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ABSTRACT Time Delays are inevitable in the feedback loops of multi-area load frequency control (LFC),
due to the deployment of an open communication network facilitating the transmission of signals from RTU
to the control center, and from the center to the grid. Due to the existence of time delays in a communication
network, the dynamic performance and stability of the LFC systems are adversely affected. It is necessary
to incorporate the effect of time delay in the controller design. This paper focuses on the effects of constant
time delays on the multi-area LFC system stability. The stability analysis of LFC subjected to time delays is
investigated through the utilization of asymmetric Lyapunov-Krasovskii functional (LKF). Compared with
symmetric LKF, asymmetric LKF provides relaxation on the condition that the matrix variables involved in
LKF formulation need not be symmetric or positive definite, which provides less the conservativeness on the
stability conditions. Further, to reduce the conservativeness, different tightly bounded integral inequalities
are utilized in the derivation of stability conditions. By employing asymmetric LKF, two delay-dependent
stability criteria are presented in the form of linear matrix inequalities (LMIs) for the systems under study
such that an accurate delay margin can be obtained. The LFC system with one and two areas is taken into
consideration with a PI controller to validate the efficacy of the proposed stability analysis. The PI controller
gains are tuned by analyzing the relationship between PI controller gains and delay margin to balance the
dynamic performance and the delay margin of the LFC system. Finally, simulation studies are conducted to
validate the efficacy of the suggested methodology.

INDEX TERMS Multi-area load frequency control, PI controller, constant time delay, asymmetric
Lyapunov-Krasovskii functional, integral inequalities.

I. INTRODUCTION
Load frequency control (LFC), also known as automatic
generation control (AGC), plays a vital role in power system
regulation. It is a mechanism that helps to manage the
balance between power production and load demand to
keep the system frequency uniform within acceptable limits.
In an interconnected power grid, changes in load demand
or generation can cause frequency deviations, and LFC
ensures that these deviations are minimized and the system
operates reliably [1], [2]. The LFC systems employ dedicated
communication lines to detect and transmit measurement and
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control signals. The signals are transmitted from RTUs to the
control center and the generated control signals are sent to the
generating unit. In general, conventional power grids utilize
a specialized dedicated communication channel to enable
quick measurements and transmission of control signals [3],
[4]. In such cases, transmission delay is negligible, often
non-existent. Due to the ongoing growth of modern power
systems and the increasing trend of power commercialization,
it is necessary to transfer pertinent data over the open
communication network. The time delays come into the
picture when an open communication channel is introduced
in the LFC system feedback loop [4]. The issue of time
delay commonly arises in the LFC system for several reasons.
Firstly, adapting a open communication network to transfer
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control signals. Secondly, the presence of a geographically
distributed power area further exacerbates the time delay
problem. Additionally, time delays can be induced by cyber-
attacks that affect the control signal. Lastly, the integration
of distributed generating units and non-conventional sources,
as discussed in [5], also introduces time delays in the LFC
system.

The time delays caused by communication lines were
commonly ignored while analyzing the stability of the LFC
system butwhen transmitting data and control signals through
dedicated networks, shorter time delays are considered.
According to the report, the communication delays observed
in LFC systems can vary between 5 and 15 seconds [6].
Communication delays in a system depend on several factors,
some of which include transmission media such as digital
microwave links, optical fiber cables, power transmission
lines, telephone communication lines, and satellite links [7],
distance, bandwidth, network congestion, communication
protocol, processing time, error handling, routing complexity,
system load, jitter, and latency variation. As a result, the
occurrence of communication delays may exhibit random
variation within a specific range. With the help of delay
margins, we can design an appropriate controller that will
maintain the system’s stability despite the unpredictability
of the delay range. There are multiple approaches available
for calculating delay margins to assess the sustainability of
delayed dynamical systems. The methods discussed can be
classified into two primary categories: (1) Frequency domain
or direct technique and (2) Time domain or indirect technique.
The primary objective of frequency domain methodologies is
to calculate all the purely imaginary roots of the characteristic
equation which indicates the marginally stability system.
Some of the studies like [8], the stability of generator
excitation control with delay is analyzed by the removal
of the exponential factor in the characteristic equation. The
Schur-Chon approach [9] is utilized to estimate the time
delay for AGC systems in [10]. The Rekasius substitution
technique is used in [11] to find the maximum delay
regarding the small signal stability of the power system.
These direct methods can be utilized to evaluate the accurate
delay margin by determining the eigenvalues of the total
system. The limitation of the above-stated method is that,
when the size of the system increases, it becomes time-
consuming due to the need for a detailed system model.
The implementation of this method is not suitable for
analyzing the stability of the system with time-varying
delays.

