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ABSTRACT Mechanical systems become more complex, achieving precise control becomes increasingly
challenging due to uncertainty. This study presents a fuzzy dynamics-based strategy for precise control of
uncertain mechanical systems and investigates the use of robust control theory to assess system performance
and stability under constraints. Fuzzy theory enables uncertainties to be addressed, resulting in a more
precise description of system behaviour. The study findings demonstrate that utilising the constraint invariant
dynamics analysis method led to a decrease in control input amplitude, resulting in an average total input
U reduction of approximately 60 volts and improving system stability. The constraint invariant dynamics
analysis method led to an average reduction of 40 volts in u1 amplitude and an average position error of
1 mm under motor control. The experimentation undertaken on the permanent magnet synchronous motor
angular trajectory exhibits that each test was successful in following the anticipated path. The average
angular discrepancies between experiments A, B, C, and D were 0.5, 1, 0.3, and 0.8 degrees respectively.
The experimental trajectories for A and B occasionally surpassed the upper limit, while C and D remained
consistently within the upper and lower bounds. The implementation of the state-dependent control strategy
resulted in a 10% reduction in standard deviation of current fluctuation on average, further enhancing the
stability and efficiency of the motor system. The research results are expected to provide more stable and
efficient control solutions for a wide range of industrial and engineering applications, thereby making a
positive contribution to sustainable development and technological progress in society.

INDEX TERMS Control strategies, uncertain mechanical systems, CIDA method, fuzzy dynamics, HORC
control.

I. INTRODUCTION
Achieving precise control over mechanical systems has posed
a significant challenge in engineering control. A variety
of uncertainties, including external perturbations, sensor
errors, friction, and component manufacturing errors, typ-
ically impact mechanical systems [1]. Traditional methods
have obvious shortcomings in dealing with the uncertainty of
mechanical systems. First of all, traditional accurate models
often cannot accurately describe various uncertain factors
in the system, such as friction, external disturbances, etc.
Secondly, traditional control methods are usually designed
based on accurate dynamic models of the system. However,
parameters in the actual system are often affected by vari-
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ous factors and change, resulting in inaccurate models and
thus affecting control performance. Unlike the conventional
deterministic dynamics model, the Fuzzy dynamics (FD)
model incorporates fuzzy logic and fuzzy set theory to better
cope with uncertain elements and attain PC in mechanical
systems [2]. The novelty of this study lies in applying FD
model design to Uncertain Mechanical Systems (UMS) and
presenting a new approach to constructing these models. The
proposed methodology combines fuzzy logic, hybrid systems
theory and modern control techniques to develop an efficient
and robust control framework, capable of achieving precise
control of mechanical systems in complex and uncertain
environments. By combining finite difference modelling with
established control techniques, the study aims to offer a
flexible and dependable control solution for the engineering
sector. This will elevate the performance of UMS to new
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levels. Furthermore, the research focuses on incorporating
fuzzy control (FC) and robust control to manage the system’s
intrinsic uncertainties and external disturbances. The fuzzy
robust controller will be designed with a focus on optimising
the affiliation function and control gain of the fuzzy set for the
UMS’s PC [3]. The research results are expected to provide
new ideas and solutions for the control design of uncertain
mechanical systems and promote research and applications
in related fields.

The study consists of four parts, the first part summarises
the control and FD models of UMS; the second part presents
the FD-based PC strategy for UMS; the third part covers the
FD modelling and control validation of UMS; and the fourth
part concludes the full paper.

II. RELATED WORKS
PC of UMS is a research area involving the fields of mechan-
ical engineering and control engineering, which has been
studied by many experts. Cortez et al. found that mechanical
systems with critical actuator, velocity and position con-
straints are essential for safety and mission execution, and
they developed novel, robust control barrier functions for
ensuring that the constraints of a sampled data system are
satisfied in the presence of model uncertainty [4]. Yang et al.
found that one of the main characteristics of underdriven
systems is the lack of a sufficient number of control inputs,
and proposed an analytical approach based on composite
surfaces that rigorously proved the asymptotic stability of
the system’s equilibrium point [5]. Zhao et al. successfully
address the challenges of asymmetric dead-zone nonlinear-
ities and external perturbations by implementing vibration
control and dead-zone compensation for uncertain spatial
flexible riser systems. They achieve this through modelling
the asymmetric dead-zone nonlinearities and representing
them as required control inputs. Additionally, they introduce
extra nonlinear input errors to account for uncertainties [6].
In order to deal with state-dependent uncertain systems and
to consider randomly occurring replay attacks, DoS attacks,
and spoofing attacks in a unified framework, Liu’s team first
proposed a multiple attack model, which uniformly takes
randomly occurring replay attacks, DoS attacks, and spoofing
attacks into account. And they used event triggering mech-
anism to reduce the communication frequency to save the
limited resources [7]. Liu et al. addressed the problem of
event-based security control for state-dependent uncertain
systems under hybrid attacks by adopting an event-triggered
scheme to reduce the communication frequency, and derived
a sufficient condition for the exponential mean-square sta-
bility of state-dependent uncertain systems by using the
Lyapunov-Krasocskii stability theory and the linear matrix
inequality technique [8].

