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ABSTRACT This paper introduces a dynamic scheduling algorithm designed tominimizemakespanwithin a
smart manufacturing system, accommodating delays in the production process. The proposed approach relies
onModel Predictive Control (MPC) principles and adapts flow-shop scheduling theory to solve an open-shop
scheduling problem. It aims to strike a balance between the ideal, delay-free solution and robustness in the
case of processing time delays. By combiningMPC theory with flow-shop scheduling, the algorithm offers a
robust approach to open-shop scheduling problems, even with uncertain processing times. Iterated upon the
arrival of each new job on the shop floor, the algorithm incorporates a control horizon to predict impending
job arrivals and seamlessly integrates them into the scheduling process. Efficiency is examined through a
comprehensive case study, where it is compared against a similar, offline scheduling algorithm. This novel
method not only optimizes scheduling but also adapts to dynamic scenarios, reducing the computational
demand and the information needed to optimize the production process, thus making it suitable for agile
manufacturing environments. The results demonstrate the algorithm’s efficacy in achieving competitive
scheduling performance with nearly the same makespan as the offline algorithm, while accounting for
uncertainties in processing times. A robustness analysis confirms the reliability of the proposed approach,
showing an average improvement of 5% in makespan across different delay magnitudes.

INDEX TERMS Model predictive control, open shop problem, scheduling, smart manufacturing systems.

I. INTRODUCTION
Nowadays, manufacturing enterprises confront escalating
and fierce market competition, driven by diverse customer
demands and the rapid expansion of economic globalization.
Hence, they have to extend their production mode into
distributed environments and establish multiple factories
in various geographical locations. Intelligent manufacturing
systems, sometimes also referred to as smart manufacturing
systems, are characterized by the integration of advanced
technologies like artificial intelligence, Internet of Things
(IoT), and connected machinery to monitor and optimize the
production process [1]. A literature review on distributed
scheduling problems in intelligent manufacturing systems
is provided in [2]. Production scheduling stands as a
fundamental aspect in manufacturing systems, aimed at
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optimizing crucial objectives including profitability, opera-
tional efficiency, and energy conservation. This optimization
process revolves around critical factors such as determining
the most efficient processing paths, machine allocation,
and precise processing times.However, the intricate nature
of large-scale, strongly-coupled constraints, combined with
the demand for real-time solutions in specific scenarios,
presents considerable challenges in effectively addressing
manufacturing scheduling problems [3]. Competitive global
market conditions have necessitated real-time agility and
flexibility in manufacturing process industries. As the
operational paradigm evolves, process scheduling decisions
are increasingly focused on shorter time scales, and their
interactions with the process control layer have gained
significant importance [4].

In manufacturing systems, effectively managing product
flow and resource allocation is of paramount importance
to ensure satisfactory performance and minimize delays
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and congestion in production processes. Various strategies
can be employed to address these challenges, aiming to
reduce idle and wasted time within the manufacturing
process. This study presents a comparative analysis of offline
and online strategies, illustrating distinct approaches and
performance metrics within the context of an open-shop
scheduling problem (OSSP). The OSSP, widely recognized
for its extensive industrial applications, represents a pivotal
concern within the realm of engineering [5]. Preventive
maintenance plays a crucial role that must be considered
in addressing these challenges, as seen in the context of
an open-shop scheduling model that accounts for human
errors and preventive maintenance considerations [6]. The
proposedmodel takes into consideration conflicting objective
functions including makespan, human error, and machine
availability. To illustrate its applicability, a real case study
is presented, demonstrating the practical application of the
multi-objective mixed integer nonlinear programmingmodel.
A flexible job-shop scheduling problem with a random
machine breakdown has been widely studied in [7]. This
study simultaneously addresses two objectives: makespan
and robustness, where the latter measures schedules’ ability
to withstand breakdowns. Similarly, this paper proposes a
newly designed iterative algorithm to account for uncertain-
ties in processing times and in order to provide a robust
solution that minimizes makespan.

