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ABSTRACT Correlation-diversified portfolios can be constructed by finding the maximum independent sets
(MISs) in market graphs with edges corresponding to correlations between two stocks. The computational
complexity of finding the MIS increases exponentially as the size of the market graph increases, making
the MIS selection in a large-scale market graph difficult. Here we construct a diversified portfolio through
solving the MIS problem for a large-scale market graph with a combinatorial optimization solver (an Ising
machine) based on a quantum-inspired algorithm called simulated bifurcation (SB) and investigate the
investment performance of the constructed portfolio using long-term historical market data at the Tokyo
Stock Exchange. Comparisons using stock universes of various sizes (TOPIX 100, Nikkei 225, TOPIX 1000,
and TOPIX which includes approximately 2,000 constituents) show that the SB-based solver outperforms
conventionalMIS solvers in terms of computation-time and solution-accuracy. By using the SB-based solver,
we optimized the parameters of a MIS portfolio strategy through iteration of the backcast simulation that
calculates the performance of the MIS portfolio strategy based on a large-scale universe covering more
than 1,700 Japanese stocks for a long period of 10 years. It has been found that the best MIS portfolio
strategy (Sharpe ratio= 1.16, annualized return/risk= 16.3%/14.0%) outperforms the major indices such as
TOPIX (0.66, 10.0%/15.2%) and MSCI Japan Minimum Volatility Index (0.64, 7.7%/12.1%) for the period
from 2013 to 2023. Factor analyses reveal that the selection of small-capitalization and low-correlation
stocks results in the portfolio performance with not only the relatively low risk (the diversification effect
as expected) but also the relatively high return.

INDEX TERMS Portfolio construction, market graph, maximum independent set, combinatorial
optimization, FPGA, Ising machine, simulated bifurcation, quantum-inspired.

I. INTRODUCTION
From the establishment of Modern Portfolio Theory (MPT)
by Harry Markowitz and William F. Sharpe in the mid-20th
century to the present [1], [2], improving the risk-return
characteristics of portfolios by diversifying across multiple
financial instruments has remained an important issue for
both institutional and individual investors. If portfolios can
be constructed with stocks that have low correlations to
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each other, the price movements of the component stocks
will be disparate and their contributions to the overall
portfolio performance will cancel each other out, thus
reducing the risk of the portfolio. Such a correlation effect
is one of the basis of the MPT. In the last decade or two,
attention has focused on risk-based portfolios and minimum
volatility indices [3], and a variety of indices and funds
linked to them have been launched. There are also a lot
of studies on the portfolios that focus on risk, such as
ones using genetic algorithm [4] and deep reinforcement
learning [5].
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The ‘‘market graph,’’ which represents the correlation of
stocks, has been actively studied [6], [7], [8], [9], [10].
The market graph is an undirected graph with stocks as
nodes, connected by edges between nodes (stocks) with
a certain level of correlation; in other words, its graph
structure (connection relationship) represents the correlation
of the entire stock universe. A portfolio constructed with
unconnected nodes on the market graph, or an independent
set, will be a diversified portfolio with low correlations
to each other, which is expected to reduce risk. Kalyagin
et al. [9] investigated the relationship of independent sets
of market graphs to Markowitz’s portfolio theory and
demonstrated the usefulness of the market graph.

The independent set of a market graph with the maximum
number of nodes is obtained by solving the maximum
independent set (MIS) problem, one of the combinatorial
optimization problems. While the MIS problem has a variety
of practical applications [11], [12], [13], [14], it is known
to be nondeterministic polynomial time (NP)-hard, hence
the computational complexity increases exponentially as the
number of nodes (stocks in the market graph) increases.
Butenko [6] used a greedy heuristic to solve the MIS problem
for market graphs in a reasonable time.

Recently, Ising machines [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30],
[31], [32], [33], which specialize in obtaining high-accuracy
solutions of combinatorial optimization problems in short
times, have attracted much attention. The Ising machine
is a device that searches for the ground-state of the Ising
spin model (this search is called the Ising problem), i.e.,
a mathematical model of magnetic materials that consists of
binary variables, called spins, coupled with each other by
pairwise interactions. Ising machines with full spin-to-spin
connectivity are applicable, without embedding the target
problems into locally-connected native graphs, to various
graph analyses such as partitioning (inc. maximum clique or
maximum independent set problems), clustering, coloring,
and path search [34] and also to various graph structures
including special structures such as modular graphs [35]. The
generalization of the Ising machine (quadratic) to higher-
order problems [36], [37] has also been studied to analyze
higher-order networks [38], [39], [40], [41], [42], [43].
Simulated bifurcation (SB) [15] is a quantum-inspired

heuristic algorithm for combinatorial optimization. The
algorithm of SB is highly parallelizable and enables devel-
oping the massive-parallel accelerators (Ising machines) at
a large scale (including more than several thousand Ising
spins) with parallel processors such as field programmable
gate arrays (FPGAs) [15], [16], [17], [18] and graphics
processing units (GPUs) [15], [17]. SB was derived from
a classical counterpart to a quantum adiabatic optimization
method called quantum bifurcation [45], and variations
of SB have been proposed: adiabatic SB (aSB) [15],
ballistic SB (bSB) [17], discrete SB (dSB) [17], and heated
SB [19]. The hardware implementations of SBs are called

simulated bifurcationmachines (SBMs). Financial automated
trading systems using SBMs for detecting short-lived trading
opportunities have been reported [46], [47], [48].

