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ABSTRACT In the evolving landscape of modern robotics, Visual SLAM (V-SLAM) has emerged over
the past two decades as a powerful tool, empowering robots with the ability to navigate and map their
surroundings. While these methods are traditionally confined to static environments, there has been a
growing interest in developing V-SLAM to handle dynamic and realistic scenes. This survey offers a
comprehensive overview of the current state-of-the-art V-SLAM methods, including their strengths and
weaknesses. The paper also identifies the limitations of existing techniques and proposes potential research
directions for future advancements. In addition, it provides an overview of commonly used datasets to
evaluate the performance of V-SLAM methods. This survey sheds valuable insights into areas that need
additional research to benefit V-SLAM development, including challenges related to limited scalability for
systems with multiple agents, sensitivity to lighting changes, high computational cost, and performance
issues in noisy environments.

INDEX TERMS Visual-SLAM, semantics, dynamic environment, noisy environment, simultaneous
localization and mapping, computer vision.

I. INTRODUCTION
Simultaneous localization and mapping (SLAM) is a crucial
component in autonomous robotic navigation, Augmented
Reality (AR), and Virtual Reality (VR) technologies. It serves
as the backbone for autonomous driving vehicles [1], as well
as many other applications, including indoor robotics, such
as warehouse and hospital robots [2]. Moreover, it proves
valuable in the development of general service robots.
SLAM involves the creation of a map of the surrounding
environment and the localization of the agent within it.
This process enables the identification of landmarks and the
implementation of intelligent navigation solutions [3]. Visual
SLAM, also known as V-SLAM, is a system that utilizes a
visual-based sensor, such as an RGB camera, to implement
SLAM. V-SLAM comprises several fundamental building
blocks, which include map trajectory, initialization, data
association, loop closure (revisiting location), relocation,
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and estimation algorithms [4]. V-SLAM can be classified
using different methods, such as camera type categorization,
as seen in [5]. Alternatively, it can be divided into two
main categories: class-aware and instance-aware, as in [6].
Nonetheless, both classifications rely on the method’s ability
to accurately identify and categorize objects within the
surrounding environment.

Over the years, there has been a significant surge in
research papers on V-SLAM. According to the Web of
Science database [7], the number of published research
papers on V-SLAM has experienced substantial growth,
increasing from around 1,000 in 2010 to more than 10,000
by mid-2023. These results were obtained by employing
keywords associated with V-SLAM, encompassing the
various sensors and methodologies employed in V-SLAM.
Figure 1 presents a visual representation of the annual
publication trend in the field of V-SLAM over the past
two decades. In contrast, Semantic SLAM research has not
seen the same level of proliferation as traditional V-SLAM
methods. The literature currently comprises approximately
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954 research papers on Semantic SLAM, indicating the
potential for further exploration and investigation in this
area. Figure 2 shows the distribution of the number of
publications across different fields of V-SLAM categorized
by sensor type and approach type, providing insights into
the research landscape. In Figure 2(a), it is noted that the
majority of publications implement Monocular SLAM, while
the newly emerging Event SLAM has received the least
attention. When categorizing the methods by approach in
Figure 2(b), Feature-based SLAM is the most researched
topic, followed by Semantic SLAM and Direct SLAM. The
categorization of V-SLAM algorithms based on the type of
camera used and the followed approach is discussed in detail
later in this paper. Notably, China, USA, and Germany are
the most active countries in V-SLAM research, contributing
to more than 70% of the total research conducted in the field,
as reported by the Web of Science database [7]. Furthermore,
Figure 3 highlights a subset of the most productive and
influential institutions in the field of V-SLAM, as gauged
by the number of publications they have produced in recent
years. The mentioned institutions in Figure 3 collectively
contribute to over 25% of the total research conducted in
the field of V-SLAM. These institutions play a significant
role in advancing the research and development of V-SLAM
technologies.

The surge in V-SLAM methods has led to numerous
survey papers covering specific topics within V-SLAM.
Zhang et al. [8] compare different direct and indirect
RGB-D SLAM systems, discussing their capabilities in
particular tracking, mapping, and loop detection across
different application scenarios. The direct camera tracking
methods minimize the photometric error over corresponding
pixels in two frames. These methods are robust, compared
to indirect methods, in low-texture environments since they
rely on the photometric value of selected pixels within a
scene. Examples of the direct methods include KinectFusion
[9], RGBDTAM [10], and ID-RGBDO [11], which can
estimate the camera motion either by using the frame-
to-model mechanisms or by using the most informative
points in the camera frame. On the other hand, the indirect
methods, such as ORB-SLAM2 [12], RGB-D SLAM [13],
and Plane-Edge-SLAM [14], minimize the geometric errors
over matching features. The indirect methods have the
advantages in the situations of rapid camera motion and
vigorous rotations. In these situations, the direct method
is easier to encounter tracking loss, and both the accuracy
and robustness are worse than indirect methods. Also, the
indirect methods are found to be more effective when using
rolling shutter cameras. The hybrid methods minimize a
combination of direct or indirect methods to estimate the
camera pose. The hybrid methods include CPA-SLAM [15],
BundleFusion [16], and KDP-SLAM [17], which combine
both photometric error and geometric errors for camera pose
estimation. The RGB-D SLAM approaches build a map of
the scene either using point-based methods or volumetric

methods. Point-based methods, such as DVO-SLAM [18],
ORB-SLAM2 [12], BAD-SLAM [19], and ElasticFusion
[20], represent environments using graphs or surfels. The
volumetric methods, such as Kintinuous [21], Voxel Hashing
[22], and BundleFusion [16], represent the scene geometry by
an implicit truncated signed distance (TSDF). The RGB-D
SLAM methods also differ in detecting the loop closures.
For example, DVO-SLAM [18] detects loop closures within
a sphere of a predefined radius around the keyframe position,
while Kintinuous [21] and ORB-SLAM2 [12] use bag-of
words-based DBoW [23] loop detector. The survey concludes
that accurate pose estimation remains a challenge in low
texture and noisy environments. The relevant SLAM systems
were evaluated on the publicly available RGB-D datasets.
It was observed that the performance of different RGB-D
SLAM methods varies in scenes prone to illumination
changes. Nonetheless, the adaptability of different algorithms
can be analyzed in different situations and scenarios.

The paper by Aizat et al. [24] provides an overview of
navigation techniques in the context of Automated Ground
Vehicle (AGV) robots operating in dynamic environments.
The strategies are categorized into classical, global, and artifi-
cial intelligence-based approaches, discussing local methods
likemagnetic tape and global algorithms, such asA*, D*Lite,
and Dijkstra [24]. Key contributions in this paper include
highlighting the use of artificial intelligence techniques in
AGV navigation, recognizing the trend towards algorithm
combination, and emphasizing the importance of multi-AGV
systems in real-world applications. In the discussion of their
findings, Aizat et al. [24] highlight a gap in the practical
testing of these approaches using physical hardware [24].
This presents a potential area for future work in the field
of autonomous navigation. Mokssit et al. [25] offer a com-
prehensive examination of deep learning methods applied to
the field of V-SLAM. They introduce a novel taxonomy for
this subject, emphasizing the significant impact of leveraging
deep learning strategies in enhancing the performance of
V-SLAM [25]. By incorporating deep learning architectures,
Mokssit et al. argue that robots can effectively capture
intricate and challenging-to-model environmental features,
mitigating uncertainties associated with visual sensory data
[25]. This results in more robust solutions for real-world
applications, making deep learning a compelling alternative
to traditional hand-crafted approaches. The paper highlights
the potential of deep learning methods to outperform
classical methods in challenging scenarios, including variable
illuminations, repetitive textures, occlusions, and dynamic
elements, underlining the promise of deep learning in
equipping robots with the ability to perceive, understand,
and act effectively in real-world environments [25]. The
paper proposes several research directions in deep learning
with SLAM by (1) expanding the horizon of semantic
scene understanding, (2) reducing computational demands,
(3) improving interpretability, (4) providing more generic
datasets, (5) extending probabilistic-based V-SLAM to 3D
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environments, and (6) validating deep learning algorithms in
real-world SLAM applications.

In [2], Barros et al. provided a comprehensive overview
of three V-SLAM approaches: visual-only, visual-inertial,
and RGB-D SLAM. The discussion delved into the key
algorithms for each approach, employing diagrams and
flowcharts for clarity. Furthermore, the authors introduced
several factors influencing system accuracy and hardware
implementation, encompassing the algorithm used, map
density, global optimization, loop closing, and integrated
systems. Furthermore, the paper discusses addressing chal-
lenges and future directions in the V-SLAM field, with a
specific emphasis on deep learning algorithms, managing
dynamic scenes, and exploring semantic-based Algorithms.
Taketomi et al. [26] systematically categorized and sum-
marized V-SLAM algorithms from both technical and
historical perspectives. Their classification involved grouping
V-SLAM algorithms into feature-based, direct-based, and
RGB-D-based approaches. The survey focused particularly
on algorithms proposed between 2010 and 2016, a period
marked by considerable advancements in the field.

The objective of our paper is to provide a comprehensive
review of V-SLAM methods, with a particular focus on
modern V-SLAM methods that are more suited for dynamic
and highly-dynamic environments that feature numerous
moving objects. Unlike the survey papers in [8], [24], and
[25], this paper does not limit itself to describing specific
types of robots, sensors, or strategies but instead provides
a broader and more holistic perspective on the field of
V-SLAM. Moreover, compared to [2], our work provides
a detailed overview of additional V-SLAM approaches,
such as event-based and multimodal SLAM. Also, this
paper introduces a different categorization algorithm, which
focuses on how the V-SLAM system extracts information
from images rather than being based on the type of camera
employed. While [26] concentrates on a defined timeframe
spanning 2010 to 2016, our survey delves into contemporary
V-SLAM algorithms, primarily those proposed in recent
years. The paper also discusses traditional V-SLAMmethods
that do not take into account moving objects in the scene
as they form the foundation of modern V-SLAM implemen-
tations. In contrast to traditional SLAM methods, modern
V-SLAM approaches are designed to deal with moving
objects and changing environments, making them better
equipped to handle real-world scenarios and overcome their
limitations. Specifically, these methods address the issue of
declining localization performance caused by the presence of
dynamic objects in the scene, which can disrupt the mapping
component of the system. Additionally, this paper highlights
advanced V-SLAM applications that go beyond conventional
setups. These advanced methods include software-based
optimizations and sophisticated techniques that combine
multiple sensors to improve accuracy and robustness. The
review also covers novel approaches that utilize optical
character recognition (OCR) for localization, enabling the
agent to recognize its current location based on text in

the environment [27]. Furthermore, it explores methods
that localize the agent’s position by recognizing objects
in the scene [28]. The paper also reviews methods that
incorporate additional sensors, such as the integration of
Light Detection and Ranging (LiDAR) sensors into V-SLAM
systems to improve robustness. For instance, the authors
in [5] propose a system that combines Adaptive Monte Carlo
Localization (AMCL) with an RGB-D camera and a 2D
LiDAR solution. This integration aims to address AMCL’s
limitation in identifying and localizing the agent accurately
in repetitive environments like long hallways. Additionally,
some V-SLAM methods prioritize software optimization.
For instance, the authors in [29] present an approach that
enhances V-SLAM performance by using random sample
consensus (RANSAC)-based algorithms to eliminate moving
objects from the scene, thus improving localization accuracy.

The paper’s contributions can be summarized as follows:
1) Summarizing key papers, algorithms, and method-

ologies that have been proposed in the field of
V-SLAMand categorizing themodernmethods, specif-
ically introduced to handle dynamic scenes, into
dynamic-aware and dynamic-inclusive.

2) Summarizing publicly available V-SLAM datasets that
are commonly used to evaluate the performance of
V-SLAM methods.

3) Identifying underdeveloped areas of research in
V-SLAM, such as addressing challenges in noisy and
unstructured environments, scalability to large settings,
and real-time applicability, and highlighting potential
improvements for existing methods.

This paper offers insights into the diverse sensors
employed in V-SLAM (see Section II). Following that,
the categorization of V-SLAM is thoroughly examined in
Section III. Subsequently, Section IV delves into a review
of contemporary V-SLAM methods. Additionally, the paper
explores methods that prioritize software-based optimiza-
tions to enhance robustness, as discussed in Section V.
Advances in scene understanding are also covered in
Section VI. Commonly used datasets and evaluation tools
are summarized and discussed in Section VII. Moreover,
Section VIII provides a critical analysis of the current
limitations of V-SLAMmethods and offers recommendations
for future research directions based on the current state of
V-SLAMmethods. Finally, a comprehensive summary of the
findings is provided in Section IX, concluding the paper.

II. TYPES OF SENSORS USED IN V-SLAM
SLAM systems have the ability to deduce the present
location, approximate the path, and create a map of the
surroundings using the data collected by their sensors [30].
Laser-based SLAM relies on precise distance measurements
from sensors, such as LiDAR, excelling in accuracy and
low-light environments. However, it can be costly and
requires high processing power. Inertial-based techniques,
which use accelerometers and gyroscopes, offer continuous
motion tracking with low latency but are prone to drift
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FIGURE 1. Annual publication trend in the field of V-SLAM over the past two decades, based on Web of Science database [7].

