
Received 1 December 2023, accepted 7 December 2023, date of publication 12 December 2023,
date of current version 18 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3341702

TY-Net: Transforming YOLO for Hand
Gesture Recognition
ZORANA DOŽDOR , ZORAN KALAFATIĆ , (Member, IEEE), ŽELJKO BAN , (Member, IEEE),
AND TOMISLAV HRKAĆ , (Member, IEEE)
Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia

Corresponding author: Tomislav Hrkać (tomislav.hrkac@fer.hr)

This work was supported by the Operational Program from the European Structural and Investment Funds through the Development of an
Advanced Electric Bicycles Charging Station for a Smart City Project under Grant KK.01.1.1.07.0066.

ABSTRACT Hand gesture recognition is a rapidly expanding field with diverse applications, and the use of
skeleton-based methods is gaining popularity due to their potential for lightweight execution on embedded
devices. However, ensuring robustness and accuracy in both gesture classification and temporal localization
is critical for any gesture recognition system to be successful. In this paper, we propose a novel skeleton-
based approach to online gesture recognition that draws inspiration from the YOLO object detection model.
Specifically, we propose a transformer-based architecture for online gesture recognition that directly predicts
both gesture classes and gesture boundaries from a sliding window input. The model is trained in an end-to-
end manner using a proposed loss function that focuses on samples containing gesture centers and learns to
predict boundaries in the temporal domain analogous to object centers and spatial bounding boxes in YOLO
object detection. To evaluate the effectiveness of our method, we conduct experiments on two publicly
available continuous hand gesture datasets: SHREC’22 and IPN Hand. Our results outperform the results of
skeleton-based approaches from the SHREC’22 online gesture recognition contest. Moreover, our approach
obtained competitive results compared to the approaches utilizing alternative input modalities on the IPN
Hand dataset.

INDEX TERMS Online hand gesture recognition, hand skeleton, slidingwindow, transformer, deep learning.

I. INTRODUCTION
Computer-vision-based hand gesture recognition has the
potential to become a non-invasive and intuitive alternative
to traditional human-computer interaction devices. Although
hand gesture control is often associated with virtual and
augmented reality for immersive experiences, it has a wide
range of applications in different industries such as robotics,
the automotive industry, and medicine. However, to integrate
hand gesture recognition technology into various devices
and applications, it is crucial to ensure its robustness and
low latency performance. Achieving these goals requires
further research and development, something that this work
aims to contribute to. Hand gesture recognition systems can
be developed for different input modalities such as RGB,
depth, and optical flow [1]. While most of the existing works

The associate editor coordinating the review of this manuscript and

approving it for publication was Andrea Bottino .

FIGURE 1. Overview of the proposed approach.

use a combination of multiple input modalities to improve
accuracy, our proposed approach relies solely on 3D hand

140382

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0002-9194-4589
https://orcid.org/0000-0001-8918-9070
https://orcid.org/0000-0003-1712-0597
https://orcid.org/0000-0002-4362-2489
https://orcid.org/0000-0002-8894-5089

Z. Doždor et al.: TY-Net: Transforming YOLO for Hand Gesture Recognition

skeleton input. The goal is to enable lightweight execution
while still achieving a reasonable level of accuracy.

Most of the research so far has focused on achiev-
ing accurate classification of segmented gestures [2], [3],
with limited consideration for the demands of real-world
applications. These applications necessitate online, causal
processing of continuous input data up to the current
moment without access to future information. To address
this challenge, various methodologies have emerged for
recognizing gestures from continuous input data, broadly
classified into two main strategies: two-stage and one-stage
detectors.

The two-stage detection involves extracting candidate
gesture segments from the input and then classifying them
into one of the gesture classes. The upside of this approach
is that pre-segmented gestures are relatively easy to classify.
However, a lot of works rely on handcrafted heuristics to
obtain temporal segmentation [4], [5]. While some recent
studies have explored the use of deep learning models for
predicting temporal boundaries [6], [7], [8], the overall
system is not end-to-end trainable, which is a notable
drawback because the errors of the detector propagate to
the classifier. Furthermore, early prediction (activating the
gesture before it ends) is not possible when using this type
of approach since the detector requires frames that extend
beyond the actual gesture endpoint in order to accurately
determine its conclusion.

The one-stage approach involves modeling the input as
a sliding window and predicting one of the gesture classes
or a no-gesture class for the last time step of the input.
By doing so, temporal segmentation is learned implicitly,
simultaneously with classification. The predictions for each
time step can be grouped and filtered out in a postprocessing
stage, to obtain single-time activations. This approach is
more general, with the added benefit of early detection
being possible. However, single-time activation error can be
significant even with high frame-wise accuracy. For example,
it can happen that although most of the frames of a gesture
are correctly classified, several consecutive frames become
misclassified as non-gesture, leading to double activation of
the same gesture. Additionally, training a model to predict
gesture classes for the last timestep of a sliding window input
is challenging due to ambiguities arising when prior frames
provide little information for the final timestep, for instance
when the window contains mostly background frames and the
last timestep corresponds to the beginning of a gesture.

Approaching the problem of continuous gesture recogni-
tion can be compared to the task of object detection. Prior to
YOLO [9], most object detection methods employed a two-
stage approach, which involved proposing regions of interest
and subsequently classifying objects within those regions.
However, YOLO introduced a groundbreaking single-stage
approach, which enabled the prediction of object locations
and classes in a single forward pass, leading to real-time
detection with high accuracy. Motivated by this, we propose
a loss function for gesture recognition inspired by YOLO

to enable explicit learning of both gesture boundaries and
classes in a one-stage approach.

We reframe the gesture recognition problem with a model
that takes a sliding window input and learns whether it
contains the center of the gesture and, if so, what are the
boundaries and the class of that gesture. This way, we kept
the end-to-end trainability and early detection capability of
the existing one-stage approach, while making learning and
postprocessing more robust by focusing on samples that
contain a significant portion of the gesture (i.e. gesture center)
and predicting the temporal boundaries for those samples
instead of predicting gesture classes for the last timestep of a
sliding window. It is worth noting that in certain applications,
the information regarding gesture boundaries may not be
necessary. In such cases, a simpler model can be constructed,
as our system does not utilise this information for gesture
activation.

In recent years, transformers have emerged as a popular
choice for various tasks, including online action recognition
from video input due to their effectiveness in modeling
long-range temporal dependencies [10], [11], [12]. There-
fore, we propose the utilisation of a transformer encoder as
a feature extractor for skeleton-based input to help the model
focus on important parts of the input.

To sum up, our contributions are as follows:
• a model with transformer encoder feature extractor for
online gesture recognition that predicts both gesture
boundaries and gesture classes;

• a YOLO-inspired loss function for the training of the
model that enhances robustness by focusing on samples
containing the gesture center and by learning to predict
gesture boundaries.

The proposed system achieves state-of-the-art results on
two continuous hand gesture datasets.

II. RELATED WORK
A. SEGMENTED HAND GESTURE CLASSIFICATION
Classification of pre-segmented gestures is a simpler task
than continuous gesture recognition, but it offers valuable
insight into feature extraction architectures. As the choice
of model architecture can depend on the input modality, the
focus here is on works utilising skeleton input modality.