Yarkoni et al. [44] solved a random MIS problem with
D-Wave’s quantum annealing (QA) processor [20], [21],
an Ising machine based on quantum principles, and reported
speed and solution-accuracy advantages over conventional
MIS solvers at graph sizes of up to 40 nodes. The number
of nodes (stocks) of 40 is, however, not sufficient for
practical portfolio selection, as it requires handling thousands
of stocks when considering the whole constituents of a
market index as the universe for stock selection [e.g. the
Tokyo Stock Price Index (TOPIX) as the proxy for the
Japanese stock market involves more than 2,000 stocks, and
the National Association of Securities Dealers Automated
Quotations (NASDAQ) Composite Index for the NASDAQ
market involves more than 3,000 stocks]. The characteristic
of MIS portfolio strategy for a large-scale universe and for a
long period has not been sufficiently investigated.

In this work, we build an FPGA-based accelerator for
bSB (hereafter, the SBM), and by using it, investigate the
performance of a MIS portfolio strategy based on the market
graphs covering over 1,700 Japanese stocks when varying
the strategy parameters by iterating the 10-year backcast
simulation. The performance of the best MIS portfolio
strategy is compared with the Japanese major indices from
the perspective of risk-return characteristics.

The SBM supports fully-connected 2,048-spin Ising
models and is capable of solving 2,048-node MIS prob-
lems, which is implemented as a peripheral compo-
nent interconnect-express (PCIe)-attachable, look-aside type,
FPGA-based acceleration card to the CPU-based host system.
The backcast simulation is carried out with the CPU, but
the computationally-hard parts, namely the parts to solve
the MIS problems, are offloaded to the SBM without large
network-communication overheads. We also developed the
hardware abstraction layer (HAL) for the SBM and APIs
(Application Programming Interface) for C/C++ and Python
programming languages, making the SBM accessible to the
backcast simulator.

To evaluate SBM performance as a MIS solver, we com-
pare it with conventional MIS solvers, NetworkX [49] and
OR-tools [50], in terms of computation-time and solution-
accuracy when solving the MIS problems of market graphs
representing the constituents of Japanese stock indices
(TOPIX, TOPIX 1000, Nikkei 225, and TOPIX 100). See
APPENDIX A for the details of the major market indices in
the Tokyo Stock Exchange (TSE).

We repeat the backcast simulations of the MIS portfolio
strategy with TOPIX as the stock universe (over 1,700
constituent stocks) for the period from 2013 to 2023 under a
total of 38 parameter settings (a combination of 19 patterns of
thresholds that determine the edge connections of the market
graphs and two different asset-allocation methods for the
selected portfolios). And then, we compare the performance
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FIGURE 1. Market graph for an N-stock universe (N = 6). Red nodes are
the maximum independent set (MIS).

of the best MIS portfolio strategy with the major indices
such as TOPIX and Morgan Stanley Capital International
(MSCI) Japan Minimum Volatility Index. We show a
superior risk-return characteristic for the MIS strategy and
furthermore analyze the factors contributing to the risk-return
characteristic.

II. COMPOSITION OF SECTIONS
This paper is across several fields including financial engi-
neering, discrete mathematics, and computer engineering.
The rest of the paper is organized as follows. Section III
(Portfolio strategy) describes the MIS portfolio strategy and
its formulation. Section IV (System architecture) details the
MIS portfolio simulator and the interface and core circuit
of the SBM. Section V (MIS solver performance) compares
the SB-based MIS solver with the conventional MIS solvers.
Section VI (Portfolio performance) systematically shows
the performance of the portfolio strategy when varying the
strategy parameters and analyzes the property of the best MIS
strategy. Section VII concludes the paper.

III. PORTFOLIO STRATEGY
A. PORTFOLIO CONSTRUCTION AND MANAGEMENT
1) PORTFOLIO SELECTION
The proposed strategy selects a portfolio of stocks from
a stock universe (a group of tradable stocks) according to
the maximum independent set (MIS) found in the market
graph representing the stock universe. The market graph is
an undirected graph with nodes corresponding to the stocks
in the universe and each edge corresponding to the presence
of the correlation between the two nodes (/stocks) connected
by the edge. The definition of the market graph and the
constituents of the stock universes examined in this work
will be detailed in Sec. III-B1 and Sec. III-B3, respectively.
Fig. 1 shows an example of the market graph for an N -stock
universe (N = 6) and the MIS in there. The solution to the
MIS problem is a binary vector, where ith binary value means
whether the ith stock is involved in the MIS. In this strategy,
we choose the stocks involved in the MIS as the constituents
of the portfolio.

2) PORTFOLIO COMPOSITION
After the portfolio selection, we determine the portfolio
composition, i.e., the asset allocation to each constituent of

the portfolio. The weight wi represents the ratio of the asset
allocated for the stock i to the total asset. We examine the
following two asset-allocation methods.

A) Equal Weight (EW): All constituents have the same
weights; the weight wi of stock i is represented by

wi =
1
N

. (1)

B) Inverse Volatility Weight (IVW): The weight is propor-
tional to the inverse of the volatility of each constituent; wi is
defined by

wi =
v−1i
N∑
k=1

v−1k

, (2)

where the volatility vi is the standard deviation of the
logarithmic daily return [Ri(t)] [51]. The Ri(t) is expressed
by

Ri(t) = ln
Pi(t)

Pi(t − 1)
, (3)

where Pi(t) is the closing price of stock i on the day t (the last
traded price on the business day) and the dividend (if exists) is
considered. The standard deviation of Ri(t) over the last three
years is the volatility vi.