FIGURE 2. Distribution of the number of publications across different fields of V-SLAM by sensor type and by approach,
based on Web of Science database [7].

and lack environmental information [31]. V-SLAM relies
on visual sensors as the main data input for its application,
offering cost-effectiveness and rich visual information about
the environment. Nevertheless, V-SLAM may encounter
challenges in low-light conditions and contend with visual
ambiguities. However, V-SLAM techniques can be further
enhanced by incorporating additional sensors such as an
Inertial Measurement Unit (IMU) or LiDAR alongside
the camera, which provide valuable information about the
camera’s orientation and movement. Moreover, V-SLAM
algorithms can benefit from utilizing a depth sensor alongside
the camera aiding in motion and positioning estimation.
In V-SLAM, four main types of visual sensors are commonly
used: monocular, stereo, RGB-D, and event cameras [1],
[32]. A comparison of these camera types is presented in

Table 1. In this section, we explore six potential categories
of V-SLAM systems, determined by the type of camera used
and the integrated sensors within the system.

A. MONOCULAR SLAM
Monocular cameras, while cost-effective and straightforward
in design, encounter the scale ambiguity problem, making
it challenging to accurately estimate landmark depth during
map construction [33]. Furthermore, when a monocular
camera remains stationary or undergoes only rotational
movement, it lacks the ability to capture pixel distance
information. These limitations restrict the accurate perception
of depth and motion in the scene. Despite these challenges,
monocular SLAM methods are widely used in applications
where only a single camera is available, or where budget and
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FIGURE 3. Subset of the most productive and influential institutions in the field of V-SLAM in recent years, based on Web of Science database [7].

TABLE 1. A comparison of camera types used in V-SLAM methods.

power constraints limit the use of more advanced sensors.
In such scenarios, monocular cameras provide a practical
and viable solution for visual-based localization andmapping
tasks. Figure 4 illustrates the structure of a typical Monocular
SLAM approach.

B. STEREO SLAM
These SLAM methods use a pair of cameras with known
relative positions to estimate the camera trajectory and

build a 3D map of the environment. Binocular or stereo
cameras offer the advantage of calculating pixel depth even
when stationary, providing more accurate depth information
compared to monocular cameras, especially in outdoor
settings [35]. Nevertheless, it is worth noting that these
cameras require careful calibration of their setup, which
can be a challenging task. Additionally, stereo SLAM has
a higher computational cost as the system must process
twice as much image information from the two cameras,
which may impact real-time performance depending on the
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FIGURE 4. Monocular SLAM diagram, adapted from [34].

FIGURE 5. Stereo SLAM diagram, adapted from [12] and [36].

computational resources available [1]. Figure 5 illustrates the
structure of a typical Stereo SLAM approach.

C. RGB-D SLAM
RGB-D SLAM methods use a combination of an RGB
camera and a depth sensor, such as structured-light or time-
of-flight (TOF) sensor, to directly measure pixel depth,

FIGURE 6. RGB-D SLAM diagram, adapted from [12].

simplifying the depth estimation process [37]. These methods
excel in providing accurate and precise depth information,
making them popular choices for well-lit indoor settings.
However, RGB-D cameras have certain limitations. Their
measurement range is restricted, and they are not well-suited
for outdoor applications due to potential interference from
sunlight, leading to unreliable mapping results [38]. More-
over, the efficiency of RGB-D SLAM in dynamic environ-
ments can depend on factors such as scene complexity, the
speed of moving objects, and the quality of sensor data.
To address the challenges posed by dynamic environments,
researchers have proposed various techniques. These include
the use of multiple sensors, integration of motion models, and
the detection and removal of moving objects. By employing
these strategies, the impact of dynamic elements on RGB-D
SLAMperformance can bemitigated, enhancing the system’s
overall robustness and accuracy. Figure 6 illustrates the
structure of a typical RGB-D SLAM approach.

D. EVENT-BASED SLAM
Unlike conventional cameras that capture frames at a
fixed rate, event cameras, also known as dynamic vision
sensors (DVSs), operate differently by reporting changes in
brightness or intensity asynchronously and at a high temporal
resolution, resulting in event data. Due to this unique
characteristic, event cameras are well-suited for tracking fast
motion and high-speed dynamics, even in challenging low-
light conditions, with minimal latency [39]. The integration
of event cameras as sensors for V-SLAM systems represents
a novel and emerging area of research [40]. These methods
use event cameras to capture the motion information from
the environment, which is then used to estimate the camera’s
6-degree-of-freedom (6-DoF) pose and reconstruct the 3D
structure of the scene [41]. Event-based SLAM offers several
advantages over traditional V-SLAM methods, including
high accuracy and resilience to fast motion, low latency,
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FIGURE 7. Event-based SLAM diagram, adapted from [42].

and low power consumption. However, event cameras mark
a significant shift in how visual information is captured,
necessitating the development of new techniques to process
the gathered data and extract meaningful insights. One of
the primary challenges is accommodating distinct space-
time outputs. Event cameras produce asynchronous and
spatially sparse events, in contrast to the synchronous and
dense images from standard cameras. As a result, frame-
based vision algorithms designed for image sequences cannot
be directly applied to event data [39]. Event-based SLAM
remains an active area of research, with various algorithms
and methods proposed in recent years to improve the
accuracy, robustness, and efficiency of event-based SLAM
systems. Figure 7 illustrates the structure of a typical
Event-based SLAM approach.

E. MULTIMODAL SLAM
These SLAM methods combine two or more sensor modal-
ities mentioned earlier to estimate camera trajectory and
build a 3D map of the environment. These methods offer
increased robustness and are commonly used in challenging
settings where individual sensors may encounter limitations
or provide insufficient information [43]. One instance of
multimodal SLAM is the integration of one of the visual
sensors discussed with a LiDAR, such as DVL-SLAM [44],
which combines a monocular camera with a LiDAR. The
system proposed in [45] showcases another multimodal
SLAM approach by integrating various SLAM methods that
utilize monocular vision, laser measurements, and/or inertial
measurements. These multimodal approaches leverage the
complementary strengths of different sensors, leading to
more robust and accurate mapping results in challenging real-
world scenarios. Figure 8 illustrates the structure of a typical
multimodal SLAM approach.

F. VISUAL-INERTIAL SLAM
The IMU sensor offers an effective solution for addressing
tracking issues that may arise when the camera oper-
ates in challenging environments with minimal texture

or occlusions. Through the fusion of visual and inertial
sensors, Visual-Inertial SLAM can instantly estimate the
camera’s 6-DoF pose. The combination of visual and inertial
measurements can enhance the robustness and accuracy of
the SLAM system, particularly in challenging environments
where there is a shortage of visual features due to factors
like illumination change, textureless areas, or motion blur
[47]. One example of Visual-Inertial SLAM is the pioneering
Ultimate SLAM [48], which is a hybridmethod that combines
events, standard frames, and IMU measurements to deliver a
resilient state estimation in challenging situations. Figure 9
illustrates the structure of a typical Visual-Inertial SLAM
approach.

III. CATEGORIZATION OF V-SLAM
SLAM algorithms have conventionally been employed to
construct maps of unfamiliar environments for robots, while
simultaneously determining the robot’s location within the
space. The process of V-SLAM can be broadly divided into
two components: the front-end and the back-end. In the front-
end, the visual sensor plays a crucial role in gathering data
while the robot is in motion. This data is then transmitted
to the visual odometer, which estimates the information
from adjacent images or points, forming a local map and
determining the robot’s position. On the other hand, the
back-end is responsible for optimizing the data collected by
the front-end and generating a comprehensive map. Loop
detection is an essential aspect of the back-end, as it helps
determine whether the robot’s previous and current positions
overlap by comparing the gathered information. This step is
crucial in preventing drift and ensuring accurate mapping [1].
V-SLAM approaches were initially proposed to address

the navigation problem by relying solely on static features
present in the surrounding environment. However, these
approaches do not take into account dynamic objects in the
scene. They can be broadly categorized into two main types:
dense or direct methods and feature-based methods. Numer-
ous surveys have been conducted to summarize and compare
these traditional approaches, highlighting their respective
strengths and limitations [2], [26]. However, these algorithms
tend to focus mainly on key details, such as wall positions and
orientations, while neglecting other useful information about
the environment, such as furniture, door locations, and other
distinctive features that could aid in accurate localization.
To address this limitation and enhance mapping capabilities,
the integration of deep learning applications in computer
vision has advanced the field of V-SLAM, leading to the
development of more robust mapping systems [51].

In this paper, V-SLAM systems are categorized into three
types based on how they use information from images: (a)
direct or dense methods, (b) feature-based methods, and
(c) semantic scene understanding methods. Direct methods,
also known as dense methods, estimate camera motion
and reconstruct the environment by directly utilizing the
intensity values or pixel information from camera images.
Conversely, feature-based methods rely on extracting and
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FIGURE 8. Multimodal SLAM diagram, adapted from [46].

FIGURE 9. Visual-Inertial SLAM diagram, adapted from [49] and [50].

matching distinctive visual features from images to estimate
camera motion and reconstruct the environment [52]. On the
other hand, Semantic SLAM takes a different approach
by incorporating machine learning (ML) techniques to
utilize visual information for building a geometric map
and estimating camera pose. This method incorporates a
semantic understanding of the environment, allowing for
the recognition and utilization of meaningful objects and
structures in the scene [53].
This section provides an overview of the main and

most recent state-of-the-art algorithms in V-SLAM, focusing
on direct or dense methods and feature-based methods.

Moreover, it provides a brief overview of modern SLAM
methods that incorporate semantic information, providing
better scene understanding of the environment. A more
detailed discussion on these semantic methods can be found
in Section IV. As the field of V-SLAM is constantly
evolving, it is challenging to determine definitive top-ranked
methods. However, several popular and highly regarded
methods have emerged over the years. In the dense-based
category, Dense Visual Odometry (DVO) techniques [18],
[54] have garnered attention. In the feature-based category,
ORB-SLAM and its variants [12], [34], [47] have been
prominent contenders. Each of the SLAM categories has its
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FIGURE 10. The general workflow of Direct/Dense SLAM, with the
possibility of modifications or omissions in some of these modules.

own advantages, depending on the required level of infor-
mation and scene understanding. Table 2 provides insights
into the unique strengths and limitations of the different
V-SLAM methodologies, assisting researchers and practi-
tioners in choosing the most suitable approach for their
specific application requirements.

A. DIRECT/DENSE SLAM
Direct SLAM, also known as dense SLAM, is an approach
that directly operates on the pixel intensities or color values
of images to estimate camera motion and reconstruct the
environment. Instead of relying on feature detection and
tracking, direct SLAMworks with the raw image data. Direct
SLAM can be classified into two categories: dense and semi-
dense methods. Dense methods make use of information
from every single pixel in the image, taking advantage of
the available data throughout the entire image. On the other
hand, semi-dense methods focus on pixels where the gradient
of image brightness is significant, utilizing information
from these specific pixels to estimate camera motion and
reconstruct the environment [55]. Figure 10 depicts the
architecture of the Direct SLAM pipeline.

Dense Visual Odometry (DVO) is a state-of-the-art method
in RGB-D SLAM for environments with minimal movement
and serves as the foundation for upcoming dense RGB-D
SLAM in high dynamic environments [18], [54]. DVO aligns
consecutive RGB-D images to compute camera motion,
minimizing photometric and geometry errors on both RGB
and depth images. To address local drift, the authors in [18]
and [54] shifted from conventional frame-to-frame alignment
to frame-to-keyframe alignment. They conducted an ablation
study to analyze the effects of frame-to-keyframe and graph
optimization on trajectory accuracy. However, DVO relies on
the assumption of photo-consistency, assuming a noiseless,
non-moving scene with constant illumination. To overcome
this constraint, a robust version of DVOwas proposed in [54],

featuring a more robust error function to handle noise and
outliers in the scene.

A novel category of DVO methods has recently emerged,
leveraging edge alignment as a key component. These
methods show promise as an alternative to other direct
approaches since they utilize sparse representations, offer a
larger convergence basin, and exhibit stability under changes
in illumination. In [56], a new edge-based V-SLAM sys-
tem called real-time robust edge-based SLAM (RESLAM)
was introduced, specifically designed for RGB-D sensors.
A comprehensive V-SLAM method was built, incorporating
edge utilization across all stages, including camera pose
estimation, sliding window optimization, loop closure, and
relocalization. RESLAM refines initial depth information
from the sensor, camera poses, and camera intrinsics within a
sliding window to enhance accuracy. Moreover, a novel edge-
based verification technique is introduced for loop closures,
which can also be utilized for relocalization. The authors
demonstrated that RESLAM performs comparably to several
cutting-edge methods, such as ORB-SLAM2 [12] and DVO-
SLAM [18], while operating in real-time on a CPU only,
making it suitable for mobile robotics and navigation tasks.

