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ABSTRACT In this article, a variance-constrained H∞ state estimation issue is dealt with for a type
of nonlinear time-varying complex networks affected by dynamical bias under binary encoding schemes
(BESs). The BESs are used during signal transmission in view of the security of binary bit strings. The
stochastic bias is involved using a dynamical equation, and stochastic nonlinearity is characterized by
statistical property. The purpose of this article is to construct a finite-horizon state estimator, such that the
estimation error dynamics satisfies performance requirements of both the prescribed upper bound constraint
on the error variance and the H∞ noise rejection. By employing the matrix inequality approach and random
analysis, sufficient conditions are established for the presence of the state estimator. Subsequently, the
gain parameters of the constructed estimator are acquired by solving some recursive matrix inequalities.
Ultimately, the correctness of the developed estimation algorithm is testified via a numerical simulation
example.

INDEX TERMS Time-varying complex networks, binary encoding schemes, variance-constrained state
estimation, dynamical bias, stochastic nonlinearities.

I. INTRODUCTION
As we all know, the complex networks (CNs) consist
of numerous nodes, which are coupled with each other.
Therefore, it is necessary to think over both the dynamics of
each node and the coupling configuration between them in
the analysis of CNs [1], [2], [3], [4], [5], [6]. CNs include
all kinds of natural or artificial networks, such as computer
networks, gene networks, transportation networks, biological
networks, and social networks. Due to the successful appli-
cation of CNs in a variety of real-world systems, they have
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attracted high investigation attention with numerous valuable
results [7]. Up to now, a substantial number of literature has
been concernedwith the dynamic analysis of CNs [8]. Among
the current research results, the state estimation (SE) issues
have received significant attention due to that the network
state cannot usually be measured directly from the network
output, especially for large-scale networks [9], [10], [11],
[12], [13], [14]. For instance, the SE issue has been studied
in [9] for a type of random CNs with encoding-decoding
strategies and stochastic coupling parameters. On the basis
of the Round-Robin protocol, the H∞ SE problem has been
tackled in [10] for a kind of nonlinear singularly perturbed
CNs. The effect of the coupling parameter has been fully
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considered in [12] on the SE performance, where the topology
has been described by a series of time-varying parameters.
A zonotopes-based method has been proposed and used in
[13] to address the set-membership SE issue for a type of CNs
based on the event-triggered scheme.

In the engineering-oriented SE problems, it is very
common for upper bound constraint on the error variance to
be used to express performance requirements [15], [16], [17],
[18]. The variance-constrained SE aims to construct the state
estimator within the acceptance range of estimation error,
to be specific, it ensures that the variance of the estimation
error meets a predetermined upper bound constraint. In com-
parisonwith the optimal estimation under the constraint of the
minimum error variance, the variance-constrained SE is more
flexible and closer to the reality due to that it no longer seeks
optimality (i.e., minimumvariance). Variance-constrained SE
is able to not only impose an upper bound on the error
variance, but also leave space for realizing other performance
indices due to the flexibility of its design [19]. Accordingly,
the problem of variance-constrained state estimator design
has attracted a great deal of research interest [17], [20], [21],
[22], [23]. More specifically, in [22], the multiobjective (i.e.,
variance-constrained H∞) control issue has been considered
for discrete time-varying systems with stochastic nonlinear-
ity. The variance-constrained SE issue has been investigated
in [21] for a kind of networked multi-rate systems, and sensor
failures have been considered that are caused by network
issues and measurement quantization. Recently, a variance-
constrained fusion estimator has been constructed in [23]
for cyber-physical systems to alleviate the negative effect
caused by system nonlinearity, stochastic communication
protocol scheduling, and denial-of-service attacks. In view of
the available literature, the problem of variance-constrained
SE for nonlinear time-varying CNs, despite its practical
relevance, has not been studied adequately and still needs
more attention.

In practice, engineering systems are commonly subject to
different types of disturbances caused possibly by unmodeled
dynamics or external excitations, which should be properly
handled [11], [24], [25], [26], [27], [28], [29]. Stochastic bias
is considered as a special kind of unknown disturbance under
which the modeling and analysis of the system becomes
more difficult and complex. Therefore, significant emphasis
has been placed on resolving the simultaneous estimation
issue of system state and dynamic bias. For example, the
SE issues have been tackled in [30] and [31] subject to
stochastic bias. The stochastic bias has been characterized
by a dynamical equation as a special type of unknown
input, which has been handled via utilizing the augmentation
method. In [32], a distributed recursive filter has been
designed for a specific type of sensor network that is affected
by stochastic bias and packet disorders. Nevertheless, up to
now, the estimation problem for CNs with stochastic bias has
not gained enough attention, which inspires the work of this
paper.

Compared with analog signals, using digital signals
in data transmission has the advantages of strong anti-
interference ability, high communication reliability, resource-
saving, long transmission distance, and easy encryption [33],
[34], [35], [36], [37], [38], [39]. As the typical digital
signal transmission strategy, the binary encoding schemes
(BESs) have been widely used for their unique advantages
in improving communication efficiency and enhancing the
security of data transmission, by which digital data are
represented by using symbols 0 and 1 [36], [40], [41], [42].
As a result of the presence of channel noise in the binary
symmetric channel (BSC), it is inevitable that bit errors occur
during the transmission of binary bit strings (BBSs), i.e., the
BBSs may flip randomly with a crossover probability. This
situation would cause the output signal of the decoder to have
some deviations from the original measurement output of the
sensor, and then the estimation performance may decrease
inevitably. Therefore, how to mitigate the impact of bit
errors is the key to guaranteeing the estimation performance.
In recent years, there has been an increasing focus on studying
the influence of random bit errors on estimation performance
[43], [44], [45]. However, the BESs related topic has not been
studied further yet such as variance-constrained SE for CNs,
which requires more attention.