The goal of FD model design is to develop a mathematical
model adapted to fuzzy, uncertain information that can better
capture and describe the dynamic behaviour of real systems.
Ji Wenqiang and other scholars, for the output feedback slid-

ing mode control (SMC) problem for discrete-time uncertain
nonlinear systems, adopt the Takagi-Sugeno fuzzy dynamic
model to describe the system and incorporate sliding surfaces
to construct the descriptive subsystem, and use the segmented
quadratic Lyapunov function to obtain sufficient conditions
for the asymptotic stability analysis of the sliding motion
through a convex optimisation setup [9]. Huang et al. adopted
a broad fuzzy neural network (BFNN) to construct Control
strategies (CS) in response to the problem of how to use a
broad learning system (BLS) to solve the problem of selecting
a sufficient number of neural network units to approximate
an unknown dynamical model and to take advantage of the
broad learning system (BLS) to solve the neural network
unit number selection problem [10]. Liang et al. addressed
the problem of how to design the reference pitch and yaw
angles in order to implement time-varying reference trajec-
tories in kinematics. In order to enhance the robustness of
the system, a fuzzy-based adaptive DSC scheme was used to
adapt to the complex unknown factors [11]. Wang et al. and
his group members introduced the fuzzy theory to the spatial
co-location model for how to determine the subsets of spatial
feature sets efficiently, and developed a reasonable metric by
considering the fuzzy proximity between spatial instances,
taking into account the issue of instance sharing and the simi-
larity between different spatial features [12]. Hu et al. and his
group members about the comprehensive assessment method
of cloud manufacturing services, based on fuzzy compre-
hensive evaluation (FCE), used a combination of qualitative
and quantitative methods. A comprehensive evaluation index
system and a fuzzy trapezoidal affiliation function were
established for a more comprehensive assessment of cloud
manufacturing services [13].
In summary, many experts have researched for UMS and

FD models, but the current model uncertainty will affect the
control performance to a certain extent, the study proposes
the design of FD model for PC of UMS to improve the model
accuracy and performance, and it is expected to provide more
powerful tools and methods for PC of UMS.

III. PC STRATEGY FOR FD-BASED UMS
This chapter focuses on CS in the presence of inequality
constraints in a UMS and the relationship between constraint
following and system stability, and analyses the stability of
the system in an uncertain environment. Finally, it describes
how to model uncertainties using fuzzy set theory and apply
these models to CS.

A. CS FOR UMS WITH INEQUALITY CONSTRAINTS
In order to tightly control the amplitude of the control inputs,
an improved robust controller design method is investigated.
The core idea of this method is to use the principle of differ-
ential homogeneous transformation to redefine the originally
unconstrained control input as a bounded function of auxil-
iary variables. This bounded function has a relatively simple
selection and construction process, allowing the engineer to
set the values of the control inputs according to the actual
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needs, thus improving the flexibility and applicability of the
system [14]. This approach is more general and provides a
new paradigm for dealing with the input constraint problem
in UMS, as shown in equation (1).

ẋ(t) = f (x(t), t) + B(x(t), t)8(w(t), σ (t), t)

+ B(x(t), t)e(x(t), σ (t), t) (1)

In equation (1), t ∈ R denotes the time, x(t) ∈ Rn denotes
the state, σ (t) ∈

∑
⊂ Rp denotes the time-varying uncertain

parameters, w(t) ∈ Rm denotes the inputs, and the function
σ (·) can be used to denote that Lebesgue is measurable and
the value lies in the tight set

∑
⊂ Rp. If in the design

situation, a boundary is required for the input, then w(t) ∈

W , where W → Rm, (m) = u, w =
−1 (u), can make

8(w(t), σ (t), t) = 8(−1(u(t)), σ (t), t) =: ϕ̂(u(t), σ (t), t).
So equation (1) can be rewritten as shown in equation (2).

