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ABSTRACT AUTOVC is a voice-conversion method that performs self-reconstruction using an autoen-
coder structure for zero-shot voice conversion. AUTOVC has the advantage of being easy and simple to
learn because it only uses the autoencoder loss for learning. However, it performs voice conversion by
disentangling speech information from speakers and linguistic information by adjusting the bottleneck
dimension; this requires highly meticulous fine tuning of the bottleneck dimension and involves a tradeoff
between speech quality and speaker similarity. To address these issues, neural analysis and synthesis
(NANSY)—a fully self-supervised learning system that uses perturbations to extract speech features—is
proposed. NANSY solves the problem of the adjustment of the bottleneck dimension by utilizing perturbation
and exhibits high-reconstruction performance. In this study, we propose perturbation AUTOVC, a voice
conversion method that utilizes the structure of AUTOVC and the perturbation of NANSY. The proposed
method applies perturbations to speech signals (such as NANSY signals) to solve the problem of the voice
conversion method using bottleneck dimensions. Perturbation is applied to remove the speaker-dependent
information present in the speech, leaving only the linguistic information, which is then passed through a
content encoder and modeled as a content embedding containing only the linguistic information. To obtain
speaker information, we used x-vectors, which are extensively used in pretrained speaker recognition.
The concatenated linguistic and speaker information extracted from the encoder and additional energy
information is used as input to the decoder to perform self-reconstruction. Similar to AUTOVC, it is easy and
simple to learn using only the autoencoder loss. For the evaluation, we measured three objective evaluation
metrics: character error rate (%), cosine similarity, and short-time objective intelligibility, as well as a
subjective evaluation metric: mean opinion score. The experimental results demonstrate that our proposed
method outperforms other voice conversion techniques and demonstrated robust performance in zero-shot
conversion.

INDEX TERMS Autoencoder, information perturbation, speech signal processing, voice conversion.

I. INTRODUCTION
Voice conversion refers to the technique used to convert a
given speech into the speech of another speaker [1], [2].
The main goal of voice conversion is to replace nonverbal
information, such as speaker characteristics with the desired
speaker information while preserving the linguistic informa-
tion in the speech signal. The converted speech follows the
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characteristics of the target speaker, such as gender and age.
Voice conversion technology can be used for privacy purposes
or in applications, such as voice animation, voice assistants,
and speech synthesis [3], [4], [5].

The classical voice conversion methods include statisti-
cal methods using Gaussian mixture models (GMMs), deep
learning-based methods using recurrent neural networks,
convolutional neural networks (CNNs), and exemplar-based
methods, such as non-negative matrix factorization [6], [7],
[8], [9], [10], [11]. However, these methods typically require
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data comprising identical linguistic information from the
source and target speakers’ speeches for training. In prac-
tice, collecting large amounts of parallel data is difficult and
time-consuming. Therefore, for voice conversion methods
that use parallel data, methods that can be trained using
small amounts of data have been studied. These methods
use classical voice conversion methods based on GMM or
deep learning in combination with various approaches, even
when the amount of data is limited [12], [13], [14]. However,
learning methods using parallel data require an additional
procedure to perform temporal alignment between the source
and target speaker’s speech data. If temporal alignment is not
properly performed, the quality of the converted speech will
be reduced. Therefore, other voice conversion methods that
do not require parallel data have been investigated.

To address the difficulty of parallel data collection,
a method utilizing WaveNet and a nonparallel voice con-
version method utilizing data augmentation techniques have
been proposed [15], [16]. The method using WaveNet is a
voice conversion method based on the vocoder’s ability to
reconstruct input features into waveforms. The voice con-
version method using a vocoder is also presented in [17].
Voice conversion methods using data augmentation generate
parallel data with acoustic features, such as duration, prosody,
and energy, similar to the original voice, and then perform
parallel voice conversion. Voice conversion methods that uti-
lize nonparallel data based on deep learning have also been
studied [18], [19], [20], [21], [22].

Other voice conversion methods include text-based
approaches. The best-known text-based approach uses auto-
matic speech recognition (ASR) models to extract phonetic
posteriograms (PPGs), which are then used as linguistic
information [23], [24]. Text-based approaches that use ASR
models have accurate linguistic information, are unlikely to
be corrupted during voice conversion, and can even perform
voice conversion between speakers of different languages
if the ASR model used supports multiple languages. For
example, DeepConversion utilizes an ASR model to perform
voice conversion by mapping PPGs, speaker-dependent fea-
tures, and Mel-Cepstral coefficients (MCEP) [25]. However,
because a large amount of parallel data is required to train an
ASR model to extract PPGs used in voice conversion, there
may be inevitable errors in the process of extracting PPGs
(owing to insufficient data) for training in a low-resource,
multilingual environment. This leads to mispronunciations
of the converted speech, thus reducing the quality of the con-
verted speech. Therefore, ASRmodel-based voice conversion
has performance limitations in low-resource multilingual
environments.