The Lyapunov stability theory and linear matrix inequal-
ity(LMIs) techniques are utilized in the indirect time domain
approach [12], [13], [14]. The primary objective of the
indirect method is to determine the maximum delay with less
conservative stability conditions for the given time delay sys-
tem. The conservativeness of the stability conditions depends
on the selection of Lyapunov-Krasovski functional [15], [16]
and tightly bound integral inequalities [17], [18]. In power
system field, delay-dependent stability analysis studies are
being implemented to evaluate the delay margins of the

wide-area damping controller [19] and LFC system [20].
In the literature, many researchers have presented several
methods for evaluating the stability and stabilization of
LFC systems that are subjected to time delays [18], [20],
[21], [22], [23], [24], [25], [26]. The study conducted
in [20] investigated the characteristics of both one area and
multi-area LFC system. The objective was to establish the
correlation between delay margins and the gain value of
the PI controller by utilizing the standard L-K functional.
By the findings presented in reference [20], Zhang et al. [21]
conducted a subsequent investigation into the relationship
between controller gains and time delays as well as the
interaction among various areas by utilizing an augmented
functional approach. In [18], a novel augmented function was
proposed to overcome the issue of stability in a PI controller-
based time-variant delay-dependent LFC system. In [22],
a triple integral term augmented LKF is utilized to analyze
the multi-area LFC system with time delays. The above-
mentioned works in LFC utilize different forms of Lyapunov-
Krasovskii functional but all the LKFs are common in one
point that is the matrices involved in the formation of LKF
are symmetric or positive definite in nature. In [27], it has
proven that it is not necessary to utilize all symmetric or
positive definite matrices in the LKF formulation to be
positive definiteness and it still provides less conservative
conditions compared with LKF with all symmetric matrices.
Inspired by the seminal work in [27], the current research
work, we utilized asymmetric LKF to analyze the stability
of the delay-dependent multi-area LFC system. To the best
of the knowledge of the authors, no literature exists on the
role of asymmetric LKF in the stability analysis of multi-area
LFC systems subjected to time delays.

The contribution of this study is to analyze the stability
of a multi-area LFC system when subjected to constant time
delay in the feedback loop. The criterion proposed in [28]
is applied in this study to analyze the stability of the LFC
system with constant time delays. The initial step is to
formulate the PI controller-based multi-area LFC system as
a time delay system to incorporate the time delays in the
feedback loop. An asymmetric LKF is utilized to derive
less conservation stability criteria for the formulated time
delay system. The conservativeness of the criterion is further
reduced by utilizing Jensen’s inequality [9], Wirtinger’s
integral inequality (WII) [17] and generalized free matrix-
based integral inequality (GFMBII). After determining the
delay-dependent stability criteria, the delay margins of the
LFC system are calculated. Further, an analysis is conducted
to examine the correlation between the delay margin and the
gains of the PI controller. The objectives of current research
work are as follows:

• Formulation of multi-area LFC system as a time delay
system to include the impact of time delays in the
feedback loop.

• Obtaining two stability criteria in the LMI form based
on asymmetric LKF. Compared with symmetric LKF,
asymmetric one provides a less conservative criterion by
eliminating the constraint that all the matrices included
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in the LKF formulation need to be positive definiteness
or symmetric.

• To cope with the cross-terms in the derivative of
an asymmetrical LKF, different tightly bound integral
inequalities are employed which also makes the solution
less conservative.

• To determine the maximum stability region for a given
delay, the correlation between delay margin and PI
controller gains are obtained using MATLAB/Simulink
software.

This paper is structured as follows. The one-area andmulti-
area LFC systems with constant time delays are described
in Section II. Section III presents the primary outcome of
the time delay system being examined. Section IV presents
a comprehensive case studies and subsequent discussion
along with simulation studies are executed to assess the
proficiency of the criteria used for validation purposes.
Section V provides the concluding section of the paper.

II. DYNAMIC MODEL OF LFC WITH CONSTANT
TIME-DELAY
The conventional model of the LFC system has been adapted
to analyze the system stability subjected to time delays.
In such a linear model, the communication time delay
is integrated into the control loop for both one-area and
multi-area LFC systems [1], [2], [20]. In this LFC system,
components like governors, non-reheat type turbines, and
generators, which are represented as first-order transfer
functions along with a PI controller, which is currently used
in industrial applications. The standard values of system
parameters are provided in appendix B.

A. ONE-AREA LFC SCHEME
Figure 1 illustrates a dynamical representation of a one-area
LFC system with time delay.

FIGURE 1. Dynamic model of one-area LFC system.

From Figure 1, the state equations of a one-area LFC
system can be described as follows:

1̇f =
1
M
1Pm −

1
M
1Pd −

D
M
1f

˙1Pm =
1
Tt
1Pv −

1
Tt
1Pm

˙1Pv = −
1

R Tgov
1f −

1
Tgov

1Pv

˙
∫
ACE = β 1f

(1)

The state space representation of the system in Figure 1 is
presented as follows: [1], [2]:

˙́x(t) = Áx́(t) + B́ú(t) + F́ώ(t)

ý(t) = Ć x́(t) (2)

where x́(t), ý(t), ú(t), and ώ(t) are the vectors of state vari-
ables, inputs, outputs, and external disturbances, respectively.
The variables of state, output, and disturbance vectors are
considered as follows:

x́(t) =

[
1f 1Pm 1Pv

∫
ACE

]T
ý(t) =

[
ACE

∫
ACE

]T
ώ(t) = 1Pd

where, 1f , 1Pm, 1Pv, 1Pd ,ACE , and
∫
ACE are the

deviation in frequency, change in mechanical power output,
change in position of the steam valve, change in load, area
control error and its integral, respectively.