ẋ(t) = f (x(t), t) + B(x(t), t)ϕ̂(u(t), σ (t), t)

+ B(x(t), t)e(x(t), σ (t), t) (2)

In equation (2), u(t) ∈ Rm can be regarded as either
a new controller or an auxiliary control. The control input
limitation process based on inequality constraints needs to
explicitly define the control input constraints of the UMS, and
the designer needs to select an appropriate control function
(usually denoted as ϕ̂), which relates the control inputs to
the system states or outputs, and the selection of the control
function ϕ̂ should take into account the dynamics of the
system and the constraints to ensure that the selected func-
tion can play an effective role in the control of the system.
The parameters in the control function ϕ̂ (usually denoted
as λ) allow the designer to specify the specific boundaries
of the control inputs [15]. The setting of these parameters
is critical as they will determine the effective range of the
control inputs to varywithin the constraints. In order to satisfy
the inequality constraints on the control inputs, it is neces-
sary to select appropriate auxiliary functions (often notated
as γ̂ , 9̂, p̂, etc.). These functions should be selected taking
into account the characteristics of the system to ensure that
they are effective in limiting the control inputs to the range
specified by the control function ϕ̂ [16]. The flow of control
input limitation based on inequality constraints is shown in
Figure 1.
A flowchart of the Constraint-Invariant Dynamic Analy-

sis (CIDA) method is presented in Figure 1. The improved
control u(t) is able to endow the UMS with the following
performance characteristics, firstly, the system possesses con-
sistently bounded performance, i.e., for any given r > 0,
if the output of the system under the initial conditions is
∥x(t)∥ ≤ d(r), then there exists a positive number d(r) asso-
ciated with r , such that for all time points satisfying t ≥ t0,
the output of the system remains within the range of ∥x(t)∥ ≤

d(r). Secondly, the system also exhibits consistent ultimately
bounded performance, i.e., for any given r > 0, if the
output of the system under the initial conditions is ∥x(t)∥ ≤

d(r), then there exist r-dependent positive numbers d(r) and

FIGURE 1. Control input restriction process based on inequality
constraints.

T (d(r), r) such that the output of the system, ∥x(t)∥ ≤ d̄ E,
stays within the range of d(r) > 0,T (d̄(r), r) ≥ 0 for all the
time points that satisfy t ≥ t0 + T (d(r), r). The structure of
the electrical throttle system designed by the study is shown
in Figure 2.
Figure 2 shows the structure and composition of the elec-

tronic throttle system, which is divided into two parts: the
electronic throttle mechanism and the electronic control unit
(ECU). The electronic throttle mechanism is responsible for
outputting the throttle angle, which is achieved through the
synergistic action of gears, turntable 1, turntable 2 and service
motor. At the same time, the ECU plays the central role of
control, generating the required angle signal OD based on the
throttle pedal signal and the actual angle signal OV from the
throttle angle sensor, and transmitting it to the service motor
[16]. This system possesses complex mechanical and elec-
trical structures, which include mechanical mechanisms such
as springs and gears as well as electromechanical structures
such as motors.

It (t)KRDKDPθ̈v(t) =
TM (t)
KVTKTM

+ Tf (t) −
Ts(t)
KVT

(3)

In equation (3), the relationship between the proportional
angle θv and the actual angle θα is shown in equation (4).

θv(t) = KVT θα(t) (4)

The resistance torque and the load torque applied by the
reset spring, the expression is shown in equation (5).{

Ts(t) = Ks1KDPθα(t) + Ks2
Tf (t) = Tc(t) + Tv(t)

(5)

In equation (5), Tv(t) = −fvKRDKDPθ̇v(t), Tc(t) denote
the viscous friction moment and Coulomb friction moment,
viscous friction moment is a kind of friction moment due to
the viscous effect in liquid or gaseousmedium; Coulomb fric-
tion moment is a kind of friction moment due to the effect of
dry friction, which results in the relative motion between two
surfaces being resisted when there is no lubricating medium
between the two surfaces [17], [18].
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FIGURE 2. Electronic throttle system structure.

B. ANALYSIS OF THE ASSOCIATION BETWEEN
CONSTRAINT FOLLOWING AND SYSTEM STABILITY BASED
ON ROBUST CONTROL THEORY
In real nonlinear mechanical systems, uncertainties such as
parameter uncertainties and external disturbances are usually
present, and they often cannot be ignored because of their
important impact on the dynamic performance of the system.
For this consideration, the dynamics model of a constrained
mechanical system with uncertain parameters is investigated.
It is shown in equation (6).