Motivated by the preceding discussion, this article aims
to investigate variance-constrained H∞ state estimation
issue for a type of time-varying CNs with dynamical bias
and stochastic nonlinearities under the BESs. The major
challenges to be tackled are that: 1) how to solve the effect
of random bit error on the design of the state estimator for
complex networks? and 2) how to derive the state estimator
such that, under the BESs, the estimation error dynamics
fulfills the performance requirements of both the prescribed
upper bound constraint on the error variance and the H∞

noise rejection? Highlights of this article are emphasized
as below: 1) the system under study is more comprehensive
and closer to practical cases, which includes random bias,
stochastic nonlinearity, and time-varying parameters; 2) the
finite-horizon variance-constrained H∞ SE issue is firstly
addressed concerning nonlinear stochastic CNs under BESs;
and 3) the estimator gains are acquired through computing a
group of recursive matrix inequalities (RMIs), which is thus
suitable for real-time operation.

The remainder content of this paper is arranged in the fol-
lowing parts. In Section II, mathematical models of complex
network and estimator, the problem to be tackled and perfor-
mance requirements have been presented. In Section III, the
variance-constrainedH∞ performance analysis and estimator
design have been carried on. In Section IV, a simulation
example has been conducted to testify the correctness of
the developed variance-constrained H∞ estimation method.
In Section V, conclusions have been summarized about the
work of this paper.
Notation:The notation used in this article is fairly standard.

∥ · ∥ denotes the standard norm symbol. Rn is the space of
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n-dimensional Euclidean space. For a matrix B, B−1, BT ,
tr{B} and B > 0 (B ≥ 0) illustrate, respectively, the inverse
of B, the transpose of B, the trace of B and B is positive-
definite (positive semi-definite). The symbol ⊗ expresses the
Kronecker product. I(m) represents the identity matrix with
the dimensionm×m.V {v} andE {v} denote, respectively, the
variance and the expectation of the random variable/vector
v. diag{. . .} indicates a block-diagonal matrix. 1p means
[ 1 1 · · · 1︸ ︷︷ ︸

p

]T .

II. PROBLEM FORMULATION AND PRELIMINARIES
A. THE MODEL OF COMPLEX NETWORK
Taking account of a kind of nonlinear time-varying CNs over
a time horizon [0,N ]:

xi(♭ + 1) = Ai(♭)xi(♭) +

U∑
j=1

aij0xj(♭) + Bi(♭)bi(♭)

+Ei(♭)g(♭, xi(♭)) + Fi(♭)wi(♭)
zi(♭) = Li(♭)xi(♭) i = 1, 2, . . . ,U

(1)

where xi(♭) ∈ Rlx denotes the system state and zi(♭) ∈

Rlz denotes the output signal; g(♭, xi(♭)) ∈ Rlx is a
stochastic nonlinear function; wi(♭) ∈ Rlw is a bounded
random process noise of the ith node, which is a mutually
uncorrelated zero-mean sequence with E

{
wi(♭)wTi (♭)

}
= w2

0
(w0 > 0); Ai(♭), Bi(♭), Ei(♭), Fi(♭) and Li(♭) represent
the given system matrices with suitable dimensions; 0 =

diag{α1, α2, . . . , αlx } ≥ 0 is the inner coupling matrix;
3 = [aij] ∈ RU×U is the outer coupling strength matrix.
If a connection exists between nodes i and j (i ̸= j), aij > 0;
otherwise, aij = 0. Generally, 3 satisfies 3 = 3T and
U∑
j=1

aij =

U∑
j=1

aji = 0.

bi(♭) ∈ Rlb is the unknown random bias, whose dynamic
model is described as follows:

bi(♭ + 1) = Gi(♭)bi(♭) + Hi(♭)βi(♭) (2)

where βi(♭) indicates the bounded stochastic noise sequence
satisfying E

{
βi(♭)

}
= 0 and V

{
βi(♭)

}
= β2

0 with β0 > 0.
Gi(♭) andHi(♭) are known matrices with suitable dimensions.

The stochastic nonlinear function g(♭, xi(♭)) ∈ Rlx with the
initial condition g(♭, 0) = 0 satisfies:

E
{
g(♭, xi(♭))|xi(♭)

}
= 0

E
{
g(♭, xi(♭))gT (j, xi(j))|xi(♭)

}
= 0, ♭ ̸= j

E
{
g(♭, xi(♭))gT (♭, xi(♭))|xi(♭)

}
=

q∑
r=1

πr (♭)πT
r (♭)E

{
xTi (♭)5r (♭)xi(♭)

}
≜

q∑
r=1

2r (♭)E
{
xTi (♭)5r (♭)xi(♭)

}
(3)

where q is a given positive integer, πr (♭) is a prescribed
vector, and 2r (♭) and 5r (♭)(r = 1, 2, . . . , q) are given
matrices of suitable sizes.

The expression of the measurement signal is provided as
follows:

yi(♭) = Ci(♭)xi(♭) + Di(♭)vi(♭) (4)

where yi(♭) ∈ Rly is the measurement signal of node
i (i = 1, 2, . . . ,U ); Ci(♭) and Di(♭) are given matrices
with compatible sizes; and vi(♭) ∈ Rlv represents the
bounded stochastic noise, characterized as a zero-mean
random sequence withE

{
vi(♭)vTi (♭)

}
= v20 and v0 is a positive

scalar.
Denoting x̄i(♭) ≜

[
xTi (♭) b

T
i (♭)

]T and w̄i(♭) ≜[
wTi (♭) βTi (♭)

]T , according to (1) and (2), the following
augmented system can be obtained:

x̄i(♭ + 1) = Āi(♭)x̄i(♭) +

U∑
j=1

aij0̄x̄j(♭)

+ Ēi(♭)g(♭, IAx̄i(♭)) + F̄i(♭)w̄i(♭) (5)

yi(♭) = C̄i(♭)x̄i(♭) + Di(♭)vi(♭) (6)

zi(♭) = L̄i(♭)x̄i(♭) (7)

where

Āi(♭) ≜

[
Ai(♭) Bi(♭)
0 Gi(♭)

]
, Ēi(♭) ≜

[
Ei(♭)
0

]
,

IA ≜
[
I(lx ) 0

]
, 0̄ ≜ diag{0, 0}, C̄i(♭) ≜

[
Ci(♭) 0

]
,

F̄i(♭) ≜ diag{Fi(♭),Hi(♭)}, L̄i(♭) ≜
[
Li(♭) 0

]
.

