
Received 1 November 2023, accepted 3 December 2023, date of publication 12 December 2023,
date of current version 15 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3341507

Enhanced Deep Deterministic Policy Gradient
Algorithm Using Grey Wolf Optimizer for
Continuous Control Tasks
EBRAHIM HAMID HASAN SUMIEA 1,2, SAID JADID ABDULKADIR 1,2, (Senior Member, IEEE),
MOHAMMED GAMAL RAGAB 1,2, SAFWAN MAHMOOD AL-SELWI 1,2,
SULIAMN MOHAMED FATI 3, (Senior Member, IEEE),
ALAWI ALQUSHAIBI 1,2, AND HITHAM ALHUSSIAN 1,2
1Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
2Center for Research in Data Science (CeRDaS), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
3Information Systems Department, Prince Sultan University, Riyadh 11586, Saudi Arabia

Corresponding author: Ebrahim Hamid Hasan Sumiea (ebrahim_22006040@utp.edu.my)

The authors would like to thank the Ministry of Higher Education(MOHE) - Malaysia for providing financial assistance under
Fundamental Research Grant Scheme (FRGS/1/2022/ICT02/UTP/02/4), Universiti Teknologi PETRONAS under the Yayasan Universiti
Teknologi PETRONAS (YUTP-FRG/015LC0-308) for providing the required facilities to conduct this research work, and Prince Sultan
University - Riyadh Saudi Arabia for their support.

ABSTRACT DeepReinforcement Learning (DRL) allows agents tomake decisions in a specific environment
based on a reward function, without prior knowledge. Adapting hyperparameters significantly impacts
the learning process and time. Precise estimation of hyperparameters during DRL training poses a major
challenge. To tackle this problem, this study utilizes Grey Wolf Optimization (GWO), a metaheuristic
algorithm, to optimize the hyperparameters of the Deep Deterministic Policy Gradient (DDPG) algorithm
for achieving optimal control strategy in two simulated Gymnasium environments provided by OpenAI.
The ability to adapt hyperparameters accurately contributes to faster convergence and enhanced
learning, ultimately leading to more efficient control strategies. The proposed DDPG-GWO algorithm is
evaluated in the 2DRobot and MountainCarContinuous simulation environments, chosen for their ease of
implementation. Our experimental results reveal that optimizing the hyperparameters of the DDPG using
the GWO algorithm in the Gymnasium environments maximizes the total rewards during testing episodes
while ensuring the stability of the learning policy. This is evident in comparing our proposed DDPG-GWO
agent with optimized hyperparameters and the original DDPG. In the 2DRobot environment, the original
DDPG had rewards ranging from −150 to −50, whereas, in the proposed DDPG-GWO, they ranged from
−100 to 100 with a running average between 1 and 800 across 892 episodes. In the MountainCarContinuous
environment, the original DDPG struggled with negative rewards, while the proposed DDPG-GWO achieved
rewards between 20 and 80 over 218 episodes with a total of 490 timesteps.

INDEX TERMS Deep deterministic policy gradient, deep reinforcement learning, grey wolf optimization,
hyperparameters optimization.

I. INTRODUCTION
The integration of RL with the Deep Q-Network (DQN)
framework has been successfully achieved, utilizing Deep
Neural Networks (DNN) as the foundation for Q-learning [1],

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .

[2]. DQN has shown remarkable performance across a variety
of Atari games, thereby contributing to the advancement of
diverse DRL systems [3], [4]. However, DQN’s applicability
was limited to tasks involving discrete and relatively small
state and action spaces [5]. In contrast, many RL problems
encompass continuous states and action spaces. Although
DQN can handle continuous tasks by discretizing the

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 139771

https://orcid.org/0000-0002-2829-0842
https://orcid.org/0000-0003-0038-3702
https://orcid.org/0000-0001-5226-4962
https://orcid.org/0009-0000-2742-213X
https://orcid.org/0000-0002-6969-2338
https://orcid.org/0000-0002-3001-1224
https://orcid.org/0000-0003-3947-269X
https://orcid.org/0000-0003-1118-7109

E. H. H. Sumiea et al.: Enhanced DDPG Algorithm Using GWO for Continuous Control Tasks

state and action spaces, this approach increases the entire
unpredictability of the control mechanism [6]. To tackle and
overcome this challenge, the Deterministic Policy Gradient
(DPG) algorithm [7] was introduced, which combined
DNN techniques and proved to be suitable for addressing
continuous tasks. Consequently, the Deep Deterministic
Policy Gradient (DDPG) was created [8]. Nevertheless, the
DDPG algorithm is susceptible to insufficient exploration and
intermittent instability during training [9].

Within the framework of a continuous control problem,
the DDPG algorithm necessitates the pre-definition of a
set of parameters, commonly referred to as hyperparame-
ters, to enable autonomous exploration and learning in a
complex environment. These hyperparameters encompass
aspects such as the batch size, the size of the network,
the exploration strategies, the learning rates, time steps,
and others [10]. During the training time, these parameters
are not dynamically optimized; instead, researchers rely on
their knowledge to manually select the most suitable values.
Hyperparameters configuration significantly impact the effi-
cacy of learning processes, interactions with the environment,
and the time required for learning [11]. Therefore, it is crucial
to determine the most suitable hyperparameters carefully
and accurately to enhance the performance of the model.
Each environment possesses unique characteristics and
complexities that require specific hyperparameters tailored to
its requirements. Typically, a common approach to selecting
these hyperparameters is through manual search, which
demands expertise to identify robust sets of hyperparameters
[12]. However, finding the optimal hyperparameters is a
challenging task [13].
Recently, optimization has emerged as a captivating area

of study across various domains, and nature-inspired meta-
heuristic optimization algorithms have gained considerable
attention as promising techniques for achieving optimal
solutions [14]. These algorithms have found applications in
conjunction with AI methods due to several advantageous
characteristics: (i) their ease of implementation and reliance
on straightforward concepts, (ii) their ability to operate
without requiring gradient information, (iii) their capability
to overcome local optima, and (iv) their applicability
to a wide range of problems spanning diverse research
fields. Metaheuristic algorithms inspired by nature tackle
optimization problems by mimicking biological or physical
phenomena. These techniques can be broadly classified into
numerous main categories, such as swarm-based methods,
evolution-based methods, and physics-based methods [15].

Ant Colony Optimization (ACO) [16], and Particle Swarm
Optimization (PSO) [17] are widely recognized as popular
swarm-based optimization algorithms. PSO draws inspiration
from the collective behavior of bird flocks, while ACO
is motivated by the cooperative behavior observed in ant
colonies. Another notable algorithm is the Grey Wolf Opti-
mizer (GWO) [18], which involves initializing a population
of grey wolves to represent potential solutions. GWO

has demonstrated efficient problem-solving capabilities in
literature [18].
A recent study by Faris et al. [19] has recently assessed

the scientific applications of the GWO and reported
promising results across various optimization problems.
The high success rate of GWO in literature might appear
from its remarkable characteristics relative to other swarm
intelligence methods. This review underscores that GWO
does not require prior knowledge of the search space
and involves only a few parameters. Moreover, it is
scalable, flexible, user-friendly, and straightforward, main-
taining a fine balance between exploration and exploita-
tion throughout the search process, resulting in excellent
convergence.