Engel et al. proposed Direct Sparse Odometry (DSO),
a visual odometry method that combines a novel sparse
and direct structure from motion formulation for accurate
tracking of cameramotion and 3D reconstruction [57]. Unlike
traditional methods that rely on keypoint detectors, DSO
samples pixels evenly across all image regions, including
edges and featureless walls, improving accuracy and robust-
ness. The proposed model integrates a full photometric
calibration, accounting for various factors such as exposure
time, lens vignetting, and non-linear response functions. DSO
was evaluated on multiple datasets, revealing its superior
performance compared to state-of-the-art direct and indirect
methods in terms of both tracking accuracy and robustness.
However, without incorporating loop closing techniques,
DSO is prone to accumulated drift in unobservable degrees-
of-freedom, leading to inaccuracies in the long-term camera
trajectory and map. LDSO (Loop Detection and Pose-
Graph Optimization) [58] enhances DSO by introducing
loop closing capabilities, improving repeatability of selected
points from DSO and enabling reliable detection of potential
loop closures using a bag-of-words (BoW) technique.

Bryner et al. introduced a method for tracking the 6-DOF
pose of an event camera with respect to a photometric 3D
map in a known environment [41]. This approach utilizes raw
events directly, without intermediate features, and employs
a maximum-likelihood framework for joint estimation of
camera poses and velocities through nonlinear optimization.
While it demonstrated accuracy with noise-free event data
in controlled scenarios, real-world conditions introduced
errors due to noise, camera imperfections, sensor delays,
and calibration inaccuracies. Nevertheless, pose tracking
remains effective in real-world conditions. The authors have
made datasets with ground truth poses available to enhance
reproducibility and research in event-SLAM field.
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TABLE 2. A comparative analysis of various visual-SLAM methodologies.

Despite showing potential in specific applications, dense
V-SLAM methods have limitations. They require significant
computational resources in terms of time and memory,
making them impractical for real-time applications or large
environments due to increasing memory requirements. Addi-
tionally, they may struggle in changing lighting conditions or
low-light environments as they rely on aligning consecutive
frames. Most importantly, they exhibit weak robustness to
dynamic scenes with moving objects, which may limit their
applicability in such scenarios.

B. FEATURE-BASED SLAM
Feature-based methods in V-SLAM focus on specific areas
in the image with unique characteristics known as features.
These features can vary in scale, ranging from low-level
points, corners, and lines to middle-level blobs and planes,
and even high-level objects with semantic labels. The key
aspect of a feature is its repeatability, meaning it can
be reliably detected across multiple frames captured from
different viewpoints. V-SLAM systems may utilize a single
level of features or a combination of multiple feature levels,
creating a hybrid approach [59]. Figure 11 illustrates the
architecture of the Feature-based SLAM pipeline.

One of the fundamental frameworks for feature-based
V-SLAM methods is the ORB-SLAM, initially proposed
in [34]. ORB-SLAM uses visual features to estimate the
robot’s position and create a 3D map of the environment.
It employs oriented FAST corners [60] and Rotated BRIEF
descriptors [61] for feature detection and description. The
algorithm consists of three main components: tracking,
mapping, and loop closure detection [12], [34], [47]. The
tracking component estimates the camera’s real-time position
and orientation using visual features from the camera image.
The mapping component creates a 3D map by combining
camera motion estimates with detected visual features. Loop
closure detection identifies previously visited places by
detecting similar visual features in different parts of the map
and optimizing the map to improve accuracy.

FIGURE 11. The general workflow of Feature-based SLAM, with the
possibility of modifications or omissions in some of these modules.

The original version of ORB-SLAM, proposed in [34],
utilizes a monocular camera for visual input and exhibits
limited accuracy and robustness compared to stereo and
RGB-D inputs. However, it is still capable of handling
large-scale environments with loop-closures in real-time.
Several variants of ORB-SLAM have been proposed, such
as ORB-SLAM2 [12], which improved the original version
by handling stereo and RGB-D inputs, a more robust
loop-closure detection algorithm, and an improved map
management system. Moreover, ORB-SLAM2 integrates a
relocalization module that allows the algorithm to recover
from tracking failures by determining its position within
the map. More recently, Campos et al. proposed ORB-
SLAM3, which incorporates semantic information into the
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map and includes a relocalization module that enables the
algorithm to recover from failures by utilizing both geometric
and semantic information [47]. This new framework proves
beneficial for improving V-SLAM in environments with
moving objects.

EAO-SLAM [62] is a monocular object SLAM system
built on ORB-SLAM2, addressing data association and pose
estimation issues. The framework incorporates a semantic
thread that adopts YOLOv3 for object detection. To handle
data association, the authors propose an ensemble method
that combines parametric and nonparametric statistical tests.
This approach is integrated in the tracking thread, which
merges information from bounding boxes, semantic labels,
and point clouds. For object pose estimation, EAO-SLAM
proposes a centroid and scale estimation procedure, along
with an object pose initialization approach based on the
isolation Forest (iForest) algorithm, which improves the
accuracy of estimation by eliminating outliers. The joint
optimization process is then used to optimize both object
pose and scale, along with the camera pose, resulting in a
lightweight and object-oriented map. The system generates
object-oriented semantic maps using the data association and
object pose estimation algorithms, along with a semi-dense
mapping system. However, it is worth noting that some
inaccurate estimations may arise when observing large
objects that cannot be adequately captured by a fast-moving
camera, as exemplified by the chair in the fire sequence
within the Microsoft RGB-D dataset.

Another approach by Wei et al. uses a Dirichlet Process
Mixture Model (DPMM) for data association of cuboid
landmarks inmonocular SLAM [63]. Themethod begins with
object detection in the current frame and subsequently tracks
the objects using keypoint matching. The DPMM is then used
to cluster keypoints to the same object, and a graph-based
optimization is performed to associate the detected objects
with the map features. To implement this approach, the
YOLOv2 object detector [64] is used, and a method similar
to CubeSLAM [65] is adopted to determine the object’s
position, orientation, and scale. Moreover, cuboids are added
as a new type of vertex in the pose graph for SLAM
optimization. This inclusion helps in reducing scale drift and
enhances loop closing performance. However, the method
has two limitations: it assumes that most objects in the
environment remain static for a few local frames, and it
relies on the assumption of small noise covariance. These
constraints may affect the accuracy and robustness of the
approach in scenarios with dynamic or noisy environments.

In summary, feature-based SLAM algorithms provide
a robust and efficient solution for V-SLAM, capable of
handling various camera setups and large-scale environ-
ments, overcoming the computational challenges of dense
methods. However, traditional SLAM approaches still suffer
from a significant limitation: their effectiveness dimin-
ishes considerably when dynamic objects, such as moving
individuals, vehicles, or other robots, are added to the envi-
ronment. To tackle this challenge, modern SLAM methods,

FIGURE 12. The general workflow of Semantic SLAM, with the possibility
of modifications or omissions in some of these modules.

as discussed in the following section, offer more resilient
solutions to address the complexities of such environments.

C. SEMANTIC SLAM
Semantic SLAM represents a significant advancement over
conventional SLAM as it integrates valuable additional
information about the environment, such as the location of
objects like tables and chairs, into the mapping process. This
results in a more precise and informative map. Furthermore,
Semantic SLAM utilizes machine learning techniques to
analyze visual data and infer high-level details about the
environment, leading to amore comprehensive understanding
of the scene. This includes recognizing objects and their
relationships, understanding object functionality, and even
predicting forthcoming events based on the current scene.
For instance, a scene understanding SLAM algorithm might
employ object recognition and object function awareness to
deduce that a chair is likely to be located close to a table.
Information from images can be used in Semantic SLAM
through direct methods, as seen in [66], or through feature-
based approaches, such as those implemented in [27] and
[67]. Figure 12 illustrates the architecture of the Semantic
SLAM pipeline.

The accuracy of the semantic segmentation method used
can significantly impact the performance of SLAM systems.
If the semantic segmentation algorithm fails to accurately
identify and distinguish between objects, it can result in errors
in mapping and localization. Recently, there has been a recent
shift in the focus of SLAM research towards better handling
dynamic environments, reflecting real-world scenarios [68].
V-SLAM approaches, such as those discussed in [1], are
better suited for environments with people and other objects
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that could otherwise hinder the performance of the SLAM
algorithm.

In summary, Semantic SLAM differs from traditional
SLAM approaches in that it incorporates the semantic
information of the environment and leverages machine
learning techniques to infer high-level information about the
scene, rather than solely relying on geometric features to
create a map. By combining traditional SLAM techniques
with semantic understanding of the environment, Semantic
SLAM systems go beyond perceiving geometric information
to also interpreting the semantics of the scene.

IV. MODERN V-SLAM METHODS
To enhance the accuracy and robustness of V-SLAM in
dynamically changing environments, it is crucial to mitigate
the impact of moving objects, which is a key differentiator
between traditional and modern V-SLAM implementations.
This requires the identification and handling of dynamic
characteristics in the surrounding scene. Over the years,
various techniques have been proposed to address this
challenge, such as using fixed features, integrating adaptable
stationary characteristics, addressing occluded backgrounds,
and focusing on features at the edges of moving objects.
However, several challenges remain, including dealing with
large moving objects that occupy significant portions of the
frame, handling stationary but mobile objects like chairs,
windows, and books, and ensuring real-time efficiency in
SLAM approaches. One such method proposed in [69]
is DMS-SLAM, a general V-SLAM system designed for
dynamic environments. It works with monocular, stereo,
and RGB-D cameras and integrates SLAM with Grid-based
Motion Statistics (GMS) to handle dynamic scenes.

Modern V-SLAM methods can be broadly categorized
into two main groups based on how they handle dynamic
elements: dynamic-aware and dynamic-inclusive methods.
These groups have distinct approaches for designing modern
V-SLAM systems, each with its own contributions and
potential areas for improvement. Table 3 provides an
overview of the strengths and limitations of different modern
V-SLAM categories.

A. DYNAMIC-AWARE METHODS
These methods take into account the presence of moving
objects in the environment, but they do not directly incor-
porate them into the SLAM process. Instead, their focus is
on mitigating the influence of dynamic features on SLAM
output by treating them as outliers or noise. The main goal
is to detect and remove dynamic objects from the visual
data before using it for camera pose estimation and mapping.
The techniques within this group employ various actions to
remove moving objects from the scene either by identifying
them (e.g. background subtraction, foreground detection,
or segmentation) [20], [70], [71], [72], [73], [74], [75], [76],
[77], [78], [79], [80], [81], [82], [83] or by analyzing motion
patterns (e.g. optical flow, a consistency check, or multi-view

FIGURE 13. Dynamic-aware methods framework, with the potential for
adjustments or exclusions in certain modules.

geometry) [84], [85], [86], [87]. The typical workflow of
Dynamic-Aware methods is shown in Figure 13.

In this section, we will explore different methods based on
how they detect and handle moving objects in the environ-
ment. For a summarized comparison of the dynamic-aware
methods discussed in this section, refer to Table 4.

1) BACKGROUND SUBTRACTION
Background subtraction methods attempt to distinguish the
foreground (active scene) from the static background in the
image. This can be done through various approaches, such
as comparing object motion between frames at either the
pixel-level or cluster-level.

A robust background model-based dense visual odometry
(BaMVO) was one of the early V-SLAM techniques designed
to handle dynamic scenes [71]. It uses a non-parametric
model inspired by background subtraction to estimate
the background in RGB-D data. Camera motion is then
determined by applying a standard DVO on consecutive
frames with non-moving backgrounds [54], [88]. However,
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TABLE 3. Overview of strengths and limitations in different modern V-SLAM categories.

this method has limitations. First, it requires initializing the
background model assuming the camera will not move for
the next N frames, which needs careful calibration. Second,
the non-parametric model struggles to handle many dynamic
objects, making it unsuitable for real-world scenarios with
fast motion, periodic dynamic features, and noise.

Sun et al. proposed a motion removal technique as
a pre-processing step for advanced RGB-D SLAM [72].
This approach involves detecting the motion of mobile
objects through image differencing, tracking them using a
particle filter, and determining the foreground by applying a
maximum a posteriori (MAP) estimator on depths. However,
this method can incorrectly classify moving objects as static
and vice versa, leading to lower accuracy in low-dynamic
scenarios and issues with slow camera ego-motions.

Jaimez et al. introduced VO-SF, a novel approach that
estimates motion at the cluster-level rather than the pixel-
level [73]. The method involves first using a visual odometry
module to estimate motion and then clustering the RGB-D
image into k clusters using K-means. The static background
is segmented from the odometry output, and moving clusters
are used to estimate potential static points for background
refinement. However, clustering methods like K-means can
lead to inaccurate scene flow estimates, mixing static and
dynamic points in the same cluster, thus confusing the
distinction between points that are not moving (static) and
points that are moving (dynamic). This limitation comes from
the fact that K-means assumes certain characteristics about
the clusters it forms, such as equal sizes and spherical shapes.
In a scene with a mixture of static and dynamic points, the
clusters representing these points might not adhere to these
assumptions.

Building uponVO-SF, Scona et al. introduced StaticFusion
(SF), which estimates motion and scene segmentation on
a cluster-level using an objective function with two energy
terms [74]. The first term considers photometric and geo-
metric consistency for pixels within static clusters, while the
second term acts as a regularization term to enhance dynamic
point detection. However, SF’s performance deteriorates
when the camera slows down, as it may classify moving
objects that appear static relative to the camera as part of the
static environment.