The state matrix (Á), input matrix (B́), output matrix (Ć),
and disturbance matrix (F́) for the one-area LFC is presented
as follows:

Á =



−
D
M

1
M 0 0

0 −
1
Tt

1
Tt

0

−
1

RTgov
0 −

1
Tgov

0

β 0 0 0


B́ =

[
0 0 1

Tgov
0
]T

Ć =

[
β 0 0 0
0 0 0 1

]
F́ =

[
−

1
M 0 0 0

]T
where, Tgov, Tt , M , D, and R represent the time constants
of the governor, the time constant of the turbine, moment
of inertia, damping coefficient of the generator, system
regulation parameter, respectively. As the one-area LFC
system does not include any tie-lines, their will not be any
power exchange in this region. Based on that ACE is given
by:

ACE = β1f (3)

β =
1
R + D. (β > 0)

where, β is termed as frequency bias factor.
In Figure 1, an exponential block e−sτ is used to represent

the delay that occurs in the communication network, where τ
represents the constant time delay and it satisfies 0 ≤ τ ≤ τd .
A PI controller is designed for the LFC control system by
utilizing ACE as the input signal whose corresponding output
signal is shown in equation (4)

ú(t) = −KP ACE − KI

∫
ACE (4)
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where, K = [KP KI ]. KP and KI denote the proportional and
integral gains, respectively.

Due to the communication delay e−sτ , the state equations
of the one-area LFC system can be rewritten as follows:

1ḟ (t) =
1
M
1Pm(t) −

1
M
1Pd (t) −

D
M
1f (t)

1Ṗm(t) =
1
Tt
1Pv −

1
Tt
1Pm

1Ṗv(t)=−
1
Tgov

KPβ1f (t − τ )−
1
Tgov

KI

∫
ACE(t − τ )

−
1

RTgov
1f (t) −

1
Tgov

1Pv(t)

˙
∫
ACE = β 1f

Based on above equation, the state space representation of
the closed-loop LFC system is presented as follows:

˙́x = Áx́(t) + Ád x́(t − τ ) + F́1Pd (t)
ý(t) = Ć x́(t)
x́(t) = φ (t), t ∈ [−τd , 0]

(5)

where, x́(t)∈ Rn represents the state vector, Á∈ Rn×n and
Ád∈ Rn×n represents the system matrices without and with
delay in which Ád = B́K , B́ ∈ Rn×1 is input matrix
and K∈ R1×n represents the gains of controller. φ(t) is a
continuous vector valuedwith initial function of t ∈ [−τd , 0].
The system matrices Áx́(t) and Ád x́(t − τ ) are represented as
follows:

Á =



−
D
M

1
M 0 0

0 −
1
Tt

1
Tt

0

−
1

RTgov
0 −

1
Tgov

0

β 0 0 0



Ád =



0 0 0 0

0 0 0 0

−
KPβ
Tgov

0 0 −
KPβ
Tgov

0 0 0 0


F́ =

[
−

1
M 0 0 0

]T
Ć =

[
β 0 0 0
0 0 0 1

]

B. MULTI-AREA LFC SCHEME
The dynamic model of a power system with multiple areas
with an ‘n’ number of control zones is shown in Figure 2. For
simplicity, it is assumed that all generators in a given control
area are considered as a single generating unit in a multi-
area LFC system. A proportional-integral (PI) controller is
implemented in the model as the load frequency controller.

The state-space model of the multi-area LFC system is
represented as follows [1], [2].:

FIGURE 2. Multi area LFC model.

˙́x(t) = Áx́(t) + B́ú(t) + F́ώ(t)

ý(t) = Ć x́(t) (6)

where,

x́i(t) =
[
1fi 1Pmi 1Pvi

∫
ACEi 1Ptie−i

]T
ýi(t) =

[
ACEi

∫
ACEi

]T
x́(t)=

[
x́1(t) x́2(t) . . . x́n(t)

]T
ý(t)=

[
ý1(t) ý2(t) . . . ýn(t)

]T
ú(t) =

[
ú1(t) ú2(t) . . . ún(t)

]T
ώ(t) =

[
1Pd1(t) 1Pd2(t) . . . 1Pdn(t)

]T
Á =


Á11 Á12 . . . Á1n

Á11 Á12 . . .
...

...
...

. . .
...

Án1 Án2 . . . Ánn


B́ = diag

[
B́1 B́2 . . . B́n

]
Ć = diag

[
Ć1 Ć2 . . . Ćn

]
F́ = diag

[
F́1 F́2 . . . F́n

]
B́i =

[
0 0 1

Tgi
0 0

]T
F́i =

[
−

1
M 0 0 0 0

]T
Ći =

[
βi 0 0 0 1
0 0 0 1 0

]

Áii =


−

Di
Mi

1
Mi

0 0 −
1
Mi

0 −
1
Tti

1
Tti

0 0
−

1
RiTgovi

0 −
1

Tgovi
0 0

βi 0 0 0 1
2π

∑n
j=1, j̸=i Tij 0 0 0 0



Áij =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

−2πTij 0 0 0 0

 ;Tij = Tji.