In this research, we employed the GWO to enhance
the DDPG algorithm performance in continuous control
problems. To accomplish this, we validated our proposed
DDPG-GWO method on Gymnasium environments, as they
possess highly complex state spaces, continuous action
spaces, and necessitate precise fine control. Moreover,
OpenAI’s simulation environments present a wide array of
virtual spaces, enabling the training and evaluation of AI
models within realistic and interactive scenarios spanning
diverse domains [20]. To effectively adapt the DDPG
algorithm to Gymnasium environments, this study focuses on
the optimization of seven key hyperparameters: actor learning
rate, critic learning rate, discount factor, exploration, batch
size, Polyak averaging, and learning rate of target networks.
These hyperparameters play a crucial role in governing
the performance of the overall system [8]. To achieve this
optimization task, the GWO is employed as the chosen
metaheuristic optimization technique. GWO is selected based
on its promising outcomes and potential for achieving
desirable results in this context.

Therefore, we conducted a comprehensive evaluation of
our agent in a training mode using OpenAI’s simulation
environments. The performance of our DDPG-GWO agent
is compared against the original DDPG agent, which utilizes
a list of the DDPG algorithm’s hyperparameters. The
evaluation results indicate that our agent exhibited superior
performance in optimizing (maximizing) the cumulative
rewards throughout the training episodes and during the test
episodes, with a significantmargin of improvement compared
to its competitors. This article provides the following
contributions:
• This study surveys the latest and most remarkable
advancements in DDPG, highlighting the research
endeavors dedicated to enhancing the optimization of its
hyperparameters.

• Narrowing down the scope to optimizing a specific
set of seven hyperparameters in the DDPG algorithms,
these parameters are widely acknowledged as pivotal for
augmenting the learning process’s efficiency.

• Utilizing the GWO to identify the optimal settings
of the chosen hyperparameters, enabling our agent to

139772 VOLUME 11, 2023

E. H. H. Sumiea et al.: Enhanced DDPG Algorithm Using GWO for Continuous Control Tasks

effectively implement continuous control within the
simulation environments provided by OpenAI.

• A performance comparison is conducted between the
DDPG agent employing the optimized hyperparameters
by the GWO and the original DDPG agent utilizing a set
of hyperparameters.

The rest of this paper is structured as follows: in section II,
we provide the fundamental background of this study.
Section III presents the discussion on related work. The
detailed explanation of the proposed approach is presented
in section IV. In section V, the experimental results of the
proposed method are discussed. Section VI provides the dis-
cussion and analysis. Finally, section VII concludes the paper.

II. FUNDAMENTAL BACKGROUND
In this section, a fundamental overview concerning DRL is
elaborated in (Sub-section II-A), DDPG (Sub-section II-B),
GWO (Sub-section II-C), and OpenAI simulation environ-
ments (Sub-section II-D).

A. DEEP REINFORCEMENT LEARNING
DRL is an advanced approach that combines deep learning
(DL), which involves training deep neural networks, with
RL, a technique used to teach agents to make decisions
in an environment through trial and error [21]. Two well-
known algorithms in this field are the DQN algorithm and
the DDPG algorithm. The DDPG algorithm builds upon the
DQN algorithm, enhancing its capabilities. One key aspect
of the DDPG algorithm is that it does not require a pre-
defined model and can learn from the experience gathered
while acting in the environment off-policy. This flexibility
allows the algorithm to adapt and improve its decision-
making abilities over time.

B. DDPG ALGORITHM
The DDPG algorithm, as introduced by Lillicrap et al. [22],
represents a distinctive approach in DRL that combines
the principles of being both off-policy and model-free.
This fusion effectively integrates the strengths of the DQN
algorithm and the Actor-Critic (AC) algorithm, melding DL
and RL principles.

While the DDPG algorithm shares a structural framework
with the AC algorithm, it distinguishes itself through a
more refined neural network configuration. Notably, while
the DQN algorithm excels in discrete problem domains,
the DDPG algorithm builds upon DQN’s experiences
to tackle the complexities of continuous control tasks,
achieving end-to-end learning. Illustrated in Figure 1, the
DDPG’s structure embodies an actor-network that pro-
cesses input states, selects actions, and generates action
values. Concurrently, a critic network evaluates the cho-
sen action’s efficacy and computes the associated reward.
The DDPG algorithm’s procedural steps are elaborated as
follows:

1) Initializing the neural network parameters. The actor,
guided by the behavior policy, chooses an action.
To promote exploration, the action produced by the
policy network is augmented with noise Nt . This
modified action, denoted as at , is then sent to the
environment for execution.

at = µ
(
st | θµ

)
+ Nt (1)

2) Once the environment performs the action at , the
resulting outcome is observed, including the reward rt
received and the new state at+1 of the system.

3) The actor archives the state transition st , at , rt , st+1
in the replay memory, which functions as the training
dataset for the online network.

4) DDPG employs two separate neural network copies,
namely the policy and the Q network. These copies
consist of the online network and the target network.
The policy network’s update method can be described
as follows:{

online : Q
(
s, a | θµ

)
, gradient update θµ,

target : Q
(
s, a | θµ′

)
, soft update θµ′ .

(2)

The update procedure for the Q network is outlined as
follows:online : Q

(
s, a | θQ

)
, gradient update θQ,

target : Q
(
s, a | θQ

′
)

, soft update θQ
′

.
(3)

N transition data are selected randomly from the replay
memory to serve as training data for the online policy
network and online network. Each individual transition
data within a mini-batch is denoted by st , at , rt , st+1.

5) During the critical step, compute the gradient of the Q
values for the online Q network.
The loss of the Q network is defined as

L =
1
N

∑
i

(
yi − Q

(
si, ai | θQ

))2
,

yi = ri + γQ′
(
si+1, µ′

(
si+1 | θµ′

)
| θQ

′
)

(4)

The derivative of the loss function L with respect to the
parameters θQ can be computed as∇θL. This calculation
involves utilizing the target policy network µ′ and the
target Q network Q′.

6) Update the online Q network, and update θQ using the
Adam optimizer.

7) Within the actor component, the policy gradient is
computed by calculating the gradient of the policy
network.

∇θµJβ (µ) ≈
1
N
·

(
∇αQ

(
s, a | θQ

)∣∣∣
s=si,a=w(sk)

·∇θµµ
(
s | θµ

)∣∣
s=si

)
(5)

8) Updating the online policy networks: updating with the
Adam optimizing.

VOLUME 11, 2023 139773

E. H. H. Sumiea et al.: Enhanced DDPG Algorithm Using GWO for Continuous Control Tasks

FIGURE 1. Structure of DDPG algorithm.

9) The hyperparameters of the target networks adopting the
method of soft update:{

θQ
′

←− τθQ + (1− τ)θQ
′

,

θµ′
←− τθµ

+ (1− τ)θµ′
(6)

Typically, the DDPG algorithm employs the Actor-Critic
framework to iteratively train the policy and the Q network
by facilitating interactions among the environment, actor, and
critic components.

C. GREY WOLF OPTIMIZATION
The GWO algorithm proposed by Mirjalili et al. [18], draws
inspiration from the social intelligence observed in grey
wolves, which exhibit a preference for living in groups
consisting of 5 to 12 individuals. To replicate the leadership
hierarchy observed in GWO, the algorithm incorporates four
levels: alpha α, beta β, delta δ, and omega ω.

In this hierarchy, the alpha wolf is known as the male and
female leader of the pack. It holds the primary responsibility
for making decisions such as hunting, selecting sleeping
locations, and determining wake-up times. Beta, on the
other hand, assists alpha in decision-making and focuses
mainly on providing feedback and suggestions. Delta fulfills

multiple roles within the group, serving as hunters, sentinels,
caretakers, scouts, and elders, and controls the omega wolves
by following the commands of the alpha and beta wolves. The
omega wolves, in turn, are required to obey all other wolves
within the group [23].