Various techniques have been developed using convolu-
tional neural networks (CNNs) and recurrent neural networks
(RNNs). In [13], an LSTM architecture that incorporates
global and finger motion features is presented. However,
GRU-based architectures have shown better results with
faster training times [14], [15]. In [16], a multi-channel
CNN that extracts temporal features for each hand joint
individually is proposed. However, all of the aforementioned
approaches disregard spatial connections between the joints.
To address this issue, authors of [17] have proposed a
residual temporal convolutional network (TCN) with an
attention branch that can extract both spatial and temporal
features from skeleton sequence input. Somemodels combine
CNN and RNN to extract spatial and temporal features. For

VOLUME 11, 2023 140383

Z. Doždor et al.: TY-Net: Transforming YOLO for Hand Gesture Recognition

instance, in [18], a combination of CNN and LSTM networks
is presented for skeleton input. More recently, [19] proposed
a hybrid approach combining 3D-CNN with a transformer
network. The CNN part extracts high-level semantic skeleton
embeddings, while the transformer network is responsible
for capturing long-range temporal dependencies in skeleton
sequence.

Additionally, attempts have been made to classify spa-
tiotemporal joint trajectories by condensing them into an
image and using a CNN for classification [20], [21], [22],
[23], [24]. Graph-based architectures that encode spatiotem-
poral connections have also been developed, with some of
them using predefined graph structures based on the natural
connectivity of joints [25]. Others learn action-specific graph
representations through self-attention mechanisms in spatial
and temporal domains [26].

Finally, some works combine skeleton input with other
input modalities to improve accuracy. Recently, the authors
of [27] proposed combining a lightweight spatial vision
transformer, bilinear pooling, and attention network for
human action recognition. They use two-stream feature
pooling and a fusion mechanism to combine RGB frames
with skeleton information.

B. CONTINOUS HAND GESTURE RECOGNITION
1) TWO-STAGE RECOGNITION
Temporal segmentation in two-stage approaches is often
dataset-specific or has underlying assumptions about the
gesture execution. For example, some approaches use hand
position or quantity of movement to segment gestures [4],
[5]. Deep learning approaches have also been proposed,
such as a bidirectional LSTM network for predicting gesture
occurrence in each time step of the input [6] and a modi-
fied ResC3D network for predicting gesture segments [7].
Another approach, inspired by an object detection technique,
uses an R-CNN architecture for hand gesture recognition
[28]. Candidate gesture segments are first extracted by an
energy-based gesture proposal module. Those candidates
are then classified by a simple classification model and
temporally extended and served as input to a larger model.
In addition to classification, the larger model also refines
estimated gesture boundaries. To obtain the final prediction,
the two model outputs are compared. Specifically, any
predictions where the predicted class differs between the
two models or where the refined gesture boundaries do not
overlap with the proposed gesture segment are discarded.
While the inspiration for that approach is somewhat similar
to ours, it is not end-to-end trainable and applies heuristics
for the extraction of gesture segments.

2) ONE-STAGE RECOGNITION
The issue of early gesture recognition (activating the gesture
before it ends), which is essential for real-world applications,
was addressed in [29], [30], and [31]. The authors of [31]
proposed an architecture that combines 3D CNN and LSTM

for gesture recognition. The model divided continuous input
video into segments and assigned a label to a segment
when the predicted probability reached a predetermined
threshold. The model was trained using the Connectionist
Temporal Classification (CTC) loss to identify the nucleus
of the gesture while assigning a no-gesture category to
the remaining clips. To address the problem of single-
time activations, the authors of [32] proposed a two-model
architecture for RGB video input consisting of a lightweight
3DCNNmodel for gesture segmentation and amore complex
3D CNN model for gesture classification. The models
processed sliding window inputs, with the classifier activated
only when a gesture was detected. Per-frame predictions are
obtained and weighted using a weighted average scheme,
with lower weights assigned to earlier predictions. The
single-time activations occur when a confidence level reaches
a selected threshold for early detection or when the gesture
ends for late detection. Both models were trained using
cross-entropy loss. Tomitigate segmentation errors caused by
optimizing themodel with only classification loss, the authors
of [33] proposed a smoothing loss function.

C. TEMPORAL ACTION DETECTION
Temporal action detection (TAD) and continuous gesture
recognition share a common goal of predicting class and tem-
poral boundaries of actions or gestures from untrimmed input.
However, aside from the differing problem domains, hand
gesture recognition requires real-time prediction without
having access to the entire gesture, while action recognition
typically has the complete video sequence available. Conse-
quently, the training and inference strategies for the two tasks
diverge. Nevertheless, various works in TAD draw inspiration
from object detection and show the relevance of adapting
object detection techniques for the temporal domain.

For example, Faster R-CNNhas been adjusted for temporal
action localization in [34]. A feature map is first extracted
from the input video segment. A segment proposal network
then predicts a set of segment proposals, and for each segment
proposal, a Deep Neural Network (DNN) predicts class
and refined boundaries. Another approach proposed in [35]
involves training multiple feature extraction networks fol-
lowed by a Single Shot Temporal Action Detection network
in which there are several prediction layers connected to
feature maps of different scales. Each prediction layer is
connected to one anchor instance and predicts the categories
and location offsets of that anchor instance. In [36], two
semantically-constrained Gated Recurrent Unit (GRU) based
modules are utilised for feature extraction, outputs of which
are then combined to obtain the final detection output.
The modules are semantically-constrained to learn features
relevant for temporal proposals and classifications.

More recently, [37] proposed a neuro-heuristic approach to
fast and robust detection of unusual activities in surveilance
videos, designed for use on limited IoT device hardware. The
video frames are first analyzed by fast and computationally

140384 VOLUME 11, 2023

Z. Doždor et al.: TY-Net: Transforming YOLO for Hand Gesture Recognition

inexpensive heuristic algorithm. Only those parts of the video
that are estimated as unusual by the heuristic algorithm
are sent to a more computationally demanding deep neural
network to further classify the type of the action.

III. PROPOSED APPROACH
An overview of the proposed system is presented in Fig. 1.
A sliding window technique is adopted to model a continuous
input sequence, where the input is divided into a series of
overlappingwindows of fixed length. Thesewindows are then
used as input to the model in a sequential manner.

To obtain features for each window, the 3D coordinates
of hand keypoints are flattened and concatenated, along with
additional features derived from them. These additional fea-
tures include pointwise velocities of each skeleton keypoint
and their pairwise Manhattan distances. Velocity is included
to account for variations in the speed at which gestures are
performed, while Manhattan distance is included to introduce
spatial information.