3) PORTFOLIO REBALANCE
The portfolio is rebalanced monthly; the portfolio selection
and weighting are carried out every month (at the end of
each month). For the difference between the new portfolio
and the last-month portfolio in terms of the constituents
and composition, we take into account the trading costs
corresponding to 0.1% of the total amount of transactions
(the sum of the amount of shares purchased and the absolute
amount of shares sold). The evaluation value of a portfolio
in month t , PPF(t), is the sum of the evaluation values of
constituents in the portfolio, where the evaluation value of
a constituent is the product of the base price and share at the
end of themonth. Themonthly return of the portfolio strategy,
RPF(t), is expressed by

RPF(t) =
PPF(t)

PPF(t − 1)
− 1. (4)

B. FINDING MIS IN MARKET GRAPH
1) DEFINITION OF MARKET GRAPH
We follow the definition and generation procedure of the
market graph in [6]. In the correlation matrix C , the
correlation coefficientCi,j between stocks i and j is calculated
for the last T days as follows.

Ci,j =

T∑
t
(Ri(t)− Ri)(Rj(t)− Rj)√

T∑
t
(Ri(t)− Ri)2

√
T∑
t
(Rj(t)− Rj)2

. (5)
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Ri(t) is the logarithmic daily return defined by Eq. 3. The
average of Ri(t) for the last T days, Ri, is given by

Ri =
1
T

T∑
t

Ri(t). (6)

Upon the portfolio selection at the beginning of each month,
we recalculate the correlation matrix C using historical price
data for the last three years (the T days are the business days
involved in the last three years). The correlation coefficient
Ci,j varies from -1 to 1. We can also consider Ci,j as the
similarity of the price fluctuations of the stocks i and j, i.e.,
the greater the value, the more similar the price movements
of the two stocks.

The connectivity (or topology) of themarket graph is deter-
mined by the correlation matrix C and a threshold parameter
of θ ; the nodes i and j in the market graph are connected if
the correlation coefficient Ci,j is equal to or greater than θ .
The connectivity of the market graph is sensitive to θ and the
choice of θ characterizes the performance of a MIS portfolio
strategy. In this work, we determine the best θ by analyzing
the long-term performance of the MIS portfolio strategy for
one of various θ and then assume using a fixed θ for the MIS
strategy (not changed monthly).

2) QUBO FORMULATION OF MIS PROBLEM
We describe the MIS problem in the form of quadratic
unconstrained binary optimization (QUBO) according to
[34]. The QUBO problem is mathematically equivalent to the
Ising problem. Considering a graph G = (V ,E) with a node
set V and an edge set E , the connection fi,j between nodes i
and j is represented as follows.

fi,j =

{
1 (i, j ∈ E),
0 (i, j ̸∈ E).

(7)

In the QUBO formulation, we search for the bit config-
uration {bi} that minimizes the cost function H . The cost
function H is designed to decrease with the number of
nodes selected (for maximizing the independent set) and
increase if connected nodes with edges are selected (if the
connected nodes are selected, the subset selected is no longer
independent). The {bi} and H are defined as follows.

bi =

{
1 (Node i is an element of the independent set),
0 (Node i is not an element of the independent set),

(8)

H =
N∑
i

N∑
j

Qi,jbibj = HA + HB, (9)

HA = A
N∑
i

N∑
j

fi,jbibj, (10)

HB = −B
N∑
i

bi. (11)

The QUBO cost function H is expressed with the coefficient
matrix {Qi,j} and also the combination of HA and HB. The
number of the constituents in the universe is N . Note that
b2i = bi for diagonal terms (i = j). HA increases (gives a
penalty) when a connected node is selected and is minimized
when the subsets are formed only with unconnected nodes.
HB is proportional to the number of nodes selected; the
higher the number, the lower the cost. A and B are positive
coefficients and must be B < A to avoid decreasing the cost
function despite constraint violations (selecting connected
nodes). In this work, A = 2 and B = 1.

3) STOCK UNIVERSE
In the following sections (Sec. V and Sec. VI), we use stock
universes of various sizes corresponding to several market
indices (TOPIX 100, Nikkei 225, TOPIX 1000, and TOPIX)
for the Tokyo Stock Exchange (TSE). See APPENDIX A for
the details on the market indices.
Since the constituents ofmarket indices sometimes change,

we determined the constituents of the stock universes as
follows. The candidates of the stock universe for each market
index are the constituents of the market index as ofMay 2023.
From the candidates, the stocks that have remained listed for
the analysis period consist of the stock universe. The size
of the stock universe corresponding to TOPIX in Sec. V is
2,026, but that in Sec. VI is 1,747. This difference comes from
the difference in the analysis periods; the analysis period in
Sec. V is 2017 to 2023, while that in Sec. VI is 2010 to 2023.