While background estimation and subtraction show
promising results, they have several shortcomings, particu-
larly in highly dynamic environments. Therefore, methods
based on background subtraction are prone to lighting
variations, dynamic backgrounds, shadows, reflections, slow
camera speed, and may struggle to detect small or slow-
moving objects, introducing extra challenges to the problem.

2) CONSISTENCY CHECK
Consistency check methods are designed to detect and
remove dynamic objects from the scene as they can negatively
impact the performance of V-SLAM systems, specifically
in camera pose estimation and map building components.
These methods use techniques like semantic segmentation
and motion estimation to filter out moving objects [79].
Li et al. proposed SWIAICP-SLAM, a VO approach that

relies solely on edge-depth points for odometry estimation
[75]. Their method involves dividing depth-edge points into
two groups: foreground (stable) and occluded (sensitive to
camera motion) edge points. To determine the likelihood of
each keyframe point belonging to the static environment, they
employ a static weighting method. This likelihood is then
integrated into the Intensity Assisted Iterative Closest Point
(IAICP) method, used for point cloud registration [89].
Zhong et al. presented Detect-SLAM in their work [76],

which introduces a novel approach following the pipeline
of ORB-SLAM2 [12]. Instead of using the Single Shot
Multi-box Object Detector (SSD) [90] on every frame,
they devised a moving probability method based on
feature-matching to detect dynamic objects efficiently. The
method achieves a balance between speed and accuracy.
To further enhance the results, the authors employed a local
map. Subsequently, the Grab-Cut algorithm [91] was applied
to separate the background and obtain the segment mask of
the target object, thereby facilitating the reconstruction of an
instance-level semantic map.

Zhang et al. extended the ORB-SLAM2 framework in
their work [77] by adding the YOLO object detection
module [64] to extract semantic information at the object
level. They further refined the probabilities of the detected
objects using conditional random fields (CRF) as an object
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regularizer [92]. In addition, an octo-map was generated
from the point clouds of the objects, and correspondences
between existing and temporary objects were identified
using a KdTree. To accelerate the mapping process, a fast
line rasterization algorithm was used [93]. Despite these
advancements, the main limitation of this approach lies in the
object detector, which tends to detect numerous unnecessary
features, including excessive background information within
the bounding box. Moreover, the process of determining
similarities between existing and temporary objects is prone
to being influenced by the localization component.

Schorghuber et al. proposed SLAMANTIC in their
work [78] as a solution to address the issue of dynamic
features. This approach incorporates a dynamic factor
term that considers the semantic labeling of a 3D point
and its coherence, determined by Mask R-CNNN [94].
SLAMANTIC divides 3D points into three categories: static,
static-dynamic, and dynamic, making it suitable for various
types of data, including monocular, stereo, and RGB-D.
While inspired by ORB-SLAM [34], this method does not
perform well when objects that are assumed to be static are
in motion, such as a building painted on a car.

In [79], the authors propose the DS-SLAM system, which
extends the ORB-SLAM2 framework and operates through
five parallel threads: tracking, semantic segmentation, local
mapping, loop closing, and dense semantic map construction
using an octo-tree. The system employs two types of features
extraction: SegNet [95] and ORB extractor through the
tracking thread, along with an additional moving consistency
check based on epipolar constraints. ORB features detected
within dynamic zones identified by SegNet are filtered out
as outliers. The system then builds a semantic octo-tree
map by discarding all dynamic objects. To account for the
limitations of SegNet [95] in complex situations, a log-
odds score is assigned to each voxel to filter out the
unstable ones. However, two notable limitations are observed:
the segmentation module is restricted to specific types of
recognized objects, and the octo-tree map needs rebuilding
when loop closure is detected, which may impact the speed
of DS-SLAM.

In conclusion, consistency check methods show a promis-
ing solution by adding a straightforward consistency test
that primarily relies on the likelihood of moving features.
However, determining the appropriate consistency check
based on the extracted features and semantics remains an
unsolved challenge.

3) MULTI-VIEW GEOMETRY
These methods focus on handling dynamic objects by
analzing the relationships among multiple views of the scene.
They leverage mathematical tools such as epipolar geometry,
homography, and others to extract valuable information about
camera motion, scene depth and features from different
viewpoints of the same scene.

In [80], Bescos et al. proposed DynaSLAM, a cutting-
edge V-SLAM technique designed for dynamic scenes.

Compatible with monocular, stereo, and RGB-D data within
the ORB-SLAM2 framework [12], DynaSLAM first uses
Mask R-CNN [94] for semantic segmentation of RGB
channels to identify dynamic objects. For RGB-D data,
a lightweight version of the ORB-SLAM2 tracker and
multi-view geometry are used to handle static yet movable
objects not detected by Mask R-CNN. A background
inpainting (BI) method is introduced to fill the background
with static information after removing dynamic objects.
While effective, DynaSLAM’s instance segmentationmodule
results in computational overhead. To enhance robustness and
real-time applicability, a multi-object tracking system was
recently integrated into DynaSLAM [96].
In [97], Cui and Ma presented SOF-SLAM, a technique

based on the ORB-SLAM2 framework, which takes a
different approach to remove dynamic features. Instead of
using ORB features, they incorporated a semantic optical
flow module that combines information from optical flow,
multi-view geometry constraints, and semantic segmentation
using SegNet [95] via the fundamental matrix. However,
their method has two limitations: it relies on a hard decision
technique to distinguish dynamic from static ones, whichmay
not always be accurate, and it uses information from only two
consecutive frames, leading to instability in highly dynamic
scenes. To address these issues, Cheng et al. extended the
approach by introducing a weight average approach and
combining optical flow and multi-geometry constraints to
detect and remove dynamic points, resulting in DM-SLAM
[98]. However, like other similar techniques, DM-SLAM still
does not consider dynamic features in the mapping process,
which can be problematic in highly dynamic scenes with
limited static information.

Dynamic Deep Learning-SLAM (DDL-SLAM) [81]
adopts a methodology similar to SOF-SLAM for eliminating
moving objects by combining semantic segmentation using
DUNET [99] and multi-view geometry. The approach
involves removing all dynamic parts, reconstructing missing
parts using a basic BI algorithm, and constructing an octo-
tree map. However, there are areas for improvement, such
as injecting semantic information into the reconstructed map
and utilizing a more efficient and robust BI method. Addi-
tionally, DDL-SLAM’s high computational requirements
for the inpainting method make it unsuitable for real-time
applications.

In [100], Wang et al. proposed a module for detecting mov-
ing objects, serving as a pre-processing step before applying
state-of-the-art RGB-D SLAM techniques. The module
extracts inliers and outliers by analyzing the fundamental
matrix computed on RGB data. Depth map features are
clustered using K-means, and inliers and outliers are mapped
to these clusters to eliminate moving features. Subsequently,
pose estimation and tracking threads are applied to the
remaining static features. While effective, this approach
requires a minimum number of static features in each frame
for accurate identification of inliers and outliers and is
susceptible to errors when dealing with fast-moving objects.
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In [101], Wen et al. suggest a method to separate
dynamic from static features using depth error, photometric
error, and re-projection error. They combine a multi-view
geometry approach with an instance segmentation module,
performing tracking based on Lucas Kanade (LK) optical
flow estimation [102]. However, the reconstructed semantic
octo-tree map is built solely from static features and is
not suitable for real-time applications. Additionally, the
segmentation module is limited to only four object classes,
indicating a lack of generalization. PSPNet-SLAM [53] uses
a similar framework but replaces the Mask R-CNN module
with PSPNet [103]. PSPNet-SLAM performs better in high
dynamic environments but struggles in environments with
fewer moving objects. Indeed, the PSPNet-SLAM’s design
might lead to over-segmentation or misinterpretation of static
elements due to its focus on identifying and tracking moving
objects. This can result in reduced accuracy and a less stable
mapping process when there are limited dynamic elements to
track.

OFM-SLAM (Optical Flow combining MASK-RCNN
SLAM) [104] utilizes a comparable approach to previ-
ous methods [53], [101], leveraging optical flow with
multi-geometry constraints and Mask R-CNN modules to
identify dynamic features. It then reconstructs a semantic
octo-tree map from the extracted semantic features. However,
OFM-SLAM faces limitations in detecting slow movements
or static, yet mobile features and suffers from high computa-
tional costs, making it not viable for real-time applications.

In [82], Long et al. built upon DynaSLAM [80] with three
key enhancements. First, they incorporated object segmen-
tation using PSPNet [103] to improve accuracy. Second, they
introduced a lightweight homography matrix-based approach
to compensate for tracking errors. Finally, they developed a
decision-making technique inspired by ant colony algorithms
(ACP) called the reverse ant colony search strategy to
distinguish dynamic from static features [105]. However, the
proposed decision module presents challenges and may limit
the effectiveness of dynamic parts removal.

In [83], Hu et al. enhanced the ORB-SLAM3 frame-
work [47] with two additional steps. First, they employed
an upgraded version of DeepLabv3+ [106], which uses
depthwise separable convolution in the Atrous Spatial
Pyramid Pooling (ASPP) module. This enhanced version
provides a more powerful and versatile model compared
to the standard version [107], enabling pixel-level semantic
segmentation to differentiate dynamic features. Additionally,
they used an ant colony strategy to reduce the time required
to parse and remove dynamic points. The framework can
also easily integrate IMU data into the tracking threads,
enabling accurate localization due to the flexibility of the
ORB-SLAM3 framework.

In conclusion, multi-view geometry and epipolar con-
straints methods demonstrate their significance in distin-
guishing static and dynamic features. However, relying solely
on these methods may not be sufficient, particularly when
dealing with static yet movable objects. Combining these

approaches with others, as demonstrated in [82] and [104],
is essential to effectively address this issue.

4) OPTICAL FLOW
Optical flow methods compare the motion of pixels between
consecutive frames in a video, providing valuable infor-
mation about the scene and camera motion that is used
to improve accuracy and robustness of V-SLAM systems.
However, this approach is sensitive to visual disturbances
such as lighting issues, occlusions and also incurs a high
computational cost due to the nature of the approach.
In [84], Zhang et al. propose FlowFusion, a method that
enhances a typical visual odometry (VO) estimator by
incorporating optical flow obtained from PWC-Net [108]
to handle dynamic objects. They introduce a technique
called ‘‘dynamic clustering segmentation’’ based on color,
depth, and optical flow by applying two loss functions,
namely photometric loss over RGB color and geometric loss
over depth. To optimize the optical flow estimation, they
utilize a GPU-based PWC-Net implementation to manage
its computational intensity. Their approach demonstrates
robustness to both slow and fast motions.

The authors of [85] demonstrated the advantages of
incorporating dynamic articulated objects into feature-based
V-SLAM systems, based on two key observations: the con-
sistent 3D structure of each rigid part of an articulated object
over time and the coherent motion exhibited by points on the
same rigid part. To address this, they introduced AirDOS,
a dynamic object-aware system that incorporates rigidity and
motion constraints to effectively model articulated objects.
In the preprocessing and tracking stages of AirDOS, ORB
features are extracted, andMask R-CNN [94] is employed for
instance segmentation to identify potential moving objects.
For articulated objects like humans, Alpha-Pose [109] is
utilized to extract human key points, and their 3D positions
are determined by triangulating the corresponding key points
from stereo images. Subsequently, the motion of moving
humans is tracked using optical flow generated by PWC-
Net [108]. Furthermore, AirDOS employs bundle adjustment
on every frame to capture the full trajectory, ensuring its
robustness in densely populated urban environments.

In [86], Chen et al. used the ORB-SLAM2 framework [12]
and suggested a technique for identifying dynamic features
by combining object detection and optical flow. They used a
modified version of YOLOv4 [110], which incorporated an
attention mechanism module inspired by [111], to identify
moving objects. Subsequently, they removed the moving
parts from the ORB features and applied the same procedure
as proposed in ORB-SLAM2 for local mapping, loop
detection, and bundle adjustment optimization. This approach
is suitable for monocular cameras but has certain limitations,
such as difficulty in handling boundaries and the removal of
some static information due to the object detector.

Li et al. have introduced a robust stereo SLAM algorithm
that incorporates dynamic region rejection [87]. The
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algorithm detects dynamic feature points by analyzing the
fundamental matrix, which is computed using feature pairs
obtained by tracking the optical flow in consecutive frames.
Then, the current frame is partitioned into superpixels labeled
with disparity at their boundaries. From this, dynamic regions
are obtained based on the dynamic feature points and
superpixel boundaries types. The proposed SLAM algorithm
excludes feature points within the dynamic region and only
uses information from the static region to estimate the pose.
This approach effectively mitigates the negative impact of
moving objects on the algorithm, resulting in improved
localization and mapping accuracy.

Optical flow has shown promising results in detecting
motion. However, its sensitivity to fast motions and light
conditions imposes additional constraints on the V-SLAM
problem when relying solely on optical flow for motion
detection. As a result, some methods, such as those presented
in [53], [104], and [101], combine optical flow with
multi-view geometry or epipolar constraints to mitigate these
limitations.