In the context of the GWO algorithm, the hunting process
is orchestrated by the α, β, and δ wolves, with the ω

wolves obediently adhering to their guidance. The encircling
behavior characteristic of GWO can be computed using this
formula:

−→
X (t+ 1) =

−→
X p (t)+

−→
A �
−→
D (7)

−→
A and

−→
D denotes coefficient vectors,

−→
X p denotes the

vector of the prey’s positions, and X denotes the positions
of the wolves in a d-dimensional space, where D denotes the
number of variables. The variable (t) denotes the number of
iterations, and

−→
D is defined as follows:
−→
D =

∣∣∣−→C �
−→
X p(t)−X (t)

∣∣∣ (8)

where the following notation is used to represent
−→
A and

−→
C :

−→
A = 2−→a �−→r1 −

−→a (9)
−→
C = 2 �−→r2 (10)

139774 VOLUME 11, 2023

E. H. H. Sumiea et al.: Enhanced DDPG Algorithm Using GWO for Continuous Control Tasks

where r1, r2 are selected randomly in the normal range of zero
to unity. Over the course of iterations, the components of a⃗ are
linearly decreased from 2 to 0. Using Eq 8, a grey wolf can
approach the prey by changing its position around the prey
randomly.

The values of x1, x2, and x3 are defined and computed as
follows:

−→x1 =
−→
Xα − A1 �

(
−→
Dα

)
,

−→x2 =
−→
Xβ − A2 �

(
−→
Dβ

)
,

−→x3 =
−→
Xδ − A3 �

(
−→
Dδ

)
(11)

At a given iteration t , the vectors −→x1 ,
−→x2 , and −→x3

represent the three top-performing wolves (solutions) within
the swarm. These values are determined by following the
calculations outlined in Equation (3) for A1, A2, and A3.
Additionally, the vectors

−→
Dα ,
−→
Dβ , and

−→
Dδ are computed using

the method described in (11).
−→
Dα =

∣∣∣−→C1 �
−→
X α−

−→
X

∣∣∣ ,
−→
Dβ =

∣∣∣−→C2 �
−→
X β−

−→
X

∣∣∣ ,
−→
Dδ =

∣∣∣−→C3 �
−→
X δ−
−→
X

∣∣∣ (12)

The vectors
−→
C1,
−→
C2, and

−→
C3 are determined by performing

calculations specified in (4).
One of the key elements in the GWO algorithm for

balancing exploitation and exploration is the vector a⃗. In the
baseline paper of this algorithm, it is recommended to
gradually decrease the vector’s value for each dimension in a
linear manner, starting from 2 and ending at 0, as the number
of iterations progresses. The equation used to update the
vector is as follows:

−→a = 2− t �
2

max
i
ter

(13)

In the given equation, the variable t represents the current
iteration number, while ‘‘ter’’ represents the total number of
iterations for the optimization process.

D. OPENAI GYMNASIUM
The OpenAI Gymnasium has become a popular toolkit in
the machine learning community for RL research [24]. This
work follows the established structure used by researchers
and builds upon it by creating 2D Robot and Mountain Car
Continuous simulation environments. OpenAI Gymnasium
places a primary emphasis on the episodic setting of RL,
aiming to maximize the expected total reward per episode and
achieve satisfactory performance quickly. The toolkit also
aims to integrate the GymnasiumAPI with physical robotic
hardware, allowing for the validation of RL algorithms in
real-world environments [24].

OpenAI Gymnasium [25] includes a collection of envi-
ronments known as Partially Observable Markov Decision

Processes (POMDPs), which will continue to expand over
time. The initial beta release of Gymnasium featured various
environments, including:

• Classic control and toy text: They encompass small-
size tasks that are commonly encountered in the RL
literature.

• Algorithmic: Tasks that revolve around computation,
such as performing operations like adding multi-digit
numbers or reversing sequences. Memory is frequently
essential for these tasks, and their level of challenge can
be finely tuned by modifying the length of the sequence.

• Atari: This category involves classic Atari games, where
input is derived from RAM or screen images, and the
Arcade Learning Environment is leveraged [26].

• Board games: Initially featuring the Go on 9 × 9 and
19× 19 board games, with the Pachi engine acting as a
competitor [27].

• 2D and 3D robots: These entail simulated robot control
tasks that utilize the MuJoCo physics engine, acclaimed
for its speed and precision in simulating robots [28].
Some of these tasks were adapted from RLLab [29].

Since its initial release, the collection of environments has
expanded to encompass additional options, including those
grounded in the Box2D, an open-source physics engine,
or the Doom game engine through VizDoom [30].

1) OPENAI GYMNASIUM ENVIRONMENTS
In our study, we leverage two OpenAI Gymnasium environ-
ments: the 2DRobot ArmEnvironment and theMountain Car
Continuous Environment.

• Mountain Car Continuous: The Mountain Car Con-
tinuous environment is part of the Classic Control
environments. It features a deterministic Markov Deci-
sion Process with a car initially placed at the bottom
of a sinusoidal valley. The car can only accelerate in
either direction to reach a goal state on top of the
right hill. This version offers continuous action spaces,
with observations containing position and velocity
information. Actions are directional forces in the range
[−1,1] scaled by 0.0015. Transition dynamics are
governed by specific equations, with inelastic collisions,
position, and velocity constraints. Rewards include
negative penalties for large actions and a positive reward
upon reaching the goal. Episodes end either by reaching
the goal or after 999 steps [25].

• 2D Robot Arm Environment: The presented OpenAI
Gymnasium environment, named RobotArm-V0, sim-
ulates a two-link robot arm operating in a 2D space
using PyGame. In RobotArm-V0, the robot comprises
two 100-pixel length links, and the objective is to reach
a randomly generated red target point in each episode.
The observation space includes target positions in both
x and y directions, as well as the current positions of
the two arm joints in radians. The action space consists
of discrete actions to hold the current joint angles

VOLUME 11, 2023 139775

E. H. H. Sumiea et al.: Enhanced DDPG Algorithm Using GWO for Continuous Control Tasks

or increment/decrement them, with a default rate of
0.01 radians. The reward function penalizes the robot if
the current tip-to-target distance is greater than or equal
to the previous distance, and rewards it if the distance is
within a tolerance of 10 pixels. The episode terminates
when the reward reaches −10 or +10 [25].

III. RELATED WORK
This section presents the discussion on related work. First
of all, Chen et al. [31] introduced a method for adapting
hyperparameters in DRL based on the Bayesian approach.
Their study stands out as the most comprehensive investi-
gation of RL hyperparameters to date, specifically focusing
on configuring the AlphaGo algorithm. They achieved the
automatic refinement of game-playing hyperparameters for
AlphaGo, an achievement that conventional methods are
unable to attain. The application of Bayesian optimization
not only improved the winning probabilities of AlphaGo but
also generated valuable data that can be used to develop
enhanced versions of self-play agents incorporating Monte
Carlo Tree Search (MCTS). Nonetheless, this approach
requires a substantial number of experiments and relies on
advanced information. Additionally, it is primarily effective
for adapting individual hyperparameters rather than a range
of hyperparameters.