C. PORTFOLIO SIMULATION
Figure 2 shows the flowchart for the simulation of the
MIS portfolio strategy and the examples of data in the
process steps (a) to (g) when assuming a 952-stock universe.
In Sec. VI, in order to determine the best θ and asset-
allocation method, we repeat the 10-year (120 months)
backcast simulation while changing θ (19 patterns) for the
constituents of TOPIX as the universe and then calculate the
annualized return and risk from the 10-year simulation data.
At the beginning of the simulation, θ is set [the data

(a)] and then the simulation evaluates the performance of
the strategy every month. At the beginning of the monthly
processing, the correlation matrix C [the data (b)] and the
volatility {vi} [the data (c)] are calculated based on the price
data for the last three years before the month as described
in Sec. III-B1 and Sec. III-A2. The market graph [the
data (d)] is constructed from the correlation matrix C by
determining edge connections with the θ and then the Ising
problem to be solved [the data (e)] is generated from the
market graph (mapping of the MIS problem for the market
graph onto the Ising problem) as described in Sec. III-B2.
The SBM solves the Ising problem 10 times with different
initial states and obtains 10 different solutions. Note that SB
is a heuristic algorithm and can output different solutions
by changing the initial states. After verifying the solutions
in terms of constraint violation (if connected nodes are
included), we select the best solution having the largest size
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FIGURE 2. Flowchart for simulation of MIS portfolio strategy and the examples of data in the process steps (a) to (g). The data
examples are for a 952-stock universe.

of the independent set from the verification-passed solutions.
The best solution is translated directly into the portfolio
constitution (portfolio selection) and then the compositions
of the portfolio are determined for the two cases of the
asset allocation methods (EW and IVW) [the data (f) and
(g)]. Finally, we evaluate the new portfolio (considering the
trading costs) and calculate the monthly return by comparing
the evaluation value of the new portfolio with one of the last-
month portfolio as described in Sec. III-A3.

IV. SYSTEM ARCHITECTURE
A. PORTFOLIO SIMULATOR
Figure 3 shows the architecture of theMIS portfolio simulator
which executes the simulation process in the flowchart
(Fig. 2) using the historical stock price data of the TSE. The
simulator physically consists of a CPU-based server and an
FPGA card installed in the PCIe slot of the server, which is
logically modeled as three layers of software, middleware,
and hardware. See APPENDIX B for the details of the
hardware used.

The SBM (hardware layer) is implemented as a massively-
parallel custom circuit with the FPGA and the server as

a look-aside accelerator (offloader) to the CPU-based host
system. In the flowchart, the computationally-hard part,
namely solving the NP-hard Ising problem (MIS problem),
is offloaded to the SBM (dedicated accelerator) to reduce the
overall simulation time. The remaining in the flowchart is
executed by CPU processing (software layer). To solve the
MIS problem in the monthly market graph by the SBM (an
Ising machine), we have to map the MIS problem onto the
Ising model. The mapping is executed also by the CPU. Thus,
the SBM-basedMIS solver (blue highlighted in Figs. 2 and 3)
consists of mapping the MIS problem and solving the Ising
problem, unlike the other software MIS solvers that directly
solve the MIS problems. In the performance comparison of
the MIS solvers (Sec. V), we include the times of mapping
and communication needed for the SBM-based solver in the
computation-time.

To make the SBM accessible at a higher abstraction level
to the simulator program running on the CPU, we developed
the middleware layer, namely, the hardware abstraction layer
(HAL) for the SBM and the APIs (Application Programming
Interface) for C/C++ and Python programming languages.
Seen from the CPU side, the HAL abstracts the detailed
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FIGURE 3. System architecture of the MIS portfolio simulator.

functionality of the device driver for the SBM. The APIs
receive the SBM execution parameters such as the input data
describing the Ising problem and the number of times to con-
secutively execute the SBM (10 times in this work), and then
return the results (solutions) for the executions to the simu-
lation program running in the software layer. More precisely,
the API function calls the functions of the device driver to
control PCIe communication between the CPU and the FPGA
card and run the SBM core circuit. The SBM solves the Ising
problem based on the execution parameters received via the
PCIe communication with different initial states generated by
the internal random number generator and then transmits the
results (for 10 executions) back to the host system.

B. SBM CORE CIRCUIT
We describe the core circuit architecture for the ballistic
SB algorithm (bSB) [17]. The overall circuit architecture
for bSB follows the basic SBM design for adiabatic SB
(aSB) [16], but the data path (pipeline path) for the time-
evolution part is totally modified to represent the processing
of the time-evolution producer specific to the bSB. In the
physical representation of the bSB, a perfectly inelastic wall
has been introduced to the mechanical system of the bSB.
The circuit architecture for bSB has not been illustrated in
the paper that introduced the bSB algorithm [17].

Simulated bifurcation [15], [17] numerically simulates
the time-evolution of N nonlinear oscillators according to
the Hamiltonian equations of motion, where the nonlinear
oscillators correspond to the spin variables and the state of

FIGURE 4. Core circuit architecture of the bSB accelerator.

ith oscillator is described by the position and momentum
(xi, pi). The SB time-evolution step consists of calculating
the correction of momenta {1pi} based on the many-body
interaction [computationally corresponding to the matrix-
vector multiplication (MM) of the J coupling matrix and {xi}
position vector] and calculating the updated (time-evolved:
TE) state variables, {xk+1i } and {pk+1i }, from the {1pi},
bias {hi}, and the current state variables, {xki } and {p

k
i }.

