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ABSTRACT Action recognition is a fundamental research topic in the field of video understanding, but
classical action recognition relies on a large amount of manually annotated video data, which limits its
development. Small sample action recognition is a promising topic that can overcome the dependence on
large-scale annotated data. However, the current small sample action recognition has a series of shortcomings
such as temporal singularity and a lack of perception of global information. Therefore, this work proposes
an interactive perception network by designing a multi-scale temporal feature extraction module to capture
global temporal dependencies between all frames and local temporal information between frames. Then the
algorithm proposes a cross scale matching strategy to achieve robust matching between videos with different
motion speeds, maximizing the consistency between local and global features of the same type of action.
Finally, the experimental results on the SSV2 dataset and the HMDB51 dataset show that the proposed
method outperforms the current mainstream methods. Compared with the backbone network, which is the
most advanced method of ResNet, this method achieved performance improvements of 0.8% and 0.4% on
HMDB51 and SSV2, respectively.

INDEX TERMS Action recognition, small sample learning, video understanding, meta learning.

I. INTRODUCTION
With the development of the internet, there has been an
increasing number of video creators and platforms, leading
to the growing popularity of the live streaming industry
and the generation of a large amount of video data. Video
understanding tasks such as action recognition can greatly
benefit users and the live streaming industry. Moreover,
autonomous driving and robotics technology also rely on
the support and assistance of action behavior recognition.
However, traditional recognition methods heavily rely on
a large volume of manually annotated video data. The
sensitivity of tags and the time-consuming process of video
collection have limited the progress in this field. For instance,
there is often a scarcity of video types, making it particularly
important to reduce dependence on a large amount of
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video data. The education industry can also benefit from
advancements in video understanding tasks.

In the field of online learning, with the widespread use
of the internet, there has been a surge in video creators
and platforms providing educational content, resulting in a
significant amount of video data. However, there has been a
lack of interactivity in courses, and platforms have inadequate
understanding of learners’ behaviors, leading to the inability
to provide timely and relevant teaching recommendations.
Action recognition, which involves understanding human
actions and movements, can greatly enhance the experience
of online learning. Additionally, in offline learning, the
identification of human behavior is particularly important
in various educational scenarios, such as understanding the
behaviors of teachers and students in classrooms and iden-
tifying risky behaviors in laboratories. However, traditional
methods of action recognition heavily depend on a large
volume of manually annotated video data. The process
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of manual tagging and video collection is not only time-
consuming but also sensitive to the accuracy of the assigned
labels. Moreover, the availability of labeled video types is
often limited, further constraining the development of action
recognition in the education industry.

Therefore, reducing reliance on a large amount of video
data is crucial. Innovative approaches using action recog-
nition algorithms and machine learning techniques, such
as transfer learning, semi-supervised learning, and active
learning, can help overcome these limitations. By efficiently
utilizing existing annotated data and minimizing the need
for extensive manual annotation, the education industry can
harness the potential of action recognition technology to
provide an exceptional learning experience for students and
educators.

Action recognition has made significant progress in recent
years. To address the fact that the action recognition relies on
a large amount of manually annotated video data, few-shot
action recognition is a promising direction that can overcome
the dependence on large-scale annotated data. Currently,
there are two issues with current few-shot action recognition:

(1) due to different motion speeds in videos, information
from a single temporal scale cannot fully represent the
semantic behavior of actions;

(2) due to the lack of perception of global information
in video actions, matching between local information is
inaccurate.

Besides, in small sample action recognition, a high-quality
classifier is established from limited labeled data.When faced
with the same video data information, compared with the
existing sample action recognition methods, there are fewer
datasets available for small sample action recognition. There-
fore, improving the recognition accuracy and generalization
performance of small sample action recognition models has
become the key work in this study.