M̂ (y(t), δ(t)ÿ(t) = Q̂(y(t), δ(t), t) + u(t) (6)

In equation (6), t ∈ R, y ∈ Rn denotes the independent time
variables and the coordinate vectors of the system, respec-
tively, ẏ ∈ Rn, ÿ ∈ Rn denotes the velocity vector and the
acceleration vector of the system, respectively. δ ∈

∑
⊂ Rn

denotes the uncertain parameters of the system, u ∈ Rn is the
control input to the system, and M̂ (y, δ, t), Q̂(y, δ, t) denotes
the mass matrix of the system, respectively, as well as the
combined forces of external forces on the system when it is
not constrained by the equation. Now let M̂ (·) and Q̂(·) denote
continuous and measurable with respect to time Lebesgue,
then it can be decomposed as shown in equation (7).{

M̂ (y, δ, t) =
¯̂M (y, t) + 1M̂ (y, δ, t)

Q̂(y, δ, t) =
¯̂Q(y, t) + 1Q̂(y, δ, t)

(7)

In equation (7), M̂ and Q̂ are nominal parts, 1M̂ and 1Q̂
are uncertainty parts, and ¯̂M ,

¯̂Q, 1M̂ , 1Q̂ are all continuous
as shown in equation (8).

D(y, t) :=
¯̂M−1(y, t)

1D(y, t) :=
¯̂M−1(y, δ, t) −

¯̂M−1(y, t)

E(y, δ, t) :=
¯̂M−1(y, t) ¯̂M−1(y, δ, t) − I

(8)

According to equation (8),1D(y, δ, t) := D(y, t)E(y, δ, t).
Robust control allows the system to follow the desired tra-
jectory or perform the task stably under these constraints by
taking uncertainties into account. By analyzing the uncer-
tainties in the fuzzy description, the stability bounds and
performance limits of the system in different situations can
be determined [19]. A fuzzy set is a mapping from set X to
interval [0, 1] on the domain U of A, as shown in equation
(9).

A : X → [0, 1], x → A(x) (9)

In equation (9), A is a fuzzy set on the domain U and
A(x) represents the affiliation function on A. Fuzzy sets are a
mathematical tool for dealingwith uncertainty and ambiguity,
they allow elements to have incompletely determined degrees
of affiliation rather than strictly belonging or not belonging to
a set [20]. Now let the α− truncation set of a fuzzy setG be an
explicit setGα , in which the explicit set contains the elements
whose affiliation value of the G set in which U is located is
greater than or equal to α. A fuzzy numberG is a fuzzy set on
the real number domain R, then the real number G is called
a fuzzy number when four conditions need to be satisfied,
the first one is that G is a regular fuzzy set, the second one
is that G is a convex set, the third one is that the bottom set
of G must be bounded, and lastly, all the α−-truncated sets
are closed spaces. Suppose G is a fuzzy set over the domain
U = [0, 2] with the expression of the affiliation function
shown in equation (10).

µG(v) =

{
v, 0 ≤ v ≤ 1
2 − v, 1 ≤ v ≤ 2

(10)

According to equation (10), the α−-intercept set of the
number fuzzy set can be obtained, as shown in Figure 3.

As shown in Figure 3, the affiliation function is a key con-
cept in fuzzy set theory, which is used to measure the degree
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FIGURE 3. Intercept set α of fuzzy set G.

of belonging of an element to a fuzzy set [21]. Traditional
set theory has only two states, completely belonging or com-
pletely not belonging, which cannot describe uncertainty or
fuzziness. In contrast, the affiliation function permits a quan-
titative representation of the relationship between an element
and a set, taking values between 0 and 1, with the intermedi-
ate value reflecting the degree of ambiguity [22]. Nonlinear
time-varying systems integrate nonlinear and time-varying
characteristics, the dynamic behaviour does not conform to
the principle of linear superposition, and the output-input
relationship is complex. The robust control flowchart based
on the constraint following theory is shown in Figure 4.
As shown in Figure 4, in control engineering, firstly, the

FD model of a mechanical system needs to be established
to describe its behaviour in different states, including posi-
tion, velocity and acceleration [23]. When the model is built,
the constraints of the system need to be considered, which
can be classified into complete and incomplete structures,
and zero-order and first-order constraints according to the
order of the constraints. The constraint matrix is used for
mathematical representation, which usually requires the con-
sideration of the derivatives of the constraints with respect to
time, and sometimes the second order derivatives, especially
when describing the acceleration and angular acceleration of
the system [24]. Solving problems with constraints usually
requires the use of iterative algorithms to find least squares
solutions using M-P generalised inverse matrices. Constraint
following theory is used to design the CS of a system to ensure
that the system satisfies the constraints.