B. THE ADOPTION OF BINARY ENCODING SCHEMES
In this article, the BESs are adopted in the transmission of
measurement signal (yi(♭), i = 1, 2, . . . ,U ) from the sensor
to the state estimator. Assuming the scalar signal yi(♭) has
a range [−σ, σ ], where σ > 0. By utilizing the encoder,
the signal yi(♭) is transformed into a BBS of length M .
Consequently, we have 2M points denoted by

P ≜ {τ(1), τ(2), . . . , τ(2M )}.

These points divide the whole range into 2M −1 segments.
Each segment has a uniform interval length ϱ = τ(ρ+1)−τ(ρ),
for ρ = 1, 2, . . . , 2M−1. Additionally, it can be observed that

ϱ =
2σ

2M − 1
. (8)

Then, a probabilistic quantizer is utilized to obtain the
quantized output signal y⃗i(♭).

The quantized signals are first encoded by the encoder
as BBSs and then transmitted through the BSC. During
transmission, the BBSs may flip randomly with a probability
p (crossover probability) due to the presence of channel noise.
After recovering the received binary strings, the decoder
forwards the decoded signal to the estimator.
Lemma 1 ([43]): Represent ζi(♭) ≜ y⃗i(♭) − yi(♭) as the

quantization error. ζi(♭) is a stochastic variable satisfying

E
{
ζi(♭)

}
= 0, V

{
ζi(♭)

}
≜ ζ 2

0 ≤
ϱ2

4
.
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Lemma 2 ([43]): Denote y̆i(♭) as the output signal of
decoder and hi(♭) ≜ y̆i(♭) − y⃗i(♭) as the equivalent noise
reflecting bit error. The stochastic term hi(♭) is characterized
by the following expectation and variance:

E
{
hi(♭)

}
= 0, V

{
hi(♭)

}
≜ h20 =

4p(1 − p)
(
22M − 1

)
σ 2

3(1 − 2p)2
(
2M − 1

)2 .

According to the analyses above, the signal received by the
estimator can be represented as follows:

y̆i(♭) = yi(♭) + ζi(♭) + hi(♭) (9)

Remark 1: Probabilistic quantization is a stochastic
method where the expectation of the quantization error is
zero [43]. In this article, the quantization error is a bounded
random variable with zero expectation and an upper bound
on the variance (ϱ2

4 ).
Remark 2: Equation (9) expresses the received signal of

the estimator using the output signal yi(♭), quantization error
ζi(♭), and equivalence noise reflecting bit error hi(♭), which
greatly facilitates the construction of the estimator.
Remark 3: In this study, the occurrence probability of

bit errors (crossover probability) can be regarded as the bit
error rate, which is calculated as the ratio of the number of
erroneous bits to the total number of transmitted bits. Bit
errors can cause measurement deviations, which may lead
to a reduction in communication accuracy and quality, and
ultimately a degradation in estimation performance.

C. THE MODEL CONSTRUCTION OF STATE ESTIMATOR
By virtue of the decoder output signal y̆i(♭), we construct the
time-varying estimator with the following model:

x̂i(♭ + 1) = Āi(♭)x̂i(♭) +

U∑
j=1

aij0̄x̂j(♭) + Si(♭)

×(y̆i(♭) − C̄i(♭)x̂i(♭))
ẑi(♭) = L̄i(♭)x̂i(♭), i = 1, 2, . . . ,U

(10)

where x̂i(♭) and ẑi(♭) represent the estimates of x̄i(♭) and zi(♭),
respectively. Si(♭) (i = 1, 2, . . . ,U ) describes the unknown
gain parameters to be determined.

Defining ei(♭) ≜ x̄i(♭) − x̂i(♭), z̃i(♭) ≜ zi(♭) − ẑi(♭),
the following description is obtained of the estimation error
dynamics:

ei(♭ + 1) = (Āi(♭) − Si(♭)C̄i(♭))ei(♭) +

U∑
j=1

aij0̄ej(♭)

+Ēi(♭)g(♭, IAx̄i(♭)) + F̄i(♭)w̄i(♭)
−Si(♭)ζi(♭) − Si(♭)hi(♭) − Si(♭)Di(♭)vi(♭)

z̃i(♭) = L̄i(♭)ei(♭), i = 1, 2, . . . ,U .

(11)

Define

ℶ(♭) ≜
[
ℶT
1 (♭) ℶT

2 (♭) · · · ℶT
U (♭)

]T
,

(ℶ = x̄, e, z̃, ζ, h, v, w̄),

ḡ(♭, IBx̄(♭)) ≜
[
gT (♭, IAx̄1(♭)) gT (♭, IAx̄2(♭)) · · ·

gT (♭, IAx̄U (♭))
]T

,

IB ≜ I(U ) ⊗ IA,

ℸ(♭) ≜ diag{ℸ1(♭), ℸ2(♭), . . . , ℸU (♭)},

(ℸ = Ā, Ē, F̄,D, C̄, S, L̄).

We derive the following compact form from (5) and (11):

x̄(♭ + 1) = (Ā(♭) + 3 ⊗ 0̄)x̄(♭) + Ē(♭)ḡ(♭, IBx̄(♭))

+ F̄(♭)w̄(♭), (12)

and
e(♭ + 1) =

(
Ā(♭) + 3 ⊗ 0̄ − S(♭)C̄(♭)

)
e(♭)

+Ē(♭)ḡ
(
♭, IBx̄(♭)

)
+ F̄(♭)w̄(♭)

−S(♭)ζ (♭) − S(♭)h(♭) − S(♭)D(♭)v(♭),
z̃(♭) = L̄(♭)e(♭).