The parameter Tij represents the tie-line synchronization
coefficient between the ith and jth control areas of the LFC
system.
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The ACE in a multi-area LFC system is given as follows:

ACEi = βi1fi +1Ptie−i (7)

where, Ptie−i represents the net exchange of power between
the ith control area. A PI controller-based multi-area LFC
system with time delays is presented as follows:

˙́x(t) = Áx́(t) +

n∑
i=1

Ádix́(t − τi) + F́1Pd (t) (8)

where,

Ádi = diag
[
0 . . . −B́iKiĆi . . . 0

]
Ki =

[
KPi KIi

]
K = diag

[
K1 K2 . . . Kn

]
The multi-area LFC system incorporates several different

time delays. To reduce the computational burden in the
analysis process, multiple delays are approximated as a single
time delay. The closed-loopmulti-area LFC system (8) can be
rewritten as follows:

˙́x(t) = Áx́(t) + Ád x́(t − τ ) + F́ώ(t) (9)

where, Ád =
∑n

i=1 Ádi. In a multi-area LFC system, the (9)
must be satisfied for the net power exchange over the tie-lines
between each control area as follows:

n∑
i=1

1Ptie−i = 0 (10)

III. METHODOLOGY FOR STABILITY CRITERION
This section provides the derivation of less conservative
stability criterion by utilizing an asymmetric Lyapunov-
Krasovskii Functional (LKF) presented in [28] to determine
the delay margin τd . The different combinations of PI
controller gains (such as Proportional (KP) and Integral (KI )
gains) of the one-area and multi-area LFC systems are chosen
to determine the delay margin. The system is said to be
asymptotic stable when the delay is less than the delaymargin
τd and the system is said to be unstable when the delay is
greater than τd . The utilization of asymmetric LKF rather
than symmetric LKF reduces the conservativeness of the
stability conditions by relaxing the symmetric or positive
definite conditions on the matrix variables involved in the LK
functional.

Let us consider a time delay system.

˙́x(t) = Áx́(t) + Ád x́(t − τ )

x́(t) = θ (t),∀ t ∈ [−τ, 0] (11)

where x́(t) ∈ Rn represents the state, τ > 0 is the constant
time delay by satisfying 0 < τ < τd , where τd is the upper
value of the time delay, and θ (t) implies the initial condition.
Here, we will introduce the following lemmas which are
useful to derive the less conservative stability conditions
by handling the cross terms that arise in the derivative of
asymmetric LKF.

Lemma 1 [9]: Given K > 0 for any continuous function
Ψ (ω), the following inequality is feasible in [u1, u2] → Rn

(u1, u2)
∫ u2

u1
ψT (ω) K ψ (ω) dω

≥

[∫ u2

u1
ψT (ω) dω

]
K

[∫ u2

u1
ψ (ω) dω

]
(12)

Lemma 2 [17]: Given K > 0, for any continuous function
ψ(ω), the following inequality is feasible in [u1, u2] → Rn,∫ u2

u1
ψT (η) K ψ (η) dη ≥

1
(u2 − u1)

[∫ u2

u1
ψT (η) dη

]
K

[∫ u2

u1
ψ (η) dη

]
+

3
(u2 − u1)

αT K α (13)

where,

α =

∫ u2

u1
ψ (η) dη −

2
(u2 − u1)

∫ u2

u1

∫ u1

σ

ψ (η) dη dσ.

Lemma 3 [29]: Let N ∈ N, χ ∈ Rn, and x be a continuous
and differential function: [α, β] → Rn. For any matrices S ∈

Rn×n > 0,L ∈ R(N+1)n×n, the following inequality holds:

−

∫ β

α

ẋT (θ )Sẋ(θ )dθ ≤ 2ζ TN3
T
NLχ + (β − α)χTLT S̃Lχ

(14)

where

ζN =


[
xT (β) xT (α)

]T
,

N = 0,[
xT (β) xT (α) 1

β−α
2T

0 · · ·
1

β−α
2T
N−1

]T
,

N > 0,

2k =

∫ β

α

Fk (θ )x(θ )dθ

Fk (θ ) = (−1)k
k∑
i=0

[
(−1)i

(
k
i

)(
k + i
i

)] (
θ − α

β − α

)i

,

3N =

[
5T
N (0) 5

T
N (1) · · · 5T

N (N )
]T
,

5N (k) =

{
[I − I ] , N = 0,[

I (−1)k+1I ϑ0
Nk I · · · ϑN−1

Nk I
]
, N ≥ 1,

ϑ
j
Nk =

{
(2j+ 1)((−1)k+j − 1), j ≤ k,

0, j > k,

S̃ = diag
[
1
S
,

1
3S
, · · ·

1
(2N + 1)S

]
.

The delay-dependent stability conditions of one-area and
multi-area LFC system are derived based on asymmetric LKF
combined with Wirtinger’s based inequality and Jensen’s
inequality in Theorem 1.
Theorem 1: Given τd > 0, the system (11) is asymptoti-

cally stable if there exist matrices M̂ = M̂T
=

[
M̂11 M̂12

∗ M̂22

]
>

0, N̂ =
[
N̂1 N̂2

]
with N̂1 = N̂1

T
> 0, Ŝ1 > 0, and
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Ŝ2 > 0 such that,

N̂ =

[
N̂1 + Ŝ 1

1
2 N̂ 2

∗ Ŝ2

]
> 0 (15)

1 =


τdM̂11 + τ 2d Ŝ1 112 0 0

∗ 122 123 − 3τ−1
d N̂2

∗ ∗ 133 6τ−2
d N̂2 − 6τ−1

d Ŝ2
∗ ∗ ∗ 12τ−2

d Ŝ2

 > 0

(16)