Liessner et al. [11] introduced a model-based approach for
optimizing hyperparameters in the DDPG algorithm, which
demonstrated effectiveness in real-world industrial applica-
tions. The authors addressed the challenge of limited training
time by imposing strict constraints on the DDPG algorithm
within the specific domain. By successfully optimizing the
hyperparameters under these time limitations, they achieved
improved performance. However, one limitation of the study
is that the strict constraints on the DDPG algorithm are not
applicable to other domains or applications.

Oktay et al. [32] suggested employing an artificial bee
colony (ABC) algorithm to fine-tune the weights of an arti-
ficial neural network (ANN) that functions as the objective
function in an optimization procedure. The ANN is trained
using specific input and output datasets, and the objective
function, which relies on the ANN, is enhanced using the
ABC algorithm to achieve improved outcomes. This study
demonstrates the application of metaheuristic optimization
approaches alongside artificial intelligence methods.

Another independent study by Sehgal et al. [33] utilized a
Genetic Algorithm (GA) to optimize hyperparameters in the
HER (Hindsight Experience Replay)+DDPG algorithm. The
GA-based approach effectively identified hyperparameters
that required fewer training epochs while still achieving
enhanced task performance. The research employed a range
of robotics manipulation tasks encompassing actions such as
push, slide, reach, fetch, place, pick, and open operations,
serving to showcase the effectiveness of the proposed
methodology.

Elfwing et al. [34] introduced a method that shares
similarities with population-based training (PBT). They

presented an alternative technique called OMPAC, which
focuses on the evolutionary mechanism and represents the
initial strategy for adapting multiple hyperparameters in DRL
using a population-based approach. In a related study by
Jaderberg et al. [35], the authors also employed a PBT to
optimize a group of models along with their hyperparameter
configurations. This was accomplished within a predeter-
mined computational budget, with the objective of achieving
optimal performance. The proposed approach demonstrated
promising results in various domains such as Machine
Translation, DRL, and GANs. However, it should be noted
that PBT relies on basic stochastic perturbations to adapt
hyperparameters, which may not effectively track changes in
potentially optimal hyperparameter configurations over time.

Another study by Zhou et al. [36] introduced an online
method for hyperparameter optimization for DRL. This
method enhanced the existing PBT procedure, resulting in
efficient online adaptation of hyperparameters. The authors
incorporated a recombination operation inspired by GA into
the population optimization process. This recombination
operation accelerated the convergence of the population
towards the optimal hyperparameter configuration. The
authors empirically validated the effectiveness of this
approach and demonstrated improved results compared to
the classical PBT method, which aligns with their research
findings.

A recent study by Parker-Holder et al. [37] introduced
a novel and proven PBT-style approach called Population-
Based Bandits (PB2). PB2 is a procedure that can identify
exceptional hyperparameter configurations using a smaller
number of agents compared to traditional PBT. Through mul-
tiple RL trials, the authors demonstrated that PB2 can achieve
remarkable performance levels while adhering to a moderate
computational budget. In another study by Moghanian et al.
[38], a swarm-based metaheuristic algorithm is employed to
minimize errors in intrusion detection. In the novel approach,
the Grasshopper Optimization Algorithm (GOA) is harnessed
to enhance the precision of artificial neural networks (ANNs)
in order to decrease the rate of intrusion detection errors.

Additionally, the authors in [39] and [40] discussed the
advantages and disadvantages of different deep architectures,
as well as the different optimization methods that have
been used. Alqushaibi et al. [41] propose a new weight
optimization method based on the sine cosine algorithm
(SCA).Balogun et al. [42] evaluate a number of different
methods on a real-world dataset of software defects and show
that they can significantly improve the performance of defect
prediction models.

To sum up, optimization strategies like PBT, which aim
to learn optimal schedules for hyperparameters rather than
relying on fixed settings, have shown promising results.
However, these strategies can be susceptible to sample inef-
fectiveness, which can impact their performance. Through
the review of existing literature, it is evident that many
papers have focused on utilizing grid search [43], Bayesian
methods, or GA [33] to optimize various hyperparameters

139776 VOLUME 11, 2023

E. H. H. Sumiea et al.: Enhanced DDPG Algorithm Using GWO for Continuous Control Tasks

TABLE 1. Original DDPG algorithm’s hyperparameters in 2DRobot and
MountainCarContinuous environments.

in DRL. While these approaches have demonstrated some
success, they also have noticeable limitations. To overcome
these limitations and achieve remarkable results, this work
proposes the utilization of a metaheuristic optimization
algorithm known as GWO. The GWO algorithm is employed
to optimize the hyperparameters of the DDPG algorithm
in two simulated Gymnasium environments provided by
OpenAI, namely the 2DRobot and MountainCarContinuous
simulation environments.

IV. THE PROPOSED FRAMEWORK
This section introduces the paper’s primary contribution,
which involves the implementation of the GWO algorithm to
explore the hyperparameters space of the DDPG algorithm.
The objective is to identify the set of hyperparameters
that maximizes the total rewards obtained in the 2DRobot
and MountainCarContinuous simulation environments and
then compare the optimized results with the original DDPG
algorithm results. The subsequent Table 1 presents the
hyperparameters of the original DDPG algorithm used for
comparison with the optimized DDPG-GWO algorithm
within the simulation environments of 2DRobot and Moun-
tainCarContinuous as shown in Figure 2. These hyperparam-
eters were selected byGWO to fine-tune theDDPG algorithm
to maximize the total rewards achieved in the aforementioned
simulation environments.

The rest of this section is divided into two sub-sections:
the training of DDPG networks using GWO (IV-A), and the
learning process (IV-B).

A. TRAINING OF DDPG NETWORKS USING GWO
As shown in Figure 3 and Algorithm 1, the training process
of DDPG networks using GWO begins by initializing the
DDPG networks (actor and critic networks) and the GWO
algorithm. The DDPG networks learn the policy and value
functions, while the GWO algorithm generates a group of
grey wolves for hyperparameter search. Each grey wolf’s

FIGURE 2. The experimental environments setup: (A) ‘‘2DRobot’’
comprises a 2DRobotic arm setup, posing a challenging control task to
the learning agents, and (B) ‘‘MountainCarContinuous’’ involves a
continuous-action variant of the classic ‘‘Mountain Car’’ problem, where
an agent must learn to navigate a car to surmount a steep hill using
continuous acceleration.

chosen hyperparameter set is evaluated by executing the
DDPG algorithm and measuring its performance. A reward
function reflecting the task’s objective is used to assess
performance.

The GWO algorithm updates the best solutions found
so far, representing superior hyperparameter configurations.
Each grey wolf’s hyperparameter settings are modified based
on the position of the optimal solutions. This collective
intelligence guides the search toward promising regions in the
hyperparameter space. Once optimized, the DDPG networks
are trained using the updated configuration.

The training phase involves iterative interactions with the
environment, experience collection, and network parameter
updates. Network performance is periodically evaluated to
monitor progress. If satisfactory performance or convergence
is achieved, the training process can be halted.

If performance is unsatisfactory, the GWO algorithm
refines the hyperparameters, and the DDPG networks
undergo further training. The iterative nature of training
enables continuous exploration and exploitation of the
hyperparameter space. This leads to the identification
of hyperparameter configurations maximizing the DDPG
algorithm’s overall performance.

B. LEARNING PROCESS
In this section, we explicitly explain the learning process
employed to optimize the hyperparameters of the DDPG
algorithm using the GWO approach. The training process of
each wolf in GWO to optimize DDPG hyperparameters can
be represented using equations. By denoting the hyperparam-
eters to be optimized as h, and the position of each wolf as x.
In GWO, the three types of wolves: alpha, beta, and delta,
are represented as xα , xβ , and xδ , respectively. The position
update equation for each wolf in the GWO can be defined as
follows:

xnew = x + A · D (14)

where xnew is the updated position, x is the current position,
A is the updating amplitude, and D is the random vector.