To address the above-mentioned issues, this work focuses
on an innovative and effective method called multi-scale
interaction perception network. The proposed work has three
advantages: (1) to obtain multiple temporal scale semantics
for action behavior, a multi-scale temporal feature extraction
module is designed to capture global temporal dependencies
between all frames and local temporal information between
frames. (2) compared with the commonly used alignment
matching between single scales or granularities in previous
methods, the cross-scalematching strategy can achieve robust
matching between videos with different motion speeds. (3) a
global information interaction matching module is designed
to match global information and local frame-level features of
videos, thus maximizing consistency between local features
and global features within the same category of actions.

In summary, the main content of this work is to conduct
research on small sample action recognition in the case
of limited labeled video samples. The proposed network
framework has completed algorithm validation on two action
recognition datasets, demonstrating the effectiveness of the
core module and its superiority over other advanced methods.

The research contributions of this article can be summarized
as follows:

(1) This study strengthens the matching between videos
from two aspects: the fusion of long-term and short-term
temporal dependencies, as well as the mutual perception of
global and local information.

(2) This study designs a multi-scale Temporal Feature
Extraction Module (MTFEM) and a Cross Scale Alignment
Module (CSAM) to enhance the temporal understanding of
actions from both characterization and measurement aspects,
achieving matching between actions with different motion
speeds.

In experiments, this work compares the test results of the
multi-scale temporal interactive perception network model
on the SSV2 dataset and HMDB51 dataset with the current
state-of-the-art methods, demonstrating the superiority and
effectiveness of the proposed method.

The main research content and structural arrangement
are as follows: Section I is an introduction, which intro-
duces the background and significance of action behavior
recognition based on small sample learning. Section II is
related works, which discusses the research on small sample
image recognition and action recognition, providing a solid
theoretical basis for the research and design of the methods.
Section III is small sample action recognition based on
multi-scale temporal perception. Section IV is the experiment
and analysis, which introduces the dataset and evaluation,
clarifies the experimental environment and training details,
conducts detailed comparative experiments and analysis,
proves the superiority of the proposed method. Section V is
the conclustion and outlook, summarizing the work content,
analyzing the certain shortcomings of the method, and the
directions for future improvement and research in small
sample action recognition.

II. RELATED WORKS
Small shot action recognition aims to classify action cate-
gories that have never appeared in the training set through
a very small number of annotated video samples, thereby
overcoming the dependence on a large number of annotated
samples. The input for small sample action recognition is
usually a video sequence of multiple samples, divided into a
query set and a support set, and the output is the classification
results of the query set video sequence.

The existing methods are relatively systematic, mostly
based on metric meta learning paradigms, and then align or
pool the video representation in time series into a vector to
measure the similarity between videos. Figure 1 illustrates
the basic process of small sample action recognitionmethods.
At present, small sample action recognition based on meta
learning paradigms, which can be roughly classified into four
categories: classifier based classification methods, temporal
alignment based methods, spatio temporal relationship mod-
eling methods, and methods combined with other modalities.

In small sample image recognition tasks, deep learn-
ing models often adopt a meta learning based paradigm.
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FIGURE 1. The framework of the general small sample action recognition algorithm, including feature embedding function, distance
function, similarity score calculation and the classification.

It learns a feature representation with certain generalization
performance, and then uses a classifier for classification.
Inspired by the idea of small sample learning, The method
CMN [1] proposed a composite memory network structure
to store category features in the support set. Then, a multi-
level saliency encoding algorithm was used to encode video
sequences with unfixed length in the query set into fixed
length video representations. Then, the nearest neighbor
category was searched from the composite memory network
to match with the videos in the query set. Although [1]
has achieved certain results, it has not fully considered
the importance of complex temporal information in video
understanding.