Voice conversion using the style transfer model has been
studied as a method that does not require additional mod-
ules, such as ASR models and parallel data [26], [31]. The
style transfer model, which was originally proposed to per-
form style transfer between nonparallel images, separates
the morphological information of the image from the style
information. By importing it into the speech domain, similar

processing can be applied as in style transfer. For instance,
in style transfer, the morphological information of an image
is preserved, while other features (i.e., texture, color) are
transformed into desired information. Similarly, in voice con-
version, the linguistic information of speech is preserved,
while other features present in the speech (i.e., prosody,
expressiveness, formants) can be transformed into desired
information. CycleGAN-VC and StarGAN-VC are examples
of transfer-based voice conversion methods. CycleGAN-VC
is a generative model that performs voice conversion based
on CycleGAN, which aims at one-to-one mapping to convert
speech between two different speakers. Unlike general gen-
erative models, it learns two-way mappings [26], [27]. As the
features of the two speakers used for training were identified,
natural voice conversion was possible with the voices of the
speakers present in the model. However, because the features
of speakers who are not used in training cannot be accurately
captured, the target speaker(s) for which voice conversion can
be performed are limited only to the observed speaker. This
means that there is very little controllability of speaker infor-
mation. To overcome the limitation of CycleGAN-VC, which
allows only one-to-one mappings, StarGAN-VC (based on
StarGAN) was proposed, which allows many-to-many map-
pings [31], [32]. StarGAN-VC can perform many-to-many
voice conversions with one generator by receiving additional
input from the target speaker’s code consisting of a one-hot
vector. However, like CycleGAN-VC, StarGAN-VC also has
the limitation of being able to convert only to the speakers
used in training. This means that there is still a lack of control
over speaker information.

Another voice conversionmethod is the information bottle-
neck approach. The bottleneck approach is a voice conversion
method that does not require parallel data or additional
modules. This method disentangles the speaker information
and linguistic information present in the speech features
by adjusting the time or channel dimension of the speech
features and then reconstructs the separated information to
perform voice conversion. Unlike the style-transfer-based
voice conversion method, which identifies and converts the
speaker’s features, it performed zero-shot voice conversion
using a bottleneck to disentangle linguistic and speaker infor-
mation from the source voice. However, this approach is
limited in that the highly sensitive bottleneck dimension must
be set heuristically, and if the incorrect bottleneck dimension
is set, the quality of speech is either reduced or voice conver-
sion is not performed well.

Finally, neural analysis and synthesis (NANSY) using
perturbation was proposed to avoid the aforementioned prob-
lems [34]. Perturbation distorts other speaker features in
speech information while keeping linguistic information
intact; in this way, only the desired features can be con-
trolled, thus eliminating the need for a bottleneck structure.
Therefore, NANSY has a high-reconstruction performance
with no trade-off between the quality of the reconstructed
speech and the speaker similarity of the converted speech.
To achieve fully self-supervised learning, NANSY trains an
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unsupervised speaker recognition network with the first layer
of wav2vec 2.0 as input [35].

Speaker recognition is a technology that identifies a
speaker from a given speech signal; it constitutes a research
field that promotes the extraction of unique speaker informa-
tion contained in the speech signal [36]. Deep-learning-based
speaker recognition studies are actively being conducted,
and speaker recognition studies utilizing large-scale public
data, such as VoxCeleb and VoxCeleb2, which have speech
information from more than 7000 speakers, have shown
high-speaker recognition performance [37], [38]. Therefore,
speaker recognition networks trained with large datasets and
supervised learning methods are used for the purpose of
obtaining speaker information from common voice conver-
sion methods because they ensure sufficient performance
even for unseen speakers [39], [40].
In this study, we propose a method that can perform natural

voice conversion, even for unseen speakers. The proposed
method retains the structure of AUTOVC’s autoencoder
model but is inspired by NANSY’s perturbation concept.
Specifically, we used perturbation to disentangle the speaker
and linguistic information contained in speech, instead of
the bottleneck approach, which requires sensitive tuning.
Perturbation removes all speaker-dependent information
from speech, leaving only linguistic information [41], [42].
This ensures that the information extracted by the network
does not contain unwanted information; therefore, only the
information required for learning is obtained. This increases
the controllability of the model by making it possible to
deal directly with the information required for learning. The
perturbed speech signal was modeled and used for content
embedding by the model’s encoder. To obtain speaker infor-
mation, the proposed method uses x-vectors extracted from
a pretrained speaker recognition network. The structure of
the model utilized in this study performs self-reconstruction
using an autoencoder structure, which enables easy and
simple training, using only autoencoder loss. Furthermore,
unlike NANSY, which leverages the fact that each layer of
wav2vec 2.0 contains different representations, our method
demonstrates the ability to separate linguistic and speaker
information using only perturbation. Finally, while other
zero-shot conversion methods focus on transforming to
excluded speakers from the training data, this paper show-
cases the possibility of zero-shot conversion to speakers from
entirely unrelated datasets. The process of reconstructing
the converted speech into a waveform was utilized by the
HiFi-GAN.1

II. RELATED WORKS
A. STYLE TRANSFER-BASED VOICE RECOGNITION
CycleGAN-VC and StarGAN-VC are representative mod-
els that perform voice conversion using the style transfer
method [27], [28], [29], [30], [32], [33]. CycleGAN-VC is

1Our code and trained models are available at https://github.com/
cjchun3616/perturbation_autovc

a voice conversion model based on the CycleGAN model,
which originally demonstrated good performance in the
field of nonparallel image-to-image translation and uses a
cycle-consistent adversarial network and identity-mapping
loss. Specifically, it uses cycle-consistent and adversarial
losses to learn bidirectional mappings differently from typ-
ical generative models, and identity-mapping loss to prevent
inputs from being output unchanged. The CycleGAN-VC
generator uses a one-dimensional (1D) CNN to capture a
broad range of temporal structures while preserving the struc-
ture of the input signal. CycleGAN-VC is a method that does
not rely on additional modules and parallel data that exhib-
ited better performance in the Voice Conversion Challenge
2016 (VCC 2016) than those used by a GMM-based method
trained using twice as many parallel datasets [43].