(13)

Considering (3), we can yield the statistical characteristics
of ḡ

(
♭, IBx̄(♭)) as follows:

E
{
ḡ
(
♭, IBx̄(♭)

)
|IBx̄(♭)

}
= 0 (14)

E
{
ḡ
(
♭, IBx̄(♭)

)
ḡT

(
j, IBx̄(j)

)
|IBx̄(♭)

}
= 0, ♭ ̸= j (15)

E
{
ḡ
(
♭, IBx̄(♭)

)
ḡT

(
♭, IBx̄(♭)

)
|IBx̄(♭)

}
=

q∑
r=1

(1U ⊗ πr (♭))(1U ⊗ πr (♭))TE
{
(IBx̄(♭))T

× (I(U ) ⊗ 5r (♭))IBx̄(♭)
}

=

q∑
r=1

(1U1TU ) ⊗ 2r (♭)E
{
(IBx̄(♭))T (I(U ) ⊗ 5r (♭))IBx̄(♭)

}
.

(16)

Letting η(♭) ≜
[
x̄T (♭) eT (♭)

]T , the augmented estimation
error dynamics is described on the basis of (12)-(13) as
follows:

η(♭ + 1) = Ā(♭)η(♭) + F̄(♭)w̄(♭) + Ē(♭)ḡ(♭, IBx̄(♭))
−S(♭)ζ (♭) − S(♭)h(♭) − S(♭)D(♭)v(♭)

z̃(♭) = L̄(♭)η(♭)
(17)

where

Ā(♭) ≜ diag{Ā(♭) + 3 ⊗ 0̄, Ā(♭) + 3 ⊗ 0̄ − S(♭)C̄(♭)},

S(♭) ≜

[
0
S(♭)

]
, F̄(♭) ≜

[
F̄(♭)
F̄(♭)

]
, L̄(♭) ≜

[
0 L̄(♭)

]
,

Ē(♭) ≜

[
Ē(♭)
Ē(♭)

]
.

The definition of the state covariance matrix for the
dynamical system (17) is as follows:

L(♭) ≜ E{η(♭)ηT (♭)} = E

{[
x̄(♭)
e(♭)

] [
x̄(♭)
e(♭)

]T}
. (18)

142592 VOLUME 11, 2023



W. Li et al.: Finite-Horizon Variance-Constrained H∞ Estimation

The objective of this paper is to develop the time-varying
state estimator (10) for the CN (1). Specifically, our
focus is on determining the gain parameters Si(♭) (i =

1, 2, . . . ,U , ♭ = 1, 2, . . . ,N − 1) that meet both of the
following requirements simultaneously:

• R1 : known the noise rejection level γ > 0, the matrices
�w > 0, �ζ > 0, �h > 0, �v > 0 and �η > 0, and
the initial state η(0), the estimation error z̃(♭) satisfies the
performance of H∞ noise rejection as follow:

J1 ≜ E


N−1∑
♭=0

[
(∥z̃(♭)∥)2 − γ 2(∥w̄(♭)∥2�w

+ ∥ϑ(♭)∥2)
]

− γ 2E{ηT (0)�ηη(0)} < 0 (∀w̄(♭), ϑ(♭) ̸= 0)
(19)

where ∥w̄(♭)∥2�w
≜ w̄T (♭)�ww̄(♭), ∥ϑ(♭)∥2 ≜

ζ T (♭)�ζ ζ (♭) + hT (♭)�hh(♭) + vT (♭)�vv(♭).
• R2 : the constraint for the estimation error covariance is
specified as follows:

J2 ≜ E
{
e(♭)eT (♭)

}
≤ 4(♭) (20)

where {4(♭)}1≤♭≤N+1 denotes a sequence of provided
matrices that determine the appropriate level of estima-
tion accuracy according to practical needs.

Remark 4: The variance-constrained estimator designed
in this paper offers greater flexibility compared to the optimal
estimate of the minimum error covariance, which satisfies a
predetermined upper bound constraint on the error variance.
Moreover, because the variance constraint offers a degree of
freedom, other performance requirements can be achieved
simultaneously (e.g., robustness [46], [47], the desired H∞

noise rejection level, passivity constraint, stability, and
H2-performance).

III. MAIN RESULTS
A. ANALYSIS OF H∞ PERFORMANCE
Lemma 3: For a matrix P > 0, and vectors M T and N T ,

the inequality:

M TPN + N TPM ≤ M TPM + N TPN

holds.
Now, we initiate the analysis of the H∞ performance

and establish the sufficient conditions for achieving
the performance indices (19) and (20) of the designed
estimator (10).
Theorem 1: Let the scalar γ > 0 and estimator gain Si(♭)

be known. For the matrices �ζ > 0, �h > 0, �v >

0, �w > 0 and �η > 0, the performance requirement of
H∞ noise rejection denoted in (19) is fulfilled with w̄(♭) ̸= 0,
if there exist families of matrices {P(♭)}1≤♭≤N+1 > 0, such
that the following recursive matrix inequality holds:

8(♭) = diag{81(♭), 82(♭), 83(♭), 84(♭), 85(♭)} < 0 (21)

with the initial condition

P(0) ≤ γ 2�η

where

81(♭) ≜ ĀT (♭)P(♭ + 1)Ā(♭)

− P(♭) + L̄T (♭)L̄(♭) +

q∑
r=1

5̂r (♭)

× tr[ĒT (♭)P(♭ + 1)Ē(♭)(1U1TU ) ⊗ 2r (♭)],

82(♭) ≜ F̄T (♭)P(♭ + 1)F̄(♭) − γ 2�w,

83(♭) ≜ 3ST (♭)P(♭ + 1)S(♭) − γ 2�ζ ,

84(♭) ≜ 3ST (♭)P(♭ + 1)S(♭) − γ 2�h,

85(♭) ≜ 3DT (♭)ST (♭)P(♭ + 1)S(♭)D(v) − γ 2�v,

5̂r (♭) ≜ diag{5̃r (♭), 0}, 5̃r (♭) ≜ I(U ) ⊗ diag{5r (♭), 0}.