In small sample action recognition, feature alignment
based on time series is often complex and multi-level. The
method TARN [2] began to utilize the temporal information
of videos, and in the vectorization stage, TARN extracted
video features using 3D CNN (C3D), and strengthened
temporal information using Gated Recurrent Unit (GRU)
module structure. In TARN, this temporal alignment is
relatively rough and does not achieve accurate alignment.
The true temporal alignment should be complex. The method
OTAM [3] maintains the sequence of frames and uses an
improved dynamic time warping algorithm to align two
videos in time series. This method displays the alignment
at the framelevel for modeling, but the computational
complexity of displaying modelingtiming information is
enormous. The method TRX [4] matches actions through
a large number of video subsequence. This subsequence
matching method can deal with the diversity of actions, such
as different timing intervals and different action start times.
However, TRX may experience performance degradation

in action recognition with multiple objects or complex
backgrounds, and the tuple representation in TRX is fixed
and not flexible enough. The method MTFAN [5] proposed
a segmented attention approach to achieve multi-level
temporal alignment. Therefore, how to choose the appropriate
granularity alignment method for semantic alignment is
crucial for small sample action recognition.

In video, in addition to model temporal information,
capturing spatial information within a single frame and
temporal relationships between frames is of great help in
encoding spatio temporal context information. Strengthening
spatio temporal information at the same time is beneficial
for obtaining discriminative features of specific categories,
as well as focusing on the motion information of objects
and objects highly related to categories in the video. The
previous method OTAM [3] explicitly performed frame level
alignment, which had a significant computational burden.
In order to reduce this huge computational burden, The
method ITANet [6] models spatio temporal information and
achieves more robust video matching through an implicit
frame level temporal alignment strategy. However, due to
different action instances, achieving semantic alignment is
relatively difficult. The problem comes from two aspects:
(1) the start and duration of the action are different; (2)
the evolution process of actions may be inconsistent. The
previous semantic alignment work did not address the issue
of significant action differences. Therefore, the method
TA2N [7] proposed a two-stage action behavior alignment
network to achieve more accurate semantic alignment. The
method STRM [8] designed a module for enhancing spatio
temporal information, utilizing two sub modules: local patch
module and global frame level module to help understand
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contextual information at both temporal and spatial levels.
In the end, STRM obtained richer spatio temporal repre-
sentations, enabling better learning and matching of the
relationships between query targets and actions.

In the field of video, fusing RGB information with other
modal information often yields richer information, which
is of great help for various video comprehension tasks.
In small sample action recognition tasks, there have been
some works that combine multiple modalities. The method
AMeFuNet [9] introduces depth information as a supplement
to scene information and integrates it with RGB information.
Huang et al. [10] introduced object information as multi-
modal information and used multiple relational encoders
to encode object information, temporal information, and
global information. Although the introduction of multimodal
information can greatly improve performance, it often brings
significant time and computational overhead.

Although the above-mentioned methods have achieved
high performance by conducting temporal matching on
videos at various granularities, a single granularity temporal
matching ignores the complex temporal information of the
video. Especially when facing videos with different motion
speeds, a single temporal matching often leads to temporal
misalignment, which affects matching performance.

III. A NEW MULTI-SCALE TEMPORAL INTERACTION
PERCEPTION NETWORK
A. SMALL SAMPLE LEARNING NETWORKS
In the process of small sample learning, model training
randomly samples a batch of data from the training set, and
such a training task is called a meta task. Each meta task
is divided into a support set and a query set. Finally, model
testing evaluates the performance of the model by executing
meta tasks on the test set. The following is an introduction
to several small sample learning classical networks based on
metric learning.

The prototype network [11] (as shown in Figure 2) uses a 4-
layer CNN as the feature embedding function. The prototype
of each category is defined as the average of the feature
vectors of all supporting set images. Expressed as follows by
Eq.(1):

Vc =
1

|Sc|

∑
(xk ,yk )∈Sc

g (xk) (1)

Among them, Sc is the number of samples in a certain
category and ‘g()’ is the feature embedding function. The
classification result is obtained by calculating the Euclidean
distance between the support set sample prototype and the
query set sample prototype. In addition, in order to generate
more discriminative embedded features, Zhang et al. [12]
proposed using comparative loss to bring samples of the same
class closer in the feature space and samples of different
classes farther away.