VOLUME 11, 2023 139777

E. H. H. Sumiea et al.: Enhanced DDPG Algorithm Using GWO for Continuous Control Tasks

FIGURE 3. The flowchart of the proposed DDPG-GWO hyperparameter optimization in this study.

The updating amplitude A is calculated as:

A = 2a · r − a (15)

where a is a linearly decreasing parameter, and r is a random
number between 0 and 1.

The random vector D is calculated using the positions of
the alpha α, beta β, delta δand omega ω wolves:

D=|C · xα−x|+|C · xβ−x|+|C · xδ−x|+|C · xω−x|

(16)

where C is a constant that controls the influence of each
wolf’s position on the update.

Finally, the updated hyperparameters hnew can be obtained
by applying the GWO update equation to each element of h:

hnew[i] = h[i]+ xnew[i] (17)

where h[i] and xnew[i] denote the i-th element of h and xnew,
respectively.

By iteratively applying the above equations for eachwolf in
the GWO, the hyperparameters h can be optimized to enhance
the performance of the DDPG algorithm.

The GWO algorithm refines the positions of its wolf
population, and these refined positions are subsequently used

to update the hyperparameters of the DDPG algorithm. This
iterative process continues to optimize the hyperparame-
ters, ultimately enhancing the performance of the DDPG
algorithm.

V. EXPERIMENTS
This section presents the experimental analysis conducted to
compare the performance of the original DDPG algorithm
with our proposed DDPG-GWO method, in two distinct
simulation environments: the 2DRobot and the Mountain-
CarContinuous. By evaluating the results obtained from
both algorithms, we aim to assess the effectiveness and
improvements brought by the DDPG-GWO method. A com-
parison is made between these optimized hyperparameters
and the original DDPG hyperparameters used in the same
environments as those presented by Lillicrap et al. [8].
The rest of this section is structured as follows: the

experimental setting (V-A), the 2D robot environment
results (V-B), and the MountainCarContinuous environment
results (V-C).

A. EXPERIMENTAL SETTINGS
Table 2 shows the experimental settings to perform the
experimental analysis. We employed a hardware setup

139778 VOLUME 11, 2023

E. H. H. Sumiea et al.: Enhanced DDPG Algorithm Using GWO for Continuous Control Tasks

Algorithm 1GWO-DDPG: Optimizing DDPGHyperparam-
eters
Require: Number of grey wolves (N), maximum GWO

iterations (Tmax), DDPG max episodes (Emax), DDPG
max steps per episode (T)

Ensure: Optimized hyperparameters for DDPG: (αactor,
αcritic, γ , batch size, τ)

1: Initialize number of grey wolves (N)
2: Initialize grey wolves’ positions (αactor, αcritic, γ , batch

size, τ) randomly
3: Initialize best wolf X∗ with initial random hyperparame-

ters
4: t ← 0
5: while t < Tmax do
6: for i = 1 to N do
7: Initialize main critic networkQ(s, a) and main actor

network µ(s) with random weights
8: Initialize target critic network Q′ and target actor

network µ′ with weights from main networks
9: Set hyperparameters (αactor, αcritic, γ , batch size, τ)

based on wolf position
10: for j = 1 to Emax do
11: Initialize replay buffer R
12: Initialize action exploration process
13: Receive initial state s1 from environment
14: for k = 1 to T do
15: Execute action at = µ(st)
16: Observe reward rt and successor state st+1
17: Store experience (st , at , rt , st+1) in R
18: Sample minibatch from R
19: Update critic network Q using minibatch and

TD error
20: Update actor network µ using policy gradient
21: Soft update target networks Q′ and µ′ with

main networks
22: end for
23: end for
24: Calculate the fitness of the wolf based on accumu-

lated rewards
25: end for
26: Update best wolf X∗ with the wolf having highest

fitness
27: Update grey wolves’ positions using GWO equations

based on X∗

28: t ← t + 1
29: end while
30: return Hyperparameters from best wolf: (αactor, αcritic,

γ , batch size, τ)

comprising a Windows 11 Pro OS running on an Intel(R)
Core(TM) i7-9700 CPU clocked at 3.00GHz with 16.0 GB of
RAM (15.8 GB usable). The software environment consisted
of the Python programming language, OpenAI Gymnasium
toolkit, and TensorFlow library for DRL computations.

TABLE 2. Experimental settings.

For both the 2DRobot and MountainCarContinuous envi-
ronments, we utilized the DDPG algorithm as the baseline.
The DDPG algorithm was implemented with the following
configurations: a learning rate of 0.001, a discount factor
(gamma) of 0.99, a target network update rate of 0.001,
a replay buffer size of 100,000, and a batch size of 64.

In contrast, our proposed approach, DDPG-GWO, intro-
duced an optimization technique called GWO into the DDPG
framework. This hybrid algorithm incorporated the following
parameters: a GWO population size of 20, a maximum
number of iterations set to 100, and exploration and
exploitation factors set to 2 and 0.5, respectively.

B. RESULTS FOR THE 2DROBOT ENVIRONMENT
This sub-section presents the 2DRobot environment’s experi-
mental analysis conducted to compare the performance of the
original DDPG algorithm (V-B1) with our proposed DDPG-
GWO (V-B2).

1) ORIGINAL DDPG ALGORITHM’S RESULTS IN 2DROBOT
ENVIRONMENT
The 2DRobot agent’s performance was unstable during its
training process as shown in Figure 4. In the beginning,
it showed poor performance with negative rewards ranging
from −150 to −50. However, there was some improvement

VOLUME 11, 2023 139779

E. H. H. Sumiea et al.: Enhanced DDPG Algorithm Using GWO for Continuous Control Tasks

FIGURE 4. Original DDPG algorithm’s results in 2DRobot environment.

with positive rewards between episodes 400 and 800. Unfor-
tunately, the agent’s behavior regressed to a sub-optimal state
after that. The inconsistency in its performance could be
attributed to various factors, such as hyperparameters like a
high exploration rate of 0.1 and relatively small learning rates
of 0.0005. Additionally, the agent’s architecture, with 16,16
layers for both the actor and critic, not have been adequate
for the task at hand.

2) DDPG-GWO ALGORITHM’S RESULTS IN 2DROBOT
ENVIRONMENT
Figure 5 illustrates promising outcomes for the optimized
DDPG-GWO algorithm compared with the original DDPG
algorithm (Figrue 4). Throughout 892 episodes, the average
episode reward ranged from −100 to 100, with a running
average of the previous 100 episode rewards fluctuating
between 1 and 800. The algorithm effectively explored the
environment using a moderate exploration rate of 0.15. The
critic and actor networks had learning rates of 0.002 and
0.001, respectively. A discount factor of 0.96 was applied
to future rewards, enabling the agent to balance immediate
and future rewards. Experience replay during training was
facilitated by a memory size of 13519, contributing to
improved performance. The target networks’ stable update
mechanism was achieved through Polyak averaging with a
value of 0.006. Exploration utilized an Ornstein–Uhlenbeck
(OU) process as a noise source, with the noise standard
deviation set to 0.08.

C. RESULTS FOR THE MOUNTAINCARCONTINUOUS
ENVIRONMENT
This sub-section presents the MountainCarContinuous envi-
ronment’s experimental analysis conducted to compare the
performance of the original DDPG algorithm (V-C1) with our
proposed DDPG-GWO (V-C2).