δ =

δ11 δ12 δ13
∗ δ11 δ23
∗ ∗ δ33

 < 0 (17)

where,

112 = τdM̂12 + τd Ŝ1,

122 = τdM̂22 + 4N̂1 + 4Ŝ1,

123 = −6τ−1
d N̂1 + 2N̂2 − 6τ−1

d Ŝ1

133 = −12τ−2
d N̂1 − 3τ−1

d He(N̂2) + 12τ−2
d Ŝ1 + 4Ŝ2

δ11 = He(M̂11A+ M̂12) + N̂1 − 4Ŝ1 + τ 2dA
T Ŝ1A+ τ 2d Ŝ2

δ12 = M̂11Ad − M̂12 − 2Ŝ1 + τ 2dA
T Ŝ1Ad

δ13 = AT M̂12 − M̂22 +
1
2
N̂T
2 + 6τ−1

d Ŝ1

δ22 = −N̂1 − 4Ŝ1 + τ 2dA
T
d Ŝ1Ad

δ23 = ATd M̂12 − M̂22 −
1
2
N̂2 + 6τ−1

d Ŝ1

δ33 = −12τ−2
d Ŝ1 − Ŝ2

Proof: Choose the asymmetric LKF candidate as

Ut = Ut−1 + Ut−2 + Ut−3 (18)

where

Ut−1 = ρT (t)M̂ρ(t), ρ(t) =

[
xT (t)

∫ t

t−τd
xT (ω) dω

]T
Ut−2 =

∫ t

t−τd
xT (σ )N̂

[
xT (σ )

∫ t

σ

xT (ω)dω
]T
dσ

Ut−3 = τd

∫ t

t−τd

∫ t

σ

[
ẋT (ω)Ŝ1ẋ(ω) + xT (ω)Ŝ2x(ω)

]
dωdσ

By Lemma 1, Ŝ1 > 0 and Ŝ2 > 0, so we obtain

τd

∫ t

σ

ẋT (ω)Ŝ1ẋ(ω)dω ≥ (x(t) − x(σ ))T Ŝ1(x(t) − x(σ )),

τd

∫ t

σ

xT (ω)Ŝ2x(ω)dω≥

(∫ t

σ

xT (ω)dω)
)
Ŝ2

(∫ t

σ

x(ω)dω
)

Thus, we can infer

Ut−2 + Ut−3

=

∫ t

t−τd

[
xT (σ )N̂

[
xT (σ )

∫ t

σ

xT (ω)dω
]T

+τd

∫ t

σ

[
ẋT (ω)Ŝ1ẋ(ω)+ xT (ω)Ŝ2x(ω)

]
dω

]
dσ

≥

∫ t

t−τd

 x(t)
x(σ )∫ t

σ
x(ω)dω

TŜ1 −Ŝ1 0
∗ N̂1 + Ŝ1 1

2 N̂2

∗ ∗ Ŝ2


 x(t)

x(σ )∫ t
σ
x(ω)dω

 dσ (19)

According to (15) and Lemma 2, based on (19) and (16)
for (17) we deduce

Ut ≥Ut−1+

∫ t

t−τd

Ŝ1 − Ŝ1 0
∗ N̂1 + Ŝ1 1

2 N̂2

∗ ∗ Ŝ2

  x(t)
x(σ )∫ t

σ
x(ω)dω

 dσ

≥
1
τd
ηT1η > 0.

where
ηT =

[
x(t),

∫ t
t−τd

x(ω)dω,
∫ t
t−τd

∫ t
σ
x(ω)dω,∫ t

t−τd

∫ t
δ

∫ t
σ
x(ω)dωdσdδ

]
.

Time derivative of Ut yields

U̇t = U̇t−1 + U̇t−2 + U̇t−3

= 2ρ̇T (t)M̂ρ(t) + xT (t)N̂1x(t) − xT (t − τd )N̂[
xT (t − τd )

∫ t

t−τd
xT (ω)dω

]T
+

∫ t

t−τd
xT (ω)dωN̂2x(t)

+ τ 2d ẋ
T (t)Ŝ1ẋ(t) − τd

∫ t

t−τd
ẋT (ω)Ŝ1ẋ(ω)dω

+ τ 2d x
T (t)Ŝ2x(t) − τd

∫ t

t−τd
xT (ω)Ŝ2x(ω)dω (20)

Now utilizing Lemma 2 and Lemma 1 to bound

−τd

∫ t

t−τd
ẋT (ω)Ŝ1ẋ(ω)dω

and

−τd

∫ t

t−τd
xT (ω)Ŝ2x(ω)dω

in (20) respectively. According to 17, we have U̇t ≤ χT δχ <

0, where χT =

[
xT (t) xT (t − τd )

∫ t
t−τd

xT (ω)dω
]
, the proof

is completed. □
Remark 1: Theorem 1, mainly emphasizes on stability

conditions of the system. By solving these stability conditions,
we can determine maximum delay (delay margin) for which
system remains stable. In order to achieve maximum delay
margin less conservative stability conditions are derived by
using an asymmetric LKF combined with Wintinger-based
inequality and Jensen’s inequality.
Remark 2: The less conservative delay-dependent stabil-

ity conditions are obtained by 1) the choice of LKF and 2) the
selection of integral inequality to estimate the derivative of
the chosen LKF. To reduce the conservativeness in the choice
of LKF, an augmented LKF, and a delay-partitioning LKF are
mainly employed. Thematrices involved in the construction of
Lyapunov-Krasovskii Functional are usually positive definite
or symmetric ones. In [27], a new technique is developed for
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the linear time-delay system stability by relaxing the positive
definiteness conditions for the matrices in the LKF and it
was ensured that constructed LKF is still symmetric with
asymmetric matrix variables in it. In this work, Theorem 1
was developed based on asymmetric LKF (18) for the stability
of a multi-area load frequency control system with constant
time delays for the first time in this field. The asymmetric
LKF in (18) can be reduced to become symmetric by setting
N̂2 = 0 in Theorem 1. To estimate the derivative of
asymmetric LKF, well-known integral inequalities (such as
Jensen’s inequality (Lemma 1) and Wirtinger’s inequality
(Lemma 2)) are utilized.
Remark 3: The utilization of Jensen’s inequality,