The matching network [13] (as shown in Figures 3)
uses cosine similarity measurement to learn the feature

representations of each category. Given the support set and
query image x, the matching network obtains the probability
distribution of output label y by calculating attention scores.
The attention score is generally obtained by calculating the
cosine similarity between the query image and the support set
image in the feature space, and then normalizing the attention
score. The calculation formula is as follows:

a (x, xk) = ecos(f (x),g(xk ))
/

t∑
k=1

ecos(f (x),g(xk )) (2)

Although progress has been made in the field of small
sample image recognition, it is unreasonable to directly apply
these methods to the field of small sample action recog-
nition due to the complex structure and richer information
of videos.

Various deep learning based network models have made
tremendous progress in the field of image recognition,
and at the same time, researchers have also attempted to
transfer image recognition models to videos. In the field
of video understanding, action recognition is a fundamental
task and also one of the evaluation tasks for various video
algorithms. Action recognition is also a very challenging
task, videos contain complex temporal information. The
current action recognition algorithms have not yet reached
the level of human visual perception systems, but in recent
years, due to the development of deep neural networks,
there has also been some development in the field of action
recognition.

Convolutional operation is the most fundamental compo-
nent of deep neural networks for action recognition tasks,
mainly divided into 2D convolution and 3D convolution.
Image based 2D convolution is the fundamental operation of
deep neural networks. Themethod based on 2D convolutional
networks [14], [15] can also directly load pre-trained weights
on large-scale image datasets. However, 2D convolutional
networks cannot model temporal information in videos,
so additional network design is needed for reasonable
temporal modeling.

Due to the large number of frames in the video, 3D
convolution can capture temporal information over a short
period of time. But the method based on 3D convolutional
neural network [16], [17] has more parameters than 2D
convolutional network. Furthermore, these methods cannot
load pre-trained weights for large-scale image datasets.

Time series modeling is important in video action recogni-
tion. Generally speaking, temporal modeling can be divided
into three types. The most direct method is to directly use
3D convolution on adjacent frames. Therefore, the temporal
dimension in 3D convolution can capture temporal motion
information from adjacent frames, but its limitation lies in
the inability to use pre-trained weights on large-scale image
datasets.

Another type of method is to model temporal information
in videos through a multi-stream approach. One of the
streams is trained using optical flow frames to capture
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FIGURE 2. The structure of prototypical network, including feature embedding function, distance measurement and prediction results.

FIGURE 3. The structure of the matching network structure, including a key cosine similarity calculation stage.

motion information between adjacent frames. However,
these methods cannot be well used to model long-term
temporal information in long videos. Moreover, due to the
use of 2D convolutional networks, the dual stream network
can directly load pre-trained weights on large-scale image
datasets. In response to the disadvantages of the previous two
types of methods, some methods adopt the (2+1) D CNN
approach [18], [19], which uses two-dimensional convolution
to extract spatial information and one-dimensional convolu-
tion to extract temporal information.

Due to the need to train deep neural networks, the recently
proposed video datasets are all very large. For example,
the Youtube-8M dataset has over 8 million videos. In such
a large-scale dataset, annotating such a large number of
video datasets is time-consuming and almost impossible.
Even if search engines assign certain labels to these video

data for retrieving videos, there is still a high probability of
errors. One solution is to perform action recognition in an
unsupervised or weakly supervised manner [20], [21]. Thus,
the model does not require complete annotation data, only
partial annotation data is needed to complete training.

Faced with the problem that a fully supervised action
recognition model requires a large number of labeled
samples, and the performance of the model will significantly
decrease with only a small number of samples, small sample
learning can effectively solve this problem. The development
of small sample action recognition is of great significance.
Small sample action recognition aims to classify categories
that have not appeared in the training set through a very small
number of labeled samples. The input to a task is usually
a sequence of multiple video samples. The following will
present our method in details..
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FIGURE 4. Example of the sub-action misalignment problem. Different instances exhibit distinct temporal differences.