However, there was a difference between the voice con-
verted by CycleGAN-VC and the actual voice of the target
speaker. CycleGAN-VC2 can reduce this difference by uti-
lizing the 2-1-2D CNN structure. 2-1-2D CNN structure
generator that employs a 2D CNN for downsampling and
upsampling to minimize structural loss and a 1D CNN for
the main conversion process. Finally, it used a two-step loss
function, which calculated the adversarial loss for the forward
and inverse cycles.

CycleGAN-VC and CycleGAN-VC2 used the Mel-
Cepstrum as the input features because the direct use of
the Mel-Spectrogram damages the time–frequency structure
of the input. The third proposed CycleGAN-VC3 solves
this problem and uses Mel-Spectrogram by introducing
time–frequency adaptive normalization (TFAN). The TFAN
allows the scale and bias of the transformed features to be
adjusted while reflecting the source information in a time and
frequency-wise manner. These calculations allow the TFAN
to adapt to the time–frequency characteristics of the input
signal and help preserve the time–frequency structure during
voice conversion.

MaskCycleGAN-VC uses the filling-in-frame (FIF) aux-
iliary method, which is a complementary-based, self-
supervised method that has been used in the fields of
inpainting in computer vision and infilling in natural lan-
guage processing [44], [45]. Parts of the Mel-Spectrogram
were intentionally corrupted and restored to allow the model
to grasp the time–frequency structure, thus reducing the dam-
age to the time–frequency structure of the input signal during
the conversion process.

Furthermore, a voice conversion method that applies a
transformer to CycleGAN-based models to enhance their
temporal dependencies was proposed [46]. This method
replaces some of the residual convolution layers of the
CycleGAN-VC model with a transformer layer so that the
temporal dependence can be secured without deepening
the model.

CycleGAN-VC is capable of natural voice conversion, but
it has a limitation in that it can only convert one-to-one
mapping speech. To solve this problem, StarGAN-VC was
proposed, which performs many-to-many mappings using a
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single model. StarGAN-VC uses a single generator to receive
an arbitrary target characteristic code in the form of a one-hot
vector as a conditional input and converts it into the voice
of the corresponding target. StarGAN-VC adds a speaker
classifier to ensure that the converted voice matches the target
speaker’s voice. The losses used in StarGAN-VC consist of
adversarial, classification, and cycle consistency losses.

However, because StarGAN-VC is trained to generate data
far from the decision boundary that separates real speech
from converted speech, it cannot follow the full distribution
of the actual data. To alleviate this problem, StarGAN-
VC2 was proposed. StarGAN-VC2 uses a source-and-target
conditional generator and discriminator that provide both
source and target speaker codes simultaneously. To ensure
high-quality voice conversion, StarGAN-VC2 uses condi-
tional instance normalization (CIN) to compute the scale and
bias for domain feature. This can directly modulate features
depending on the domain, as opposed to the conventional
method. Finally, StarGAN-VC2 uses a Mel-Spectrogram as
the input feature.

B. AUTOVC
AUTOVC enables zero-shot voice conversion by performing
self-reconstruction using an autoencoder structure [40]. The
essence of AUTOVC is to disentangle speaker information
from the linguistic information in the input data by utilizing a
carefully designed bottleneck dimension in the encoder. The
input of the encoder is the Mel-Spectrogram of the source
speaker, and speaker information of the source speaker is
used as an additional input, which helps the encoder sepa-
rate speaker information from the linguistic information in
the input data. This separated latent vector containing only
linguistic information is input to the decoder along with the
speaker information of the target speaker, and the decoder
learns to restore the converted speech. AUTOVC has the
advantage of being very easy to learn because it utilizes only
the reconstruction loss through the autoencoder structure.
However, the overall performance of the model is highly
dependent on the tuning of the bottleneck dimensions. For
example, if the bottleneck dimension is too narrow, the latent
vector exiting the encoder will likely lose some linguistic
information, and the quality of speech restored by the decoder
will be poor. Conversely, if the bottleneck’s dimensional
range is too wide, the latent vector will likely contain lin-
guistic information and the speaker information of the source
speaker; in this case, the quality of the restored speech is
good, but the voice conversion is poor, and the similarity to
the target speaker may be low.