C. FUZZY THEORY FOR DYNAMIC MODELLING IN UMS
The nature of uncertainty lies in the existence of unknown
information, which makes the description of the research
object lack of certainty and reflects the limited state of
knowledge. In the field of engineering, the phenomenon of
uncertainty is extremely common, stemming from the exis-
tence of numerous unknown factors in the real world, such
as environmental changes, the randomness of the nature of
the material and so on. The presence of uncertainty has a
profound impact on the analysis of the state of a mechanical

system and the prediction of future results, as it can trigger
changes and uncertainties in the system’s behaviour, posing
a challenge to the system’s performance and stability. There-
fore, the consideration and handling of uncertainty must be
given high priority in research and engineering practice to
ensure the reliability and performance of mechanical systems
[25]. The design idea of the safety verification range is shown
in Figure 5.
In the design of dynamical models in UMS, control gain is

an important parameter that affects the control performance
and stability of the system. FC theory provides an effective
method for dealing with uncertain systems, which includes
the concepts of fuzzy sets and affiliation functions. In FC,
the control gain is usually determined by fuzzy reasoning
and rule base. In Figure 5, κopt represents the value of the
optimal control gain, J1(κ, ts) denotes a transient performance
metric, which is averaged over the system after the start of
time ts, and this averaging process is achieved bymeans of the
D-operation; J2(κ) reflects the averaged system steady-state
performancemetrics, and J3(κ) reflects the cost of controlling
the whole system.

J (κ) := h1D[η2∞(κ)] + h2κ2
=: h1J2(κ) + h2J3(κ) (11)

equation (11) represents the proposed system performance
index based on the steady state performance and control
cost of the system without considering the constraints of the
transient performance of the controlled system.

J (W ) := h1
λ2max(P)
4W 2 D[χ2] + h2κ2

=: h1
l4
κ2 + h2κ2 (12)

Equation (12) represents the optimal design of the control
gain κ for the constrained case.

∂J
∂κ

= −2h1
l4
κ2 + 2h2κ = (−2h1l4 + 2h2κ4)

1
κ3 (13)

Equation (13) represents the rate of change of the calcu-
lated performance index with respect to the control gain κ .
Let ∂J

∂κ
= 0, the displacement positive real number solution

is shown in equation (14).

κopt =

(
h1l4
h2

) 1
4

(14)

Due to D[χ2] ̸= 0, h1h2 > 0, when the control gain κ has
a minimum value, the minimum cost of the system is shown
in equation (15).

Jmin = 2
√
h1h2l4 (15)

In equation (15), when the weight coefficient h1 →

+∞, κopt → +∞, which indicates that the share of control
cost associatedwith that consistent bounded range is elevated,
then the associated control gain increases. When the con-
trol cost share associated with the uniformly bounded range
increases, the corresponding control gain also increases. This
is because the weight coefficient in this context represents
the control cost share within the consistent bounded range,
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FIGURE 4. Robust control flow chart based on constraint following theory.

and its elevation indicates an increased demand for con-
trol within that range. Within the uniformly bounded range,
an augmentation of control gain is necessary to better address
the dynamic variations and performance requirements of the
system. This impact is reflected in the response speed and
stability of the system. The increase in control gain enhances
the system’s ability to regulate its state, thereby accelerating
the response speed. However, excessively high control gain
may lead to oscillations or unstable behavior in the system.
Therefore, the selection of control gain involves a trade-off
between response speed and system stability. The choice of
control gain is a critical issue in FC because it directly affects
the response speed and stability of the system. Usually, the
control gain can be adjusted according to the dynamic charac-
teristics and performance requirements of the system. In FC,
the control gain is not a definite value but a fuzzy set whose
affiliation function can be adjusted according to the change of
the system state. The design of control gains needs to take into
account the uncertainty and nonlinear characteristics of the
system. FC allows the use of fuzzy rules to adjust the control
gains to system variations and external perturbations in an
uncertain environment. This flexibility gives FC an advantage
in dealing with the design of dynamical models for UMS.