In summary, advanced methods that are aware of envi-
ronments with moving objects exhibit precise performance
by effectively detecting and eliminating dynamic features
throughout the trajectory. However, these methods often face
challenges due to their intensive computational requirements,
particularly when incorporating semantic features. Further-
more, they may discard a significant part of valuable scene
information. Although dynamic features can influence the
overall localization process, they retain valuable environ-
mental information that holds potential benefits for various
applications, including robotic grasping [112], [113].

B. DYNAMIC-INCLUSIVE METHODS
Dynamic-inclusivemethods take a slightly different approach
compared to dynamic-aware methods by integrating informa-
tion obtained from objects in motion into the SLAM process
rather than explicitly excluding them. Instead of treating
dynamic objects as outliers or noise, these methods enhance
the SLAM process by incorporating the moving objects
into the map and estimation processes. This may involve
utilizing motion models to approximate the movement of
such objects and leveraging this data to enhance the precision
of the SLAM estimate. These methods belong to one of
two main categories. The first category includes direct-based
SLAM methods, which directly estimate the 3D structure
of the environment from the input images. Specifically,
these methods use a sparse depth map to estimate the
camera pose and map the 3D environment. The second
category involves fusion-based SLAMmethods that combine
depth measurements from multiple sensors to estimate the
camera pose and 3D environment. Specifically, they fuse the
depth measurements from an RGB-D camera and a LiDAR
sensor to achieve robust localization and mapping. Some
of these methods use volumetric fusion with a dense 3D
representation of the environment to estimate the camera

pose and map the 3D environment. Specifically, they use a
dense signed distance function (SDF) representation tomodel
the environment and a continuous-time fusion approach
to update the map in real-time. The typical workflow of
dynamic-inclusive methods is shown in Figure 14. Moreover,
for a summarized comparison of the dynamic-inclusive
methods discussed in this section, refer to Table 5.

1) DIRECT-BASED
These appraoches are mostly with monocular camera where
they employ a sparse depth map to deduce the camera’s
position and map the 3D surroundings. Yuan et al. proposed
a method in [115] based on the framework of ORB-SLAM2
that categorizes features into three groups: static, dynamic,
and static but movable. Dynamic and static objects are
detected using Mask R-CNN [94], while nearby features
(within 5-10 pixels) are checked using epipolar constraints
between consecutive frames to identify static but movable
features. A moving consistency test is then performed over
the last n frames (with n = 5) to address pose estimation and
random error issues. Mapping and bundle adjustment follow
the same approach as ORB-SLAM2, but with modifications
to meet SaD-SLAM requirements. However, the local map
still incorporates points from moving objects and verifies
their moving consistency. Although the method demonstrates
robustness, the tuning of the number of frames and static
features from movable objects must be carefully considered
for accurate localization.

CubeSLAM [65] is an innovative method for monocular
3D object detection and SLAM. This approach combines
semantic object detection and geometric SLAM into a
unified framework, showcasing its significant benefits. The
monocular 3D object detection utilizes a new method that
generates high-quality cuboid proposals from 2D bounding
boxes using vanishing points. The SLAM part is built on
the ORB SLAM2 framework [12], with modifications to the
bundle adjustment to include objects, points, and camera
poses together. The system performs exceptionally well in
scenarios with wide baseline matching, repetitive objects,
and occlusions. It includes moving objects in dynamic
environments in the tightly-coupled optimization process to
improve camera pose estimation. For 2D object detection,
the YOLO detector [64] is used for indoor scenarios, while
MS-CNN [116] is used for outdoor scenarios. CubeSLAM
was evaluated using diverse indoor and outdoor datasets,
demonstrating exceptional accuracy in 3D object detection.
It achieved a 3D recall rate of 90% with an Intersection
over Union (IoU) score of 0.6, as proved by its performance
on both the SUN RGBD dataset [117] and the KITII
dataset. Nonetheless, one limitation of this approach is its
assumption that the model for dynamic scenarios involves
rigid objects adhering to physically feasible motion models.
This assumption may not hold true for all real-world
scenarios.

Recently, Gonzalez et al. [118] introduced a novel
approach called TwistSLAM, which is based on the
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TABLE 4. Comparative overview of dynamic-aware methods.

ORB-SLAM2 framework. The method first creates a set
of semantic clusters using panoptic segmentation [119],
where each cluster contains the 3D points of one object
(either static or dynamic). Next, the static clusters are

used to estimate the camera’s pose, while the dynamic
clusters are used to track and update the poses of objects
over the map. This is achieved by estimating their twists,
which represent their linear and angular velocities. The
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FIGURE 14. Dynamic-inclusive methods framework, with the potential for adjustments or exclusions in certain modules.

method considers that these dynamic objects are linked
through mechanical joints, which impose constraints (inter-
cluster constraints) and limit certain degrees of freedom. For
example, a car cannot move vertically. This novel approach
helps reduce the amount of noise in the pose estimation
phase. To handle data association and keypoint estimation,
an optical flow algorithm is used to overcome the problem
of large displacements in the matching process [120].
By incorporating these techniques, TwistSLAM enhances the
accuracy and robustness of object tracking and camera pose
estimation within the ORB-SLAM2 framework.

2) FUSION-BASED
These methods combine depth measurements from multiple
sensors to estimate the camera pose and 3D environment.
Specifically, they fuse the depth measurements from an
RGB-D camera and a LiDAR sensor to achieve robust local-
ization and mapping. The Co-Fusion method, as described
in [121], leverages the depth measurements provided by an
RGB-D camera and a LiDAR sensor. It involves three steps
applied to each frame after background extraction. First,
tracking is performed by minimizing an objective function
that combines two losses: an iterative closest point (ICP)
alignment loss and a photometric loss. In the second step,
segmentation is carried out, which is divided into two parts:
motion segmentation based on Conditional Random Fields
(CRFs), where labeling is done over Simple Linear Iterative
Clustering (SLIC) superpixels, and an instance segmentation
module. Finally, fusion is performed using the same tracking
and fusion modules as in ElasticFusion [20]. Co-Fusion
utilizes SharpMask [122], a refined version of DeepMask,
for instance segmentation, making it suitable for real-time
applications compared to Mask R-CNN. However, the
method has a significant disadvantage, as it only incorporates
static information into the reconstructed map. Therefore,
it may fail in scenes with a high level of motion due to
the lack of static features. Furthermore, experiments have
shown that it struggles with fast motions and non-rigid
dynamic objects, as motion detection strongly relies on the
segmentation results.

PoseFusion, a method proposed in [123], is built similarly
to Co-Fusion. However, it has a limitation that restricts its
application to scenes where humans are the only dynamic
objects present. The process begins by detecting human poses
using OpenPose [124], which are then eliminated by applying
Min-Cut segmentation techniques like the one proposed in
[125]. By removing these dynamic parts, any state-of-the-
art RGB-D SLAM technique, such as ElasticFusion [20],
can be applied to the remaining static features. Nevertheless,
it should be noted that the key drawback of this approach is its
limited capability to handle only humans as dynamic objects,
as it solely detects human poses as dynamic objects in the
scene.

MaskFusion, proposed by Runz et al. in [126], is a
real-time dense RGB-D SLAM method that incorporates
object-level tracking and can maintain multiple object
models. The system consists of three main modules: tracking,
segmentation, and fusion. In the tracking module, geometric
and photometric losses are minimized to track object poses.
Geometric loss is calculated using ICP, while photometric
loss is between the current frame and stored object models
represented as sets of surfels. To distinguish between
dynamic and static features, a moving consistency test is
introduced, similar to StaticFusion [74]. The segmentation
module utilizes a combined approach between instance
segmentation by Mask R-CNN and a geometric-based seg-
mentation. While Mask R-CNN provides object masks with
imperfect boundaries, the geometric-based segmentation
generates an edginess map based on depth discontinuity
and concavity, providing good boundaries in real-time but
suffers from over-segmentation issues. In the fusion module,
surfels are associated to create a dense 3D map, similar to
the fusion step in ElasticFusion [20]. However, MaskFusion
has limitations for rigid objects and struggles to track small
objects due to misclassification by Mask R-CNN. Some
improvements to the system follow a similar methodology
but represent the 3D map using volumetric signed distance
fields (SDFs) with octo-trees, as seen inMidFusion [127] and
Em-Fusion [128].
Brasch et al. proposed a monocular SLAM approach

tailored for highly dynamic environments [129]. This
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approach incorporates a probabilistic outlier model based
on semantic prior information predicted by a Convolutional
Neural Network (CNN). To achieve robustness in challenging
conditions, the approach uses a combination of feature-based
and direct approaches. The proposed SLAM system builds
upon the ORB-SLAM framework [34]. For pose estimation,
descriptive features are used whenever possible. In cases
where an insufficient number of features can be found, direct
features are used in addition. The estimation of probabilistic
outlier rejection involves calculating an inlier ratio for each
map point, which indicates the level of reliability and stability
associated with that specific map point. Additionally, the
inclusion of semantic information provides an independent
source of information about the likelihood that the map points
are dynamic. This integration of semantic priors enhances
the system’s ability to handle highly dynamic environments
effectively.

Dynamic-inclusive methods are better suited for appli-
cations that require a comprehensive map of the environ-
ment compared to dynamic-aware methods, which exclude
dynamic features and lose a significant amount of informa-
tion. However, implementing dynamic-inclusive methods can
be challenging due to potential computational complexity
and the need for sophisticated algorithms to detect and track
moving objects effectively.

Modern SLAM methods have become more complex
compared to traditional methods due to the incorporation
of additional processing layers. As a result, these advanced
methods require higher computational resources. One way
to address this challenge is by adopting a server-based or
cluster-based approach, as proposed in [130], to distribute
the processing load effectively. Nevertheless, the high
cost and complexity of modern SLAM methods can limit
their applicability in scenarios with limited computational
resources. To overcome this, hybrid methods that combine
elements of traditional andmodern SLAMcan be used. These
methods can employ dynamic-inclusive techniques in areas
with moving objects and switch to traditional methods in
areas without any moving objects, optimizing computational
efficiency. Additionally, existing algorithms can be optimized
to reduce computational requirements. The choice of motion
detection algorithm plays a crucial role in the accuracy and
computational needs of V-SLAM methods. For instance,
optical-flow-based methods [12], [84] are more accurate,
while semantic-based methods [79], [80], [101] require
higher computational resources but offer greater capabilities.
Selecting the most suitable motion detection algorithm can
significantly impact the overall performance of the SLAM
system.

V. ROBUSTNESS
In this section, we explore SLAM techniques that target
enhancing accuracy by addressing input-related challenges,
such as the errors introduced by sensor measurements, which
can accumulate and affect the accuracy of the device’s
positioning over time. Specifically, we focus on methods

that implement software-based optimizations to improve
the overall performance of V-SLAM. These approaches
include the utilization of deep learning algorithms and the
integration of multiple sensors to bolster the robustness
of V-SLAM in challenging environments. Furthermore,
they address challenges, such as front-end ambiguities and
reflective surface detection. Additionally, they encompass
the implementation of edge computing, which mitigates the
computational burden of V-SLAMonmobile devices. Table 6
summarizes the methods discussed in this section.

A. APPLYING DEEP LEARNING TECHNIQUES
Integrating deep learning into V-SLAM processes has proven
to be a powerful solution for enhancing V-SLAM robustness
in real-world applications, where conditions like lighting,
weather, and other factors can vary. Deep learning excels in
extracting rich, high-level features from images, surpassing
the limitations of traditional geometric features. This not
only enhances the robustness of V-SLAM, especially in
keyframe feature matching, but also addresses issues like
frame estimation errors and pose solution failures [131].
One promising approach is demonstrated in [4], where the
potential of deep learning in boosting SLAM resilience
is showcased. This approach aims to reduce trajectory
estimation errors by using deep neural networks fine-tuned
using an Adaptive Moment Estimation (Adam) optimizer.
By leveraging deep learning to reduce noise patterns, the
method has been evaluated in simulation and real-world
scenarios, using a Pioneer 3AT robot. The deep neural
network is trained on a dataset of 6751 samples, including the
robot’s 2D position, orientation, and corresponding ground
truth.

In [132], another innovative method combining monocular
V-SLAM and deep learning based on ORB-SLAM2 is
presented. This method incorporates a single-shot multibox
detector to improve object detection performance in monocu-
lar SLAM.By implementing the selection tracking algorithm,
dynamic objects in the scene are effectively eliminated, and
a missed detection compensation algorithm is employed to
improve the recall rate during object tracking. The primary
focus of this method is to improve the detection of dynamic
content, thereby enhancing the robustness and stability in
terms of absolute trajectory error (ATE), while building upon
the foundation of ORB-SLAM2 [67].