Proof: Denote

J (♭) ≜ ηT (♭ + 1)P(♭ + 1)η(♭ + 1) − ηT (♭)P(♭)η(♭). (22)

Based on (3) and (14), we can acquire that

E {ḡ(♭, IBx̄(♭))|IBx̄(♭)} = 0. (23)

By employing Lemma 3, it follows from (17) that:

E {J (♭)}

= E
{
ηT (♭)ĀT (♭)P(♭ + 1)Ā(♭)η(♭) − ηT (♭)P(♭)η(♭)

+ w̄T (♭)F̄T (♭)P(♭ + 1)F̄(♭)w̄(♭)

+ ḡT (♭, IBx̄(♭))ĒT (♭)P(♭ + 1)Ē(♭)ḡ(♭, IBx̄(♭))
+ ζ T (♭)ST (♭)P(♭ + 1)S(♭)ζ (♭)
+ hT (♭)ST (♭)P(♭ + 1)S(♭)h(♭)
+ vT (♭)DT (♭)ST (♭)P(♭ + 1)S(♭)D(♭)v(♭)
+ ζ T (♭)ST (♭)P(♭ + 1)S(♭)h(♭)
+ ζ T (♭)ST (♭)P(♭ + 1)S(♭)(♭)D(♭)v(♭)
+ hT (♭)ST (♭)P(♭ + 1)S(♭)ζ (♭)
+ hT (♭)ST (♭)P(♭ + 1)S(♭)D(♭)v(♭)
+ vT (♭)DT (♭)ST (♭)P(♭ + 1)S(♭)ζ (♭)
+ vT (♭)DT (♭)ST (♭)P(♭ + 1)S(♭)h(♭)

}
≤ E

{
ηT (♭)ĀT (♭)P(♭ + 1)Ā(♭)η(♭) − ηT (♭)P(♭)η(♭)

+ w̄T (♭)F̄T (♭)P(♭ + 1)F̄(♭)w̄(♭)

+ ḡT (♭, IBx̄(♭))ĒT (♭)P(♭ + 1)Ē(♭)ḡ(♭, IBx̄(♭))
+ 3ζ T (♭)ST (♭)P(♭ + 1)S(♭)ζ (♭)
+ 3hT (♭)ST (♭)P(♭ + 1)S(♭)h(♭)
+ 3vT (♭)DT (♭)ST (♭)P(♭ + 1)S(♭)D(♭)v(♭)

}
. (24)

Employing the properties of matrix trace and Kronecker
product, and considering (16), we have

E
{
ḡT (♭, IBx̄(♭))ĒT (♭)P(♭ + 1)Ē(♭)ḡ(♭, IBx̄(♭))

}
= E

{
tr
[
ĒT (♭)P(♭ + 1)Ē(♭)ḡ(♭, IBx̄(♭))ḡT (♭, IBx̄(♭))

]}
= E

{
tr
[
ĒT (♭)P(♭ + 1)Ē(♭)

q∑
r=1

(1U ⊗ πr (♭))(1U ⊗ πr (♭))T
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× (IBx̄(♭))T (I(U ) ⊗ 5r (♭))IBx̄(♭)
]}

= E
{
tr
[
ĒT (♭)P(♭ + 1)Ē(♭)

q∑
r=1

(1U1TU ) ⊗ (πr (♭)πT
r (♭))

× (IBx̄(♭))T (I(U ) ⊗ 5r (♭))IBx̄(♭)
]}

= E
{
tr
[
ĒT (♭)P(♭ + 1)Ē(♭)

q∑
r=1

(1U1TU ) ⊗ 2r (♭)

× (IBx̄(♭))T (I(U ) ⊗ 5r (♭))IBx̄(♭)
]}

= E
{
tr
[
ĒT (♭)P(♭ + 1)Ē(♭)

q∑
r=1

(1U1TU ) ⊗ 2r (♭)

× ηT (♭)ITC I
T
B (I(U ) ⊗ 5r (♭))IBICη(♭)

]}
= E

{
tr
[
ĒT (♭)P(♭ + 1)Ē(♭)

q∑
r=1

(1U1TU ) ⊗ 2r (♭)ηT (♭)

× ITC (I(U ) ⊗ ITA )(I(U ) ⊗ 5r (♭))(I(U ) ⊗ IA)ICη(♭)
]}

= E
{
tr
[
ĒT (♭)P(♭ + 1)Ē(♭)

q∑
r=1

(1U1TU ) ⊗ 2r (♭)

× ηT (♭)5̂r (♭)η(♭)
]}

= E
{ q∑
r=1

tr
[
ĒT (♭)P(♭ + 1)Ē(♭)(1U1TU ) ⊗ 2r (♭)

]
× ηT (♭)5̂r (♭)η(♭)

}
= E

{
ηT (♭)

q∑
r=1

5̂r (♭)

× tr
[
ĒT (♭)P(♭ + 1)Ē(♭)(1U1TU ) ⊗ 2r (♭)

]
η(♭)

}
(25)

where IC ≜
[
I(U (lx+lb)) 0

]
.

Adding the zero term z̃T (♭)̃z(♭) − γ 2
∥ϑ(♭)∥2 −

γ 2w̄T (♭)�ww̄(♭)− z̃T (♭)̃z(♭)+ γ 2
∥ϑ(♭)∥2 + γ 2w̄T (♭)�ww̄(♭)

to E
{
J (♭)

}
, the following inequality is obtained:

E
{
J (♭)

}
≤ E

{
ℵ
T (♭)8(♭)ℵ(♭) − z̃T (♭)̃z(♭)

+ γ 2
∥ϑ(♭)∥2 + γ 2w̄T (♭)�ww̄(♭)

}
(26)

where ℵ(♭) ≜
[
ηT (♭) w̄T (♭) ζ T (♭) hT (♭) vT (♭)

]T . Noticing
(26), it is deduced that

N−1∑
♭=0

E {J (♭)}

= E
{
ηT (N )P(N )η(N ) − ηT (0)P(0)η(0)

}

≤

N−1∑
♭=0

E
{
ℵ
T (♭)8(♭)ℵ(♭) −

(̃
zT (♭)̃z(♭)

− γ 2
∥ϑ(♭)∥2 − γ 2w̄T (♭)�ww̄(♭)

)}
. (27)

Consequently, the performance index in (19) can be rephrased
in the following form:

J1 ≤ E


N−1∑
♭=0

ℵ
T (♭)8(♭)ℵ(♭)

+ηT (0)
(
P(0) − γ 2�η

)
η(0)

− E
{
ηT (N )P(N )η(N )

}
. (28)

According to the initial condition P(0) ≤ γ 2�η and the
condition 8(♭) < 0 and P(N ) > 0, it follows from (28) that
J1 < 0, and the proof of this theorem is complete.