FIGURE 5. The structure of the proposed multi-scale temporal interactive perception network, including a support set and query set for the
feature extraction and matching.

B. A NEW MULTI-SCALE TEMPORAL INTERACTIVE
PERCEPTION NETWORK MODEL
In videos, different actions are often visually complex,
and precise temporal matching between actions cannot be

achieved solely through a single temporal scale feature.
As shown in Figure 4, although they all belong to the action
category of ‘long jump’, different instances exhibit distinct
temporal differences. The temporal intervals occupied by
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sub-actions of different instances vary greatly. Therefore,
if only a single frame level matching is performed, it may
cause misalignment matching between sub-actions and
affect the effectiveness of small sample action recognition.
We believe that obtaining multi-scale temporal features is
beneficial for understanding actions from different temporal
scales, which has never been explored in previous work.

In small sample action recognition, single temporal
matching cannot accurately achieve temporal matching
between actions. If only a single frame level matching is
performed, it may cause misalignment matching between
subactions and affect the effectiveness of small sample action
recognition. If there are different temporal scales, then fine-
grained temporal features of subactions can be learned in
the early stage, and coarse-grained temporal relationships of
combined actions can be learned in the later stage. Therefore,
we design aMulti-scale Temporal Feature ExtractionModule
(MTFEM) and a Cross Scale Alignment Module (CSAM)
to enhance the temporal understanding of actions from
representation and measurement. More specifically, in the
multi-scale temporal feature extraction module, the temporal
features of each scale are enhanced by the Global Local
Relationship Module (GLRM), which captures both the
global temporal dependencies between all frames and the
local temporal information between frames, thus facilitating
the modeling of complex temporal information in videos.
At the same time, a cross scale alignment module was
designed to fuse multi-scale temporal feature information,
and then perform cross scale alignment to achieve robust
matching between videos with different motion speeds.
Based on the multi-scale temporal feature extraction module
and cross scale alignment module, this section proposes a
novel small sample action recognition framework, namely the
multi-scale temporal interactive perception network.

The goal of small sample action recognition is to learn a
model with good generalization performance using only a
small number of labeled samples, which can recognize new
categories that have never been seen before. In order to make
the training and testing stages highly similar, we adopt a
meta task approach for training, similar to the previous small
sample learning method. There are two sets in each meta task,
namely the support set S and the query set Q. Support set S
includes N × K samples, each from N action categories, and
each category has K samples. This setting is called the N -
way K -shot problem. The trained model needs to classify the
videos in query set Q into one of N action categories.

Figure 5 shows the overall framework of a multi-scale
temporal interactive perception network. For each input video
sequence, the video is divided into T temporal segments
and one frame is randomly selected from each temporal
segment. Thus, in each meta task, the support set S can
be represented as S = {s1, s2, . . . , sN×K} where si is
each video sequence, and si can be represented as si =

{si1, si2, . . . , siT}. For the convenience of describing the
model and method, the N -way 1-shot problem should be
discussed in the network, where K = 1 and only includes

one video q in the support set Q. Firstly, according to
the previous method, a universal feature extraction network
Resnet50 is used to extract visual features for each video
sequence, in order to obtain support set features Fs =

{fs1, fs2, · · ··, fn∗k} and query video features. The extracted
video features are input into the multi-scale temporal feature
extraction module and the global information interaction
matching module, respectively, to obtain the multi-scale
temporal features and global features of the video. Then,
the obtained multi-scale temporal features are input into the
cross scale alignment module to obtain the matching score for
cross scale alignment. At the same time, the obtained global
features are matched with local frame level features of other
videos to obtain a global matching score.