Wirtinger’s integer inequality (WII), and Bessel-Legendre
inequality [30] to bound the quadratic terms of the integral∫ t
t−τd

ẋT (ω)Ŝ1ẋ(ω)dω, some reciprocally convex terms
appears inevitably. Several reciprocally convex inequali-
ties [31], [32] are proposed to handle reciprocally convex
terms, but the conservativeness cannot be eliminated by these
inequalities. However, these convex terms can be avoided
in the derivation of stability conditions by constraining the
quadratic term of the integral using the free-matrix-based
integral inequality [33]. In the following Theorem, we utilized
a generalized free matrix-based inequality (GFMBII) [29]
which includes some existing inequalities as special cases to
handle the integral term in the derivative of the considered
asymmetric LKF in (18).
The delay-dependent less conservative stability conditions

are obtained for one-area and multi-area LFC systems by
utilizing asymmetric LKF combined with a generalized free
matrix-based integral inequality in the following Theorem.
Theorem 2: Given τd > 0, the system (11) is asymptoti-

cally stable if there exist matrices M̃ = M̃T
=

[
M̃11 M̃12

∗ M̃22

]
>

0, Ñ =
[
Ñ1 Ñ2

]
with Ñ1 = Ñ1

T
> 0, S̃1 > 0, S̃2 > 0, and

any matrix Lij (i = 1, 2, 3, and j = 1, 2) such that,

Ñ =

[
Ñ1 + S̃ 1

1
2 Ñ 2

∗ S̃2

]
> 0 (21)

1=


τdM̃11 + τ 2d S̃1 112 0 0

∗ 122 123 −3τ−1
d Ñ2

∗ ∗ 133 6τ−2
d Ñ2 − 6τ−1

d S̃2
∗ ∗ ∗ 12τ−2

d S̃2

>0

(22)

δ =


δ11 δ12 δ13 L11 L12
∗ δ11 δ23 L21 L22
∗ ∗ δ33

1
τd
L31 1

τd
L32

∗ ∗ ∗ S1 0
∗ ∗ ∗ ∗ 3S1

 < 0 (23)

where,

112 = τdM̃12 + τd S̃1,

122 = τdM̃22 + 4Ñ1 + 4S̃1,

123 = −6τ−1
d Ñ1 + 2Ñ2 − 6τ−1

d S̃1

133 = −12τ−2
d Ñ1 − 3τ−1

d He(Ñ2) + 12τ−2
d S̃1 + 4S̃2

δ11 = He(M̃11A+ M̃12) + Ñ1 +
1
τd
He(L11)

+
1
τd
He(L12) + τ 2dA

T S̃1A+ τ 2d S̃2

δ12 = M̃11Ad − M̃12 +
1
τd
L21 +

1
τd
L22 −

1
τd
L11

+
1
τd
L12 + τ 2dA

T S̃1Ad

δ13 = AT M̃12 − M̃22 +
1
2
ÑT
2 +

1

τ 2d
L31 +

1

τ 2d
L32 −

2

τ 2d
L12

δ22 = −Ñ1 −
1
τd
He(L21) +

1
τd
He(L22) + τ 2dA

T
d S̃1Ad

δ23 = ATd M̃12 − M̃22 −
1
2
Ñ2 −

1

τ 2d
L31 +

1

τ 2d
L32 −

2

τ 2d
L22

δ33 = −
2

τ 3d

He(L32) − S̃2

Proof: By utilizing a generalized free matrix-based
integral inequality presented in Lemma 3 with N = 1 to han-
dle the quadratic term of the integral

∫ t
t−τd

ẋT (ω)Ŝ1ẋ(ω)dω,
and employing the derivation process similar to that of
Theorem 1, one can readily obtain Theorem 2. □
Remark 4: Many advanced approaches have been pro-

posed to deal with the time-varying delay system [34],
[35], [36] and to investigate the problem of load frequency
control [37], [38]. However, the LKF considered in the above
references are symmetric ones. In this work, an asymmetric
LKF method is combined with integral inequalities to
reduce the conservativeness of stability conditions. When
this method is further extended to study the LFC system
with time-varying delays, an improved inequalities with
parameter dependent slack variables [39] will be used rather
than constant matrices which can be considered as future
work. Further, we believe that the concept of asymmetric
matrix variables utilization in the construction of LKF (i.e.,
asymmetric LKF) could provide less conservativeness by
combining the latest integral inequalities.

IV. CASE STUDIES
In this section, we examined the feasibility of the proposed
stability analysis on amulti-area LFC system. The parameters
of the LFC systems are presented in Appendix B. The upper
bound of the constant time delay (i.e., delay margin) of
two case studies is calculated by solving the aforementioned
stability criteria in the MATLAB/Simulink environment
using the LMI toolbox. For a constant time delay (µ = 0),
τd are evaluated for different combinations of PI controller
gains. Further, simulation-based studies are conducted to
investigate the effects of time delays on the LFC system.