1) ORIGINAL DDPG ALGORITHM’S RESULTS IN
MOUNTAINCARCONTINUOUS ENVIRONMENT
As depicted in Figure 6, the DDPG results for the Mountain-
CarContinuous task are not satisfactory. One major problem

FIGURE 5. DDPG-GWO algorithm’s results in 2DRobot environment.

TABLE 3. Comparative analysis between the original DDPG and the
proposed DDPG-GWO algorithm in 2DRobot and MountainCarContinuous
environments.

FIGURE 6. Original DDPG algorithm’s results in MountainCarContinuous
environment.

is the rather low average reward, which even goes negative at
times, indicating frequent failures in reaching the goal. It is
possible that the chosen actor and critic network structures
are not fit enough for the task, and the high noise standard
deviation may be causing erratic policy updates. Moreover,
the algorithm seems to be struggling to effectively utilize past
experiences, pointing to potential issues with the memory or
the learning process itself.

139780 VOLUME 11, 2023

E. H. H. Sumiea et al.: Enhanced DDPG Algorithm Using GWO for Continuous Control Tasks

TABLE 4. Hyperparameters comparison between the original DDPG and the proposed DDPG-GWO algorithms.

FIGURE 7. DDPG-GWO algorithm’s results in MountainCarContinuous
environment.

2) DDPG-GWO ALGORITHM’S RESULTS IN
MOUNTAINCARCONTINUOUS ENVIRONMENT
The integration of GWO and DDPG in the MountainCarCon-
tinuous environment demonstrated remarkable improvements
in hyperparameter optimization, as shown in Figure 7, leading
to a significant boost in performance. The average episode
reward witnessed a substantial increase, going from 80 to 20,
indicating a marked enhancement in learning efficiency.
The algorithm achieved a running average of the previous
100 episode rewards throughout 218 episodes, with a total of
490 time steps. Stability was ensured through the utilization
of OU noise with a standard deviation of 0.184. These
outcomes strongly suggest that the DDPG-GWO approach
holds great potential to elevate the performance of the
algorithm across a wide range of real-world applications.

VI. DISCUSSION AND ANALYSIS
The performance comparison analysis between the original
DDPG and the proposed DDPG-GWO is illustrated in

Figure 8. It indicates that the DDPG-GWO algorithm
outperforms the original DDPG algorithm in both envi-
ronments 2DRobot and MountainCarContinuous. In the
2DRobot environment, the DDPG-GWO algorithm demon-
strated promising outcomes with a moderate exploration
rate of 0.15 and optimized hyperparameters. It effectively
explored the environment, achieving a running average of
100-episode rewards between 1 and 800. On the other hand,
DDPG alone exhibited unstable performance with negative
rewards, indicating difficulties in learning an effective policy.
This proves that the integration of GWO in the DDPG
algorithm aids in better hyperparameter optimization and
learning efficiency, resulting in more stable and improved
performance.

Furthermore, Table 3 provides a comparative analysis of
the original DDPG algorithm and the proposed DDPG-GWO
algorithm in 2DRobot and MountainCarContinuous environ-
ments. It shows that our proposed DDPG-GWO algorithm
outperforms the original DDPG algorithm, achieving an
average episode reward between −25 to 85 compared to
−150 to 50 of DDPG. Additionally, the running average of
DDPG-GWO over X episodes (892) is significantly higher
than the original DDPG (1000). Similarly, in the Moun-
tainCarContinuous environment, the DDPG-GWO performs
better with an average episode reward between 20 to 80, while
the original DDPG ranges from −15 to 15. Moreover, the
running average of DDPG-GWO (218) is superior to that of
DDPG (1000) over the same number of episodes.

The proposed DDPG-GWO algorithm in this study
holds significant theoretical and practical implications. The
theoretical significance lies in its effective hyperparame-
ter optimization, addressing a critical challenge in DRL.
By employing GWO as a metaheuristic algorithm, DDPG-
GWO demonstrates improved learning performance with
faster convergence rates, enhancing control strategies in the
simulated Gymnasium environments. This research enriches

VOLUME 11, 2023 139781

E. H. H. Sumiea et al.: Enhanced DDPG Algorithm Using GWO for Continuous Control Tasks

FIGURE 8. Comparison between the original DDPG and the proposed DDPG-GWO in 2DRobot and MountainCarContinuous.

the theoretical foundations of DRL algorithms and explores
the application of nature-inspired optimization techniques,
contributing to the advancement of DRL methodologies.

On the practical front, the DDPG-GWO algorithm
offers real-world applicability. Its potential to optimize
decision-making processes in industries like robotics,
autonomous vehicles, and finance holds significant promise.
The algorithm’s ability to handle complex continuous
action spaces showcases its relevance and adaptability
to diverse scenarios. Additionally, by reducing training
time and resource requirements, the DDPG-GWO presents
cost-effective and efficient AI-driven systems, paving the
way for more practical and impactful implementations in
dynamic and uncertain environments. Overall, the successful
integration of GWO into DDPG signifies the potential of
metaheuristic algorithms to enhance learning performance
and control strategy, with implications spanning across
various industries and research areas.

Table 4 shows the hyperparameters comparison between
the original DDPG and the proposed DDPG-GWO
algorithms.

VII. CONCLUSION AND FUTURE WORKS
To conclude, the DDPG-GWO resulted in significant
improvements in hyperparameter optimization and learning
efficiency in both the 2DRobot and MountainCarContinuous
environments. In the 2DRobot environment, the optimized

hyperparameters led to rewards ranging from −100 to
100 across 892 episodes, achieving a balanced trade-off
between immediate and future rewards with a 0.96 discount
factor. Stability during training was ensured through expe-
rience replay with a memory size of 13519 and Polyak
averaging 0.006. Similarly, in the MountainCarContinuous
environment, DDPG-GWO notably enhanced the average
episode reward from 80 to 20 over 218 episodes, indicating
a marked improvement in learning efficiency. The stability
was maintained with the OU noise process having a standard
deviation of 0.184. Nevertheless, DDPG’s performance in
both environments fell short, likely due to the actor-critic
network’s insufficient complexity, high noise standard devi-
ation, and ineffective utilization of past experiences. These
findings highlight the value of DDPG-GWO in elevating
performance and learning efficiency across diverse real-
world applications, while also underscoring potential areas
for future improvement.

The paper’s future endeavors involve bolstering DDPG
algorithms to achieve better sample efficiency, manag-
ing high-dimensional inputs more effectively, and tack-
ling non-stationarity. Researchers have the opportunity
to investigate hybrid methods, fusing DDPG with other
algorithms, and pushing the boundaries of theoretical
comprehension. As DDPG gains enhanced robustness
and dependability, its real-world applications in robotics,
finance, and healthcare are expected to witness increased
adoption.

139782 VOLUME 11, 2023

E. H. H. Sumiea et al.: Enhanced DDPG Algorithm Using GWO for Continuous Control Tasks

ABBREVIATIONS
Table 5 contains definitions for all abbreviations used in this
study.

TABLE 5. Abbreviations.

ACKNOWLEDGMENT
The authors would like to thank the Ministry of Higher Edu-
cation(MOHE) - Malaysia for providing financial assistance
under Fundamental Research Grant Scheme (FRGS/1/2022/
ICT02/UTP/02/4), Universiti Teknologi PETRONAS under
the Yayasan Universiti Teknologi PETRONAS (YUTP-
FRG/015LC0-308) for providing the required facilities to
conduct this research work, and Prince Sultan University -
Riyadh Saudi Arabia for their support.