In [133], the authors propose DeepFusion, a novel 3D
reconstruction system that addresses the limitations of sparse
monocular SLAM and depth-based reconstruction methods.
DeepFusion overcomes these challenges by generating
dense depth maps in real-time from RGB images and
scale-ambiguous poses obtained from a monocular SLAM
system, specifically ORB-SLAM2 [12] in their implemen-
tation. DeepFusion employs a CNN to produce fully dense
depth maps for keyframes with metric scale, representing the
observed geometry. The system then combines the output
of a semi-dense multi-view stereo algorithm with the depth
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TABLE 5. Comparative overview of dynamic-inclusive methods.

and gradient predictions from the CNN in a probabilistic
manner. This fusion process is optimized with each new
frame by incorporating new geometric constraints. To achieve
real-time dense 3D reconstructions, DeepFusion formulates a
cost function that combines per-pixel losses based on network
depth predictions, sparse semi-dense depth estimates, and
pairwise constraints from network depth gradient predictions.
The system also estimates the shape of the observed scene
and its absolute scale while predicting per-pixel mean and
variance to obtain uncertainties for all network outputs. These
uncertainties are then probabilistically fused with geometric
constraints. Although DeepFusion has shown promising
results, the authors suggest that further investigating into
design choices, such as training data selection, and finding
ways to handle extreme outliers produced by the network
could lead to further improvements in the system.

B. DEALING WITH FRONT-END AMBIGUITIES
Achieving robustness in V-SLAM systems pose challenges,
particularly when the front-end and back-end modules inter-
act. Many frameworks assume that the back-end optimizer
receives accurate and unbiased information from the front-
end, providing a single solution for each unknown variable.
However, this approach becomes problematic when ambi-
guities arise. For example, when a feature point is detected
as similar to multiple landmarks or when two loop closure
candidates contradict each other, the front-end struggles to
determine the correct information. Consequently, incorrect
data can be incorporated into the back-end optimization,
compromising the integrity of the V-SLAM system and
potentially leading to the failure of the entire robotic system.

To address the challenges posed by front-end ambiguities,
it is crucial for the back-end solver to explicitly consider
and account for these unsolvable cases while producing
multiple probable solutions. Hsiao et al. developed MH-
iSAM2 [134], a novel online nonlinear incremental optimizer
designed to enhance the robustness of robotic systems
in the face of such ambiguities. MH-iSAM2 builds upon
the incremental smoothing and mapping using Bayes tree
(iSAM2) algorithm [135]. The key innovation lies in
its incorporation of multi-mode measurements to model
the ambiguities as inputs and generate multi-hypothesis
outputs, thereby representing multiple possible solutions
for the most likely results. The algorithm relies on two
essential data structures: an extension of the original Bayes
tree, facilitating efficient multi-hypothesis inference, and a
Hypo-tree that explicitly tracks and associates the hypotheses
of each variable while facilitating all the necessary inference
processes for optimization. By adopting MH-iSAM2, robotic
systems can effectively recognize and navigate through
temporarily unsolvable ambiguities, significantly improving
overall system robustness and ensuring reliable V-SLAM
performance in challenging environments.

C. DEALING WITH REFLECTIVE SURFACES
V-SLAM algorithms often encounter challenges when detect-
ing reflective surfaces, such as mirrors and glasses, due
to their unique optical properties, which can cause issues
for traditional RGB sensors. These surfaces are highly
reflective and can lead to distorted measurements or even the
failure in object detection. To address this issue, Park et al.
proposed a novel solution that uses 3D depth information to
identify virtual images reflected in real-time within indoor
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environments [136]. Their technique involves comparing the
spatial information of detected objects with their surround-
ing environment to determine their geometric relationship.
By using semantic segmentation and plane detection, they
analyze the layout of the indoor space surrounding the
object. Themethod effectively differentiates between real and
reflected images of detected object candidates by leveraging
3D depth information. The authors evaluated the performance
of the proposed algorithm using a large indoor dataset
acquired from a Living Lab environment. Comparing the
results of conventional detectors, such as Faster R-CNN
[137] and RetinaNet [138], they observed a significant
improvement in precision, with over 30% enhancement in the
Living Lab dataset.

In [139], the authors presented a simple yet effective
method for detecting glass panels by analyzing the specular
reflection of laser beams from the glass surfaces. Their
approach involves analyzing the intensity profile of the
reflected light around the normal angle incident to the glass
panel. They proposed that integrating this method with an
existing SLAM algorithm could enable the resulting SLAM
system to promptly detect and localize glass obstacles.
To evaluate the efficacy of the proposed method, the authors
conducted experiments in office buildings using a PR2 robot.
The experimental results showed that the proposed method
achieved an accuracy rate of approximately 95% for all
glass panels with no false positive detections. Nevertheless,
to capture specularly reflected light, this approach requires
the robot to follow pathways that enable it to scan objects
from their surface normals.

In [140], a technique that uses the fusion of polarization
camera and laser sensor to detect glass obstacles across
a broad range was introduced. The polarization camera
has proven to be more effective in glass detection than
laser range-finders (LRFs) at certain angles. LRFs can only
detect glass at small incident angles, whereas the degree
of polarization of reflected light on the glass surface is
significant at larger incident angles. The system uses the
straight line of the glass obtained from LRF measurements
and the degree of polarization to determine whether an
obstacle is glass or vacant space. Experimental results
demonstrate the effectiveness of the method in successfully
detecting glass obstacles across a wide range of scenarios.
However, the cost associated with this method is relatively
high when compared to other approaches.

D. INTEGRATING MULTIPLE SENSORS
Asmentioned in Section II, some SLAM techniques integrate
IMU or LiDAR sensors alongside cameras to enhance system
robustness in challenging scenarios. Relying solely on visual
sensors may lead to failure or inadequate information [50].
DynaVINS [141] stands as an innovative visual-inertial
SLAM framework, specifically designed to handle chal-
lenges arising from dynamic objects and temporarily static
objects. Temporarily static objects are objects that appear

stationary while within the field of view but can move
when they are no longer observable. To ensure robustness,
DynaVINS leverages bundle adjustment, which uses pose
priors estimated from IMU preintegration to identify and
reject features originating from dynamic objects. Moreover,
the framework introduces a robust global optimization
approach that organizes constraints into multiple hypotheses,
effectively dealing with persistent loop closures caused by
temporarily static objects.

In [142], Chou and Chou introduced an advanced inte-
gration approach named TVL-SLAM, which seamlessly
combines visual and LiDAR data for simultaneous localiza-
tion and mapping. In TVL-SLAM, the visual and LiDAR
front-ends work independently, while the back-end opti-
mization combines measurements from both modalities. The
system builds upon ORB-SLAM2 [12] and a LiDAR SLAM
method with average performance. To tackle challenges
faced by individual visual or LiDAR methods, TVL-SLAM
employs motion estimation and loop closing techniques that
leverage information from both sources, resulting in higher
accuracy and resilience in scenarios where either modality
alone may fail. To improve reliability, the system uses
cross-validation of visual and LiDAR motion estimation to
identify and discard outlier features. Additionally, to enhance
computational efficiency, the authors propose a general
LiDAR factor (GLF) that compresses multiple LiDAR resid-
uals into a concise 6-dimensional form. This optimization
contributes to the overall efficiency of the TVL-SLAM
approach. Despite the remarkable performance of TVL-
SLAM, surpassing several existing visual/LiDAR SLAM
approaches, some challenges, such as dealing with crowded
highway scenes with limited shape features and numerous
moving objects, remain unaddressed. Future research could
focus on developing effective solutions to handle these
specific challenges.

In [143], Schneider et al. presented an open framework
called maplab designed for visual-inertial mapping. What
sets maplab apart from other visual-inertial SLAM systems
is its comprehensive approach. It not only facilitates the
creation and localization of feature-based maps but also
offers a suite of mapmaintenance and processing capabilities.
The framework provides these capabilities to the research
community in the form of a collection of tools, accessible
through a user-friendly console. The toolset includes func-
tionalities such as multi-session merging, sparsification, loop
closing, and dense reconstruction of maps. This feature-rich
workflow proves highly efficient for algorithm prototyping
and parameter tuning. Additionally, maplab incorporates
ROVIOLI (ROVIO with Localization Integration), an online
mapping and localization frontend based on ROVIO [144].
ROVIOLI employs image intensity within patches, rather
than relying solely on point features, making it robust even
in the presence of motion blur. ROVIOLI can generate new
maps from raw visual and inertial sensor data while enabling
real-time tracking of a global drift-free pose when provided
with a localization map.
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E. EDGE COMPUTING
The continuous operation of the modern V-SLAM techniques
on mobile devices is often hindered due to its high
computational power needs. Researchers have recently intro-
duced the concept of offloading resource-intensive V-SLAM
processing steps from mobile robots to edge computing as
a promising solution to address this limitation [145]. In
[146], Edge-SLAM is introduced as a solution to address the
computationally demanding nature of V-SLAM. The authors
propose a split architecture, distributing the computational
load between a mobile device and an edge device. ORB-
SLAM2 [12] is used as a prototype V-SLAM system,
keeping the tracking computation on the mobile device and
moving local mapping and loop closing to the edge. The
results of this method indicate that this split architecture
allows V-SLAM to function long-term with limited resources
without compromising accuracy. It also maintains a constant
computation and memory cost on the mobile device, enabling
the deployment of other applications that rely on V-SLAM.

Cao et al. introduced edgeSLAM [147], an innovative
solution to address the computational challenges of V-SLAM
on mobile devices, offering both accuracy and real-time
performance through efficient edge computing. To enhance
the system accuracy, semantic segmentation is employed
in edgeSLAM, while the high computational power needed
for localization, mapping, and the semantic segmentation
process is reduced through computation offloading. This
method brings forth a range of notable innovations, including
effective computation offloading, opportunistic data sharing,
adaptive task scheduling, and the support for multiple users.
The evaluation results illustrate that edgeSLAM can achieve
real-time performance, with an average frame rate of 35 fps
and a localization accuracy of 5 cm, surpassing many existing
V-SLAM approaches. Additionally, two case studies on
pedestrian localization and robot navigation are provided by
the authors to highlight the practical usability of edgeSLAM.

Existing edge offloading methods mainly employ static
offloading, which permanently transfers computation tasks
from mobile robots to edge computing over wireless
networks. Nonetheless, this approach can be challenging
as wireless networks are inherently dynamic, and network
quality may vary due to factors, such as fading or temporary
obstructions, resulting in delays between the mobile device
and the edge. To address this limitation, a novel network
offloading approach called DynNetSLAM is proposed as
a system that dynamically adjusts V-SLAM processing,
based on changing network conditions [148]. DynNetSLAM
introduces dynamic adaptation of V-SLAM computation
offloading based on measured wireless network latency.
It does this by setting an offloading latency threshold,
a safe zone around this threshold, and a hysteresis mech-
anism to control the dynamic offloading. The evaluation
results indicate that DynNetSLAM significantly reduces the
probability of track loss events compared to ORB-SLAM2
[12], which processes V-SLAM statically on the mobile
device. Moreover, with its dynamic offloading strategies,

DynNetSLAM significantly reduces the adverse effects of
network latency on Edge-SLAM [146], achieving a low track
loss ratio while maintaining accuracy.

The importance of robustness in SLAM algorithms is often
underestimated and requires further investigation. There
is a need to improve the stability of SLAM systems,
especially during extended operational periods, in order
to address the issue of accumulated errors over time,
as observed in [4]. Additionally, research efforts can be
directed towards enhancing the quality of sensor data input
prior to processing, as this can significantly boost system
performance across various applications. Another crucial,
yet often overlooked aspect is the filtering of environmental
factors that can impact the performance of SLAM algorithms,
such as lighting issues. Addressing these factors presents
opportunities for optimization and holds the potential for
significant advancements in the field of SLAM.

VI. SCENE UNDERSTANDING
This section focuses on the issue of limited generalization
in SLAM applications, as highlighted in [59]. The authors
surveyed various V-SLAM methods that utilize monocu-
lar, RGB-D, and stereo cameras. However, each SLAM
implementation has its inherent limitations. For example,
monocular cameras suffer from lack of depth information
and may require additional sensors to compensate for this
deficiency. On the other hand, RGB-D cameras have a
limited depth range, making them less suitable for outdoor
environments. Although stereo cameras offer the best overall
accuracy, they are also the most expensive and complex,
and they can be sensitive to sudden changes in brightness.
In light of these challenges, this section will explore semantic
methods that utilize spatial relationships to establish connec-
tions between information in the scene, aiming to address the
limitations posed by different camera configurations.

The integration of newly emerging methods, such as
Optical Character Recognition (OCR) and object detection in
V-SLAM system, is discussed in this section. These methods
can provide valuable information for scene understanding and
enhance the capabilities of V-SLAM systems. An overview of
Scene Understanding SLAM methods is shown in Figure 15.
Moreover, Table 7 provides a summary of the approaches
outlined in this section.

A. USING OCR
Optical Character Recognition (OCR) techniques are capable
of extracting the semantic information from texts within
optical frames. Balaban et al. proposed a method that
incorporates semantic markers into a SLAM map by using
natural text markers [149]. It interprets door placards to
label office locations, utilizing YOLO for sign detection and
EAST [150] for text recognition. Placards are accurately
positioned by analyzing a point cloud within an RGB-D
camera frame, localized with a modified ORB-SLAM2 [12].
Semantic mapping is executed as a subsequent step following
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TABLE 6. Comparative overview of enhanced robustness approaches.

robot exploration, resulting in a comprehensive mapping
solution.