Per-axis velocity of joint i at time t is obtained using finite
differences to approximate its position derivative, resulting
in velocities vi,x , vi,y, and vi,z (Equations 1a to 1c). The
Manhattan distance between joint pair i and j at time t is
computed as the sum of their absolute position differences
along the x, y, and z axes, denoted as di,j,t (Equation 2).

vi,x = xi,t − xi,t−1, (1a)

vi,y = yi,t − yi,t−1, (1b)

vi,z = zi,t − zi,t−1. (1c)

di,j,t = |xi,t − xj,t | + |yi,t − yj,t | + |zi,t − zj,t |. (2)

The input is first embedded by passing through a fully
connected layer and combined with temporal embeddings
by concatenation. The temporal embedding layer transforms
discrete time steps into vector representations that are learned
during the training process of the model. The combined
dimension of both embeddings is 512 (each is 256). The
resulting vector is then fed into the Transformer encoder,
which applies a self-attention mechanism to capture the
relationships among the time steps in each sliding win-
dow. The Transformer encoder consists of multiple layers,
each constructed with two key components: a multi-head
self-attention mechanism and a position-wise feed-forward
network (Fig. 2). Given an input tensor, X ∈ Rt×d , where
t represents sequence length and d is input dimension, self-
attention mechanism is expressed as [38]:

Q,K ,V = XWQ,XWK ,XWV (3a)

Attention(Q,K ,V) = softmax
(
QKT
√
dk

)
· V (3b)

Here, Q, K , V correspond to the query, key, and value
vectors, which are obtained by applying the weight matri-
ces WQ,WK ,WV to the input tensor X , while dk is a
hyperparameter representing the dimensionality of query
and key vectors. The multi-head self-attention operation is

defined as [38]:

headi = Attention(Qi,Ki,Vi) (4a)

MultiHead(X) = Concat(head1, . . . , headh)WO (4b)

where h represents the number of attention heads, and WO

denotes a trainable weight matrix.

FIGURE 2. Transformer encoder in TY-Net.

Experimental evaluation has shown that a two-layer
Transformer encoder with four self-attention heads and a
hidden layer size of 256 achieves high performance. Finally,
the output of the last time step of the Transformer encoder
is passed through a fully connected classifier to predict the
confidence (c), the center of the gesture (x), offset (off) and a
vector of class probabilities (p). In an online setting, we adopt
a gesture detection strategy that accumulates predictions with
confidence scores greater than 0.5 across time. Specifically,
when the model predicts the same class for T timesteps, the
gesture is activated, and the remaining predictions for that
gesture are ignored (Algorithm 1). This approach allows the
system to detect a gesture even before it ends and to calculate
the gesture boundaries based on the average of T accumulated
predictions. For a timestep t , a gesture G will be activated as
follows:

Gt =

1 if

t∑
i=(ta+1)

δ(Ci = G & ci > 0.5) ≥ T

0 otherwise

(5)

Here, ta represents the end of the last activated gesture or
zero if no gesture has been activated yet, δ is an indicator
function equal to one when the condition is satisfied and Ci
is the predicted gesture class.

A. LOSS
The problem formulation and consequently the loss function
in our approach is inspired by the YOLO model for object
detection. The sliding window input of our model corre-
sponds to the image cells in YOLO. Unlike YOLO’s non-
overlapping cells, our sliding window input is overlapping.
This is motivated by the unconstrained nature of the input,
enabling the model to handle gestures that extend beyond
a single sliding window input more effectively. Moreover,
for our online problem setting, non-overlapping cells would
introduce undesirable latency. The primary objective of our
model is to detect whether a given window contains the center
of a gesture. If a gesture center is detected, the model will
predict the center location, the gesture length, and the class
of the gesture. The center location is predicted relative to the

VOLUME 11, 2023 140385

Z. Doždor et al.: TY-Net: Transforming YOLO for Hand Gesture Recognition

Algorithm 1 Online Gesture Recognition
Input: Continuous skeleton sequence, Trained model
Output: Activated gestures

accum← []
gest_active← False
consecutive_non← 0
for each sliding_window in skeleton_sequence do

input← prepare_input(sliding_window)
c, x, off , class← model.predict(input)
if gest_active then

if c < 0.5 or class ̸= pred_gesture then
consecutive_non← consecutive_non+ 1
if consecutive_non ≥ thresh_non then

gest_active← False
consecutive_non← 0

end if
else

consecutive_non← 0
end if

end if
if gest_active = False and c > 0.5 then

accum.add(off , x, class)
end if
if count_most_frequent_class(accum) >= T then

pred_gesture← most_frequent_class(accum)
avg_start← calculate_avg_start(accum)
avg_end← calculate_avg_end(accum)
activate(pred_gesture, avg_start, avg_end)
gest_active← True
accum← []

end if
end for

sliding window length, while the gesture length is predicted
as an offset from the center in both temporal directions. This
offset value is relative to a pre-determined prior value.

The proposed model takes an input sequence X = {xt }Nt=0,
whereN is the sliding window length and xt is the t-th feature
vector, and outputs a vector of four groups of components (B∗
c, x,B∗off , p), where B is the number of offset priors. Given
the output vector o ∈ Rd , obtained by the TY-Net classifier,
the predictions can be written as:

index = argmax(σ (o[0 : B])) (6a)

c = max(σ (o[0 : B])) (6b)

x = σ (o[B]) (6c)

off = exp(o[(B+ 1+ index)]) (6d)

p = softmax(o[(2 ∗ B+ 1) :]) (6e)

where σ is sigmoid function and exp is exponential function.
The model predicts B confidence scores and offsets to
enable having more than one offset prior. However, only the
prior with the length closest to the ground truth length is
penalized by the loss function, which encourages each prior to

specialize for certain gesture lengths, making the model more
robust in predicting various gesture lengths. The ground truth
confidence c for prior B is set to one given that the window
contains a gesture center and the prior B is the closest to
ground truth length. Otherwise, c is set to zero.

The loss function for a single example (one position of
the sliding window) is given by equation 7, which consists
of four terms. The first two terms are confidence losses
responsible for learning which input samples contain the
gesture center and which do not. The third term corresponds
to the localization loss, which penalizes incorrect predictions
of the gesture center and the gesture length. Since the center
location is predicted relative to the sliding window length
and has values between zero and one, it is activated by a
sigmoid function. The offset from the center is passed through
an exponential activation function. The combination of the
center and offset enables the calculation of predicted gesture
boundaries as the sum and difference of the center value and
the offset value. The optimization process implicitly learns
the center and offset by optimizing the intersection over
union between the ground truth and the predicted boundaries.
The final term is the classification loss, which is computed
as cross-entropy between the predicted and ground truth
probabilities.

L = Wsw(λg1g
B∑
i=1

BCE(ci, ĉi)

+ λnog1nog
B∑
i=1

BCE(ci, ĉi)+
B∑
i=1

1gi (1− IoU(GTb,Pb))

+ 1gCE(p, p̂)) (7)

Terms BCE andCE correspond to binary cross-entropy and
cross-entropy, respectively. The indicator function 1g is equal
to 1 if the window contains the gesture center. Additionally,
subscript i in 1gi denotes that i-th gesture length prior is the one
best matching the ground truth gesture length. The indicator
function 1nog is equal to 1 if the window does not contain the
gesture center and is equal to 1 − 1g. The weighting factors
λnog and λg are used to adjust the contribution of each term in
the loss function. Specifically, similar to the observation in [9]
on object detection, many samples do not contain gesture
center, so λnog and λg are introduced to compensate for that
imbalance.

Furthermore, we introduce a weighting scheme that takes
into account the position of a gesture within the sliding
window, expressed by the factorWsw. This scheme considers
three potential scenarios.

First, when the gesture center falls within the sliding
window while the gesture end extends beyond it, the model
has observed the gesture center but not its completion
(Fig. 3b). Since the primary objective of the loss function is to
detect the gesture within this time frame, the weight assigned
in this case is one.