B. ANALYSIS OF VARIANCE-CONSTRAINED
PERFORMANCE
In this subsection, our purpose is to investigate the
variance-constrained performance of estimator (10) for
CN (1).
Theorem 2: Consider the CN (1), and let the gain Si(♭) be

known. We can acquire L(♭) ≤ R(♭) (∀♭ ∈ 1, 2, · · · ,N +

1), if there exist families of matrices {R(♭)}1≤♭≤N+1 >

0 meeting the following RMI:

R(♭ + 1) ≥ 9(R(♭)) (29)

with the initial condition

R(0) = L(0)

where

9(R(♭)) ≜ Ā(♭)R(♭)ĀT (♭) + F̄(♭)W F̄T (♭)

+ 3S(♭)D(♭)V0DT (♭)ST (♭) + 3S(♭)H0ST (♭)

+ 3S(♭)Z0ST (♭) +

q∑
r=1

Ē(♭)(1U1TU ) ⊗ 2r (♭)

× ĒT (♭)tr[5̂r (♭)R(♭)],

W ≜ I(U ) ⊗ diag{w2
0, β

2
0 }, V0 ≜ I(U ) ⊗ v20,

H0 ≜ I(U ) ⊗ h20, Z0 ≜ I(U ) ⊗
ϱ2

4
.

Proof: According to (17), the Lyapunov-type equation
that governs the evolution of covariance L(♭) can be
expressed in the following form:

L(♭ + 1) = E
{
η(♭ + 1)ηT (♭ + 1)

}
≤ E

{
Ā(♭)η(♭)ηT (♭)ĀT (♭) + F̄(♭)w̄(♭)w̄T (♭)F̄T (♭)

+ Ē(♭)ḡ(♭, IBx̄(♭))ḡT (♭, IBx̄(♭))ĒT (♭)
+ 3S(♭)ζ (♭)ζ T (♭)ST (♭)
+ 3S(♭)h(♭)hT (♭)ST (♭)
+ 3S(♭)D(♭)v(♭)vT (♭)DT (♭)ST (♭)

}
. (30)
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In terms of (16), one has

E
{
Ē(♭)ḡ(♭, IBx̄(♭))ḡT (♭, IBx̄(♭))ĒT (♭)

}
= Ē(♭)

q∑
r=1

(1U1TU ) ⊗ 2r (♭)E
{
(IBx̄(♭))T (I(U ) ⊗ 5r (♭))

× IBx̄(♭)
}
ĒT (♭)

=

q∑
r=1

Ē(♭)(1U1TU ) ⊗ 2r (♭)ĒT (♭) · tr[5̂r (♭)L(♭)]. (31)

We can obtain

L(♭ + 1) ≤ Ā(♭)L(♭)ĀT (♭) + F̄(♭)W F̄T (♭)

+ 3S(♭)D(♭)V0DT (♭)ST (♭) + 3S(♭)H0ST (♭)

+ 3S(♭)Z0ST (♭) +

q∑
r=1

Ē(♭)(1U1TU ) ⊗ 2r (♭)

× ĒT (♭)tr[5̂r (♭)L(♭)]
= 9(L(♭)). (32)

Now we begin to conduct the proof using the mathematical
induction method. Clearly, we yield R(0) ≥ L(0) according
to the initial condition easily. Setting R(♭) ≥ L(♭), we can
obtain the inequalities as indicated below:

R(♭ + 1) ≥ 9(R(♭)) ≥ 9(L(♭)) ≥ L(♭ + 1), (33)

the proof is now complete.
We can get Corollary 1 easily from Theorem 2.
Corollary 1: The following inequality holds:

E
{
e(♭)eT (♭)

}
=

[
0 I(U (lx+lb))

]
L(♭)

[
0 I(U (lx+lb))

]T
≤

[
0 I(U (lx+lb))

]
R(♭)

[
0 I(U (lx+lb))

]T
, ∀♭.

To sum up the previous analysis, we present Theorem 3,
which takes both performance requirements (H∞ noise
rejection (19) and the prescribed upper bound on the SE error
variance (20)) into account under a unified framework by
utilizing the linear matrix inequality (LMI) approach.
Theorem 3: Considering the CN (1), for a constant γ >

0, matrices �w > 0, �ζ > 0, �h > 0, �v >

0, �η > 0, and error variance upper bounds {4(♭) >

0}1≤♭≤N+1, the variance-constrainedH∞ state estimator (10)
exists if families of matrices {P(♭)}1≤♭≤N+1 > 0, and
{R(♭)}1≤♭≤N+1 > 0, and scalars {℘r (♭)}0≤♭≤N > 0 (r =

1, 2, . . . q) exist fulfilling the following RMIs:[
−℘r (♭) ∗

Ē(♭)(1U ⊗ πr (♭)) −P̄(♭ + 1)

]
< 0, (34)[

ϒ1(♭) ∗

ϒ2(♭) ϒ3(♭ + 1)

]
< 0, (35)[

−R(♭ + 1) ∗

ϒ5(♭) ϒ6(♭)

]
< 0, (36)

R2(♭ + 1) − 4(♭ + 1) < 0, (37)

with the initial conditions
P(0) ≤ γ 2�η

R(0) = L(0)
E

{
e(0)eT (0)

}
= R2(0) ≤ 4(0)