REFERENCES
[1] K. Arshad, R. F. Ali, A. Muneer, I. A. Aziz, S. Naseer, N. S. Khan, and

S. M. Taib, ‘‘Deep reinforcement learning for anomaly detection: A sys-
tematic review,’’ IEEE Access, vol. 10, pp. 124017–124035, 2022.

[2] V. Mnih et al., ‘‘Human-level control through deep reinforcement
learning,’’ Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[3] H. Van Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learning
with double Q-learning,’’ in Proc. AAAI Conf. Artif. Intell., 2016,
pp. 2094–2100.

[4] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
‘‘Dueling network architectures for deep reinforcement learning,’’ in Proc.
Int. Conf. Mach. Learn. PMLR, 2016, pp. 1995–2003.

[5] J. Jäger, F. Helfenstein, and F. Scharf, Bring Color to Deep Q-Networks:
Limitations and Improvements of DQN Leading to Rainbow DQN. Cham,
Switzerland: Springer, 2021, pp. 135–149.

[6] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, ‘‘Deep exploration via
bootstrapped DQN,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 29, 2016,
pp. 4026–4034.

[7] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
‘‘Deterministic policy gradient algorithms,’’ in Proc. Int. Conf. Mach.
Learn. PMLR, 2014, pp. 387–395.

[8] T. P. Lillicrap et al., ‘‘Continuous control with deep reinforcement
learning,’’ 2015, arXiv:1509.02971.

[9] Z. Zheng, C. Yuan, Z. Lin, and Y. Cheng, ‘‘Self-adaptive double
bootstrapped DDPG,’’ in Proc. Int. Joint Conf. Artif. Intell., 2018,
pp. 3198–3204.

[10] A. Fuchs, Y. Heider, K. Wang, W. Sun, and M. Kaliske, ‘‘DNN2: A hyper-
parameter reinforcement learning game for self-design of neural network
based elasto-plastic constitutive descriptions,’’ Comput. Struct., vol. 249,
Jun. 2021, Art. no. 106505.

[11] R. Liessner, J. Schmitt, A. Dietermann, and B. Bäker, ‘‘Hyperparameter
optimization for deep reinforcement learning in vehicle energy manage-
ment,’’ in Proc. 11th Int. Conf. Agents Artif. Intell., 2019, pp. 134–144.

[12] N. M. Ashraf, R. R. Mostafa, R. H. Sakr, and M. Z. Rashad, ‘‘Optimizing
hyperparameters of deep reinforcement learning for autonomous driving
based on whale optimization algorithm,’’ PLoS ONE, vol. 16, no. 6,
Jun. 2021, Art. no. e0252754.

[13] V. Sharma and A. K. Tripathi, ‘‘A systematic review of meta-heuristic
algorithms in IoT based applications,’’ Array, vol. 14, p. 100164, 2022.

[14] V. Sharma and A. K. Tripathi, ‘‘A systematic review of meta-heuristic
algorithms in IoT based application,’’ Array, vol. 14, Jul. 2022,
Art. no. 100164.

[15] S. Zhao, T. Zhang, S. Ma, and M. Chen, ‘‘Dandelion optimizer: A nature-
inspired Metaheuristic algorithm for engineering applications,’’ Eng. Appl.
Artif. Intell., vol. 114, Sep. 2022, Art. no. 105075.

[16] M. Dorigo, M. Birattari, and T. Stutzle, ‘‘Ant colony optimization,’’ IEEE
Comput. Intell. Mag., vol. 1, no. 4, pp. 28–39, Nov. 2006.

[17] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc. Int.
Conf. Neural Netw., 1995, ICNN.

[18] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ‘‘Grey wolf optimizer,’’ Adv.
Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.

[19] H. Faris, I. Aljarah, M. A. Al-Betar, and S. Mirjalili, ‘‘Grey wolf optimizer:
A review of recent variants and applications,’’ Neural Comput. Appl.,
vol. 30, no. 2, pp. 413–435, Jul. 2018.

[20] J. Arroyo, C. Manna, F. Spiessens, and L. Helsen, ‘‘An open-AI gym
environment for the building optimization testing (boptest) framework,’’
in Proc. Building Simulation, 2021, pp. 175–182.

[21] Y. Li, ‘‘Deep reinforcement learning: An overview,’’ 2017,
arXiv:1701.07274.

[22] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, ‘‘Continuous control with deep reinforcement learning,’’
2015, arXiv:1509.02971.

[23] Q. Al-Tashi, T. M. Shami, S. J. Abdulkadir, E. A. P. Akhir, A. Alwadain,
H. Alhussain, A. Alqushaibi, H. M. Rais, A. Muneer, M. B. Saad, J. Wu,
and S. Mirjalili, ‘‘Enhanced multi-objective grey wolf optimizer with Lévy
flight and mutation operators for feature selection,’’ Comput. Syst. Sci.
Eng., vol. 47, no. 2, pp. 1937–1966, 2023.

[24] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, ‘‘OpenAI gym,’’ 2016, arXiv:1606.01540.

[25] M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. D. Cola, T. Deleu,
M. Goulão, A. Kallinteris, K. G. Arjun, M. Krimmel, R. Perez-Vicente,
A. Pierré, S. Schulhoff, J. J. Tai, A. T. J. Shen, and O. G. Younis.
(Mar. 2023). Gymnasium. [Online]. Available: https://zenodo.org/record/
8127025

[26] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, ‘‘The arcade
learning environment: An evaluation platform for general agents,’’ J. Artif.
Intell. Res., vol. 47, pp. 253–279, Jun. 2013.

[27] P. Baudis and J.-L. Gailly, ‘‘PACHI: State of the art open source go
program,’’ in Advances in Computer Games. Berlin, Germany: Springer,
2011, pp. 24–38.

[28] E. Todorov, T. Erez, and Y. Tassa, ‘‘MuJoCo: A physics engine for model-
based control,’’ inProc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2012,
pp. 5026–5033.

[29] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, ‘‘Bench-
marking deep reinforcement learning for continuous control,’’ 2016,
arXiv:1604.06778.

[30] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski,
‘‘ViZDoom: A doom-based AI research platform for visual reinforcement
learning,’’ 2016, arXiv:1605.02097.

[31] Y. Chen, A. Huang, Z. Wang, I. Antonoglou, J. Schrittwieser, D. Silver,
and N. de Freitas, ‘‘Bayesian optimization in AlphaGo,’’ 2018,
arXiv:1812.06855.

[32] T. Oktay, S. Arik, I. Turkmen, M. Uzun, and H. Celik, ‘‘Neural network
based redesign of morphing UAV for simultaneous improvement of roll
stability and maximum lift/drag ratio,’’ Aircr. Eng. Aerosp. Technol.,
vol. 90, no. 8, pp. 1203–1212, Nov. 2018.

[33] A. Sehgal, H. La, S. Louis, and H. Nguyen, ‘‘Deep reinforcement learning
using genetic algorithm for parameter optimization,’’ in Proc. 3rd IEEE
Int. Conf. Robotic Comput. (IRC), Feb. 2019, pp. 596–601.

[34] S. Elfwing, E. Uchibe, and K. Doya, ‘‘Online meta-learning by parallel
algorithm competition,’’ in Proc. Genet. Evol. Comput. Conf., 2018,
pp. 426–433.