Second, if the gesture start is within the sliding window but
the gesture center is not, the model has observed a portion of

140386 VOLUME 11, 2023

Z. Doždor et al.: TY-Net: Transforming YOLO for Hand Gesture Recognition

the initial phase of the gesture but not its center (Fig. 3a).
According to the objective, the model should predict zero
confidence (c) in this case, indicating the absence of a gesture.
However, the punishment for a positive prediction is adjusted
inversely proportional to the percentage of the gesture length
within the sliding window. This adjustment is calculated
using the following equation:

Wsw = 1− (t − Sg)/(Eg − Sg) (8)

Here, t represents the last timestep of the sliding window,
while Sg and Eg denote the start and end times of the gesture,
respectively.

Third, when both the gesture center and the gesture end
are within the sliding window, it indicates that the model has
observed the entire gesture (Fig. 3c). As the objective is to
enable early prediction, the loss is weighted based on the
time elapsed since the gesture end. The weight calculation
is determined by the following equation:

Wsw = 1−min((t − Eg)/(Eg − Sg), 1) (9)

In this equation, the term minimum ensures that the weight
does not become negative, even if the time elapsed from the
gesture end is greater than the duration of the gesture itself.

FIGURE 3. Position of a gesture (highlighted in red) within a sliding
window (highlighted in yellow). Sg, Eg and C denote the gesture start,
gesture end and center of the gesture, respectively. Cases include the
presence of only the gesture start (a), both the gesture start and center
(b) and the entire gesture (c) within the sliding window.

IV. EXPERIMENTS
A. DATASETS
Obtaining hand gesture datasets that include continuous,
unsegmented gestures with hand skeleton input modality can
be challenging. In fact, to our knowledge, there is only one
such dataset currently available - the SHREC gesture dataset.
Furthermore, there is generally a lack of unsegmented hand
gesture datasets for any type of inputmodality. Our evaluation
of hand gesture recognition was conducted using two publicly
available datasets: the SHREC’22 Hand Gesture Dataset and
the IPN Hand dataset.

The SHREC’22 Hand Gesture Dataset [28] is one of
several SHREC datasets that have been proposed as a part of

the annual 3D Shape Retrieval Challenge. The most recent
dataset, proposed in 2022, consists of 16 different static
and dynamic gestures in the domain of human-computer
interaction (Fig. 5), with a total of 1152 samples across
288 sequences. This dataset was captured using a Hololens2
device and includes only 3D hand skeleton information. The
dataset can be downloaded at [40].

The IPN Hand dataset [39] contains 4000 gesture samples
for 13 different static and dynamic gestures (Fig. 4), also
designed for human-computer interaction. Each RGB video
in the IPN Hand dataset is a series of continuously captured
gestures with several randomly positioned breaks. The
samples in this dataset were collected with variations in
background and illumination. In addition to the RGB videos,
the dataset also provides optical flow and hand segmentation
modality. To evaluate our approach on the IPN Hand dataset,
we extracted hand skeleton input modality from the RGB
video using MediaPipe Hands [41]. The dataset can be
downloaded at [42].

B. EVALUATION
The SHREC Hand Gesture Dataset authors utilised the
Jaccard index as an evaluation metric for temporal segmen-
tation. It is used in several online hand gesture recognition
challenges [43], [44]. The Jaccard index measures the degree
of overlap between the predicted and ground truth boundaries
of gestures [45]:

JI s,i =
GTs,i ∩ Ps,i
GTs,i ∪ Ps,i

, (10)

where GTs,i and Ps,i are ground truth and prediction binary
vectors for sequence s. Vector values are zero or one,
depending on whether the gesture i is being performed for
a certain timestep or not.

The authors also computed the detection rate and false
positive rate. In the calculation of the detection rate, a gesture
is considered correctly detected when the overlap between
ground truth and prediction boundaries is above the selected
threshold and when their respective labels match.

Authors of the IPN Hand have utilised Levenshtein
accuracy [31] as a metric for evaluation. It is obtained
by dividing the Levenshtein distance [46] by the total
number of gestures in the ground truth sequence. Levenshtein
distance measures the dissimilarity between two sequences
by counting the number of item-level changes (insertion,
deletion, or substitutions) required to transform one sequence
into the other. In the case of a continuous video sequence,
each sequence is a string of numbers representing gesture
classes, without explicit information about the start and end
of each gesture (e.g. Levenshtein distance for sequences
[1,2,3,4,5] and [1,6,3,4] is 2). The metric is given by the
equation:

Lacc = (1− (Ld (gt, p)/Ns)) ∗ 100, (11)

VOLUME 11, 2023 140387

Z. Doždor et al.: TY-Net: Transforming YOLO for Hand Gesture Recognition

FIGURE 4. Gesture classes in IPN Hand dataset [39]. The rows display the temporal order, arranged from top to bottom.

FIGURE 5. Gesture classes in SHREC’22 dataset (first row - static, second
row - dynamic coarse, third row left - dynamic fine, third row right -
periodic) [28].

where Ld is Levenshtein distance, and can be expressed as:

Ld (a, b) =

max(|a|, |b|), if min(|a|, |b|) = 0
Ld (tail(a), tail(b)), if a[0] = b[0]

1+min

Ld (tail(a), tail(b)),
Ld (tail(a), b),
Ld (a, tail(b))

otherwise

(12)

Here |x| denotes the length of the sequence x, tail(x)
represents x without the first character and x[n] is the nth
character in x. Additionally, gt and p represent ground truth
and predicted sequences, respectively, and Ns is the total
number of gestures in the ground truth sequence.

C. TRAINING
The model was trained using the Adam optimizer. The
warm startup was employed at the beginning of training by
initializing the learning rate to 10−9 and increasing it by a
factor of 10 for 5 epochs. Subsequently, the learning rate
was set to 10−4 and reduced by a factor of 10 after 30 and

50 epochs, for a total of 60 epochs. An overview of the
training procedure is given in the Algorithm 2.
To prepare the training data for both datasets, a random

stratified split was used to divide it into training and valida-
tion sets in an 80:20 ratio. Additionally, data augmentation
techniques were applied to the data. For each axis (x, y, z) of
the input sample, a random number between -0.1 and 0.1 was
added to the joint coordinates in a randomly selected segment
of the sequence, with a probability of 10%. The length of
the modified segment was randomly determined, ranging
from 0 to 25% of the input length, and the position of the
modified segment in the input sequence was also randomly
selected.

D. HYPERPARAMETER SELECTION
1) SLIDING WINDOW LENGTH
We performed 4-fold cross-validation on both datasets to
determine the optimal sliding window length. We assessed
five different values starting from the mean gesture length of
the training dataset: {mean-15, mean, mean+15, mean+30,
mean+45}. The results on the SHREC’22 gesture dataset,
shown in Figure 6a, indicate that the sliding window length
of 52 (mean+15) yields the highest mean Jaccard index.
Therefore, we selected a sliding window length of 52 for all
subsequent experiments on this dataset. Regarding the IPN
Hand dataset, we observed that the best result was obtained
with a sliding window length of 175 (mean+30), as depicted
in Figure 6b.