(38)

and parameter update

P(♭ + 1) ≜ P̄−1(♭ + 1) (39)

where

ϒ1(♭) ≜diag
{
ϒ11(♭),−γ 2�w,−γ 2�ζ ,−γ 2�h, −γ 2�v

}
,

ϒ11(♭) ≜
q∑

r=1

5̂r (♭)℘r (♭) − P(♭),

ϒ2(♭) ≜



Ā(♭) 0 0 0 0
L̄(♭) 0 0 0 0
0 F̄(♭) 0 0 0
0 0

√
3S(♭) 0 0

0 0 0
√
3S(♭) 0

0 0 0 0 ϒ265(♭)

 ,

Ā(♭) ≜ Ǎ1(♭) + Ǎ2(♭), ϒ265(♭) ≜
√
3S(♭)D(♭),

Ǎ1(♭) ≜ diag{Ā(♭) + 3 ⊗ 0̄, Ā(♭) + 3 ⊗ 0̄},

Ǎ2(♭) ≜ diag{0, −S(♭)C̄(♭)},

ϒ3(♭ + 1) ≜ diag
{

− P̄(♭ + 1), −I(lzU ), −P̄(♭ + 1),

− P̄(♭ + 1), −P̄(♭ + 1), −P̄(♭ + 1)
}
,

ϒ5(♭) ≜



R(♭)ĀT (♭)
F̄T (♭)

√
3DT (♭)ST (♭)
√
3ST (♭)

√
3ST (♭)
ϒ56(♭)

 ,

ϒ6(♭) ≜ diag
{

−R(♭), −W−1, −V−1
0 , −H−1

0 ,

− Z −1
0 , −ϒ66(♭)

}
,

V0 ≜ v20, H0 ≜ h20, Z0 ≜
ϱ2

4
,

ϒ56(♭) ≜ [Ē(♭)(1U ⊗ π1(♭)), . . . , Ē(♭)(1U ⊗ πq(♭))]T ,

ϒ66(♭) ≜ diag
{
ϕ1(♭), ϕ2(♭), . . . , ϕq(♭)

}
,

ϕr (♭) ≜ tr[5̂r (♭)R(♭)]−1, (r = 1, 2, . . . , q)

Proof: Through utilizing the Schur Complement
Lemma, (34) holds if and only if the following inequality
holds:

(1U ⊗ πr (♭))T ĒT (♭)P(♭ + 1)Ē(♭)(1U ⊗ πr (♭))

< ℘r (♭), (r = 1, 2, . . . , q). (40)

In addition, with the property of matrix trace, we can rephrase
(40) as

tr[(1U ⊗ πr (♭))T ĒT (♭)P(♭ + 1)Ē(♭)(1U ⊗ πr (♭))]

= tr[ĒT (♭)P(♭ + 1)Ē(♭)(1U ⊗ πr (♭))(1U ⊗ πr (♭))T ]

= tr[ĒT (♭)P(♭ + 1)Ē(♭)(1U1TU ) ⊗ (πr (♭)πT
r (♭))]
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= tr[ĒT (♭)P(♭ + 1)Ē(♭)(1U1TU ) ⊗ 2r (♭)]

< tr[℘r (♭)]

= ℘r (♭), (r = 1, 2, . . . , q). (41)

By virtue of Schur Complement Lemma, we yield that (35)
holds as long as the following inequality holds:

8(♭) = diag{8̄1(♭), 82(♭), 83(♭), 84(♭), 85(♭)} < 0 (42)

where

8̄1(♭) ≜ ĀT (♭)P(♭ + 1)Ā(♭) + L̄T (♭)L̄(♭) − P(♭)

+

q∑
r=1

5̂r (♭)℘r (♭).

On the basis of (41) and (42), (21) can be derived easily.
Hence, if (34) and (35) hold, then (21) holds.
By the same method, we can easily acquire that (29) holds

if and only if (36) holds. Thus, on the basis of Theorems 1-2
and Corollary 1, it can be concluded that theH∞ performance
constraint defined in (19) is satisfied, in the meantime,
the estimation error of CN (1) achieves E

{
e(♭)eT (♭)

}
≤[

0 I(U (lx+lb))
]
R(♭)

[
0 I(U (lx+lb))

]T .
Let the variableR(♭) be decomposed in the following form:

R(♭) =

[
R1(♭) ∗

R3(♭) R2(♭)

]
. (43)

From (37) and (43), it is evident that

E
{
e(♭)eT (♭)

}
≤

[
0 I(U (lx+lb))

]
R(♭)

[
0 I(U (lx+lb))

]T
= R2(♭)

< 4(♭), (∀♭ ∈
{
0, 1, . . . ,N + 1

}
), (44)

which completes this proof.
In accordance with Theorem 3, we can sum up the H∞

variance-constrained estimator design (HVED) algorithm as
follows.
Remark 5: Until now, the major work of this paper is

accomplished and, comparing to existing literature, the
distinctive merits of the main results in this paper are
highlighted as follows: 1) both the system state and the
dynamical bias are simultaneously estimated for a class
of nonlinear time-varying complex networks under BESs;
2) performance analysis is achieved of both the H∞ noise
rejection and the prescribed upper bound constraint on the
SE error variance by resorting to stochastic analysis and
matrix inequalities technique; and 3) sufficient conditions are
brought forward for the existence of the variance-constrained
H∞ state estimator, based on which the estimator gains are
readily computed.

IV. ILLUSTRATIVE EXAMPLE
In this section, the correctness of the developed estimation
algorithm is testified via a numerical simulation example.

Consider the time-varying CN (1) (U = 3), whose
parameters are given as follows [16]:

α1 = α2 = 0.5, w2
0 = v20 = β2

0 = 0.04, M = 6,

Algorithm 1 HVED
Step 1. Given the H∞ performance index γ , the matrices

�w > 0, �v > 0, �ζ > 0 and �h > 0, and the
initial conditions x̄i(0) and x̂i(0), and select the
matrices {P(0),R2(0)} which satisfy the initial
condition (38).

Step 2. Acquire the values of matrices {P(♭+1),R2(♭+1)}
and estimator gains S(♭) at the sampling instant ♭

by solving the LMIs (34)-(37).

Step 3. Set ♭ = ♭+1 and update parameters P(♭) andR2(♭).

