, including time-frequency analysis, wavelet transforms,
empirical mode decomposition, spiking neural networks, and
graph theoretical approaches. These methods are robust i and
have the potential to be used for various applications, such as
detecting epileptic seizures and analyzing brain connectivity.
Further research and experimentation are necessary to
increase the accuracy of these methods and to explore their
applicability for diagnosing other brain and neurological
disorders.

IX. PROBLEMS, CHALLENGES AND WAY FORWARD

EEG of individuals or selected from a dataset can have a lot
of noise. This is because EEG signals are often multi-channel
and of longer duration. As a result, signal denoising,
preprocessing, and analysis can be challenging. Accurate
computer-based processing of EEG is also challenging due
to its low amplitude and susceptibility to high frequency and
other noises. In this work, we highlighted the main problems
and complexities caused by various common artifacts, their
automatic detection, and attenuation methods in detail.
We also discussed the limitations of current signal processing
methods and how they can be improved.

We are of the opinion that a single model may not be able to
remove all possible artifacts from EEG. Thus the selection
of a proper filter and preprocessing technique for removal
of each possible noise is required. ML/DL-based techniques
may be used in the future first to classify the type of noise
contaminating EEG signals, and then in run time, a proper
filter may be applied to attenuate the noise to get a better
quality signal. In some cases, the noise may only be present
in one portion of the EEG, which needs to be identified first,
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and then filtering may be applied to that portion of the EEG
only.

The second main challenge is the feature engineering step.
Traditional handcrafted feature engineering methods struggle
to detect reliable features from EEG signals due to low EEG
amplitude and SNR. Another challenge is the selection of the
number of features, which increases the computational cost.
Thus, the main challenges in EEG are computational cost,
high dimensionality, and classification accuracy for brain
disorders. The best approach to overcome these challenges
is to select features depending on the specific application and
the desired trade-off between processing time and accuracy.
We propose that new optimization techniques may be applied
to EEG signals to select the most relevant features rather
than using traditional EEG signal processing systems. This
includes developing new feature selection and transformation
methods and improving the efficiency of existing methods.
Recently, ML/DL has proven to be immensely worthwhile
for interpreting EEG signals. Nevertheless, the incorporation
of ML/DL techniques into clinical practices presents a range
of technical challenges. A primary hurdle involves achieving
data standardization. The broad compatibility of EEG data is
inevitably hindered by variations in the types of EEG input
data available, storage formats employed, and interpretation
protocols applied. These variations stem from differences in
data collection sources, whether from ambulatory devices,
bedside apparatus, or mobile devices, resulting in potential
discrepancies and divergences during data analysis. A sig-
nificant constraint faced by Al algorithms is their reliance
on substantial amounts of high SNR data to yield correct
outcomes, especially when proposing models for managing
brain disorders having limited datasets. Occasionally, the
SNR of the signals can be compromised by factors like
incompleteness, heterogeneity, or noise, thereby introducing
missing values, redundancies, or data sparsity. Furthermore,
Al models typically demand advanced processors to function
effectively, leading to increased computational complexities.
As a consequence, there exists a trade-off in the design of a
system.

EEG datasets are often small, which can make it difficult
to train machine learning algorithms. This is because EEG
signals are typically recorded from a small number of
subjects, and each subject may only have a limited amount
of data. This problem can be overcome by recording data for
a relatively longer time but it is also sometimes not possible
if the subject has severe epilepsy episodes or other chronic
brain disorders. Another challenge is high dimensionality:
EEG signals have a high dimensionality, i.e., signals are
recorded with an electrode grid, with longer recordings. This
can make it difficult to find the most important features
for classification, and it can also make the training of
machine learning algorithms computationally expensive. The
non-stationary nature of EEG makes it difficult to classify
EEG signals, as the classifier needs to adapt to the unexpected
changes in the data with respect to time. Inter-subject
variability is also a big challenge which can make it difficult
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to develop a classifier that works for everyone. This is because
the features important for classifying EEG signals in one
person may not be important in another person. Even though
these challenges exist there has been significant progress in
EEG processing in recent years. ML and DL algorithms, such
as SVM, RF, LSTM, and Hybrid CNN-LSTM, have been
shown to be helpful in classifying EEG signals for a variety of
disorders. Recently developed transformer models may also
be used to overcome these challenges.

X. CONCLUSION AND FUTURE WORK

This paper provides an extensive overview of the most pop-
ular datasets, feature domains, artifacts, and preprocessing
methods used to perform more accurate analyses of EEG
for the automatic detection of brain disorders, especially
epilepsy. An examination of EEG characteristics and the
procedures utilized to extract those characteristics, along
with a discussion of the benefits and drawbacks of each
method, are presented in this article. In addition, this study
examines the current trends regarding feature engineering
and classification techniques. Several academic papers have
provided the source material for these methodologies and the
findings associated with them. The time-frequency methods
of the EEG do not provide as much detail as the frequency
domain methods, while the frequency domain approaches do
not provide satisfactory performance for a number of signals.
Time-frequency is one of the most frequently utilized feature
domains, and its analysis can be performed using either the
STFT or CWT. It is important to choose accurate features and
methods for analysis in accordance with the various mental
tasks that are being carried out to improve the results.

As a future work, We believe that in the era of the medical
internet of things, ML, and DL, EEG signal processing is
poised to undergo significant advances and transformative
changes. IoT allows for seamless connectivity of EEG
devices, enabling real-time monitoring of brain activity. This
is particularly valuable for remote patient monitoring, where
EEG data can be transmitted to healthcare professionals
for timely diagnosis and intervention. Similarly, With the
increasing processing capabilities of edge devices, it becomes
feasible to perform initial preprocessing and feature extrac-
tion directly on EEG devices. This will reduce the need to
transmit huge raw data, minimizing bandwidth requirements
and latency. In summary, the convergence of IoT, ML, and
DL technologies has the potential to revolutionize EEG signal
processing. This convergence opens up new opportunities
for personalized healthcare, real-time monitoring, improved
diagnostic accuracy, and a deeper understanding of brain
activity and neurological conditions.

This paper provides a holistic evaluation of the existing
EEG processing for medical diagnosis. It discusses several
important research works in detail and Serves as a resource
for researchers in this field of EEG processing for the
diagnosis of health conditions. It also provides insight for
future research on EEG analysis for healthcare. In con-
clusion, while there have been significant advancements
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in EEG analysis techniques, there are still challenges
that need to be addressed, such as artifact and noise
removal. As machine learning and deep learning continue
to evolve, new approaches for robust artifact removal may
become available. Developing a noise-reduction method
and creating a custom metric for deep learning are also
proposed as future directions. Additionally, attention should
be given to other neurological disorders beyond epilepsy
to find the best methods for EEG analysis. The use of
graph neural networks and exploring new transformations
like time-frequency decomposition are also suggested for
improving EEG analysis. Overall, there is still much to be
explored and developed in EEG analysis, and future research
should continue to advance the field.
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