2) TIMESTEP THRESHOLD T
The hyperparameter T plays a crucial role in balancing
the robustness and latency of the system. To summarize, if the
model predicts the same class for T timesteps, it triggers the
gesture activation and disregards any subsequent predictions
for that particular gesture. Increasing the value of T
results in higher latency and reduction of the detection rate
while effectively reducing the number of false positives.
To determine the optimal value of T , we conducted 4-fold
cross-validation on both datasets. We evaluated T using a

140388 VOLUME 11, 2023

Z. Doždor et al.: TY-Net: Transforming YOLO for Hand Gesture Recognition

Algorithm 2 Offline Training Algorithm
Input: Training data, Model with trainable parameters θ ,
Loss function, Optimiser, Learning rate scheduler, n_epochs
Output: Trained model

valid_loss_min←∞
for epochinn_epochs do

for input, labelsintrain_loader do
output← model(input)
loss← loss_function(output, labels)
∇loss← compute_gradients(loss, θ)
optimiser.update(θ,∇loss)

end for
Update learning rate using scheduler
valid_loss← 0.0
for input, labelsinvalid_loader do

output← model(input)
loss← criterion(output, labels)
valid_loss← valid_loss + loss

end for
if (valid_loss < valid_loss_min) then

valid_loss_min← valid_loss
Save model

end if
end for

FIGURE 6. Selecting sliding window length for (a) SHREC’22 and (b) IPN
Hand dataset.

range of values: {10, 20, 30, 40, 50}. On the SHREC’22
dataset, the optimal value of T was found to be 20, while for
the IPN Hand dataset, the optimal value of T was determined
to be 40 as visible in Fig. 7.

3) WEIGHTS λG AND λNOG
The values of λg and λnog are determined based on the
number of priors, denoted as B. Specifically, λnog is set
to 1/B, as each of the B confidence outputs should be
close to zero when no gesture center is present. The losses
corresponding to those values sum up (cf. Equation 7) so that
the no-gesture loss is increasing with the number of priors.
Therefore it has to be scaled accordingly.

On the other hand, λg is set to (1 + B). This choice is
motivated by the fact that as B increases, each confidence

FIGURE 7. Selecting threshold T for (a) SHREC’22 and (b) IPN Hand
dataset.

predictor has fewer samples to learn from. Therefore, it is
desirable to increase the weights assigned to these samples
to prioritize their influence on the training process. The
addition of 1 ensures that λg remains larger than λnog in all
cases, maintaining the relative importance of gesture-related
predictions compared to the absence of gestures.

4) OFFSET PRIORS
An effective initialization of offset priors helps accelerate the
learning process and improve the accuracy of gesture length
estimation. Following [47], we utilised a k-means clustering
algorithm on the training data to determine the appropriate
prior values for offset. Instead of the Euclidean distance,
we applied the following distance function:

d = 1− IoU(GTb,Pb), (13)

where GTb and Pb are ground truth and predicted gesture
boundaries.

To determine the optimal number of priors for each dataset,
we analyzed histograms of the training data gesture lengths
(see Fig. 8 and Fig. 9). The histogram of the IPNHand dataset
exhibits two distinct peaks, indicating a bimodal distribution.
Consequently, we selected 2 priors to capture the underlying
modes of this dataset. On the other hand, the histogram
of the SHREC’22 dataset appears to follow an unimodal
distribution. Thus, we determined that a single prior would
be sufficient to capture the general distribution pattern of this
dataset.

V. RESULTS
A. METHOD VALIDATION
To validate the proposed problem formulation, we compared
it against a conventional one-stage approach. Specifically,
we modified the objective to only predict the correct gesture
class (and not the gesture boundaries) for the last timestep
of the sliding window input. The number of model outputs
corresponds to the number of gesture classes plus one for the
no-gesture class, and the model is optimized using a cross-
entropy loss.Wemaintained all training strategies across both
approaches but implemented a modified evaluation strategy
due to the different problem formulation. As mentioned,

VOLUME 11, 2023 140389

Z. Doždor et al.: TY-Net: Transforming YOLO for Hand Gesture Recognition

FIGURE 8. Histogram of SHREC’22 training data gesture lengths.

FIGURE 9. Histogram of IPN Hand training data gesture lengths.

a postprocessing stage is needed to estimate the gesture
boundaries in this approach. To keep the evaluation similar
to the proposed approach, predictions are accumulated and a
gesture is activated when the model predicts the same class
for T timesteps. From this, the beginning of the gesture
is determined as the first timestep of the T accumulated
predictions. For a fair comparison, we evaluated the one-stage
approach using a set of T values:{10, 20, 30, 40, 50}.
We report the best achieved result, specifically setting T to
10 for SHREC’22 and 20 for the IPNHand dataset. Unlike
the proposed approach (TY-Net), we retained the remaining
predictions of a gesture to determine its end. The end of a
gesture is determined when the model predicted either a no-
gesture class or a different class from the one predicted at the
beginning of the gesture for a fixed number of consecutive
steps E . We conducted experiments by varying the parameter
E within the range of 1 to 15 but found that its impact on the
results was minimal. Therefore, we chose a value of 5 for E .

Table 1 shows the comparison of the results obtained by the
proposed approach and the above-described (conventional)
approach on SHREC’22 and IPN Hand datasets. Our results

demonstrate the effectiveness of the proposed approach
relative to the conventional approach.

Additionally, the two approaches were compared on
the IPN Hand dataset using the Levenshtein accuracy.
The Levenshtein accuracy on the test set achieved by the
conventional one-stage approach was 52.80%, whereas our
proposed approach achieved a significantly higher accuracy
of 60.46%.

TABLE 1. Comparison of our results with the conventional one-stage
approach. The result are averaged over 5 random seeds.

B. STATE-OF-THE-ART COMPARISON
Table 2 presents a comparison of our results with state-
of-the-art results on the IPN Hand dataset. Our proposed
skeleton-based approach is compared to the approaches
utilising various input modalities, where Seg, Flow and
TD represent hand segmentation, optical flow and temporal
difference, respectively. Temporal difference modality is
proposed in [48] and it involves retrieving information from
binarized absolute differences of RGB video frames. In [49],
the authors extracted hand keypoints using MediaPipe from
RGB video and employed the hand skeleton as the sole input
modality, which is similar to our approach. Nevertheless, our
method achieved significantly higher accuracy than theirs.
The authors of [50] proposed a multi-modal fusion block
to utilise features of multiple modalities and obtained the
highest accuracy. They applied a one-step approach, but
modified cross-entropy loss by the addition of smoothing
loss and mid-point loss to alleviate the segmentation errors.
However, they did not specify how they obtained single-time
activations. The other approach with higher accuracy than
ours is [48], but only when using temporal difference as
an input modality, which suggests temporal difference could
provide valuable information for gesture recognition.