Step 4. If ♭ < N , then go to Step 2, else go to Step 5.

Step 5. Stop.

FIGURE 1. x1(♭) and its estimate.

FIGURE 2. x2(♭) and its estimate.

γ = 0.9, p = 0.01, ϱ = 0.03, �w = diag{1, 1},

�h = �v = �ζ = I , 4(♭) = I(3) ⊗ diag
{
0.8, 0.8

}
,

aii = −0.2, aij = 0.1 (i, j = 1, 2, 3), ξ20 = 1,

A1(♭) =

[
0.4 + 0.1sin(♭) 0.6

0.3 −0.2

]
,
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TABLE 1. Variance-constrained state estimator gain parameters.

FIGURE 3. x3(♭) and its estimate.

FIGURE 4. The measurement output and the estimator input.

A2(♭) =

[
0.5 + 0.1sin(3♭) 0.8

0.4 −0.2

]
,

A3(♭) =

[
0.4 + 0.2sin(♭) 0.5

0.3 −0.2

]
,

B1(♭) =

[
0.3 0.24sin(♭)

−0.2 0.1

]
,

B2(♭) = B3(♭) =

[
0.4 0.1sin(2♭)

−0.2 0.1

]
,

C1(♭) =
[
0.99 0.15sin(♭)

]
,

FIGURE 5. Actual error variance of e1(♭) and its upper bound.

FIGURE 6. Actual error variance of e2(♭) and its upper bound.

C2(♭) = C3(♭) =
[
0.95 0.25sin(2♭)

]
,

D1(♭) = D2(♭) = D3(♭) =
[
sin(0.9♭)

]
,

E1(♭) = E2(♭) = E3(♭) =

[
1 + sin(♭) 0

0 1

]
,

F1(♭) =

[
sin(0.7♭)

−0.2

]
, F2(♭) =

[
sin(0.8♭)

−0.2

]
,

F3(♭) =

[
sin(0.9♭)

−0.2

]
, G1(♭) =

[
0.71 0.72
−0.7 0.6sin(♭)

]
,
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FIGURE 7. Actual error variance of e3(♭) and its upper bound.

G2(♭) = G3(♭) =

[
0.75 0.78
−0.8 0.5sin(♭)

]
,

H1(♭) = H2(♭) =

[
1

sin(♭)

]
, H3(♭) =

[
1

cos(♭)

]
,

L1(♭) =
[
0.3 −0.5sin(2♭)

]
,

L2(♭) =
[
0.5 −0.4sin(2♭)

]
,

L3(♭) =
[
0.4 −0.5sin(2♭)

]
.

Let the stochastic nonlinear function g(♭, xi(♭)) be given as
follows:

g(♭, xi(♭)) =
[
0.01 0.03

]T
× (0.2xi1(♭)ξ1(♭) + 0.3xi2(♭)ξ2(♭))

where xin(♭)(n = 1, 2) represents the nth element of xi(♭),
and ξn(♭)(n = 1, 2) are independent bounded stochastic noise
sequences with E

{
ξn(♭)

}
= 0 and variance V

{
ξn(♭)

}
= ξ20 .

We can see g(♭, xi(♭)) satisfies

E
{
g(♭, xi(♭))|xi(♭)

}
= 0

E
{
g(♭, xi(♭))gT (♭, xi(♭))|xi(♭)

}
=

[
0.01
0.03

] [
0.01
0.03

]T
E

{
xTi (♭)

[
0.04 0
0 0.09

]
xi(♭)

}
.

By solving RMIs (34)-(37), gain parameters of estimator
(10) can be acquired which are shown in Table 1:
Let the initial states be selected as follows:

x̄1(0) =


0.6

−0.8
0
0

 , x̄2(0) =


0.5

−0.6
0
0

 , x̄3(0) =


0.8

−0.4
0
0

 ,

x̂1(0) =


0.4

−0.3
0
0

 , x̂2(0) =


0.3

−0.25
0
0

 , x̂3(0) =


0.35
−0.2
0
0

 .

The results of numerical simulation are depicted in Figs. 1-7.
Figs. 1-3 plot the system state xi(♭) (i = 1, 2, 3) and
their corresponding estimates, respectively. It is seen from

Figs. 1-3 that the estimation error is small, and the state
estimate is accurate with the noise influence being restrained.
That is, the H∞ noise rejection constraint (19) is achieved.
Fig. 4 draws the ideal measurement output and the real
measurement signal received by the estimator. In Fig. 4,
the obvious deviations between yi(♭) and y̆i(♭) indicate the
occurrence of random bit errors during the transmission
process. That is, y̆1(39), y̆2(8), y̆2(17) and y̆3(14) are affected
by random bit errors, and deviate largely from the ideal
measurement signal. Figs. 5-7 illustrate the upper bound
on the variance of e1(♭), e2(♭) and e3(♭), as well as the
corresponding actual error variance. In Figs. 5-7, the actual
error variance is always smaller than the corresponding
variance upper bound, which indicates that the upper bound
constraint (20) is fulfilled on the SE error variance. Based
on the above-mentioned results, it is shown that the proposed
HVED algorithm is valid.

V. CONCLUSION
In this article, the finite-horizon H∞ SE issue has been
investigated for a type of time-varying CNs affected by
dynamical bias under BESs. The influence of dynamical bias
has been involved, which is modeled by a dynamic equation.
The BESs have been employed in the transmission process
of measurement signals to the estimator, and the occurrence
of bit errors, represented by Bernoulli random variables, has
been considered. Sufficient conditions have been established
to ensure that the estimation error dynamics satisfies the
variance constraints and H∞ noise rejection performance.
The designed estimator gain parameter matrices have been
obtained by calculating the proposed RMIs. Finally, the
correctness and the feasibility of the constructed estimator
have been testified by a numerical example. Furthermore,
future research aims to extend the findings of this paper
to address other issues that involve using BESs such
as recursive filtering [48], [49], [50], security-guaranteed
analysis [51], [52], fault-tolerant control [53], [54], set-
membership filtering [55], [56] or distributed fusion filtering
[57], [58].
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