After executing the time-evolution steps for a predetermined
number (Nstep), the positions of oscillators are digitized to be
spins [the sign of xi, sgn(xi), gives the state of ith spin].
Figure 4 shows the block diagram of the SB core circuit,

where the pipeline path for the time-evolution part specific
to the bSB is blue highlighted. The main two computation
components are MM units corresponding to the multiply-
accumulate (MAC) operations of

∑N
j=1 Jijxj and TE pipelines

corresponding to the time-evolution operation, which are
combined to be MMTE units (each responsible for updating
a subgroup of nonlinear oscillators). The MMTE units are
organized with the global X′mem memory unit to make a
circulative structure as a whole corresponding to the iteration
of the SB time-evolution steps. Memory modules (connected
to TE) XB, PB, and HB store xi, pi, and hi, respectively.
The feature of bSB is the perfectly inelastic walls existing

at the positions of +1 or −1. If ith oscillator collides with
the wall, the position and momentum of the oscillator are
replaced by predetermined values [xi ← sgn(xi), pi ← 0].
As shown in Fig. 4, the TE pipeline consists of the FX
(calculates the value to update pi, δpi, from xi), FP (calculates
the value to update xi, δxi, from pi), and FW (corresponds to
the wall) modules, where the functionalities are expressed as
follows.

FX (xi, hi) = 1t {−(α0 − α)xi − ηhi}, (12)

FP(pi) = 1t pi, (13)

FW (xi) =

{
sgn(xi) (when |xi| > 1),
xi (when |xi| ≤ 1),

(14)
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FW (xi, pi) =

{
0 (when |xi| > 1),
pi (when |xi| ≤ 1),

(15)

where 1t , α0, α and η are the SB parameters, the same as in
the previous work [16]. The conditional-branch processing of
the FW is implemented with one 32-bit comparator (COMP)
and two 32-bit multiplexers (MUX1 andMUX2). The FX, FP,
and FW modules are interconnected as shown with arrows in
Fig. 4. The circuit inside the TE module corresponds to the
hardwired algorithm of the bSB time-evolution operation.

The SBM implemented is capable of solving fully-
connected 2,048-spin Ising problem with a computational
precision of 32-bit floating-point, which works at the
system clock frequency of 239 MHz in a highly-parallel
fashion; the MM units have totally 4,096 MAC components
(basic processing elements), which compute 4,096 spin-
spin interactions in a single clock and there are 64 TE
pipelines, including 64 sets of COMP, MUX1, and MUX2.
The circuit resources used for the perfectly inelastic wall
are not significant compared to the MAC components. The
parameters for solving the MIS problem are Nstep = 1000,
1t = 0.2 and η = 0.2.

V. MIS SOLVER PERFORMANCE
The SBM-based MIS solver is evaluated in terms of
computation-time and solution-accuracy through comparison
with conventional MIS solvers based on heuristic and exact
algorithms (NetworkX [49] and OR-tools [50]).
NetworkX [49] is an open-source Python library for

analyzing and visualizing graph structures, including a
heuristic solver for the MIS problem. The size of an
approximate solution for the MIS problem in a graph G =
(V ,E) with nodes V and edges E is O(|V |/(log |V |)2) in
the worst case [52]. OR-tools [50] provides a solver for
0-1 integer programming problems applicable to the MIS
problem, which is based on a branch-and-cut algorithm [53]
known as an exact-solutionmethod. Hereafter, NetworkX and
OR-tools refer to the heuristic and exact-solution solvers for
the MIS problem above mentioned. See APPENDIX B for
the details of the execution.

Figure 5 shows the comparison results of the SBM-based
MIS solver (heuristic), NetworkX (heuristic), and OR-tools
(exact-solution) in terms of computation-time and solution-
accuracy. The four sizes of stock universes corresponding to
the market indices (TOPIX 100, Nikkei 225, TOPIX 1000,
and TOPIX) were used and 10 market graphs (having
the same size but different edges) for each universe were
generated with θ = 0.25 based on the correlation matrices for
the different periods (consecutive three years, starting from
different dates) in Mar. 2017 to May 2023. The numbers
of nodes (corresponding to the number of the stocks in the
universe) in the market graphs are 99, 222, 952, and 2,026
(see Sec. III-B3). The computation-time and the size of the
independent set found (the larger, the better) when solving the
MIS problem for each of the 10market graphs were measured
and averaged over the 10 market graphs. As mentioned in

FIGURE 5. Performance comparison of the three MIS solvers, SBM
(heuristic), NetworkX (heuristic), and OR-tools (exact-solution), in terms
of (a) computation-time and (b) relative solution-accuracy (the size of the
independent set found). The computation-time (the shorter, the better)
and the size of the independent set found (the larger, the better) when
solving the MIS problem for each of the 10 market graphs having the
same size but different edges were measured and averaged over the
10 market graphs. Each value in (b) is the ratio to the largest one of the
(averaged) sizes of independent sets found by the three solvers.

Sec. IV-A, the computation-time per market graph for the
SBM [the red solid line in Fig. 5(a)] includes the time of
10 executions and the times of mapping and communication.
The computation-time of SBM without the time of mapping
is also shown there as the red dashed line. The total number
of SBM executions for Fig. 5 is 400 (10 executions per graph,
10 market graphs per universe, 4 universes).