A predictive maintenance model to detect, monitor, and
control emergent behavior by IoT sensors has been proposed
to detect, monitor, and control emergent behavior, thereby
mitigating sensor failures and system downtime [8]. Simi-
larly, a comparison between offline and online algorithms
is presented in the domain of electric vehicle charging
within a single charging station [9]. Just as in our work,
these algorithms are centralized and framed as mixed-integer
programming problems. Furthermore, we introduce an online
algorithm that iteratively engages the offline counterpart,
effectively managing unforeseen future arrivals.

Diverse offline algorithms can be employed to tackle
these NP problems, offering a broader solution space. The
study in [5] illustrates how the genetic algorithm’s selection
phase significantly impacts solution quality and its proposed
algorithm demonstrates superior performance in generating
solutions when compared to other developed methods,
highlighting advantages in terms of computational efficiency
and objective values. In modern discrete flexible manufac-
turing systems, the occurrence of dynamic disturbances in
real-time is a frequent challenge. Additionally, individual
jobs may encompass various specialized operations due
to technological requirements [10]. The proposed model
is particularly well-suited for real-time scheduling within
discrete flexible manufacturing facilities and designed to
accommodate scenarios where jobs consist of multiple oper-
ations bound by the no-wait constraint, even with dynamic
disturbances. To address stochasticity, typically associated
with processing times, [11] developed a multiobjective

scheduling model. This model seeks to optimize product
quality while minimizing tardiness, which refers to the
delay or lateness in completing scheduled tasks. Similarly
to our work, [12] accomplishes a bi-objective optimization
combining a Mixed Integer Linear Programming (MILP)
model with reinforcement learning. MILP and Constrained
Programming are commonly employed for job scheduling in
various facilities. For instance, [13] provides a comparative
analysis of these methodologies, elucidating their respective
advantages and drawbacks. Similarly, [14] utilizes an MILP
model and a memetic algorithm to optimize a bi-objective
cost function, specifically minimizing total setup time and
the number of late jobs. Furthermore, its applicability extends
to diverse modern Industry 4.0 smart factories characterized
by elevated complexity and stochasticity. Such environments
demand reactive real-time scheduling methods to facilitate
product individualization and accommodate product variety.

Online scheduling finds diverse applications across various
case studies. A metaheuristic algorithm addressing real-time
control problems in energy-efficient scheduling for flexible
job shops, where rescheduling impacted operations and
updating schedules is necessary, has been proposed [15]. The
effectiveness of this approach is further illustrated through
an energy-efficient scheduling case study for a flexible job
shop. This case study demonstrates the ease and speed with
which optimal schedules and accurate supervisory control
instructions can be obtained. Machine learning plays a huge
role in optimizing the schedules in flexible manufacturing
system, as in [16]. Other works employ deep reinforcement
learning, which revealed to be promising for short-term
scheduling [17], [18], also in the need of adaptability within
the shop [19], whereas long-term scheduling manages the
product demand over a longer time horizon (i.e., weekly or
monthly), taking into consideration also the costs of inventory
and employment [20]. Additionally, in [21] Petri Nets and a
heuristic based on artificial intelligence have been combined
to solve scheduling within flexible manufacturing systems.
In this work, a comparison between offline and online
short-term scheduling is presented. The online algorithm
adopts the Model Predictive Control (MPC) approach for
scheduling forecasts. MPC is frequently employed in such
problems, as seen in a proposal for a distributed model pre-
dictive control-based energy scheduling for islanded multi-
microgrids [22]. This approach’s performance is validated
through a comparative analysis against existing models.
Scheduling energy usage in smart homes poses a significant
challenge due to the stochastic and unpredictable nature of
many influencing factors. To tackle this, an MPC model
has been suggested for modeling and managing uncertainties
associated with smart home appliance scheduling [23].
The paper is organized as follows: Section II presents a

comprehensive overview of the methodology employed to
address the open shop scheduling problem, delineating both
offline and online approaches. Section III introduces the case
study, while Section IV examines the resultant outcomes in
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detail. Finally, Section V encapsulates the conclusions drawn
from the study.