The comparison of our results with SHREC’22 challenge
contestants is presented in Table 3. Our approach demon-
strated superior performance across all metrics, particularly
in terms of false positives. Figure 10 shows the example
of the results obtained by the proposed approach on one
sequence of the IPN Hand dataset as well as the SHREC’22
dataset. As visible on the SHREC’22 sample sequence, the
gesture is activated (red vertical line) before the real gesture
end (green vertical line) for most of the gestures. These
annotations were omitted on the IPN Hand sample due to
compromised readability with a large number of gestures.
We can observe from Tables 1 and 4 that the results on the
SHREC 22 dataset are significantly better than those on the

140390 VOLUME 11, 2023

Z. Doždor et al.: TY-Net: Transforming YOLO for Hand Gesture Recognition

FIGURE 10. Example of ground truth (GT) and predicted (P) gestures for one sequence on (a) IPN Hand and (b) SHREC’22 dataset (different colors
represent different gesture classes, gray denotes a no-gesture class).

TABLE 2. Overview of results on IPN Hand dataset. Our results are
averaged over 5 random seeds (RS) and 5-fold cross-validation (CV).

TABLE 3. Comparison of our results with the state-of-the-art on
SHREC’22 gesture recognition challenge. Our results are averaged over
5 random seeds (RS) and 5-fold cross-validation (CV).

IPN Hand dataset. This discrepancy can partly be due to the
ambiguities in gesture classes within the IPN Hand dataset;
specifically, two gesture classes (2click-1f and 2click-2f)
are equivalent to performing another gesture class twice
(Click-1f and Click-2f). Additionally, the disparity can be
attributed to the higher quality of 3D hand skeleton data in
SHREC’22, captured using specialized time-of-flight camera
sensors, in contrast to the hand skeleton extracted from
monocular video through a 3D skeletonization model applied
to the IPNHand dataset. Moreover, 3D skeletonization model

is more sensitive to illumination variations, which are present
in the IPN Hand dataset, compared to the specialized sensors.
Nonetheless, as shown in Table 2, our approach shows
robustness and outperforms most of the methods employing
different input modalities on IPN Hand, despite the presence
of illumination variation in the dataset and the inherent noise
introduced through the hand skeleton extraction method.

C. IMPACT OF HANDCRAFTED FEATURES
In addition to capturing the 3D coordinates of hand joints,
we have also derived additional features that are concatenated
with the input vector. To assess the impact and necessity of
these additional features, we conducted experiments training
the model on both datasets using only flattened 3D hand
coordinates as input. The results, shown in Table 4, indicate
that the inclusion of additional features leads to improved
performance on the SHREC’22 dataset. However, on the
IPN Hand dataset, the results remain similar regardless of
the use of the additional features. This suggests that the
impact of these features may vary depending on the specific
characteristics of the dataset and the gestures being analyzed.

TABLE 4. Comparison of results with and without handcrafted features.
The metrics are detection rate (DR), false positives (FP), Jaccard index (JI)
and Levenshtein accuracy (LA). The result are averaged over 5 random
seeds.

D. MODEL HYPER-PARAMETERS
To validate our model architecture hyperparameters, we con-
ducted experiments on SHREC’22, varying the number of
self-attention heads, layers, and hidden layer sizes in the
Transformer encoder. The summarized results in Table 5
show that a hidden layer size of 256 yielded the best

VOLUME 11, 2023 140391

Z. Doždor et al.: TY-Net: Transforming YOLO for Hand Gesture Recognition

performance. We also found that increasing the number of
self-attention heads from 4 to 8 improved performance, while
the ideal number of layers remained consistent at 2.

Both the architecture with 8 self-attention heads and our
4-head variant have approximately five million parameters
and require 0.18 GFLOPs, indicating suitability for real-
time applications. To further verify this, we measured the
combined execution time for hand keypoint extraction via
Mediapipe, keypoints preprocessing, and gesture recognition.
It took approximately 19ms per input frame when utilizing
an NVIDIA GeForce RTX 3070Ti GPU and an Intel Core
i9 CPU. Consequently, the system achieves an effective frame
rate of approximately 52 frames per second (fps).

Figure 11a illustrates validation loss variation across
training epochs for models with varying hidden layer sizes.
As visible, the model with a size of 512 shows more
pronounced variations, while others maintain smoother loss
curves. Adjusting the number of self-attention heads or layers
was shown to have minimal impact on the convergence of
the models, so the training and evaluation curves are similar
to those presented in Figure 11b for the best-performing
model, showcasing the robustness of the models in terms of
convergence.

FIGURE 11. Variation of (a) validation loss for models with different
hidden layer sizes (b) training and validation loss for the best model,
across training epochs.

E. IMPACT OF λG AND λNOG
To assess the impact of factors λg and λnog on model perfor-
mance, we conducted experiments with various combinations
of values using the SHREC’22 dataset, and the results are

TABLE 5. Comparison of results on SHREC’22 with varying number of
self-attention heads, layers, and hidden layer sizes in the transformer
encoder.The result are averaged over 5 random seeds.

TABLE 6. Comparison of results on SHREC’22 with different values of λg
and λnog. The result are averaged over 5 random seeds.

summarized in Table 6. The Jaccard Index consistently
decreases as λnog increases across all values of λg. This
observation aligns with our intuition, suggesting that setting
λnog to a smaller value than λg is favorable due to the
prevalence of no-gesture samples. The optimal configuration
is achieved when λg is set to 2 and λnog is set to 0.5, slightly
differing from our original choice of 2 for λg and 1 for λnog.

VI. CONCLUSION
In this paper, we presented a novel formulation of online
hand gesture recognition problem inspired by the YOLO
model for object detection. For a segment of continuous input,
the proposed model can directly predict gesture boundaries
and gesture class. The transformer-based model is trained
in an end-to-end manner using a proposed loss function
that focuses on samples containing gesture centers and
learns to predict gesture boundaries. Moreover, the proposed
problem formulation enables early predictions, which is
crucial for real-world applications. The results obtained
on two continuous hand gesture datasets underscore the
effectiveness of our approach. On the SHREC’22 gesture
dataset, we achieved a significant reduction in false positives
and obtained state-of-the-art performance. Our results on the
IPN Hand dataset outperformed all uni-modal approaches
and even surpassed several multi-modal approaches from the
literature. By relying solely on the hand skeleton as input, our
approach offers a simpler and more computationally efficient
alternative to techniques that incorporate additional input
modalities. The findings presented in this study demonstrate
the potential of our approach to enable more accurate and
efficient gesture recognition. The objective of future work is
to incorporate the gesture boundary information obtained by
the model into the gesture activation process.

REFERENCES
[1] M. Oudah, A. Al-Naji, and J. Chahl, ‘‘Hand gesture recognition based on

computer vision: A review of techniques,’’ J. Imag., vol. 6, no. 8, p. 73,
Jul. 2020.

[2] J. Suarez and R. R. Murphy, ‘‘Hand gesture recognition with depth images:
A review,’’ in Proc. 21st IEEE Int. Symp. Robot Hum. Interact. Commun.,
Sep. 2012, pp. 411–417.

140392 VOLUME 11, 2023

Z. Doždor et al.: TY-Net: Transforming YOLO for Hand Gesture Recognition

[3] L. Guo, Z. Lu, and L. Yao, ‘‘Human–machine interaction sensing
technology based on hand gesture recognition: A review,’’ IEEE Trans.
Hum.-Mach. Syst., vol. 51, no. 4, pp. 300–309, Aug. 2021.