From the computation-times in Fig. 5 (a), it is observed
that SBM is the fastest for all the sizes of market graphs. OR-
tools could not output solutions for problems with 952 nodes
or more by a timeout error (we define the timeout time
as 10 hours). The speed advantage of SBM becomes more
pronounced as the number of nodes increases, and at 2,026
nodes, the average computation-times for SBM and Net-
workX are 8.54×10−2 and 5.32×102 seconds, respectively,
with SBM being 6,230 times faster. This difference is further
pronounced in practical use cases because the performance of
a portfolio strategy should be analyzed for a long-term period
under various conditions for optimizing strategy parameters
(as we will see an example in Sec. VI).

The solution-accuracy (the size of the independent set
found) in Fig. 5 (b) is shown as the ratio to the largest
one of the sizes of independent sets found by the three
solvers. Since OR-tools is an exact-solution solver, the
relative accuracy is 100% at the node numbers 99 and
222. At the 99 and 222 nodes, the relative accuracies of
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TABLE 1. Statistics of the simulated 10-year (120-month) performance data of the MIS portfolio strategy when varying θ from 0.18 to 0.36 (19 patterns)
for the two cases of the asset-allocation methods (EW or IVW), including the edge density (max, min, and average) of market graphs, the size (# of stock)
of independent set found (max, min, average, and standard deviation: SD), the annualized return/risk and Sharpe ratio of the strategy.

the SBM are close to those of OR-tools, while NetworkX
is considerably inferior to the other two solvers. More
specifically, at the 99 and 222 nodes, the SBM found the
exact solutions (the same solutions as ones by OR-tools) for
9 and 6 samples (out of 10 samples for each), respectively,
and the sizes of the remaining solutions (1 and 4 samples
for the 99 and 222 nodes, respectively) are smaller only by
1 from the sizes of the exact solutions; the SBM provide
approximate solutions very close to the exact solutions.
The accuracy advantage of SBM over NetworkX seen at
the 99 and 222 nodes (roughly 20%) is maintained almost
constant for larger problem sizes of the 952 and 2026 nodes
(OR-tools was not capable of solving those sizes of
problems).

The independent sets in undirected market graphs are
considered in this work, while clique-like structures in
directed graphs (sometimes called dicliques) have been
investigated [54], [55] [independent set problems are in a
complementary relationship with clique problems]. Market
representation as directed graphs and the selection of
uncorrelated stocks in those directed graphs would be one of
the interesting future works.

VI. PORTFOLIO PERFORMANCE
By using the SBM-based portfolio simulator described in
Sec. IV-A, we simulate the performance of the MIS portfolio
strategy over 10 years (Apr. 1, 2013, to Mar. 31, 2023)
for a large universe including 1,747 stocks corresponding
to TOPIX. The strategy parameter (correlation threshold
θ ) and the asset-allocation methods (EW or IVW) are
optimized by repeating the long-term, large-scale backcast
simulation. Then we compare the performance of the best
MIS portfolio strategy with the Japanese major indices
(assuming passive index funds) from the perspective of risk-
return characteristics.

A. PARAMETER SEARCH
Table 1 shows the statistics of the simulated 10-year
(120-month) performance data of the MIS portfolio strategy
when varying θ from 0.18 to 0.36 (19 patterns) for the two
cases of the asset-allocation methods (EW or IVW) [totally
38 settings]. As illustrated in Fig. 2, the total number of SBM
executions for Table 1 is 22,800 (10 executions per graph,
120 market graphs per θ , 19 patterns of θ ). For each of the
120 market graphs, the edge density and the size (the number
of stocks) of the independent set found were examined
and their statistics are summarized in Table 1. As the
correlation threshold θ increases, the number of excluded
edges increases, and therefore the edges get more sparse, as a
result, the size of the independent set increases. These trends
are consistent with the previous studies [6], [7], [8].

Figure 6 shows the cumulative monthly returns of the MIS
portfolio strategies for the representative six settings as a
function of time. The performance of the strategy, i.e., the
annualized return/risk and Sharpe ratio, are calculated from
the data of the monthly returns, where the Sharpe ratio [56]
is, in this work, the ratio of the mean to the standard deviation
of the return (the profit and loss per period for an investment)
from a strategy as in [57]. For both EW and IVW, the risks are
reduced as θ increases. This can be interpreted as an increase
in constituents of the portfolio leading to a reduction in risk,
which is the diversification effect as expected. The Sharpe
ratio, as well as the risk, peaks at θ = 0.18 or 0.19 and then
slightly declines as θ increases, although it remains above
1 for most of the θ settings.

In this work, we select the combination of θ = 0.23 and
IVW as one that gives the best performance (Sharpe ratio =
1.16) under a constraint that the numbers of constituents in
the portfolios should be more than 50 for the diversification
effect. When comparing the EW and IVW methods, the
annualized returns are comparable, while the annualized
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FIGURE 6. Cumulative monthly returns of the MIS portfolio strategies
with one of the two asset-allocation methods (IVW and EW) when varying
the correlation threshold θ . Simulation data is from Apr. 1, 2013, to Mar.
31, 2023 (10 years).

risks are, overall, better for the IVW method. The results
demonstrate the validity of the IVW concept of predicting
future risks based on past volatility.

B. PERFORMANCE EVALUATION
Figure 7 shows the cumulative monthly returns of the best
MIS portfolio strategy (θ = 0.23 and IVW) and major indices
in the TSE [TOPIX, TOPIX 1000, TOPIX 500, TOPIX
Mid400, TOPIX Small, andMSCI JapanMinimumVolatility
Index (seeAPPENDIXA for the details of the indices)]. Their
risk-return characteristics (annualized return/risk and Sharpe
ratio) are summarized in Table 2 and Fig. 8. The comparison
in Table 2 and Fig. 8 is conservative for the MIS strategy
because the trading cost is included only in the MIS strategy
(see Sec. III-A3) [note that the dividends are considered for
the MIS strategy and the major indecies].