II. MATERAL AND METHODS
In an open-shop scheduling problem, the objective is to
schedule J jobs onM machines to executeOj operations each
(j = 1, . . . , J ). Notably, in OSSP the number of operations
for each job may differ and cycles (i.e. multiple passage of
jobs on machines) may be present in their path, increasing
the general complexity of finding a feasible and efficient
solution. With the advancement of technology, in recent
years the evolution in manufacturing has given birth to the
flexibility of machines. In other words, certain machines
are able to accommodate multiple operation types, thereby
enabling distinct routing possibilities within the shop for each
job. In this research, the open-shop scheduling problem is
modeled as a flow-shop scheduling problem. This approach
involves systematically enumerating all feasible paths that a
job can followwithin the shop, taking into account its specific
production constraints. This enumeration results in a range
of alternative paths, denoted as Aj, representing the various
choices available for job j. These alternatives collectively
form the set A, including all possible choices for each job, and
it is represented as A = A1,A2, . . . ,AJ . This augmentation
amplifies the system’s adaptability and flexibility.

The interplay between jobs’ routings can give rise to
shared resources, representing the machines through which
multiple jobs must pass during production. This leads to
the formulation of sets of disjunctive connections, denoted
as D, which ensures the orderly processing of one job
at a time on shared machines. This dynamic interplay is
illustrated in Fig. 1, where a generalized graph G visually
captures the product flow through the shop. Alternatives are
organized into rows by job, signifying potential sequencing
on machines. It is worth noting that precisely one alternative
must be selected for each job.

FIGURE 1. Flow-shop graph equivalent to the OSSP.

The diagram further highlights disjunctive connections,
such as δ1 and δ2, demonstrating the interconnections
between alternatives of different jobs on shared machines
(e.g., M i+1

a1,1 = M i+1
aj,1 and M i+1

aj,AJ
= MN

a1,A1
).

The key challenge in solving this problem lies in
identifying the optimal set of alternatives for each job
while minimizing specific predefined criteria, such as the
makespan. In other words, the goal is to select the most
efficient combination of paths for each job that collectively
results in the best overall solution in terms of makespan.

The novelty of this research lies in the implementation of
a model predictive control (MPC) algorithm to dynamically
solve an OSSP. Specifically, upon the arrival of a new job at
the shop, theOSSP is tackled taking into account both the jobs
currently present on the shop floor and those that, under the
known planning, fall within the selected prediction horizon
for the MPC.

To enhance the realism of the problem, the arrival of jobs,
though anticipated during the planning phase, is modeled
using a zero-mean Gaussian noise, introducing an element of
unpredictability.

The re-scheduling algorithm is triggered with each actual
arrival of a new job onto the shop floor. This mechanism
ensures that the system remains adaptive and responsive to
the dynamic changes introduced by real-world arrivals.

A. PROBLEM FORMULATION
In order to systematically address the optimization problem
through mixed integer linear programming (MILP), it is
essential to establish a clear framework by introducing the
relevant sets, variables, and constants that define the key
parameters governing the system.

Therefore, the sets are:

• J : number of jobs;
• M : number of machines;
• D: number of disjunctive connections on shared
machines;

• A: number of alternatives;
• Oj: number of operations for each job j.

Meanwhile, the decision variables of the problem are:

• sj,m ∈ R, [J ×M ]: the start time of job j on machine m;
• cj,m ∈ R, [J ×M ]: the completion time of job j on
machine m;

• δd ∈ {0, 1}, [D× 1]: variable for disjunctive connec-
tions between shared resources;

• γj,aj ∈ {0, 1}, [A× 1]: variable for modeling possible
job’s choices;

• C ∈ R, [1 × 1]: completion time of the last job that
completes the production process.

The constants of the problem are:

• P, [J ×M ]: matrix of ideal processing times, where pj,m
corresponds to the processing time of job j on machine
m. Processing times can be affected by disturbances that
cause delays in production;
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• M: big-M, used to activate and deactivate pairs of
constraints;

• Rp, [J × 1]: vector of jobs’ planned release time. It is
subject to Gaussian disturbances that may anticipate or
delay their arrival time at the shop floor. Consequently,
Rr represents the vector of the real release time of jobs.