[4] Z. Liu, X. Chai, Z. Liu, and X. Chen, ‘‘Continuous gesture recognition with
hand-oriented spatiotemporal feature,’’ in Proc. IEEE Int. Conf. Comput.
Vis. Workshops (ICCVW), Oct. 2017, pp. 3056–3064.

[5] H. Wang, P. Wang, Z. Song, and W. Li, ‘‘Large-scale multimodal gesture
recognition using heterogeneous networks,’’ in Proc. IEEE Int. Conf.
Comput. Vis. Workshops (ICCVW), Oct. 2017, pp. 3129–3137.

[6] N. N. Hoang, G.-S. Lee, S.-H. Kim, and H.-J. Yang, ‘‘Continuous hand
gesture spotting and classification using 3D finger joints information,’’ in
Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2019, pp. 539–543.

[7] G. Zhu, L. Zhang, P. Shen, J. Song, S. A. A. Shah, and M. Bennamoun,
‘‘Continuous gesture segmentation and recognition using 3DCNN
and convolutional LSTM,’’ IEEE Trans. Multimedia, vol. 21, no. 4,
pp. 1011–1021, Apr. 2019.

[8] Z. Doždor, T. Hrkac, and Z. Kalafatic, ‘‘Two-model-based online hand
gesture recognition from skeleton data,’’ in Proc. 18th Int. Joint Conf.
Comput. Vis., Imag. Comput. Graph. Theory Appl., 2023, pp. 838–845.

[9] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[10] X. Wang, S. Zhang, Z. Qing, Y. Shao, Z. Zuo, C. Gao, and N. Sang,
‘‘OadTR: Online action detection with transformers,’’ in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 7545–7555.

[11] M. Xu, Y. Xiong, H. Chen, X. Li, W. Xia, Z. Tu, and S. Soatto, ‘‘Long
short-term transformer for online action detection,’’ in Proc. Adv. Neural
Inf. Process. Syst. (NeurIPS), 2021, pp. 1086–1099.

[12] L. Hedegaard, A. Bakhtiarnia, and A. Iosifidis, ‘‘Continual transformers:
Redundancy-free attention for online inference,’’ 2022, arXiv:2201.06268.

[13] X. Chen, H. Guo, G. Wang, and L. Zhang, ‘‘Motion feature augmented
recurrent neural network for skeleton-based dynamic hand gesture
recognition,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2017,
pp. 2881–2885.

[14] M. Maghoumi and J. J. LaViola, ‘‘DeepGRU: Deep gesture recognition
utility,’’ in Proc. Int. Symp. Vis. Comput., 2018, pp. 16–31.

[15] S. Shin andW.-Y. Kim, ‘‘Skeleton-based dynamic hand gesture recognition
using a part-based GRU-RNN for gesture-based interface,’’ IEEE Access,
vol. 8, pp. 50236–50243, 2020.

[16] G. Devineau, F. Moutarde, W. Xi, and J. Yang, ‘‘Deep learning for hand
gesture recognition on skeletal data,’’ in Proc. 13th IEEE Int. Conf. Autom.
Face Gesture Recognit., May 2018, pp. 106–113.

[17] J. Hou, G.Wang, X. Chen, J. Xue, R. Zhu, and H. Yang, ‘‘Spatial–temporal
attention Res-TCN for skeleton-based dynamic hand gesture recognition,’’
in Proc. Comput. Vis.-ECCV Workshops, 2019, pp. 273–286.

[18] J. C. Núñez, R. Cabido, J. J. Pantrigo, A. S. Montemayor, and J. F. Vélez,
‘‘Convolutional neural networks and long short-termmemory for skeleton-
based human activity and hand gesture recognition,’’ Pattern Recognit.,
vol. 76, pp. 80–94, Apr. 2018.

[19] E. Zhong, C. R. Del-Blanco, D. Berjón, F. Jaureguizar, and N. García,
‘‘Real-time monocular skeleton-based hand gesture recognition using 3D-
jointsformer,’’ Sensors, vol. 23, no. 16, p. 7066, Aug. 2023.

[20] P. Elias, J. Sedmidubsky, and P. Zezula, ‘‘Motion images: An effective
representation of motion capture data for similarity search,’’ in Proc. Int.
Conf. Similarity Search Appl., 2015, pp. 250–255.

[21] J. Sedmidubsky, P. Elias, and P. Zezula, ‘‘Effective and efficient similarity
searching in motion capture data,’’Multimedia Tools Appl., vol. 77, no. 10,
pp. 12073–12094, May 2018.

[22] J. Gesnouin, S. Pechberti, G. Bresson, B. Stanciulescu, and F. Moutarde,
‘‘Predicting intentions of pedestrians from 2D skeletal pose sequences
with a representation-focused multi-branch deep learning network,’’
Algorithms, vol. 13, no. 12, p. 331, Dec. 2020.

[23] A. Caputo, A. Giachetti, F. Giannini, K. Lupinetti, M. Monti, M. Pegoraro,
and A. Ranieri, ‘‘SFINGE 3D: A novel benchmark for online detection and
recognition of heterogeneous hand gestures from 3D fingers’ trajectories,’’
Comput. Graph., vol. 91, pp. 232–242, Oct. 2020.

[24] K. Lupinetti, A. Ranieri, F. Giannini, and M. Monti, ‘‘3D dynamic hand
gestures recognition using the leap motion sensor and convolutional neural
networks,’’ in Proc. Int. Conf. Augmented Virtual Reality (AVR), 2020,
pp. 420–439.

[25] S. Yan, Y. Xiong, and D. Lin, ‘‘Spatial temporal graph convolutional
networks for skeleton-based action recognition,’’ inProc. AAAI Conf. Artif.
Intell., 2018, pp. 7444–7452.

[26] Y. Chen, L. Zhao, X. Peng, J. Yuan, and D. N. Metaxas, ‘‘Construct
dynamic graphs for hand gesture recognition via spatial–temporal
attention,’’ in Proc. Brit. Mach. Vis. Conf. (BMVC), 2019, pp. 1–13.

[27] Y. Sun, W. Xu, X. Yu, J. Gao, and T. Xia, ‘‘Integrating vision transformer-
based bilinear pooling and attention network fusion of RGB and skeleton
features for human action recognition,’’ Int. J. Comput. Intell. Syst., vol. 16,
no. 1, pp. 1–11, Jul. 2023.

[28] M. Emporio, A. Caputo, A. Giachetti, M. Cristani, G. Borghi,
A. D’Eusanio, M.-Q. Le, H.-D. Nguyen, M.-T. Tran, F. Ambellan,
M. Hanik, E. Nava-Yazdani, and C. von Tycowicz, ‘‘SHREC 2022 track
on online detection of heterogeneous gestures,’’ Comput. Graph., vol. 107,
pp. 241–251, Jan. 2022.

[29] Y. Yin and R. Davis, ‘‘Real-time continuous gesture recognition for natural
human–computer interaction,’’ in Proc. IEEE Symp. Vis. Lang. Hum.-
Centric Comput. (VL/HCC), Jul. 2014, pp. 113–120.

[30] E. Coupeté, F. Moutarde, and S. Manitsaris, ‘‘Multi-users online recog-
nition of technical gestures for natural human–robot collaboration in
manufacturing,’’ Auto. Robots, vol. 43, no. 6, pp. 1309–1325, Aug. 2019.