In [27], an innovative approach is presented to enhance
localization in SLAM by leveraging text information within
the local environment. This technique is particularly useful in
man-made structures with repeated geometric patterns, such
as identical floors, rooms, and corridors, where the kidnapped
robot problem may arise. The proposed method emphasizes
the role of text in the scene, including room numbers
and signs in the environment. By combining text-level
information with distinctive visual features, this approach
improves localization accuracy.

B. OBJECT SLAM
Object SLAM is a branch of semantic SLAM that prioritizes
mapping with objects as the primary elements and often
utilizes instance-level segmentation or object detection in its

semantic network [151]. Martins et al. propose an approach
that utilizes object-level information obtained from depth
cameras (including RGB-D cameras or stereo camera rigs
such as ZED 3D stereo cameras) to improve robot situational
awareness [28]. This method allows the recognition of
both dynamic and static objects in the environment. The
approach involves collecting visual and depth information
using RGB-D or stereo cameras and constructing a map
with object-level information. Additionally, Kalman filters
are implemented on sensor readings to improve accuracy.
This approach enhances the robot’s ability to perceive and
understand its environment effectively, which is crucial for
autonomous robotic applications.

In [66], Bao et al. proposed a semantic direct mono-SLAM
algorithm to enhance localization performance in urban
environments. The algorithm incorporates a point group
movement consistency (PGMC) check and a point reselection
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FIGURE 15. Overview of scene understanding SLAM system: Incorporating OCR and object detection (outdoor and indoor
environments) into the typical V-SLAM methodologies has the potential to elevate scene comprehension and bolster the
capabilities of V-SLAM systems.

strategy based on coarse semantic plane (CSP) constraints
into direct sparse odometry with loop closure (LDSO). The
system is capable of building a dense semantic map using
a monocular camera by modeling numerous small semantic
planes from sparse point clouds, which reduces hardware
requirements. Semantic information is extracted from the
environment using DeepLabv3+ [106]. To handle moving
objects and improve robustness, the algorithm employs a
point group movement consistency check to distinguish
between moving and still dynamic points. This is done by

using epipolar geometry to determine the motion status of
a dynamic point, thereby avoiding the filtering out of all
dynamic points. Furthermore, the algorithm uses the CSP
priori to improve tracking accuracy. This is achieved by
discarding surficial and building points that disagree with
nearby points of the same semantic class. The authors
evaluated their method using the KITTI dataset [152]. The
evaluation involved running each sequence in KITTI ten
times to obtain the average absolute trajectory errors (ATE).
The performance of the proposed method was compared with
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ORB-SLAM2 [12], LDSO [58], LDSO with PGMC, and
LDSO with CSP-based point reselection strategy. The results
indicated that the proposed method outperformed LDSO and
achieved comparable performance to ORB-SLAM2 while
maintaining the robustness of LDSO.Moreover, the proposed
method produced a dense semantic map of the complex
urban environment with superior quality and clearer main
structures compared to the maps generated by ORB-SLAM2
and LDSO.

Recently proposed, SO-SLAM is a monocular object
SLAM system designed to model objects using quadrics
and build an object-level map representing the environment
[153]. This system proposes two new modules, single frame
initialization and orientation fine optimization, which rely
on three spatial structure constraints: scale proportional
constraints, symmetrical texture constraints, and supporting
plane constraints. The inclusion of these modules signif-
icantly reduce the object SLAM systems’ dependence on
the number and variability of observations, improving its
robustness. One of the key contributions of SO-SLAM
is the ability to extract constraints from a single frame
observation, allowing the set up of a complete ellipsoid
from scratch. Moreover, a new flexible object scale prior
called Scale Proportional Constraint (SPC) is proposed,
which constrains an object’s proportional scale rather than
its precise scale. To further enhance the system’s ability
to constrain an object’s orientation based on its symmetry
property, an Improved-DT descriptor is introduced. This
descriptor combines the advantages of both pixel closest
distance and point descriptor’s nearest edge distance. The
authors conducted experiments that show the effectiveness
of the proposed single-frame initialization and texture
orientation optimizationmodules. However, it is worth noting
that the proposed method has a limitation in accurately
estimating the center and scale of small objects such as
books and keyboards. This limitation can negatively affect
the accuracy of the three-dimensional symmetry point in the
texture constraint. Despite this drawback, SO-SLAM shows
promising advancements in the domain of monocular object
SLAM.

This review highlights that the discussed SLAM methods
primarily focus on spatial relationships between objects in
the scene. However, it is evident that there is still ample
potential in incorporating temporal relationships between
objects in SLAMapplications, which could lead to significant
improved performance. Combining both spatial and temporal
information can further enhance the robustness of SLAM sys-
tems. Furthermore, recent advancements in visual recognition
techniques offer an opportunity to positively impact SLAM
systems by improving feature detection, object tracking, and
scene reconstruction. As a result, future research in this
field could effectively focus on incorporating both spatial
and temporal information, as well as leveraging state-of-the-
art visual recognition techniques, to develop more accurate
and efficient SLAM systems. Such advancements have the

potential to revolutionize the field and enable SLAM systems
to perform even more effectively in complex real-world
scenarios.

VII. DATASETS AND EVALUATION TOOLS
This section presents an overview of various evaluation
modes, metrics, and comparisons used in both qualitative
and quantitative assessments of SLAM algorithms. It also
highlights the accessibility of public datasets tailored for
various sensor types and the availability of open-source codes
for research and development purposes.

A. DATASETS
Researchers often evaluate the effectiveness of a proposed
SLAM method by testing it on publicly available datasets
and comparing its performance with state-of-the-art SLAM
algorithms. Table 8 provides a comprehensive overview of
commonly used public datasets that facilitate the evaluation
of various aspects of SLAM performance. These datasets
include evaluation modes, metrics, qualitative and quantita-
tive comparisons, as well as availability of open-source codes.

1) OUTDOOR ENVIRONMENTS
In the domain of outdoor environments, several datasets are
available, focusing on urban scenes with diverse driving
scenarios and environmental conditions. Notably, the KITTI,
VKITTI, and Cityscapes datasets are commonly used in
research. The KITTI dataset [152], developed collabora-
tively by the Karlsruhe Institute of Technology and Toyota
American Institute of Technology, is a renowned outdoor
environment dataset for autonomous driving scenarios. It is
the largest dataset for evaluating computer vision algorithms
in such scenarios, covering monocular and binocular vision,
Velodyne LiDAR, and POS trajectory data. KITTI is widely
used and includes 389 stereo and optical flow image pairs,
stereo visual odometry sequences spanning 39.2 km, and
over 200,000 3D object annotations captured in cluttered
scenarios. Based on KITTI dataset, another dataset called
Virtual KITTI (VKITTI) was introduced in [154]. VKITTI
is a fully annotated photorealistic synthetic video dataset,
created using advanced computer graphics technology and a
novel cloning method. This dataset facilitates the scientific
evaluation of the impact of various lighting and weather
conditions on the recognition performance of statistical
computer vision models. The Cityscapes dataset [155]
consists of street scenes captured with high-resolution stereo
cameras and semantic segmentation labels, making it suitable
for evaluating Semantic SLAM algorithms. This dataset
features a large and diverse set of stereo video sequences
filmed on the streets of 50 different cities. Among these
images, 5000 possess pixel-level annotations of high quality,
while an additional 20,000 have coarse annotations, offering
valuable resources for SLAM methods that rely on large
volumes of weakly-labeled data.
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TABLE 7. Comparative overview of scene understanding approaches.

2) INDOOR ENVIRONMENTS
Several datasets are specifically tailored to indoor envi-
ronments, such as EuRoC, HRPSlam, ICL-NUIM, and
TUM-RGBD datasets. The EuRoC datasets [156] comprise
visual-inertial sequences recorded using a stereo camera and
an IMU on a Micro Aerial Vehicle (MAV). EuRoC consists
of eleven datasets that cover a range of scenarios, from slow
flights in good visual conditions to fast flights with motion
blur and low illumination. These datasets are divided into
two groups: the first batch was collected in an industrial
environment with millimeter-precise ground truth obtained
from a laser tracking system, while the second batch was
recorded in a room equipped with a motion capture system.
The HRPSLAM datasets [158], proposed by the Humanoid
Research Group at the National Institute of Advanced
Industrial Science and Technology (AIST) in Japan, serve as
a benchmark for V-SLAM algorithms. These datasets focus
on assessing the performance of indoor visual odometry and
V-SLAM techniques in dynamic environments. They were
developed using an on-board RGB-D camera mounted on the
HRP-4 humanoid robot, and include challenging scenarios
such as shaking, full occlusion, and falling down to evaluate
humanoid visual sensing capabilities. The ICL-NUIM dataset
[159] provided by the Imperial College London, consists of
RGB-D sequences and ground truth poses of indoor scenes
with various textures, lighting conditions, and occlusions.
The TUM-RGBD dataset [13] is made available by the
Technical University of Munich (TUM). It contains RGB-D
indoor sequences recorded using a Microsoft Kinect sensor,
along with ground truth poses, and is used to evaluate SLAM
algorithms that rely on RGB-D sensors. These datasets
collectively offer valuable resources for evaluating SLAM
algorithms in indoor environments with diverse challenges.

3) HYBRID ENVIRONMENTS
Some datasets provide scenes that encompass both indoor
and outdoor environments, one of which is the ETH3D
dataset [161], curated by the Computer Vision and Geometry
Lab at ETH Zurich. This dataset features high-quality
3D scans of real-world environments, including RGB-D
sequences, stereo images, LiDAR scans, ground truth poses,
and surface reconstructions. Another dataset, TUMVI [162],

is provided by the Technical University of Munich and
includes visual-inertial sequences captured using a stereo
camera and an IMU, along with ground truth poses. TUM
VI serves as a benchmark to evaluate visual-inertial SLAM
algorithms that use both visual and inertial measurements
to estimate the robot’s pose and map features. This dataset
contains scenes from both indoor and outdoor environments.

4) SYNTHETIC ENVIRONMENTS
Synthetic datasets have become increasingly popular in
recent years. One such dataset is TartanAir [163], introduced
by the Tartan Robotics Group at Carnegie Mellon Univer-
sity. TartanAir offers a large-scale dataset of high-fidelity
photorealistic 3D environments, including dynamic objects,
diverse lighting, and weather conditions in both indoor
and outdoor scenes. Another notable dataset is InteriorNet
[164], developed by Stanford University’s AI research group.
InteriorNet consists of over 10,000 real-world indoor scenes
featuring different layouts, styles, and object configurations.
These synthetic datasets provide valuable resources for
evaluating and developing SLAM algorithms in controlled
and diverse environments.

While high-quality datasets are available for evaluat-
ing SLAM algorithms, it is crucial to acknowledge that
uncertainties persist regarding their real-world applicability.
Relying exclusively on testing these algorithms with such
datasets might constrain the evaluation to specific geographic
regions, potentially underestimating their effectiveness in
different locations. Furthermore, the limited implementation
of these algorithms in real-world scenarios can be attributed
to the high computational demands of V-SLAM algorithms.
The online implementation becomes challenging without
dedicated parallel processing hardware, as most mobile
computers lack the computing capabilities of desktop GPUs.
These computational constraints pose significant challenges
for widespread deployment and real-time applications of
V-SLAM algorithms.

B. METRICS
When assessing SLAM algorithms, various aspects, such
as power and time consumption, complexity, and accuracy,

139668 VOLUME 11, 2023



A. R. Sahili et al.: Survey of Visual SLAM Methods

TA
B

LE
8.

Co
m

m
on

pu
bl

ic
da

ta
se

ts
us

ed
to

ev
al

ua
te

V-
SL

A
M

pe
rf

or
m

an
ce

.

VOLUME 11, 2023 139669



A. R. Sahili et al.: Survey of Visual SLAM Methods

can be taken into account [32]. However, the most crucial
criterion is accuracy, which is usually evaluated by comparing
estimates with ground-truth data. The primary accuracy
metrics commonly used for SLAM are RPE (Relative Pose
Error) and ATE (Absolute Trajectory Error). RPE measures
the local accuracy of the estimated trajectory, whereas
ATE measures the global consistency of the estimated
trajectory. These metrics are fundamental in determining the
performance and reliability of SLAM algorithms.

1) RELATIVE POSE ERROR (RPE)
To estimate the system drift, the RPE is utilized to measure
the difference in pose changes between two identical
timestamps. At a specific time step i, the RPE is defined as:

Ei = (Q−1
i Qi+1)−1(P−1

i Pi+1), (1)

where Pi is the estimated pose, Qi is the ground truth, and 1

is a fixed time interval.
By calculating the individual relative pose errors along the

sequence from a set of n camera poses (where m = n − 1),
the SLAM algorithm’s performance can be evaluated. The
root mean square error (RMSE) is then used to determine the
overall error and assess the algorithm’s performance:

RMSE(E1:n, 1) = (
1
m

m∑
i=1

||trans(Ei)||2)1/2, (2)

where trans(Ei) is the translational component of the relative
pose error. In practical scenarios, there exist numerous
options available for selecting the value of the time interval.
To achieve a comprehensive evaluation of the algorithm’s
performance, the average RMSE across all possible time
interval values can be computed:

RMSE(E1:n) =
1
n

n∑
1=1

RMSE(E1:n, 1) (3)

2) ABSOLUTE TRAJECTORY ERROR (ATE)
The ATE computes the difference between the true value of
the camera pose and the estimated value provided by the
SLAM algorithm. At a particular time step i, the ATE can
be computed as follows:

Fi = Q−1
i SPi, (4)

where Pi represents the estimated trajectory, Qi denotes
the ground truth trajectory, and S represents the rigid-
body transformation corresponding to the least-squares
solution [165].
Similar to the RPE, the RMSE is calculated across all time

indices for the translational components as follows:

RMSE(F1:n) = (
1
n

n∑
i=1

||trans(Fi)||2)1/2 (5)

It is worth noting that some researchers prefer to evaluate
the mean error instead of the root mean squared error, as the

formermethod is less sensitive to outliers and provides amore
robust measure of the performance.