The associated mixed integer programming problem mini-
mizes the completion time of jobs:

min
s,c

C (1)

subject to constraints (2a) to (2g):

sj,m(j,o) ≥ cj,m(j,o−1) − (1 − γj,aj )M
∀j = 1, .., J ∀o = 2, . . . ,Oj (2a)

cj,m = sj,m + pj,m

Aj∑
aj=1

γj,aj

∀j = 1, .., J m = 1, . . . ,M and aj = 1, ..Aj (2b)

sj1,m ≥ cj2,m − δdM ∀j1, j2 ∈ D (2c)

sj2,m ≥ cj1,m − (1 − δd )M ∀j1, j2 ∈ D (2d)

sj,m(j,1) ≥ Rreal0j ∀j = 1, .., J (2e)

C ≥ cj,m(j,Oj) ∀j = 1, .., J (2f)
Aj∑
aj=1

γj,aj = 1 ∀j = 1, .., J (2g)

Specifically, constraint (2a) establishes the relationship
between the start and completion time of consecutive
machines in the sequence of job j, conditioned to the
selected alternative. The notation m(j, o) serves to denote
the machine that processes job j at its oth operation in
the sequence. Constraint (2b) ensures the adherence to the
correct processing time within each machine. The disjunctive
constraints are represented in (2c) and (2d), where the
δd variables guarantee the activation of only one of the
two constraints for each shared machine. Furthermore, (2e)
ensures compliance with the job release times in the shop,
while (2f) determines the completion time of the last
processed job. Lastly, (2g) addresses the γ variables, ensuring
that for each job, a single alternative is chosen, thereby
avoiding multiple paths for the same job.
In summary, the optimization problem aims to determine

the optimal routing to minimize job waiting times and
completion time, while adhering to resource availability,
machine occupancy, and job processing flow constraints.

B. GUARANTEEING EFFICIENCY WITH STOCHASTIC
PROCESSING TIMES
The objective of this work is also to provide a robust
solution that remains effective even when processing times
are disrupted. To ensure a realistic behavior of the system,
two key assumptions have been taken into account: each
machine can, at most, double its processing time, and the
total disturbance is bound by an upper limit denoted as �.

To achieve this, an iterative algorithm has been designed to
strike the optimal balance between a solution unaffected by
noise and a resilient solution capable of handling worst-case
scenarios, in which disturbances on machines maximize the
delay in production. Thus, the possible delay of job j on
machine m is represented with a new decision variable wj,m.
The optimization cost function then translates into a minimax
problem: The former minimization problem, which focused
on reducing the makespan, has evolved into a minimization
of the makespan while accounting for the maximum delays,
representing the most adverse machine delay scenarios:

min
s,c

max
ω

C (3)

Constraints (2a)-(2g) remain valid, except for constraint (2b)
which needs to be extended to accommodate delays and be
independent of γ :

cj,m = sj,m + pj,m + (pj,mωj,m)

∀j = 1, .., J ;m = 1, . . . ,M and aj = 1, ..Aj (4)

Then, additional constraints are needed to realistically model
delays:

J∑
j=1

Aj∑
i=1

γi,j

M∑
m=1

ωj,m = � (5a)

0 ≤ ωj,m ≤ 1 ∀ j = 1, . . . J m = 1, . . . ,M (5b)

In (5a), the optimization problem ensures that only the ωj,m
values associatedwith the alternatives selected in the previous
minimization problem are considered in the computation
of the delay configuration. Furthermore, constraint (5b)
enforces an upper limit on the magnitude of each disruption,
ensuring that, in the worst-case scenario, each machine is
allowed to at most double its processing time, and not beyond.

1) FINDING THE BEST TRADE-OFF SOLUTION
In order to find a solution capable of keeping competitive
performance both in the case of deterministic and stochastic
processing times, with known magnitude �, the following
iterative approach has been employed:

• Step 1: Solve the problem outlined in Section II-A,
which represents the minimum achievable completion
time for the given scenario in the ideal, deterministic
case

• Step 2: Set the recently determined γ variables as
parameters for the max sub-problem, while keeping the
δ variables to be determined through the optimization
problem. This involves imposing the path for each job
while using the sequencing onmachines and disturbance
on processing time, namely δ and ω, as decision
variables. A solution for ω represents the worst-case
scenario in the given routing, while still allowing
flexibility in sequencing on machines

• Step 3: Revisit the problem detailed in Section II-A.
In this step, set pj,m = pj,m + pj,mωj,m ∀j =