A. ONE-AREA LFC SCHEME
1) THEORETICAL RESULTS FOR THE DELAY MARGIN
The delay margin is determined through the utilization of
various sets of gains for the controller. The gain of KI in
the PI controller is initially examined, as KP has typically
a small magnitude i.e., KP = 0 in a actual LFC system.
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The outcomes of the τd about the various values of KI at
(µ = 0) are presented in Table 1 and Figure 3. The calculated
delay margin by theorem 1 is compared with [20] for delay
derivative µ = 0.

TABLE 1. τd versus KI with µ = 0 (One area).

FIGURE 3. Delay margin τd ∝ KI (One-area LFC Scheme, µ=0.)

From Table 1, we can observe that there is a considerable
decrease in the delay margin when the values of KI change
from 0.05 to 1.00. It can be noticed that, the delay margin
obtained by Theorem 1 is larger when compared to the
delay margin of [20]. This shows that, the proposed stability
criterion provides more stability to the system. Adding on
to it, it can be noticed that when Theorem 2 was used,
we obtained more delay margin compared to Theorem 1
and [20].
For different combination of KP and KI gains in Theo-

rem 1, the corresponding τd values are shown in Table 2 and
figure 4. It can be noticed that, for low gains of KP and KI we
obtained larger delay margin where as a smaller delay margin
was obtained for higher gains of KP and KI . When KP was
constant, the delay margin decreased for an increase in KI .
When KI value is less than 0.1, the delay margin increased
up to KP ≤ 0.1 and later it decreased. Similarly, when KI
value is between 0.15 to 0.6, the delay margin increased until
KP ≤ 0.2 and later it decreased. Finally when KI value
is 1, the delay margin increased up to KP ≤ 0.4 and later
it decreased. This pattern of increasing and decreasing of τd
for various values of KP and KI is useful to determines the
maximum delay margin. A similar analysis was done with
Theorem 2,whose corresponding values are shown in Table 3.
From the Table, it can be inferred that, the delay margin was

high for lower values of KP and KI where as low for high
values of KP and KI .

TABLE 2. τd versus KI and KP with µ = 0 (One area).

FIGURE 4. Delay margin τd (Theorem 1) ∝ KI (One-area LFC Scheme,
µ=0.)

TABLE 3. τd versus KI and KP with µ = 0 (One area).

2) SIMULATION-BASED VERIFICATION OF THEORETICAL
DELAY MARGINS
To validate the precision of the theoretical delay margin
results obtained by Theorem 1, time-domain simulations are
carried out in MATLAB/Simulink. The PI controller gains
(KP = 0.0,KI = 0.4 and KP = 0.2,KI = 0.4)
combinations are considered to evaluate the efficacy of the
stability criterion and the correctness of the delay margin.
The oscillations are triggered in the system by applying a
positive load disturbance 1Pd with magnitude 0.1 p.u. at
time t = 10 seconds. The frequency deviation 1f and
ACE responses of the one area LFC system are presented in
Figure 5 and 6 under various time delays with KP = 0.0 and
KI = 0.4, respectively. From the figures, we can observe that
the system becomesmarginally stable by producing sustained
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oscillations for constant delay τ = 3.3774s which matches
with delay margin τd = 3.3774s obtained in Table 2, and
larger than the delay margin in [20]. When τ (= 3.0s) < τd ,
the system becomes stable and the responses converge to the
equilibrium point asymptotically. When τ (= 3.6s) > τd , the
system becomes unstable and the responses diverge away to
the equilibrium point.

FIGURE 5. Frequency response curve (one area) (KP=0, KI =0.4 with
µ = 0.)

FIGURE 6. ACE response curve of one area. (KP =0, KI =0.4 with µ = 0.)

For the gains KP = 0.2 and KI = 0.4, the frequency
deviation 1f and ACE responses of one-area LFC system
under different delays are shown in Figure 7 and 8,
respectively. From the figures, we can observe that the
system becomes marginally stable by producing sustained
oscillations for constant delay τ = 3.7653s which matches
with delay margin τd = 3.7653s obtained in Table 2, and
larger than the delay margin in [20]. Figures also illustrate the
stable and unstable operation of the system with delays less
than (τ = 3.5s) and more than (τ = 3.9s) the delay margin.

B. TWO-AREA LFC SYSTEM
1) THEORETICAL RESULTS FOR THE DELAY MARGIN
In this section, the delay margin τd of the two-area LFC
system subjected to constant time delays i.e., (µ = 0) is
determined by using Theorem 1 and Theorem 2. Initially,
the variation of τd was obtained for different values of KI
keeping KP(= 0) constant is presented in Table 4. The
calculated delay margins are compared with Table 4 from the
reference [20]. The result shows similar delaymargin patterns
in both two-area and one-area LFC systems. The value of τd
decreases as the gain value KI increases which is shown in

FIGURE 7. Frequency response curve (One area) (KP=0.2, KI =0.4 with
µ = 0.)

FIGURE 8. ACE response curve (One area) (KP=0.2, KI =0.4 with µ = 0.)

Figure 9. Theorem 2 provides a larger delaymargin compared
to Theorem 1 and reference [20].

TABLE 4. τd versus KI with µ = 0 (Two area).

FIGURE 9. Delay margin curve (one-area) (τd ∝ KI , µ = 0).
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TABLE 5. τd versus KI and KP with µ = 0 (Two area).