C. NANSY
NANSY uses a perturbation method to synthesize improved
quality speech while solving the tradeoff problem of the
bottleneck approach [34]. The perturbation method randomly
perturbs other speaker information while retaining the lin-
guistic information in the original speech signal to extract
only the desired information; thus, there is only one piece

of information contained by each input feature, thus con-
trolling all the information needed for synthesis. Unlike
previous methods, which only considered speaker and lin-
guistic information, NANSY considers speaker, linguistic,
pitch, and energy information. The pitch and linguistic infor-
mation were extracted using the newly proposed extraction
method. For the pitch information, the Yin algorithm was
applied to the input data with perturbation so that the pitch
or information can be tracked well, even in speech with jitter
or subharmonics. Similarly, the middle layer of wav2vec 2.0,
with perturbed data as input, was used as the linguistic
information [47]. To obtain speaker information, NANSY
leverages the fact that each layer of wav2vec 2.0 has distinct
representations. In NANSY’s paper, the visual observation of
the first layer of wav2vec 2.0 using t-SNE revealed that the
first layer clusters based on speakers [48]. This observation
indicates that the first layer of wav2vec 2.0 contains speaker
information [49]. To leverage this insight, unperturbed speech
is used as input to wav2vec 2.0, and the first layer is extracted.
The extracted features are used as inputs for the speaker
recognition network, which learns in an unsupervised man-
ner for fully self-supervised learning. The x-vector from
the trained speaker recognition network is used as speaker
information for speech synthesis. In the speech synthesis
stage, we train the source synthesis and filter synthesis parts
that have the same network structures based on source-filter
theory. This separation has the advantage of not only making
the model more interpretable but also enabling pitch shifts
while preserving formant information.

III. PERTURBATION AUTOVC
Fig. 1 shows the overall structure of the Perturbation
AUTOVC used in this study. The neural network structure
is composed of a content encoder, speaker encoder, and
decoder. The content encoder and decoder (represented by
dashed boxes) are trainable networks. The speaker encoder
(represented by a solid box) is a speaker recognition net-
work pretrained using the VoxCeleb2 dataset. The content
encoder and decoder, represented by the dashed boxes, are
composed of the same network structure as in the existing
AUTOVC. In AUTOVC, speaker information is provided as
an input to the content encoder in the form of additional
information to disentangle the speaker and linguistic infor-
mation contained in the speech signal; however, in this study,
speaker information is not provided because a disentangling
method using perturbation is used. In AUTOVC, the down-
sampling factor was set to 32 to create a bottleneck; however,
we set it to one to avoid bottlenecks and learn bypasses. The
256-dimensional content embedding extracted from the con-
tent encoder was used as the linguistic information. For
speaker information, we used 192-dimensional x-vectors
(rather than conventional d-vectors) extracted using the
emphasized channel attention and propagation and aggrega-
tion (ECAPA)-time delay neural network (TDNN) module,
which is a speaker recognition network. In addition, inspired
by NANSY’s use of energy information, we concatenated
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FIGURE 1. Perturbation AUTOVC architecture. The inputs to the content encoder include X̃1, which is the speech with the formant, pitch, and
frequency response of the perturbed speech signal, and X1, which is the original speech signal without perturbation used to extract speaker and
energy information. The term Bi-LSTM in the content encoder refers to the bi-directional long short-term memory (LSTM), and the white and gray
boxes represent the forward and backward directions, respectively. The term FCL in the decoder refers to the fully connected layer. The speaker
encoder has the same network structure as the recognition network ECAPA-TDNN. SE-Res2Block in speaker encoder is a network module that
combines the SE Block and ResNet2 Block, and AS Pooling refers to attentive state pooling. The output of the decoder X̂1 is the first converted
speech, and X̂2 is the final result after X̂1 passes through additional convolution layers and after the addition of the Mel-Spectrogram of the resulting
speech to X̂1.

the linguistic, speaker, and energy information extracted
from each encoder and used them as inputs to the decoder.
The speech used to extract speaker and energy informa-
tion was the original speech signal without perturbation.
The HiFi-GAN was used as a vocoder to restore the
Mel-Spectrogram to a waveform. Detailed descriptions of
each submodule are provided below. Unless otherwise noted,
batch normalization is applied after the convolutional layers
of the submodules, followed by the activation function ReLU.

A. CONTENT ENCODER
The purpose of the content encoder is to extract linguis-
tic information from the speech signal. In this process,
we applied perturbation to the input data to remove speaker-
dependent information independent of the bottleneck dimen-
sion. Based on NANSY, we applied three perturbation
functions to the input signal: 1) formant shifting (fs), 2) pitch
randomization (pr), and 3) random frequency shaping using
a parametric equalizer (peq). Formant shifting is the process
of adjusting the current formant frequencies by multiplying
them by a shifting factor. This adjustment is achieved by
manipulating the sampling frequency. For instance, to mul-
tiply all formants by a factor of 1.10 (i.e., raising them by
10 percent), a sampling frequency increases by a factor of
1.10 (without changing the samples). Afterward, the duration
is lengthened by a factor of 1.10, and the pitch is lowered
by a factor of 1.10 to restore the original duration and pitch.
Finally, the audio can be resampled to the original sampling
frequency to perform formant shifting. Shifting factor is

sampled uniformly from U (1.2, 1.5) . The pitch randomiza-
tion can be expressed by the following (1).