1, . . . , J ;m = 1, . . . ,M and solve the problem anew.
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Subsequently, compare the new job path solution (i.e.,
only the γ variables) with the one obtained in Step 1:
– If the two solutions coincide, it indicates that

the job path represents the best trade-off between
optimality and robustness when confronted with
potential delays of the given magnitude

– Should the new solution differ from its predecessor,
it suggests that the delay-free solution is no longer
optimal provided conditions (5a) and (5b) hold.
In such an instance, to derive an appropriate
solution for both scenarios, the γ variables of the
novel solution are once again set as parameters, and
Step 2 is reiterated.

This approach enables the identification of a job path that
performs well across a range of � values, thus accom-
modating potential delays, even if guaranteed convergence
is not assured. Consequently, the algorithm is intentionally
halted after a predetermined number of iterations, with the
selection of the solution minimizing the completion time in
the deterministic scenario.

C. MPC-BASED SCHEDULING FORMULATION
The problem discussed in Sec. II-A and Sec. II-B pertains
to the offline scheduling of jobs through machines. In ideal
situations, possessing comprehensive insight into the entire
production process becomes crucial to ensure the accuracy
of the solution. However, there might be instances where
this information is unavailable, or the only accessible data
is the planned timing of job releases over time. As a result,
the aforementioned problem needs an expansion to tackle
the scheduling challenge in real-time fashion, with each new
product arrival. In order to accomplish this, it is necessary
to keep track of the progress of jobs that have undergone
operations within the shop. Thus, at each event denoted as
t , marking the arrival of a new product, the γ representing
paths that are no longer feasible, due to the job having
already completed a portion of the route between machines,
rendering its passage through other machines impossible, are
removed from the job’s potential alternatives. Analogously,
themachines currently assigned to jobs are retained until their
completion time, to avoid their assignment to other jobs when
solving the optimization problem.

stj,m = st−1
j,m (5c)

ctj,m = ct−1
j,m (5d)

where t represents the t th event (i.e. arrival of a job) on the
shop floor.

These constraints enable the execution of the scheduling
algorithm described in the previous sections for every arrival
of a product. Additionally, a prediction horizon can be
incorporated to facilitate the scheduling of jobs currently
present on the shop floor and those planned to arrive
shortly (i.e. within the prediction window). Consequently,
the set J , which represents the set of jobs considered in the
optimization problem, is initially a subset of the complete

job pool. As the final job arrives on the shop floor, this set
J encompasses the entire spectrum of jobs.

Thus, for each new event (i.e. arrival of one or more jobs):

∀p ∈ P, ∀s ∈ S
(
sγ ∩ pγ = ∅,Pγ ⊆ 0

)
with # (S ∪ P) = J (6)

where
• P contains all the jobs within the prediction horizon;
• p is a job belonging to set P;
• S contains all the jobs that have been already scheduled
or are being processed;

• s is a job belonging to set S;
• 0 is the set of all alternatives;
• Pedix γ refers to the chosen alternative for the job of the
corresponding set.

This translates into a dynamic, reactive controller capable
of scheduling jobs based on the system’s current state
while forecasting the imminent arrival of new products.
Fig. 2 graphically represents the implemented algorithm. This
formulation has been solved with the approach described in
the following sections.

FIGURE 2. Graphical representation of the MPC-based scheduling. Black
dashes represent the planned arrival time of jobs, and red dashes their
real arrival time. Blue lines indicate the prediction horizon of the
algorithm, triggered at each new arrival of a job and needed to figure out
which jobs are considered in the scheduling problem.

III. CASE STUDY
To assess the effectiveness of the proposed approach,
a theoretical case study is devised, involvingM = 6machines
and J = 6 jobs. The complete range of feasible paths is
outlined in Table 1, in which each machine is represented
as a number for sake of notation. The table highlights
that all jobs are required to commence from M1, which
serves as the loading unit of the SMS. Furthermore, it is
notable that jobs have to perform from 4 to 5 operations,
and certain alternatives may share segments of the initial
path, thereby enhancing the MPC-based scheduling’s ability
to dynamically select the optimal route depending on the
real-time release of other jobs. The flexibility of machines
is expressed by Table 2, while the planned and real release
time of jobs is listed in Table 3. The planned release time
for a job can deviate by a maximum of 3 units of time,
either ahead of schedule or delayed. In contrast, the MPC’s
prediction horizon spans 2 units and inherently considers the
scheduled release time due to the unknown actual release
time.Moreover, jobs are assumed to keep the scheduled order,
avoiding possible swaps arising from concurrent delays and
advancements of consecutive jobs.
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TABLE 1. Alternative paths for each job.