[35] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue,
A. Razavi, O. Vinyals, T. Green, I. Dunning, K. Simonyan, C. Fernando,
and K. Kavukcuoglu, ‘‘Population based training of neural networks,’’
2017, arXiv:1711.09846.

VOLUME 11, 2023 139783

E. H. H. Sumiea et al.: Enhanced DDPG Algorithm Using GWO for Continuous Control Tasks

[36] Y. Zhou, W. Liu, and B. Li, ‘‘Efficient online hyperparameter adaptation
for deep reinforcement learning,’’ in Applications of Evolutionary Com-
putation: 22nd International Conference, EvoApplications 2019, Held as
Part of EvoStar 2019, Leipzig, Germany, April 24–26, 2019, Proceedings
22. Springer, 2019, pp. 141–155.

[37] J. Parker-Holder, V. Nguyen, and S. J. Roberts, ‘‘Provably efficient online
hyperparameter optimizationwith population-based bandits,’’ inProc. Adv.
Neural Inf. Process. Syst., vol. 33, 2020, pp. 17200–17211.

[38] S. Moghanian, F. B. Saravi, G. Javidi, and E. O. Sheybani, ‘‘GOAMLP:
Network intrusion detection with multilayer perceptron and grasshopper
optimization algorithm,’’ IEEE Access, vol. 8, pp. 215202–215213, 2020.

[39] N. Talpur, S. J. Abdulkadir, H. Alhussian, M. H. Hasan, N. Aziz,
and A. Bamhdi, ‘‘A comprehensive review of deep neuro-fuzzy system
architectures and their optimization methods,’’ Neural Comput. Appl.,
vol. 34, no. 3, pp. 1837–1875, Feb. 2022.

[40] S. M. Al-Selwi, M. F. Hassan, S. J. Abdulkadir, and A. Muneer, ‘‘LSTM
inefficiency in long-term dependencies regression problems,’’ J. Adv. Res.
Appl. Sci. Eng. Technol., vol. 30, no. 3, pp. 16–31, May 2023.

[41] A. Alqushaibi, S. J. Abdulkadir, H. M. Rais, Q. Al-Tashi, M. G. Ragab,
and H. Alhussian, ‘‘Enhanced weight-optimized recurrent neural networks
based on sine cosine algorithm for wave height prediction,’’ J. Mar. Sci.
Eng., vol. 9, no. 5, p. 524, May 2021.

[42] A. O. Balogun, S. Basri, S. A. Jadid, S. Mahamad, M. A. Al-momani,
A. O. Bajeh, and A. K. Alazzawi, ‘‘Search-based wrapper feature
selection methods in software defect prediction: An empirical analysis,’’
in Intelligent Algorithms in Software Engineering: Proceedings of the 9th
Computer Science On-line Conference 2020, vol. 1. Cham, Switzerland:
Springer, 2020, pp. 492–503, doi: 10.1007/978-3-030-51965-0_43.

[43] S. R. Young, D. C. Rose, T. P. Karnowski, S.-H. Lim, and R. M. Patton,
‘‘Optimizing deep learning hyper-parameters through an evolutionary
algorithm,’’ in Proc. Workshop Mach. Learn. High-Perform. Comput.
Environ., Nov. 2015, pp. 1–5.

EBRAHIM HAMID HASAN SUMIEA received
the bachelor’s degree in software engineering from
Asia Pacific University (APU), Malaysia, in 2014,
and the master’s degree in MBA specialist engi-
neering management from Universiti Malaysia
Pahang, Malaysia, in 2021. He is currently pur-
suing the Ph.D. degree in information technology
with Universiti Teknologi PETRONAS (UTP),
Malaysia. He has a total experience of five years
in the industry. His industry working experience is

related to software engineering and engineering management. His research
interests include artificial intelligence, machine learning, deep reinforcement
learning, metaheuristic algorithms, and optimization.

SAID JADID ABDULKADIR (Senior Member,
IEEE) received the B.Sc. degree in computer
science from Moi University, the M.Sc. degree
in computer science from Universiti Teknologi
Malaysia (UTM), and the Ph.D. degree in infor-
mation technology from Universiti Teknologi
PETRONAS (UTP). He is currently an Associate
Professor and amember of the Centre for Research
in Data Science (CeRDaS), UTP. He is also
involved in flagship consultancy projects for

PETRONAS under pipeline integrity, materials corrosion, and inspection.
His research interests include machine learning, deep learning architectures,
optimizations, and applications in predictive analytics. He is serving as the
Treasurer for the IEEEComputational Intelligence SocietyMalaysia Chapter
and the Editor-in-Chief for Platform.

MOHAMMED GAMAL RAGAB received the
Bachelor of Science degree in software engi-
neering and the master’s degree by research
in machine learning from Universiti Teknologi
PETRONAS, in 2019, where he is currently
pursuing the Ph.D. degree in information technol-
ogy. He demonstrated a keen interest in machine
learning, computer vision, and data analysis, and
has a particular interest in metastatic studies. His
ongoing research builds on his previous work, with

a focus on the development of new and innovative techniques for optimizing
the performance of deep learning models.

SAFWAN MAHMOOD AL-SELWI received the
bachelor’s degree in software engineering from
Taiz University, Yemen, in 2012, and the master’s
degree in computer applications from Bangalore
University, India, in 2018. He is currently a
Research Assistant with the Computer and Infor-
mation Sciences Department, Universiti Teknologi
PETRONAS (UTP), Malaysia. He has a total
experience of eight years both in academic insti-
tutions and in the industry. His industry working

experience is related to Android applications and website development. His
research interests include artificial intelligence, machine learning, predictive
and time-series analysis, metaheuristic algorithms, and optimization.

SULIAMN MOHAMED FATI (Senior Member,
IEEE) received the B.Sc. degree from Ain Shams
University, Egypt, in 2002, the M.Sc. degree
from Cairo University, Egypt, in 2009, and the
Ph.D. degree from Universiti Sains Malaysia
(USM), Malaysia, in 2014. He is currently an
Assistant Professor and the Chairperson of the
Information Systems Department, Prince Sultan
University (PSU), Saudi Arabia. His research
interests include the Internet of Things, machine

learning, social media mining, cloud computing, cloud computing security,
and information security.

ALAWI ALQUSHAIBI received the B.Sc. degree
in computer networks and security from Uni-
versiti Teknologi Malaysia, in 2012, and the
master’s degree by research from Universiti
Teknologi PETRONAS, in 2021. He is an Aca-
demic Researcher. During his academic journey,
he has acquired knowledge and skills in conduct-
ing independent research, producing academic
writing, and teaching computer science courses.
His research background in computer networks

and security has led him to explore the application of machine learning
techniques in data science analysis. His current research in image processing
and GANs has the potential to make significant contributions to the field
and impact various applications. His research interests include machine
learning, data science, optimization, feature selection, classification, data
analytics, and image processing, specifically in generative adversarial
networks (GANs).

HITHAM ALHUSSIAN received the B.Sc. and
M.Sc. degrees in computer science from the
School of Mathematical Sciences, Khartoum
University, Sudan, and the Ph.D. degree from
Universiti Teknologi PETRONAS,Malaysia. He is
currently an Associate Professor with the Depart-
ment of Computer and Information Sciences and a
Core Research Member of the Centre for Research
in Data Science (CeRDaS), Universiti Teknologi
PETRONAS. His main research interests include

real-time parallel distributed systems, cloud computing, big data mining,
machine learning, and secure computer-based management systems.

139784 VOLUME 11, 2023

http://dx.doi.org/10.1007/978-3-030-51965-0_43