Mnew = Mold ∗ β,

Pnew = Pold ∗
Mnew

Mold
,

pr = Mnew + (Pnew −Mnew) ∗ γ, (1)

where Mold represents the pitch median, Pold represents
the pitch. β and γ represent the shifting factor and scale
factor, respectively, and these are sampled uniformly from
U (1.2, 1.5) ., U (1.1, 1.5). For more information about
formant shifting and pitch randomization, please consult
Praat [50]. The parametric equalizer is a function whose
purpose is to randomly transform the frequency shaping, and
can be expressed as follows,

HPEQ
= HLSHHS

∏8

i=1
HPeak
i , (2)

where HLS represents the low-shelving, HHS represents the
high-shelving, and HPeak is the peaking filter. By apply-
ing the three perturbation functions fs, pr, and peq to the
original speech signal x, we can obtain x̃ from which
speaker-dependent information is removed and only linguis-
tic information is present.

x̃ = fs (pr (peq (x))) . (3)

The perturbed speech, x̃ is converted into an 80-dimensional
Mel-Spectrogram and used as the input. It is also inter-
esting to know whether other information distorted by
perturbations affects the learning process. This can be
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explained by using a self-reconstruction learning method.
If we compare the self-reconstructed speech using a perturbed
Mel-Spectrogram with the original speech without perturba-
tion, the only part that will be the same is the undistorted
linguistic information. Therefore, the content encoder nat-
urally learns that distorted information is unnecessary for
speech synthesis and that the content encoder learns that the
content embedding output contains only linguistic informa-
tion. In addition, unlike other methods whose performance
is sensitive to the bottleneck dimension, the Perturbation
AUTOVC is insensitive to the output dimension of the content
encoder; therefore, there is no need for elaborate designs
and experimentation in the effort to identify the correct
bottleneck dimension. Fig. 2 demonstrates the successful
separation of speaker information in the content embeddings
output through the content encoder. Content embeddings
extracted from the under-trained model exhibit clustering
among speakers, indicating the presence of speaker informa-
tion in the content embedding. In contrast, the TSNE results
extracted from the well-trained model show that embeddings
are evenly distributed regardless of the speaker, suggesting
that the speaker information has been removed. This confirms
that effective disentanglement of linguistic and speaker infor-
mation within speech can be achieved without the need for
fine-tuning bottleneck dimensions.

FIGURE 2. Comparison of visualization of content embedding using TSNE.
The figure compares the results of content embeddings extracted from
the under-trained model (a) and the well-trained model (b). The
under-trained model was trained for approximately 100 iterations, while
the well-trained model underwent training for about 60,000 iterations.

The perturbed Mel-Spectrogram was passed through
three 5× 1 convolution layers in the content encoder. The out-
put extracted 256-dimensional content embeddings from the
forward and backward sides of the Bi-LSTM, and then com-
bined the two to use 512-dimensional content embeddings.
As mentioned previously, the output dimensionality of the
content encoder can be flexibly changed because it does not
significantly affect the overall model performance. The con-
tent encoder of AUTOVC additionally provides the speaker
information of the source speaker along with the input data so
that speaker and linguistic information can be well separated,
but Perturbation AUTOVC does not need to provide addi-
tional information; thus, only the perturbedMel-Spectrogram
is used as input. In addition, the Perturbation AUTOVC did
not undergo the downsampling or upsampling process of con-
tent embedding by setting the downsampling factor to one.

As a result, for ideal voice conversion, the content embedding
in the converted speech and the content embedding extracted
from the original data should be the same; therefore, the loss
function of the content encoder can be defined using (4) as

Lcontent = E
[∥∥∥C1 − Ec

(
X̂1→1

)∥∥∥
1

]
, (4)

where C1 represents the content embedding of the original
data, Ec represents the content encoder, and X̂1→1 represents
the speech restored through the decoder.

B. SPEAKER ENCODER
To obtain speaker information, NANSY utilizes the fact that
the first layer of wav2vec 2.0 contains the speaker infor-
mation. In addition, to extract speaker information more
effectively, NANSY adopted a fully self-supervised manner
to train a speaker recognition network, using the first layer
of wav2vec 2.0 as input. In the field of voice conversion, the
most common approach to extract speaker information is by
utilizing a speaker recognition network pretrained in a super-
vised manner for an unseen speaker. Furthermore, there are
public datasets that provide large-scale speaker data, such as
VoxCeleb and VoxCeleb2, and there are many speaker recog-
nition studies that extract d-vectors and x-vectors using these
datasets. Speaker recognition networks trained in this way
yield high levels of performance even when used for unseen
speakers [51], [52]. Therefore, in this study, we trained a
speaker recognition network using supervised learning and
then extracted speaker information into a network with good
embedding performance. The speaker recognition network
used was the ECAPA-TDNN model, which uses a TDNN
network to extract the x-vectors [53]. This model is charac-
terized by the ECAPA, which emphasizes the interaction of
input features and can perform feature extraction that is con-
sistent across the entire network while maintaining temporal
information. In addition, based on the SE-res2block structure,
the output of the previous layer can be used as a skip connec-
tion structure to utilize multilayer information. As mentioned
in [54], considering that shallower feature maps can yield
more robust speaker embeddings, we extracted and used a
192-dimensional x-vector as our speaker embedding, a depar-
ture from the commonly employed 256- or 512-dimensional
embeddings. The Voxceleb2 dataset was used for training,
and ADAMW was used as the optimizer. Fig. 3 shows the
embedding results for the 10 unseen speakers. Shown (from
left to right), are the output of the first layer of wav2vec 2.0,
which contains speaker information, d-vector extracted from
the speaker encoder used by AUTOVC, and the x-vector
extracted by training the ECAPA-TDNN, which shows that
the embedding performance of the x-vector extracted by
training the ECAPA-TDNN model is the best.