FIGURE 10. Delay margin pattern (Two areas) based on Theorem 1 (τd ∝

KP , KI with µ=0).

For different values of KP and KI , τd is calculated based
on Theorem 2 and presented in Table 5 and Figure 10.
The impacts of controller gains closely resemble those
observed in the one-area LFC system. For instance, when
the value of KI is increased by keeping the value of KP
constant, it leads to a decrease in τd . In the case of fixed
KI , the influence of KP on the delay margin exhibited
two distinct behaviours. Firstly, when KI value ranged
between 0.05 to 0.1, the τd value increased when KP varied
from 0 to 0.1 and later it decreased. Secondly, for a given
KI ≥ 0.15, the delay margin increased up to KP ≥

0.2 and after that it decreased. Similarly, the delay margin is
determined for different values of PI controller gains using
Theorem 2 and the values presented in Table 6. From the
values it can be observed that, the pattern of increasing and
decreasing of delay margin using various PI values are same
as Table 3.

2) SIMULATION-BASED VERIFICATION OF THEORETICAL
DELAY MARGINS
To examine the correctness of delay margins obtained by
Theorem 1, two distinct sets of PI controller gains, i.e., (KP =

0, KI = 0.4) and (KP = 0.2, KI = 0.4) are considered in
the simulation. From Table 5, the delay margins associated
with this particular set of gains are τd = 3.2311 and
τd =3.6136 respectively. To verify this, it is assumed that
the identical positive load disturbance occurred at time t=
10 seconds, with magnitude 1Pd1 = 1Pd2 = 0.1 p.u.
The response curve of frequency variations and ACE of two
area LFC systems with KP = 0, KI = 0.4 are shown in
Figure 11 and 12. Based on the response, it can be concluded
that the two-area LFC system achieves a moderate level of
stability at a delay margin τd = 3.2311s and stable when

TABLE 6. τd versus KI and KP with µ = 0 (Two area).

FIGURE 11. Frequency response curve (Two area) (KP = 0, KI = 0.4 with
µ = 0.)

FIGURE 12. ACE response curve (Two area) (KP = 0, KI = 0.4 with µ = 0.)

FIGURE 13. Frequency response curve (Two area) (KP = 0.2, KI = 0.4 with
µ = 0.)

τ < τd and becomes unstable when the τ > τd . The
Figure 13 and Figure 14 shows the frequency deviation and
ACE response curves of the system with gains KP = 0.2 and
KI = 0.4. From the responses, we can observe that the
two area LFC system becomes marginally stable at a delay
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margin τd = 3.6136 s and becomes stable and unstable if
the time delay is less than or greater than the τd , respectively.
It is seen that the theoretical delay margin findings exhibit a
high degree of agreement with the outcomes acquired through
simulations, hence validating the accuracy and efficacy of the
suggested methodology.

FIGURE 14. ACE response curve (Two area) (KP = 0.2, KI = 0.4 with
µ = 0.)

V. CONCLUSION
The paper analyzes the stability of multi-area LFC systems
which are influenced by constant time delay caused by
the communication networks. A multi-area LFC system
with a PI controller has been designed as a time delay
system with a constant time delay in the feedback loop.
After that, an asymmetric LKF is considered to handle
the time delays. By utilizing asymmetric LKF, the reduced
conservativeness delay-dependent stability conditions are
formulated in LMI form. The conservativeness is further
reduced by utilizing different tight bound integral inequalities
to handle the integral terms in the derivative of asymmetric
LKF. The following observations and remarks are obtained
from the theoretical and simulation studies:

1) The PI controller gains play a crucial role in determin-
ing the delay margins.

2) When KP value was maintained constant, the value of
τd increased with decreasing value of KI .

3) When KI was constant, the value of τd increased first
and then decrease with an increasing values of KP.

4) Similar τd values are obtained form both theoretical
and simulations which indicates that the proposed
methods can be used in the estimation of delay margins
in LFC systems.

5) The results obtained provide a solid evidence that,
the proposed methodology is superior to the existing
methods in achieving less conservative conditions.

Above findings can be utilised to to appropriately determine
the controller gains to ensure stability and achieve the
intended damping performance of the multi-area LFC system
even in the presence of communication delays. The LKF
constructed by the asymmetric matrix variables will provide
less conservative conditions compared to the symmetric one.
Further this work with latest integral inequalities can be
extended for renewable sources integrated LFC and electric
vehicle subjected to time-varying delays

APPENDIX A
NOMENCLATURE
Acronym

ACE Area Control Error.
LFC Load Frequency Control.
RTU Remote Terminal Unit.
LMI Linear Matrix Inequalities.
LKF Lyapunov-Krasovskii Functional.
WII Wirtinger’s based integral inequalities.
GFMBII Generalized free matrix based integral

inequalities.

Symbols

τd Time delay.
ACEi Area control error.
KPi Proportional gain.
KIi Integral gain.
βi Frequency bias coefficients.
Ri System regulation parameters.
Mi Moment of Inertia of generator.
Di Damping Coefficient of generator.
Tgovi Time-constant of Governor in second.
Tti Time-constant of Turbine in second.
1fi Frequency deviancy.
1Ptie−i Deviancy in Tie-line power.
1Pvi Change in position of steam valve.
1Pmi Turbine generator output.
1Pdi Change in load.

APPENDIX B
SYSTEM PARAMETER
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