This module attempts to model temporal relationships
at different temporal scales, which can capture different
aspects of behavioral actions. The temporal scale in the
early stage can capture the slow and comprehensive motion
characteristics of actions, while the temporal scale in
the later stage can capture the fast and general motion
characteristics of actions. Given a series of video frame level
features, using multi-scale temporal design to fully utilize the
advantages of one-dimensional convolution and transformer
architectures, the model combines these two structures to
capture both global and local information in the video.
As shown in Figure 6, the multi-scale temporal extraction
module includes a global local temporal relationship module
and a temporal downsampling module. In the early stages,
there are more temporal tokens, which can represent richer
action information; In the later stage, there are fewer
timing tokens, but they can represent more general action
information.

The global local temporal relationship module can be
further decomposed into a global temporal relationship
module and a local temporal relationship module. In the
global temporal relationship module, in order to capture
long-term temporal dependencies, this model uses standard
multi-head self attention to model global contextual temporal
relationships. In the local temporal relationship module, this
model uses a temporal convolutional layer (kernel k) to
enhance the feature representation of each temporal token
by fusing the information of adjacent temporal tokens.
Therefore, by capturing both short-term and long-term
temporal dependencies simultaneously, more discriminative
temporal features can be obtained.

In the global local temporal module, for each self attention
head i∈ {1, 2, . . . ,H}, the network converts the input feature
X into the corresponding Q, K , V :

Qi = WQ
i X (3)

Ki = WK
i X (4)

Vi = WV
i X (5)

Among them, WQ
i , WK

i and WV
i ∈ RC×D represent

the weight of the linear layer. Therefore, the self attention
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FIGURE 6. The structure of global local relationship module.

calculation process is as follows:

Atti = softmax

(
QiKT

i
√
C

)
Vi (6)

where softmax() represents the softmax Activation function,
and C the feature dimension of each self attention head.
Next, the outputs of different self attention heads are
concatenated and passed through a linear layer, as shown
in Eq.(7):

M = Woconcat (Att1, . . . ,AttH) + X (7)

Among them, Wo
∈ RD×D is the weight of the linear

layer. Next, multiple temporal tokens obtained by the global
temporal relationship module are extracted through the
feature extraction of a local temporal relationship module.
The local temporal relationship module includes two linear
layers and 1 one-dimensional temporal convolutional layer.
As shown in Figure 6, multiple temporal tokens pass through
a linear layer to reduce the feature dimension from D to
D1, and then use a one-dimensional temporal convolution
to capture local information of adjacent temporal tokens
to enhance the information of the current token. Multiple
temporal tokens pass through a linear layer again to restore
the feature dimension to D, thus obtaining the final temporal
feature.

The temporal downsampling module achieves the connec-
tion between temporal features at different scales, which can
reduce the temporal resolution of the video. It can be regarded
as the average pooling of adjacent time series tokens. In the
actual operation process, we use a temporal convolution with
a convolution kernel of k and a step size of 2 to obtain the
temporal tokens of the later stage.

C. CROSS SCALE ALIGNMENT MODULE
In order to achieve matching between videos with different
motion speeds, this section designs a cross scale alignment
module. We have obtained two features of different time
scales in the multi-scale temporal feature extraction module,
namely early temporal features H1 = {f1, f2, . . . , fT} and later
time series characteristics H2 = {s1, s2, . . . , sJ}. In order
to achieve cross scale alignment, this section concatenates
temporal features of different scales to obtain mixed temporal
features H = {H1,H2}. In order to complete local feature
matching, the Hausdorff distance [22] improved by Eq.(8) as:

D
(
HS,HQ

)
=M

(
[HS1,HS2] ,

[
HQ1,HQ2

])
(8)

Eq.(8) represents the distance between the mixed scale
features of the support set video and the mixed scale
features of the query set video. At the same time, some
movements have strong timing, such as the long jump, which
inevitably involves running up and taking off. The sequence
of movements before and after is very important. Therefore,
on the basis of cross scale alignment, we introduced frame
level alignment as in Eq.(9)

D
(
HS1,HQ1

)
=M

(
[HS1] ,

[
HQ1

])
(9)

Based on the above statement, combining cross scale
alignment and frame level alignment can better achieve
metrics between support set videos and query set videos [23].
The measurement formula is as follows:

D=D
(
HS,HQ

)
+ αD

(
HS1,HQ1

)
(10)

The α is the balance parameters for two alignment methods.
The calculated distance between videos can be used to further
obtain the output probability for action classification.
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FIGURE 7. Global information interaction matching module for matching betweeen different frames and actions.