IV. FD MODELLING AND CONTROL VALIDATION OF UMS
In this chapter, the control methodology of applying UMS on
a permanent magnet synchronous motor will be discussed in
detail, and subsequently, the accuracy and applicability of the
proposed model will be verified using a designed electrical
air throttle. Finally, it is investigated how the control method

of UMS can be applied on a permanent magnet synchronous
motor.

A. VALIDATION OF THE FD MODEL BUILDING METHOD
FOR UMS
FD model construction for UMS is one of the key issues in
modern control field, aiming to cope with uncertainties such
as parameter variations, external perturbations and modelling
errors in order to achieve robust control and high performance
operation of the system. The key lies in the introduction
of fuzzy set theory to effectively quantify the uncertainty
into a subordination function to better understand and deal
with the dynamic characteristics of the system. The study
will also carry out simulation validation to ensure that the
constructed model accurately reflects the performance and
robustness of the actual system in the simulation experiments.
The parameters of the simulation validation system are shown
in Table 1.

According to Table 1, in this mechanical system, the
study faces an uncertain external perturbation, denoted by
the symbol Tc. Meanwhile, the parameters of the electronic
throttle system are as follows: It = 0.08kgm2,KRD =

1/360◦,KDP = 0.9◦/%,KTM = 0.6,KVT = 0.45, fv =

40N ·m ·min /r,Ks1 = 0.26Nm/◦,Ks2 = 0.3Nm. Assuming
that the initial condition is x0 = [3, −1], the study introduces
the external perturbation signal Tc = 2 sin(5t) during the sim-
ulation. According to the traditional uncertainty treatment,
the study can obtain the upper bound of uncertainty as ē = 2.
In the simulation, the study considered six different sets of
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FIGURE 5. Design ideas for safety verification range.

TABLE 1. Simulation verification system parameters.

λ1 values (2.05, 2.1, 2.15, 2.2, 2.25, 2.3), and e = 1, respec-
tively. To satisfy the assumptions of the study, the study set
ρ̂1 to 2.03, 2.08, 2.13, 2.18, 2.23, 2.28, respectively. To sim-

ulate the uncertainty of the internal parameters, the study
introduced 1It = |0.02 cos(3t)|. The study set the desired
trajectory θd = 15 + 5 sin(2t), the desired velocity θ̇d =

10 cos(2t), and the desired acceleration θ̈d = −20 sin(2t).
Finally, the simulation results show how the control parame-
ters relate to the boundaries and how these parameters limit
the size of the control inputs. The CIDA-based control input
u1 is shown in Figure 6.

In Figure 6, LQR is a common robust control method that
improves system performance by reducing the input gain. The
LQR control input gain can be specifically set in the range of
0.2 to 2 to achieve the desired phase difference, typically plus
orminus 60 degrees. However, uncertainty inmechanical sys-
tems results in excessively large control inputs, increasing the
control cost. The CIDA approach compensates for the control
inputs by limiting the uncertainty and successfully reduces
the control input amplitude by 25 to 40 per cent, reducing
the control cost of the system while allowing flexibility in
setting the input boundaries based on specific assumptions.
The CIDA-based control input U is shown in Figure 7.

Figure 7 demonstrates the comparative results of the total
motor inputs, by analysing the total motor input U, the study
can understand the effect of the CIDAmethod in control more
comprehensively. According to the dynamical equations of
the system, the total motor input U consists of two com-
ponents, u1 and u2, where u1 is affected by the CIDACS,
while the amplitude of u2 is already determined and is not
affected by the uncertainty. When using the conventional
LQR control method, the amplitude of the total input U to
the motor averages about 100 volts, however, when CIDACS
is used, the amplitude of u1 is reduced by an average of
about 40 volts, which reduces the total input U to an aver-
age of about 60 volts, and it can be seen that this control
method effectively reduces the total input U of the motor
to make it more stable with respect to the situation when
using the conventional LQR control method. The CIDA based
input maximum and cumulative control inputs are shown in
Figure 8.
In Figure 8(a), the maximum value of the bounded part

u1 is demonstrated for different control inputs. The obser-
vations strongly support the CIDA method by showing that
the maximum value of u1 is controlled by the upper bound
limit, further validating the effectiveness of the method. This
effective control input amplitude maintains the stability of
the system, which is crucial for the controllability of the
UMS. By keeping the control input fluctuating within an
acceptable range, the CIDA method is expected to improve
the robustness of the system. In Figure 8(b), the study also
explores the comparison of cumulative control inputs of the
motor. By analysing the comparison, it is clearly visible that
the cumulative control input of the motor is significantly
less with the CIDA method than with the conventional LQR
control method. The system location of CIDA is shown in
Figure 9.
Figure 9 shows the comparison of the position tracking

performance of the system under different control methods.
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FIGURE 6. CIDA-based control input u1.