TABLE 2. Processing times.

TABLE 3. Jobs’ planned and real release time.

The prediction horizon is a critical parameter that should
be tailored to the specific characteristics of the production
order. It determines how far into the future the scheduling
algorithm looks when making decisions. On the one hand,
a longer prediction horizon allows the scheduler to consider
more jobs at once, providing a more comprehensive view
of the production landscape. On the other hand, it results
in increased computational complexity, as more jobs are
taken into account simultaneously and the optimization
problem becomes more complex and time-consuming to
solve. Consequently, scheduling with a longer prediction
horizon may lead to a slight increase in computational time
and could exhibit performance characteristics similar to those
of offline scheduling.

IV. RESULTS
To solve theMILP problem presented in this study,MATLAB
has been employed, coupled with the Optimization toolbox,
a powerful optimization tool designed for mathematical
programming and linear programming tasks. The perfor-
mance of the proposed approach is compared to an offline
scheduling algorithm, deeply explained in [24]. An offline
scheduling approach incurs higher computational demands
and necessitates complete, deterministic knowledge of the

system for its operation. Despite this, it has the potential to
yield superior makespan performance.

Conversely, an MPC-based scheduling approach can
achieve performance levels on par with offline scheduling,
while also demonstrating the capability to adapt to unan-
ticipated job arrivals or machinery malfunctions. Machine
breakdowns, although relevant, have not been addressed in
this study. Furthermore, this method leverages the system’s
current and near-future knowledge (i.e. within the prediction
horizon) to formulate suboptimal job schedules.

It is worth noting that while offline scheduling excels in
optimal performance but requires extensive upfront informa-
tion, MPC-based scheduling provides a balanced approach
that accounts for real-world dynamics and unpredictabilities,
making it a compelling choice for agile manufacturing
environments.

Fig. 3 illustrates the optimal solutions in the absence of
disturbances in processing times. It can be observed that
the completion time is nearly identical: 44 using the offline
technique and 45 with the MPC-based approach. The key
distinction lies in the fact that the latter does not necessitate
deterministic knowledge of the entire system but rather
dynamically adapts to the introduction of new jobs within the
shop floor. This reasoning is highlighted in Table 4, which

TABLE 4. MPC dynamic choice of the routing in the noise-free scenario at
each arrival of new jobs.

refers to the noise-free scenario and points out the chosen
path at each arrival of a new job in the shop. The adaptability
of the MPC-based scheduling becomes evident in the context
of J3. Specifically, it is initially scheduled according to the
routing specified by γ6. However, upon the subsequent arrival
of J5, J3 is dynamically rescheduled using the routing strategy
defined by γ5. This dynamic adjustment remains feasible
because J3 has not yet been allocated to a machine that
would render altering its routing unviable, and it ensures the
maintenance of competitive performance levels.

In order to shorten the computational time needed to solve
the optimization problem, the alternatives listed in Table 1
are automatically eliminated once a job follows a divergent
path incompatible with the continuation of the previously
chosen alternative. Similarly, Fig.4 depicts a comparison
between solutions found with the iterative approach of Sec.
II-B when processing times are perturbed, with a magnitude
of � = 10, while considering the worst-case distribution
across machinery of these disturbances. In this scenario,
similarly as in the case of deterministic processing time,
the completion time remains nearly identical, despite the
presence of disturbances.
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FIGURE 3. Comparison between offline (a) and MPC-based (b) scheduling solutions in the case of deterministic processing times. Both
solutions are comparable in terms of completion time.

FIGURE 4. Comparison between offline (a) and MPC-based (b) scheduling solutions in the presence of delayed processing times. Completion
time is 52 in the ideal offline scenario, representing the minimum achievable value, and 53 in the dynamic scheduling, thus maintaining
competitive performance.