The results clearly show that the MIS strategy outperforms
all the indices in terms of annualized return and Sharpe ratio.
The MIS strategy is superior to the TOPIX series indices
because of the relatively high return and relatively low risk.
It is remarkable that the MIS strategy (a diversified portfolio
strategy) outperforms the risk-oriented index, MSCI Japan
Minimum Volatility Index, in terms of the Sharpe ratio due
to the relatively high return.

We analyzed the factors contributing to the relatively high
return of the MIS strategy. Figure 9 shows the cumulative
excess return for the MIS strategy versus TOPIX. The
annualized return of theMIS strategy for the period from Sep.
2016 and Dec. 2017 is 49.0%, remarkably larger than that of
TOPIX (22.7%).

To examine which and what kind of stocks contributed to
the return of the MIS strategy, we introduce an index, DIFR,
for each stock.DIFRi is defined as the difference in the return
of stock i between the MIS portfolio strategy and TOPIX for
the period and expressed by

DIFRi = RMIS
i − RTPXi , (16)

RMIS
i =

T∑
t

Ri(t) · wMIS
i (t), (17)

FIGURE 7. Cumulative monthly returns of the best MIS portfolio strategy
(θ = 0.23 and IVW) and major indices in the TSE (TOPIX, TOPIX 1000,
TOPIX 500, TOPIX Mid400, TOPIX Small, and MSCI Japan Minimum
Volatility Index). The evaluation is from Apr.1, 2013, to Mar. 31, 2023 (10
years).

FIGURE 8. Mapping of the best MIS portfolio strategy and major TSE
indices (the data in Table 2) on the risk-return graph. Since the data for
TOPIX 1000, TOPIX 500, TOPIX Mid400, and TOPIX Small are almost
overlapped with that of TOPIX, the data for TOPIX is only illustrated.

RTPXi =

T∑
t

Ri(t) · wTPX
i (t). (18)

Here, Ri(t) is the monthly return of stock i at month t (T
is 16 months in the period). wMIS

i (t) and wTPX
i (t) are the

weights of stock i in the MIS portfolio and TOPIX at month
t , respectively. RMIS

i and RTPXi are the returns of stock i in the
MIS strategy and TOPIX (a TOPIX-associated passive fund),
respectively.

The size of the universe for the MIS strategy is 1,747 (see
Sec. III-B3), while the constituents of TOPIX is 2,156 as
of Jul. 2023 (see APPENDIX A). Assuming the constituents
of TOPIX are the same as the universe of the MIS strategy,
we calculated the performance and weights [wTPX

i (t)] for
TOPIX according to the weighting method of TOPIX (a
capitalization-based weighting, see APPENDIX A). Hence,∑1747

t=1 wMIS
i (t) = 1 and

∑1747
t=1 wTPX

i (t) = 1. We have
confirmed that the performance of TOPIX for the 1,747
constituents is almost the same as that of the original TOPIX
since the dominant constituents do not differ.

Table 3 shows the result of a deferential factor analysis
of the performances between the MIS portfolio strategy and
TOPIX for the period. The top five and bottom five stocks
when sorted by DIFR are listed there, along with the market
capitalization, the degree of the node in the market graph,
wMIS, and wTPX (averaged over the period). Here, the degree
of a node, in graph theory, represents the number of edges
that are connected to the node.
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TABLE 2. Annualized return, risk, and Sharpe ratio of the best MIS portfolio strategy (θ = 0.23 and IVW) and major indices in the TSE (TOPIX, TOPIX 1000,
TOPIX 500, TOPIX Mid400, TOPIX Small, and MSCI Japan Minimum Volatility Index). The evaluation is from Apr.1, 2013, to Mar. 31, 2023 (10 years).

FIGURE 9. The cumulative excess return of MIS portfolio versus TOPIX.
The evaluation is from Apr.1, 2013, to Mar. 31, 2023 (10 years).

The top five stocks are all small-capitalization stocks and
the bottom five are all large-capitalization stocks. We have
confirmed that the top five small-capitalization stocks are
involved in the MIS strategy but the bottom five large-
capitalization stocks are not in the MIS strategy (also see
wMIS in Table 3). As partially shown in Table 3 (market
capitalization and the degree of the node), it has been
observed that the degree of the node tends to increase
with the capitalization of the stock increases. It would be
because the large-capitalization stocks have large influences
on the market and are correlated with one another (associated
strongly with the whole market). The stocks with the smaller
degrees of the node are more likely to be selected for the
MIS portfolio. Hence, the MIS strategy is more likely to be
composed of small-capitalization and low-correlation stocks.
In contrast, TOPIX is composed of large-capitalization stocks
due to the definition of the weighting method [TOPIX Small
is composed of small-capitalization stocks (not considering
correlations)]. It is found that, in the period, the selection of
small-capitalization and low-correlation stocks results in the
superior return of the MIS strategy seen in Figs. 7 and 8.
One of the interesting future works would be to investigate
whether this phenomenon (the MIS strategy may lead to not
only a low risk but also a high return) also occurs in other
stock markets (such as the New York Stock Exchange and
the London Stock Exchange, etc.) and other kinds of markets
for various financial products.