FIGURE 7. CIDA-based control input U.

Under CIDA control, the position tracking ability of the
system is very strong and the average position error of the
system can be maintained at about 1 mm. On the other hand,
the input limits of the system change under different boundary
values. When the control boundary value is small, the control
input range of the system is limited and averages around
80 volts. As the boundary value increases to 120 volts, the
average control input range of the system can be extended to
110 volts. The system speed of CIDA is shown in Figure 10.

Figure 10 demonstrates a comparison of the change in
system angle under different control methods. Under CIDA
control, the system angle tracking shows excellent stability

FIGURE 8. CIDA-based input maximum value and cumulative control
input.

and accuracy. This implies that the CIDA method can effec-
tively cope with the angular control problem in UMS and
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FIGURE 9. CIDA based system location θv .

FIGURE 10. CIDA-based system speed θv .

ensure that the system angle can closely track the desired
trajectory. It is particularly noteworthy that the input range
of the system changes at different boundary values. As the
boundaries increase, the system obtains a larger control input
magnitude, which leads to an improvement in the angular
tracking performance of the system. This means that the
CIDA method allows the control boundaries to be adjusted
according to the actual needs for more flexible control and
thus better meets the performance requirements of the UMS.
The cumulative output error of the system for CIDA is shown
in Figure 11.

Figure 11 demonstrates the cumulative output error of the
system, which is one of the key metrics for evaluating the

FIGURE 11. Cumulative output error of system based on CIDA
∑

x .

performance of the UMS. Comparing the cumulative output
error under different control methods highlights the perfor-
mance improvement effect of the CIDAmethod. Firstly, it can
be observed that the CIDA method significantly reduces the
cumulative output error and improves the tracking perfor-
mance of the system, which is crucial for the UMS because
the accumulation of output error may impair the system
performance. Secondly, the system performance gradually
improves as the boundary increases, indicating that the CIDA
method allows flexibility in adjusting the boundary values
according to different performance requirements. Increasing
the boundary provides a larger input amplitude and reduces
the output error, thus improving the tracking accuracy of the
system.

B. VALIDATION OF UMS CONTROL METHOD ON PMSM
The core of the experimental equipment is a TMS320F28335
Digital Signal Processing Controller (DSP), which controls
the Permanent Magnet Synchronous Motor (PMSM) system
and is responsible for data acquisition. Matlab/Simulink is
used on the PC to construct the mathematical model and
to generate the code for the control algorithm. Another
PMSM is introduced in the experiment to simulate the
external perturbation by random current. The whole exper-
imental platform includes two PMSMs, torque transduc-
ers and couplings, and the desired trajectory is defined
as θd = 2π sin(0.2t). The State-Dependent Control
Approach (STA)-based, Robust Control Approach (HORC)-
based, Optimisation-Based Approach (GTOA) are shown in
Figure 12.

The trajectories of the PMSM turn angle in different cases,
including the upper and lower bounds (6m and 0m) as well
as the desired trajectory, are presented in Figure 12. The
figure is analysed in detail as follows, firstly, it shows that
the trajectories of the four different experiments can effec-
tively track the desired trajectory, and the average angular
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FIGURE 12. Position θp based on STA, HORC, GTOA.

FIGURE 13. Error based on STA, HORC, GTOA ep.

errors of experiments A,B,C,D are about 0.5 degree, 1 degree,
0.3 degree and 0.8 degree respectively, which shows that
the trajectory of experiment A is the closest to the desired
trajectory. Secondly, the trajectories in both Experiments A
and B exceeded the upper bound, and the control input ampli-
tude averaged within 7.5m and 8m in Experiments A and
B, respectively. In contrast, the trajectories in both Experi-
ments C and D stayed within the upper and lower bounds,
with the control input amplitude averaging within 4.5m in
Experiment C, and within 3m in Experiment D using the
optimal GTOA-based control parameters. Finally, the figure
also clearly demonstrates that the STAmethod is able to better
suppress random external disturbances when the trajectories
are close to the extremes, and the angular errors of experiment

FIGURE 14. Control input U based on STA, HORC, GTOA.