The objective of the speaker encoder is to satisfy the fol-
lowing two conditions. 1) The speaker embeddings of the
same speaker must be the same regardless of the utterance
content, and 2) speaker embeddings of different speakers
cannot be the same regardless of the utterance content.
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FIGURE 3. Comparison of visualization of speaker embedding using TSNE. The figure shows (from left to right) the interspeaker distribution of the
first layer of wav2vec 2.0, d-vector, and x-vector. The embedding results for 10 unseen speakers show that the embedding results of the x-vector are
much better than those of wav2vec 2.0 or d-vector.

Therefore, the speaker encoder must satisfy these two equa-
tions (see (5)), which is an important assumption in voice
conversion.

1) if U1 = U2, Es (X1) = Es (X2) ,

2) if U1 ̸= U2, Es(X1) ̸= Es(X2), (5)

where U1,U2 represents the different speakers, X1,X2 rep-
resents the utterances of different speakers. The linguistic
information contained in X1 and X2 may either be the same
or different. Es represents the speaker encoder.

C. DECODER
The decoder restores the original speech signal using both
linguistic and speaker information, which are the outputs of
the content and speaker encoders. In addition to the linguistic
and speaker information, which are essential for reconstruc-
tion, the energy information extracted from the source speech
is concatenated and used for reconstruction. Energy was used
as the value obtained by averaging the log Mel-Spectrogram
of the input data along the frequency axis, and the data used
were not perturbed. As shown in Fig. 4, the time–frequency
structure of the Mel-Spectrogram is well preserved after it
passes through the decoder by using additional energy infor-
mation for reconstruction.

FIGURE 4. Output of Mel-Spectrogram with or without energy. On the left
is the Mel-Spectrogram with energy information added, and on the right
is the output of the Mel-Spectrogram without energy information.

The input data, which concatenate the three pieces of
information, pass through a LSTM layer before and after they
pass through three 5 × 1 convolutional layers. After passing
through the last fully connected layer, the output was an
80-dimensional Mel-Spectrogram of the converted speech.
If we arbitrarily call the converted speech X̂1, then X̂1 is
used again as the input to the convolution layers, passing
through five additional convolution layers. The converted
voice that has passed through additional convolution layers
is called X̂2. The composite speech (sum of X̂1 and X̂2) is the
final converted speech. In this case, the convolution layers
after the fully connected layer use a hyperbolic tangent as the
activation function.

D. VOCODER
A HiFi-GAN was used as the vocoder to convert the
Mel-Spectrogram back into a waveform [55].

E. TRAINING
The purpose of the content encoder, speaker encoder, and
decoder can be expressed as

C1 = Ec
(
X̃1

)
, S1 = Es (X1) , X̂1→1 = D (C1, S1,E) ,

(6)

where X1 represents the original voice of the source speaker
used as input data and X̃1 is the input data with the
applied perturbation. Ec and Es are the content and speaker
encoders, respectively, and the resulting C1 and S1 are
the content and speaker embedding information, respec-
tively. D(·, ·, ·) denotes the decoder, and E refers to energy
information.

Finally, the goal of learning is to use the information from
the source speaker to restore the original data to the same level
as it was before the application of perturbation through the
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decoder. Therefore, we can formally express this as

Lrecon = E
[∥∥∥X̂1→1 − X1

∥∥∥2
2

]
. (7)

Hence, the overall loss used for learning was equal to (8)
by adding (4) and (7). If idealized voice conversion is per-
formed, the result follows the data distribution as shown
in (9). At this point, the values of λ and µ in (8), are set to
two and one, respectively. In (8), Lrecon1 is the loss of the first
output X̂1, and Lrecon2 is the loss of the final output X̂2. In (9),
U and Z denote the speaker and content of the utterance,
respectively.

min
Ec(.),D(·,·,·)

L = λ (Lrecon1 + Lrecon2) + µLcontent , (8)

px̂1→2 (· |U2 = u2,Z1 = z1) = px (· |U = u2,Z = z1) .

(9)

IV. EXPERIMENTS
To train Perturbation AUTOVC, we used the VCTK dataset,
which contained approximately 44 hours of English speech
from 109 speakers [56]. The VCTK dataset consists of
English native speakers with diverse accents (i.e., American,
Scottish, Irish etc.), and the gender distribution is balanced.
The number of utterances for each speaker is approximately
around 400. We used 80% of the total speakers for training
(20% for evaluation), and we preserved 10 utterances from
each speaker for evaluation purposes, which were not used in
the training.