VII. CONCLUSION
We have developed a look-aside type combinatorial opti-
mization accelerator (an Ising machine) based on a quantum-
inspired parallelizable algorithm called simulated bifurcation
(SB), which enables the long-term backcast simulation
of a diversified portfolio strategy based on the selection
of the maximum independent set in a large-scale market

graph representing the correlations between stocks (the MIS
problem is known to be NP-hard). We optimized the strategy
parameters of the MIS portfolio strategy by iterating the
long-term large-scale simulations and found that the best
MIS strategy outperforms the major market indices such as
TOPIX, TOPIX Small, and MSCI Japan Minimum Volatility
Index.

The look-aside type accelerator has a massively-parallel
custom circuit (core circuit) for the ballistic SB (a variant
of the SB algorithms) featuring the time-evolution pipeline
path specific to the ballistic SB (corresponding to a perfectly
inelastic wall in physics) and has been implemented as a
PCIe-attachable FPGA card. We also have developed the
hardware abstraction layer (HAL) and the APIs (Application
Programming Interface), making the SB-based FPGA accel-
erator accessible at a higher abstraction level to the financial
simulation program running on the CPU.

We systematically evaluated the performance of the SB-
based Ising machine (fully-connection 2,048-spin size, 32-bit
floating point precision) as aMIS solver using various sizes of
practical market graphs (generated from the historical market
data). The SB-basedMIS solver provides a good approximate
solution very close to the exact solution in amuch shorter time
than an exact-solution solver (OR-tools) and also finds the
independent sets with a remarkably larger size (roughly 20%)
than a conventional heuristic solver (NetworkX). At a large-
scale market graph of 2,026 nodes (too large for the exact
solver to handle), the SB-based solver is 6,230 times faster
than the conventional heuristic solver.

By using the SB-based solver, we investigated the perfor-
mance of the MIS portfolio strategy for a large-scale universe
including 1,747 stocks (corresponding to the constituents
of a major market index, TOPIX) by repeating the 10-year
simulation (2013 to 2023) while varying correlation threshold
parameters (19 patterns) and the asset-allocation methods
(inverse volatility weight or equal weight) [totally involving
the 22,800 executions of the SB solver]. By comparing with
the major market indices, it has been found that the best
MIS portfolio strategy based on the large-scale universe has
not only a relatively low risk (the diversification effect as
expected) but also a relatively high return, outperforming
the major indices. We analyzed the factors contributing to
the relatively high return of the MIS strategy and concluded
that the selection of small-capitalization and low-correlation
stocks results in the superior return.

A potential direction of further research is to examine the
performance and risk-return characteristics of the MIS port-
folio strategy for a large-scale universe in other stock markets
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TABLE 3. Deferential factor analysis of the performances between the MIS portfolio strategy and TOPIX. The difference in the return of a stock between
the MIS portfolio strategy and TOPIX for a period from Sep. 2016 to Dec. 2017 is defined as DIFR (see the main text). Listed are company name, stock
code, market capitalization (in Japanese yen, JYN), the degree of the node in the market graph, weight in the MIS portfolio (wMIS), weight in TOPIX
(wTPX) and DIFR for the top five and bottom five stocks when sorted by DIFR. The market capitalization, the degree of the node, wMIS, and wTPX are
averaged over the period.

TABLE 4. The constituents and weighting methods of the major market indices in the TSE. The numbers of component stocks are ones as of Jul. 2023.

or other kinds of markets for various financial products.
Representing markets as more complicated graphs/networks
like directed graphs or higher-order networks would be
another direction of further research.

APPENDIX A
MARKET INDICES IN THE TSE
Table 4 summarizes the constituents and weighting (com-
position) of the major market indices in the TSE (TOPIX,
TOPIX 500, TOPIX 1000, TOPIX Mid400, TOPX Small,
MSCI JapanMinimumVolatility Index, and Nikkei 225). The
numbers of the component stocks are ones as of Jul. 2023.

APPENDIX B
IMPLEMENTATION DETAILS
The SBM-based MIS solver consists of mapping onto an
Ising model by software processing (CPU) and solving the
Ising problem corresponding to theMIS problem by hardware
processing (FPGA). The FPGA (Intel Stratix 10 SX 2800
FPGA) on the board (Intel FPGA PAC D5005 accelerator
card) has 933,120 adaptive logic modules (ALMs) including

2,753,000 adaptive look-up-tables (ALUTs, 5-input LUT
equivalent) and 3,732,480 flip-flop registers, 11,721 20Kbit-
size RAM blocks (BRAMs), and 5,760 digital signal
processor blocks (DSPs). The SBM components in the
FPGA described in Sec. IV-B were coded in a high-level
synthesis (HLS) language (Intel FPGA SDK for OpenCL,
ver. 19.2). The PCIe configuration of the FPGA card is
PCIe Gen3 × 16 with a peak bandwidth of 15.75 GB/s. The
software processing is executed with a single CPU [Intel Core
i3-10100 (3.60 GHz, 4 cores)] and 8 GB DDR-DRAM.

The software MIS solvers of NetworkX (ver. 2.5.1) and
OR-tools (ver. 9.4.1874) implemented as the Python libraries
are executed on a server with dual CPUs [Intel Xeon Silver
4215R (3.20 GHz, 8 cores)] and 256 GB DDR-DRAM.
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