D are within 0.6 degrees on average when the trajectories are
close to the extremes, while the angular errors of experiment
C are within 1.5 degrees on average. The errors based on STA,
HORC, and GTOA are shown in Figure 13.

Figure 13 presents the performance of the systematic error
in different cases, and it is noteworthy that the error in
Experiment D reaches the minimum value. This means that
the HORCCS combining STA and GTOA exhibits the most
excellent control in the study. Secondly, the HORC control
with STA also showed a decent performance in terms of
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error, although slightly inferior to the combination of STA
and GTOA. Finally, the results of the standalone application
of HORCCS are also considerable, although slightly inferior
to the first two. The control input U based on STA, HORC,
and GTOA is shown in Figure 14.
The evolution curves of the control inputs over time for dif-

ferent cases are shown in Figure 14. Observing these curves,
the study can draw some important conclusions. Firstly, under
HORCCS, the peak value of the control input is significantly
reduced compared to the conventional LQR control, while
the curve is smoother. This indicates that HORCCS can
effectively reduce the peak value of the control input of the
motor system, which reduces the energy consumption and
mechanical wear of the system and improves the stability and
efficiency of the system. Secondly, the standard deviation of
the current fluctuation is reduced by 10% on average after the
introduction of the STA method.

V. CONCLUSION
In contemporary society, mechanical systems are indispens-
able across a diverse array of industries, from an automated
production line to a transport system or a medical device.
The performance and reliability of these systems are critical
in maintaining seamless business operations and sustaining
human life. To this end, research primarily concentrates on
efficaciously managing constraints to guarantee system sta-
bility. Secondly, these techniques utilise robust control theory
for examining system performance and stability, with spe-
cific attention to constraints. Lastly, they implement fuzzy
theory to develop more precise dynamics to enhance com-
prehending system behaviour and managing uncertainties.
The study findings demonstrated that LQR control techniques
generally establish the input gain range between 0.2 to 2 to
attain a phase difference of plus or minus 60 degrees in
control. Nevertheless, due to the uncertainties in mechanical
systems, the average control input was about 100 volts, con-
tributing to an increased control cost. To address this issue,
the CIDA approach successfully decreased the amplitude
of control input by 25-40%, resulting in an average total
input U of approximately 60 volts and significant enhance-
ment of the system’s stability. Additionally, regarding overall
motor input, the amplitude of u1 decreased by approximately
40 volts on average with the implementation of the CIDA
strategy. Simultaneously, the average position error remained
at roughly 1 mm with CIDA. Furthermore, the system’s
control input range varied under various boundary condi-
tions, with an average of approximately 80 volts for smaller
boundary values, yet it could be extended to an average of
110 volts with an increase of the boundary value to 120 volts.
In the cornering trajectory experiments of PMSMs, all tri-
als successfully followed the desired paths with an average
angular error of approximately 0.5, 1, 0.3, and 0.8 degrees
for Experiments A, B, C, and D respectively. Notably, Exper-
iments A and B surpassed the upper limit in some instances
while Experiments C and D remained within both upper and
lower bounds. Finally, in relation to control inputs, the imple-

mentation of HORCCS exhibited a considerable decrease in
peaks, reducing them from approximately 140 volts in con-
ventional LQR control to around 100 volts, with a smoother
curve. With the introduction of the STA method, the standard
deviation of current fluctuations decreased by an average
of 10%. This method further enhances the stability and
efficiency of the motor system. The data and observations
indicate that the implementation of CIDA, HORC, and STA
strategies resulted in a significant improvement of mechan-
ical system performance and stability. The precision control
strategy based on fuzzy dynamics involves the introduction
of a fuzzy logic system to model the dynamics of uncer-
tain mechanical systems. Fuzzy theory allows for flexible
handling of system nonlinearity and uncertainty, providing a
more accurate description of system behavior. In the control
strategy, the fuzzy dynamics model can adapt to dynamic
changes and external disturbances, enhancing the robust-
ness and adaptability of the system. Secondly, robust control
theory is utilized to evaluate the system’s performance and
stability under constrained conditions. The introduction of the
constraint-invariant dynamic analysis method reduces con-
trol input amplitudes, effectively improving system stability.
Through robust control, the study can analyze the system’s
response under specific constraint conditions, ensuring the
system maintains good performance under constraints. How-
ever, the study’s limitations suggest that the applicability of
the methods is contingent upon specific circumstances, and
more flexible approaches are necessary to address extensive
and complex uncertainty situations.
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