In addition to the previously mentioned metrics, several
other evaluation metrics are commonly used to assess the
accuracy of SLAM algorithms, including:

• Average Precision (AP): A measure of object detection
accuracy that considers both precision (fraction of
true positives among detected positives) and recall
(fraction of true positives detected). It is calculated
by computing the area under the precision-recall
curve, which plots precision against recall for different
confidence thresholds.

• Average Orientation Similarity (AOS): A measure of
object pose estimation accuracy that considers both
translation and rotation errors. It is computed as the
average cosine similarity between the estimated and
ground-truth orientation vectors of each object instance.

• Multiple Object Tracking Accuracy (MOTA): A mea-
sure of tracking accuracy that considers both detection
and tracking errors. It is computed as the percentage of
missed detections, false positives, and identity switches
relative to the total number of ground-truth objects.

• Intersection over Union (IoU): A measure of object
segmentation accuracy that calculates the overlap
between the predicted and ground-truth bounding boxes
or masks. It is computed as the ratio of the intersection
area to the union area.

• Success Rate (SR): A measure of visual odometry accu-
racy that indicates the percentage of frames in which the
estimated camera pose error is below a certain threshold.
It is commonly used to evaluate the performance of
SLAM systems in outdoor environments, where a GPS
signal is not available.

VIII. DISCUSSION AND RECOMMENDATIONS
In recent years, significant developments have been made
in various aspects of V-SLAM systems, resulting in reliable
solutions and notable improvements. However, there are
still unresolved issues and limitations that require further
investigation to make V-SLAM techniques more robust.
These limitations include limited scalability, sensitivity to
lighting variations, performance issues in unstructured or
noisy environments, and computational power requirements.
Our comprehensive review has identified these open research
fields as key challenges that need to be addressed.

A. LIMITED SCALABILITY
One of the main challenges faced by most V-SLAM
algorithms is their limited scalability. These algorithms may
struggle to handle large environments, especially those with
complex geometries or highly dynamic non-rigid objects.
As the environment’s scale increases, the computational
requirements of the algorithm also grow, making real-time
data processing difficult. To address the scalability issue,
researchers have proposed several solutions. This problem
can be approached using sub-mapping techniques to divide
themap into smaller, moremanageable segments. This allows

139670 VOLUME 11, 2023



A. R. Sahili et al.: Survey of Visual SLAM Methods

the algorithm to focus on processing localized areas, reducing
the overall computational burden. Additionally, exploring
hardware acceleration and parallel computing techniques
can significantly improve the computational efficiency of
V-SLAM algorithms, enabling them to handle larger and
more complex environments effectively. By leveraging the
full potential of modern hardware, V-SLAM algorithms can
make substantial strides towards overcoming their scalability
limitations.

B. ROBUSTNESS IN NOISY ENVIRONMENTS
The presence of noise from various sources in the V-SLAM
pipeline can hinder the accuracy of the estimation algorithm,
producing inaccurate maps and trajectory estimates. V-
SLAM algorithms face challenges when occlusion occurs,
causing objects or features to be obscured from the camera’s
view. To address this issue, researchers propose exploiting
temporal information to predict the trajectory of moving
objects. By incorporating information about the object’s
previous position and velocity into the current estimate,
the algorithm can make more accurate predictions even
when the object is occluded. However, this technique
presents new challenges, such as correctly identifyingmoving
objects in the environment and accurately estimating their
trajectories. Moreover, the existing literature lacks extensive
research on handling reflections and high presence of
glass, which can pose significant challenges for V-SLAM
algorithms.

Despite some progress in improving SLAM algorithms to
handle accuracy issues arising from input errors, as discussed
in Section V, there are still challenges to be addressed.
To overcome these challenges, incorporating complementary
scene understanding methods in V-SLAM approaches can
lead to significant improvements in dealing with noisy and
challenging environments. For instance, using deep learning
techniques like neural networks to estimate camera pose
can enhance the algorithm’s ability to handle noisy data
and improve estimation accuracy. Moreover, as stated earlier
in Section II, using event cameras instead of conventional
cameras has the potential to bolster the robustness of
V-SLAM algorithms in high-speed scenarios and HDR envi-
ronments. Another approach is to combine data frommultiple
sensors like cameras, LiDARs, and IMUs, to improve SLAM
accuracy and robustness in noisy environments. By lever-
aging data from multiple sensors, the system can achieve
a comprehensive understanding of the environment, leading
to better mapping and estimation results. By exploring
these techniques and further investigating the optimality of
V-SLAM estimation, researchers can enhance the robustness
of V-SLAM algorithms and ensure reliable performance in
noisy and challenging real-world scenarios.

C. HANDLING DIVERSE LIGHTING CONDITIONS
V-SLAM algorithms can be sensitive to changes in lighting
conditions, leading to potential accuracies in pose estimation
and feature tracking. Significant changes in illumination can

affect the camera’s ability to detect and track features in the
environment. To address the impact of lighting variations,
researchers have proposed various techniques. One approach
is adaptive thresholding [166], where the algorithm dynam-
ically adjusts the threshold for feature detection based on
the current illumination level. Another technique involves
camera exposure control [167], where the camera settings,
such as shutter speed, are modified to optimize image capture
in different lighting scenarios. By adjusting the camera’s
exposure settings, the algorithm can capture images with
optimal brightness levels, enhancing its performance under
varying lighting conditions. High Dynamic Range (HDR)
imaging [168] is another approach utilized to address lighting
challenges. HDR imaging involves capturingmultiple images
taken at varying exposure levels and combining them to
create a composite image with a broader range of luminance
values. This helpsmitigate the effects of high contrast lighting
situations, providing more reliable feature detection and
tracking. While these techniques have shown promise in
improving SLAM performance under varying lighting con-
ditions, further research is needed to explore and address the
intricacies of V-SLAM in changing lighting environments.
Ensuring reliable performance and accuracy across a wide
range of lighting conditions remains an important focus for
advancing V-SLAM algorithms.

D. ROBUSTNESS IN UNSTRUCTURED ENVIRONMENTS
The efficacy of V-SLAM algorithms heavily relies on the
detection and tracking of features in the environment, such
as edges, corners, and textured regions. However, in unstruc-
tured environments with a lack of distinctive texture, such as
blank walls or surfaces with little features, these algorithms
may encounter difficulties in identifying suitable features
to track, leading to a decline in performance. Moreover,
in textureless environments with few salient feature points,
drift errors in robot position and orientation can cause
system failures. While Semantic SLAM has been viewed as
a significant improvement to solve this issue, there is still
room for improvement in the field of semantic segmentation.
Further research and development in semantic segmentation
can lead to more robust SLAM implementations, enabling
these algorithms to perform more effectively in unstructured
environments with limited texture and features. A semantic
scene analysis reduces the reliance on environmental features
while also utilizing available information from other objects
in the scene.

E. VARIOUS FEATURE PROCESSING
One of the critical issues with current V-SLAM solutions
is their lack of adaptability to different environments.
These solutions heavily rely on specific types of features,
and their failure to detect them can lead to a significant
degradation in the accuracy. This issue may occur due to
intermittent feature presence in challenging environments,
sudden movements, or the vision system’s inability to detect
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them if the SLAM system solely depends on a limited set
of features, neglecting other image elements or new objects
that the system was not trained to detect. To address these
challenges, the vision system should be flexible enough
to accommodate various types of features that are relevant
to the robot’s environment. For instance, after a transition
from indoor to outdoor environments, the system should be
adaptable and use different types of features that are more
relevant to the new surroundings. Developing robust feature
processing techniques that can handle diverse environments
and adapt to changing conditions will significantly improve
the performance and reliability of SLAM systems in real-
world scenarios.

F. SCENE UNDERSTANDING
Recent advances in deep learning have paved the way for the
widespread use of object detectors in V-SLAM. However,
these object detectors often lack the ability to consider the
spatial and temporal relationships between detected objects.
For example, detecting a chair in one frame and a table in
the next frame may not capture their spatial relationship or
that they belong to the same room or it can spot a person
holding a cup in one frame and a water dispenser in the
next frame but may not link these frames to understand
that the person is filling the cup. Another case in object
grasping, V-SLAM methods may not inherently grasp the
orientation of objects like a door in the open or closed state.
As discussed in Section VI, integrating spatial and temporal
relationships into object detection algorithms remains an area
that requires further research in V-SLAM. Techniques such
as 3D geometry, object tracking, and scene understanding
techniques can be explored to address this limitation. Enhanc-
ing scene understanding by incorporating these relationships
will contribute to a more comprehensive understanding of
the environment, enabling V-SLAM systems to produce more
accurate and robust results.

G. QUALITY OF INFORMATION AND COMPUTATIONAL
COST
V-SLAM systems often demand substantial computational
resources, making real-time implementation challenging,
especially on low-power devices like drones or mobile
robots. Achieving a balance between information retrieval
and computational cost is one of the major challenges in
V-SLAM. Dense maps can provide high-dimensional, com-
plete scene information, but processing this data in real-time
can be computationally demanding. On the other hand,
sparse representations are less computationally intensive but
may not capture all the necessary information. In addition
to balancing information retrieval and computational cost,
V-SLAM systems also need to deal with real-time perfor-
mance issues, such as frame losses during peak processing
periods, which can adversely impact the V-SLAM system’s
performance.

To address these issues, researchers are exploring various
methods. One approach involves using parallel processing

techniques to distribute the computational load across mul-
tiple processors, thus improving overall efficiency. Another
method focuses on recovering a dense semantic map from
sparse point clouds, reducing the hardware requirements
for generating a detailed map. Also, researchers have
explored hardware acceleration using Field-Programmable
Gate Arrays (FPGAs) to improve the computational effi-
ciency of V-SLAM algorithms. Another approach involves
developing V-SLAM algorithms that can operate on com-
pressed or low-resolution images, which reduces the com-
putational burden without compromising the overall per-
formance significantly. Additionally, as stated previously
in Section V, an innovative technique has been recently
proposed to reduce the computational load on low-power
devices by offloading resource-intensive V-SLAM pro-
cessing steps from mobile robots to edge computing.
By leveraging edge computing, SLAM algorithms can
process data more efficiently and handle larger datasets,
though they may face limitations, such as increased latency
that must be carefully managed. Finding a balance between
computational efficiency and information richness remains
an ongoing challenge in V-SLAM research. By exploring
parallel processing techniques, hardware acceleration, image
compressionmethods, and cloud-based solutions, researchers
can develop more efficient V-SLAM implementations that
can achieve better real-time performance and cater to a
broader range of devices and applications.

IX. CONCLUSION
This paper presents a comprehensive overview of the
current state of traditional and modern V-SLAM approaches.
We have discussed various V-SLAM methods, including
monocular, RGB-D, stereo, and event-based methods. These
approaches utilize visual and inertial data, and some even
integrate LiDAR information for enhanced performance in
different environments.

Throughout the survey, we highlighted the strengths and
limitations of each approach, and identified key challenges
in the field of V-SLAM. These challenges include limited
scalability, sensitivity to lighting variations, performance
issues in unstructured or noisy environments, and the
requirement for substantial computational power. In the
field of scene understanding, we discussed the need for
algorithms that can effectively consider spatial and tempo-
ral relationships between detected objects, enabling more
precise and meaningful data in mapping and localization.
Additionally, we emphasized the importance of balancing
information retrieval and computational cost in V-SLAM
systems, as dense maps can provide valuable scene infor-
mation but come with higher computational demands, while
sparse representations may lack crucial details. The survey
also included an overview of commonly used datasets for
V-SLAM evaluation. There is potential for the development
of outdoor datasets that include more dynamic scenes,
reflecting real-world scenarios more accurately. Furthermore,
we discussed the evaluation metrics used to assess the
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accuracy of V-SLAM algorithms, focusing on metrics such as
RPE and ATE. These metrics provide a basis for evaluating
the algorithms’ performance in terms of pose estimation and
trajectory accuracy.

To conclude, the field of V-SLAM is rapidly evolving with
an increasing number of publications each year. There are
several areas of potential improvement for future research,
including multi-agent approaches, multimodal methods that
combinemultiple sensor inputs, and enhancing the robustness
of V-SLAM algorithms to handle sensor and environment
noise. Continued research and development in these areaswill
undoubtedly lead to more advanced and reliable V-SLAM
solutions for a wide range of applications.
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