The input data used comprised a waveform sampled
at a rate of 22.05 kHz, which was converted into an
80-dimensional Mel-Spectrogram. The fast Fourier trans-
formation size, window size, and hop length, for the
Mel-Spectrogram conversion were set to 1024, 1024, and
256, respectively. The convertedMel-Spectrogramswere ran-
domly truncated or padded such that they were all 128 frames
long and used for training. The batch size was set to two,
the learning rate was 0.0001, and ADAM was used as the
optimizer. At this time, β1 and β2 of the ADAM optimizer
were set to 0.5 and 0.9, respectively, and the λ and µ values
were set to two and one, respectively. The optimizer’s weight
decay was set to 0, and regularization techniques such as L1
or L2 were not employed. The training iterations were set to
100,000, and the final reconstruction loss (see (7)) converged
to around 0.1 at approximately 50,000 iterations. We trained
using a single GPU on an A10 server, and the memory
requirement is about 2800MiB. The Real Time Factor (RTF)
for inference time is 1.58s.

In this study, we used three objective evaluation met-
rics and one subjective evaluation metric: Objective metrics,
including CER, Cosine similarity, and STOI, along with the
subjective metric, neural-MOS [57], [58], [59]. Bymeasuring
objective metrics such as CER and STOI, we can estimate the
quality or naturalness of the converted speech, and by mea-
suring cosine similarity, we can estimate speaker similarity.

A. CER
The CER (%) indicates the percentage of recognized charac-
ter errors between the converted speech and source speech;
the lower the CER (%) value is, the more effectively the
converted speech preserves the linguistic information of
the source speech. In this study, we used the ASR model
of wav2vec2-base-960h and calculated CER (%) using the
Levenshtein distance algorithm [60].

B. COSINE SIMILARITY (COSINE SCORE)
Cosine similarity is an indicator that can measure the sim-
ilarity between two vectors using the cosine angle. Cosine
similarity is a value that ranges between -1 and 1; the closer
it is to one, the higher the similarity between the two vectors.
We used this to measure the similarity between the speaker
embedding of the target speaker extracted by the speaker
encoder and the speaker embedding extracted from the con-
verted speech as a metric to evaluate how closely a given
speech was converted to the target speaker.

C. STOI
Wemeasured the short-time objective intelligibility (STOI) of
the converted speech for speech quality evaluation. STOI is an
indicator of speech intelligibility, ranging from 0 to 1; closer
to 1 indicates that the information contained in the original
speech is transferred to the converted speech without loss.
To measure the STOI of the converted speech, a sampling rate
of 22.05kHz was used.

D. NEURAL MOS PREDICTOR
We also evaluated the naturalness of the converted speech
using the neural MOS predictor (SSL-MOS), which is the
baseline system in VoiceMOS Challenge 2022 [61], [62].
It is an evaluation metric used for MOS measurement in the
Singing Voice Conversion Challenge 2023 [63]. SSL-MOS is
a model that generalizes Mean Opinion Score (MOS) predic-
tion performance on different listening test data in zero-shot
and fine-tuning settings. It utilizes aMOSprediction network,
including MOSNet and self-supervised speech models like
wav2vec2 [64]. SSL-MOS finds that when wav2vec2 models
are fine-tuned for MOS prediction, they exhibit good gen-
eralization capabilities, even in challenging zero-shot cases
(out-of-domain data). Furthermore, it has been observed that
fine-tuning on in-domain data can improve MOS prediction
performance.

For comparison purposes, we choose recently proposed
voice conversion models capable of one-shot many-to-many
voice conversion.

E. AUTOVC
AUTOVC is an autoencoder-based voice conversion
model with carefully designed bottleneck dimensions,
and it is the first model to perform zero-shot voice
conversion.
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F. AGAIN-VC
AGAIN-VC is an improved version of the conventional
autoencoder-based AdaIN-VC, utilizing activation guidance
and adaptive instance normalization [65].

G. BNE-PPG-VC
PPG-VC combines a bottleneck feature extractor (BNE) with
a seq2seq synthesis module [66].

H. VQMIVC
VQMIVC is a method that employs vector quantization in
content encoding [67].

The voice conversion samples used in the evaluation were
generated by a pre-trained VC model provided in the official
GitHub repository. For a fair comparison with AUTOVC,
the d-vector used as speaker information in the original
AUTOVCwas replaced by the x-vector used in this study, and
the vocoder used to restore speech was replaced by WaveNet
used in the original AUTOVC in the HiFi-GAN used in this
study. Except for the PPG-VC model, all other models were
trained on the VCTK dataset, while the PPG-VC model was
trained on the large-scale dataset (VCTK+LibriTTS). For
evaluation, we randomly selected 10 female and 10 male
speakers from the VCTK dataset. For each speaker, we used
10 utterances that were not used in training for voice con-
version. Voice conversion was performed for all possible
cases and the performance was measured for a total of
4,000 samples (2052 × 100).
In Table 1, it can be observed that the Perturbation

AUTOVC model outperforms other models in objective
metrics. For instance, in terms of CER (%), Perturbation
AUTOVC achieved the lowest error rate at 6.8%, while other
models exhibited relatively higher error rates of approx-
imately 11%, 21%, and 31% each. Furthermore, when
measuring the speaker similarity of the converted speech
using Cosine Similarity, Perturbation AUTOVC also showed
the highest similarity score at 0.58, while other models
displayed relatively lower similarity scores. In STOI scores
as well, Perturbation AUTOVC achieves the highest score
of 0.82, while other models, excluding AUTOVC, exhibit
relatively lower performance.