Furthermore, from a computational standpoint, the
MPC-based algorithm offers substantial benefits. Although
more computations are involved in managing data structures
and implementing the controller, it is important to highlight
that the initial schedulings only involve a subset of the
total jobs, resulting in faster optimization. As the number
of jobs increases, on the other hand, much of the routing
within the shopfloor for already present jobs has already
been determined, thus minimizing its involvement in the
optimization problem. Consequently, the pool of potential
alternatives to be analyzed is significantly reduced. For these
reasons, the implementation of the MPC-based algorithm
results in an enhancement of computational performance.
In the examined case study, it has been observed a significant

30% reduction in execution time, and it is reasonable to
assume that a larger number of jobs corresponds to a
more pronounced reduction in computational time, due
to the algorithm’s operational approach. Indeed, at each
iteration, the MPC-based algorithm exclusively schedules
jobs currently inside the shop floor as well as those
anticipated to imminently arrive (i.e. within the prediction
horizon). This selective scheduling enables the algorithm
to effectively manage a limited number of jobs with each
invocation, as opposed to offline scheduling.

To further substantiate the validity of the approach,
Fig. 5 presents a robustness analysis conducted through
1000 simulations for the MPC-based scheduling, for each
value of �. Processing times were subjected to random,
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FIGURE 5. Robustness analysis of 1000 simulations for each magnitude of noise. Solutions present the same routing, different
feasible sequencing on machines, and random noises generated according to a uniform probability distribution. Blue points
represent the solutions obtained with the proposed algorithm in the case of worst delays.

FIGURE 6. Robustness analysis of 1000 simulations for each magnitude of noise. Solutions present the same routing, same
sequencing on machines, and random noises generated according to a uniform probability distribution. Blue points represent
the solutions obtained with the proposed algorithm in the case of worst delays.

uniformly distributed perturbations across the machinery, and
a feasible solution with the same routing (i.e., identical γ

values) was successfully determined. Similarly, as shown
in Fig. 6, the solutions share identical routing and machine
sequencing, differing only in the randomly generated
uniformly distributed disturbances that affect processing
times. The figures demonstrate that, across a wide range
of scenarios, the approach consistently delivers superior

performance. It strikes an optimal balance between the ideal
solution without delays and a robust solution when the
magnitude of delays is known for the given OSSP.

V. CONCLUSION
This research builds upon the foundation laid in [24] and
extends it by incorporatingMPC-based scheduling to address
an OSSP. Incorporating a prediction horizon enables dynamic

141994 VOLUME 11, 2023



A. Bozzi et al.: Dynamic MPC-Based Scheduling in a Smart Manufacturing System Problem

adaptation to new job arrivals, the events that trigger the algo-
rithm to solve the optimization problem again, while elim-
inating the requirement for an exhaustive understanding of
the entire planned system and real release times. Simulations
have showcased comparable performance, even in scenarios
characterized by highly disturbed processing times, that can
be attributed to the algorithm’s capacity to reschedule jobs
on machines, thereby maintaining effectiveness. This study
presents a solution that accommodates both the ideal case,
where processing times remain undisturbed, and scenarios
involving disrupted processing times. The proposed solution
offers adaptability suitable for a diverse range of potential
scenarios, achieved through the recalibration of optimal
scheduling each time a new job enters the system. This
iterative approach ensures the solution remains responsive
and flexible, capable of dynamically addressing changes as
they occur.

Furthermore, an evaluation of computational performance,
although slightly dependent on code skills and hardware
specifics, has been conducted. The results reveal expe-
dited computations, further reinforcing the proposition of
employing the algorithm for real-time schedulingwithin agile
manufacturing systems.

Future research will involve the practical validation of
the approach in real-world scenarios, with a comprehensive
performance analysis to identify potential time constraints
for the given set of problems. Moreover, future endeavors
will encompass the management of machinery faults and
subsequent job rescheduling along the production chain.
This extension of the approach to handle unforeseen
disruptions will allow for a more comprehensive evalua-
tion of its effectiveness within real-world manufacturing
environments.
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