[31] O. Köpüklü, A. Gunduz, N. Kose, and G. Rigoll, ‘‘Real-time hand gesture
detection and classification using convolutional neural networks,’’ in Proc.
14th IEEE Int. Conf. Autom. Face Gesture Recognit., May 2019, pp. 1–8.

[32] P. Molchanov, X. Yang, S. Gupta, K. Kim, S. Tyree, and J. Kautz, ‘‘Online
detection and classification of dynamic hand gestures with recurrent 3D
convolutional neural networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2016, pp. 4207–4215.

[33] Y. A. Farha and J. Gall, ‘‘MS-TCN: Multi-stage temporal convolutional
network for action segmentation,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 3570–3579.

[34] Y.-W. Chao, S. Vijayanarasimhan, B. Seybold, D. A. Ross, J. Deng, and
R. Sukthankar, ‘‘Rethinking the faster R-CNN architecture for temporal
action localization,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 1130–1139.

[35] T. Lin, X. Zhao, and Z. Shou, ‘‘Single shot temporal action detection,’’ in
Proc. 25th ACM Int. Conf. Multimedia, Oct. 2017, pp. 988–996.

[36] S. Buch, V. Escorcia, B. Ghanem, and J. C. Niebles, ‘‘End-to-end, single-
stream temporal action detection in untrimmed videos,’’ in Proc. Brit.
Mach. Vis. Conf., 2017, pp. 1–12.

[37] D. Polap, ‘‘Neuro-heuristic analysis of surveillance video in a centralized
IoT system,’’ ISA Trans., vol. 140, pp. 402–411, Sep. 2023.

[38] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. 31st Int.
Conf. Neural Inf. Process. Syst. (NIPS), 2017, pp. 6000–6010.

[39] G. Benitez-Garcia, J. Olivares-Mercado, G. Sanchez-Perez, and K. Yanai,
‘‘IPN hand: A video dataset and benchmark for real-time continuous hand
gesture recognition,’’ in Proc. 25th Int. Conf. Pattern Recognit. (ICPR),
Jan. 2021, pp. 4340–4347.

[40] (2022). SHREC 2022. [Online]. Available: https://univr-vips.github.io/
Shrec22

[41] F. Zhang, V. Bazarevsky, A. Vakunov, A. Tkachenka, G. Sung,
C.-L. Chang, andM. Grundmann, ‘‘MediaPipe hands: On-device real-time
hand tracking,’’ 2020, arXiv:2006.10214.

[42] (2020). The IPN Hand Dataset. [Online]. Available: https://gibranbenitez.
github.io/IPN_Hand

[43] J. Wan, S. Z. Li, Y. Zhao, S. Zhou, I. Guyon, and S. Escalera,
‘‘ChaLearn looking at people RGB-D isolated and continuous datasets for
gesture recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
Workshops (CVPRW), Jun. 2016, pp. 761–769.

[44] Y. Zhang, C. Cao, J. Cheng, and H. Lu, ‘‘EgoGesture: A new dataset
and benchmark for egocentric hand gesture recognition,’’ IEEE Trans.
Multimedia, vol. 20, no. 5, pp. 1038–1050, May 2018.

[45] A. Caputo, A. Giachetti, S. Soso, D. Pintani, A. D’Eusanio, S. Pini,
G. Borghi, A. Simoni, R. Vezzani, R. Cucchiara, A. Ranieri, F. Giannini,
K. Lupinetti, M. Monti, M. Maghoumi, J. J. LaViola Jr., M.-Q. Le,
H.-D. Nguyen, and M.-T. Tran, ‘‘SHREC 2021: Skeleton-based hand
gesture recognition in the wild,’’ Comput. Graph., vol. 99, pp. 201–211,
Oct. 2021.

[46] V. I. Levenshtein, ‘‘Binary codes capable of correcting deletions,
insertions, and reversals,’’ Sov. Phys.-Dokl., vol. 10, no. 8, pp. 707–710,
1966.

[47] J. Redmon and A. Farhadi, ‘‘YOLO9000: Better, faster, stronger,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 6517–6525.

VOLUME 11, 2023 140393

Z. Doždor et al.: TY-Net: Transforming YOLO for Hand Gesture Recognition

[48] N. Nayan, D. Ghosh, and P. M. Pradhan, ‘‘A CNN bi-LSTM based
multimodal continuous hand gesture recognition,’’ in Proc. IEEE India
Council Int. Subsections Conf. (INDISCON), India, Jul. 2022, pp. 1–4.

[49] T.-T. Nguyen, N.-C. Nguyen, D.-K. Ngo, V.-L. Phan, M.-H. Pham,
D.-A. Nguyen, M.-H. Doan, and T.-L. Le, ‘‘A continuous real-time hand
gesture recognition method based on skeleton,’’ in Proc. 11th Int. Conf.
Control, Autom. Inf. Sci. (ICCAIS), Nov. 2022, pp. 273–278.

[50] H. Gammulle, S. Denman, S. Sridharan, and C. Fookes, ‘‘TMMF: Tempo-
ral multi-modal fusion for single-stage continuous gesture recognition,’’
IEEE Trans. Image Process., vol. 30, pp. 7689–7701, 2021.

ZORANA DOŽDOR received the M.Sc. degree in
computing from the University of Zagreb, in 2021.
She is currently pursuing the Ph.D. degree with the
Faculty of Electrical Engineering and Computing,
University of Zagreb.

She is currently a Junior Researcher with the
Faculty of Electrical Engineering and Comput-
ing, University of Zagreb. Her research interests
include computer vision and deep learning.

ZORAN KALAFATIĆ (Member, IEEE) received
the Ph.D. degree in computer science from the
University of Zagreb, Croatia, in 1999.

He is currently an Associate Professor with the
Faculty of Electrical Engineering and Computing,
University of Zagreb. He is a member of the Center
of Excellence for Computer Vision, Faculty of
Electrical Engineering and Computing, University
of Zagreb. He is also a member of the Centre
of Research Excellence for Data Science and

Advanced Cooperative Systems, University of Zagreb. His research interests
include computer vision and deep learning.

ŽELJKO BAN (Member, IEEE) received the Ph.D.
degree from the Faculty of Electrical Engineering
and Computing, University of Zagreb, in 1999.
He is currently a Full Professor with the Depart-
ment of Control and Computer Engineering in
Automation, Faculty of Electrical Engineering and
Computing, University of Zagreb. Since 2006,
his research activities have been focusing on
intelligent control of fuel cell energy sources and
control of microgrids consisting of photovoltaic

systems, fuel cell systems, and wind energy sources. His research interests
include adaptive and optimal control and control of energy storage systems.

TOMISLAV HRKAĆ (Member, IEEE) received
the Ph.D. degree in computer science from the
University of Zagreb, Croatia, in 2009.

He is currently an Associate Professor with the
Faculty of Electrical Engineering and Computing,
University of Zagreb. He is a member of the
Laboratory for Pattern Recognition and Biometric
Security Systems and the Center of Excellence
for Computer Vision, Faculty of Electrical Engi-
neering and Computing, University of Zagreb. His

research interests include computer vision and deep learning.

140394 VOLUME 11, 2023