TABLE 1. Objective evaluation (CER, Cosine Score, STOI) of VC models on
the VCTK dataset.

In Table 2, it is observed that the Perturbation AUTOVC
model outperforms other models in subjective metrics.
Ground-truth is the average of the MOS scores measured
using the source speaker’s speech. Perturbation AUTOVC

TABLE 2. Subjective evaluation (neural MOS) of VC models on the VCTK
dataset.

achieved an MOS score of 3.82 points, which is a 0.5-point
difference from the Ground-truth of 4.31. Compared to other
models, it demonstrates the closest approximation to the
Ground-truth MOS results.

I. ZERO-SHOT VOICE CONVERSION
Finally, we performed zero-shot voice conversion with a
speaker not used in training and evaluated it. For zero-shot
voice conversion, we utilized LibriTTS, a dataset that was
not used at all during training [68]. LibriTTS is a large-
scale multi-speaker English speech dataset derived from
the LibriSpeech dataset [69]. We used the ‘train-clean-100’
dataset, which consists of a total of 257 speakers. From this
dataset, we randomly selected 5 male and 5 female speak-
ers, resulting in a total of 10 speakers. For each of these
10 speakers, we performed voice conversion using 5 utter-
ances per speaker. BNE-PPG-VC was excluded from the
zero-shot voice conversion performance comparison because
it includes the LibriTTS dataset in its training data.

In Table 3, it can be observed that the Perturbation
AUTOVC model demonstrates excellent performance even
in zero-shot conversion. In terms of CER (%), Perturbation
AUTOVC achieved the lowest error rate of 2.2%, while
other models show higher error rates of approximately 14%,
27%, and 54%. Even though the LibriTTS dataset used for
zero-shot conversion is entirely new data not included in
the training set, Table 3 shows a lower CER compared to
the VCTK dataset used for training. This can be attributed
to the difference between the Ground-truth of the VCTK
dataset in Table 2, which is 4.31, and the Ground-truth of
the LibriTTS dataset in Table 4, which is 4.74. We speculate
that LibriTTS speech has higher quality compared to VCTK
speech, which likely influenced the CER (%). Within the
AUTOVC results, CER represents a very high error rate of
54.3%. This high error rate is attributed to the bottleneck

TABLE 3. Objective evaluation (CER, Cosine Score, STOI) of VC models in
zero-shot voice conversion.
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TABLE 4. Subjective evaluation (neural MOS) of VC models in zero-shot
voice conversion.

dimension, which is carefully designed to fit the VCTK
dataset, may not be well-suitable for disentangling linguis-
tic information from speaker information in the speech of
LibriTTS. In terms of cosine similarity, AGAIN-VC scores
0.47 and Perturbation AUTOVC scores 0.42, which out-
performs other models. In the STOI score comparison, the
Perturbation AUTOVC achieved a score of 0.80, significantly
outperforming the performance of other models. In these
three-objective metrics, the proposed method, Perturbation
AUTOVC, shows remarkable performance with a very low
CER of 2.2% and a high STOI score of 0.80. Compared to
AGAIN-VC, which achieved the highest cosine similarity
score of 0.47, the Perturbation AUTOVC shows a difference
of 0.05. Therefore, considering all three evaluation indicators
in Table 3, the proposed method outperforms other models in
a zero-shot environment.

In Table 4, we can observe that the Perturbation AUTOVC
model outperforms other models in subjective evaluations
even in zero-shot conversion. Ground-truth is the average of
the MOS scores measured using the source speaker’s speech
from the LibriTTS dataset. Perturbation AUTOVC achieved
the highest MOS score of 3.56 points. Comparing Table 2
and Table 4, it is evident that the other models MOS scores
when performing zero-shot in Table 4 are significantly lower,
around 2 points, compared toMOS scores above 3 points with
the VCTK dataset. However, the proposed approach, Pertur-
bation AUTOVC, demonstrates robust performance with a
difference of only about 0.3 points between its performance
on the VCTK dataset and zero-shot performance on unseen
datasets. Based on the zero-shot performance results, Pertur-
bation AUTOVC demonstrates its ability to perform robust
voice conversion on new datasets.

V. CONCLUSION
In this study, we proposed Perturbation AUTOVC, a nonpar-
allel voice conversion method that utilizes only perturbation
and autoencoder loss. The proposed method demonstrated
the effectiveness of voice conversion by combining a fea-
ture extraction method using information perturbation and a
self-reconstruction method using an autoencoder structure.
In terms of CER (%), cosine similarity, STOI evalua-
tions, andMOS results, Perturbation AUTOVC outperformed
other voice conversion techniques in all aspects, particularly
demonstrating very high performance in zero-shot voice con-
version. The information contained in speech includes not
only speaker and linguistic information but also long-term

and acoustic features such as prosody and reverberation.
However, in this study, due to the binarization of speech infor-
mation into speaker and linguistic information, limitations
may arise from this approach. In future research, we will
introduce methods such as using additional encoders to
process more diverse information.
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