FIGURE 8. Multihead self-attention and adaptive temporal convergent attention for global feature representation.

D. GLOBAL INFORMATION EXCHANGE MATCHING
MODULE
In the real world, people often have a reading habit of first
obtaining an overall understanding of the text information
by browsing it, and then carefully reading and understanding
the text based on the obtained overall information. This
often deepens the understanding of the text information.
If the model obtains the overall features of the video, it will
help deepen the understanding of the video action content.

Therefore, the global information interaction matching
module proposed includes two branches, namely the video
browsing branch and the video detail understanding branch
(as shown in Figure 7).
The video browsing branch is composed of a lightweight

video encoder to obtain a summary of the content in the video.
Using a Bidirectional Gated Recurrent Unit (BiGRU) encoder
to extract the overall information of the video, the input video
sequence V passes through the bidirectional GPU encoder

144868 VOLUME 11, 2023



C. Zheng et al.: Action Behavior Learning

FIGURE 9. Samples for training and testing process from SSV2-small dataset and HMDB51 dataset.

and becomes a feature sequence H = {h1, h2, . . ., hT}. Next,
the overall feature representation of the video is obtained
by averaging pooling along the temporal dimension on the
feature sequence F, expressed as follows:

g =
1
T

T∑
i=1

hi (11)

where hi ∈ R1×D, g ∈ R1×D, D is the feature dimension
of the overall video information. On the contrary, the video
detail understanding branch consists of a video encoder with
a relatively large number of parameters, thereby obtaining
deeper levels of video information. Usually, videos contain
a lot of target information and complex scenes, and it is
not possible to fully obtain the overall information of the
actions in the video solely through video browsing branches.
Therefore, the branch of video detail understanding can be
further introduced to obtain deeper information. Given the
frame level features F = {f1, f2, . . . , fT}, in order to obtain
semantic information highly related to the overall video
features from the frame level feature sequence, we design
an adaptive temporal aggregation attention. Specifically,
in order to design specific adaptive temporal aggregation
attention, the idea of self attention mechanism in the
transformer architecture is borrowed. Unlike the self attention
mechanism, we use the output features g of the video
browsing branch as a ‘‘query’’ and the frame level feature F as
a ‘‘key’’ and ‘‘value’’ (as shown in Figure 8). Thus, the video
detail understanding branch can further fuse fine-grained
video action information with global feature representations,
making the obtained global information more discriminative.

Previous work only considered frame level matching,
neglecting to enhance the perception ability of frame level
features to the overall information of actions during the

matching process. If two videos belong to the same category,
then the matching distance between the global information of
videos is close. Moreover, especially in cases where similar
frames exist, the introduction of global information is helpful
for local semantic matching. Therefore, we use a comparison
metric distance method [24] to match global information and
local frame level information by

D
(
fi, fgq

)
= M

([
f1i , . . . , f

T
i

]
, fgq
)

(12)

Among them, fi represents the local frame level features of the
video, while f gq represents the global features of the video,
M () representing the distance measurement method based
on comparative learning. It can explicitly make local frame
level features perceive global contextual information, thereby
promoting more robust small sample action recognition.

IV. EXPERIMENT AND ANALYSIS
A. DATASETS AND EVALUATIONS
Experiments used two action behavior video datasets, namely
the SSV2 small dataset and the HMDB51 dataset. This
section provides examples of corresponding samples in
Figure 9, and details each dataset below. The SSV2 small
dataset contains a total of 193690 action videos of human
object interactions with complex temporal information,
involving a total of 174 behavioral categories. According
to the dataset partitioning strategy of the previous small
sample action recognition method, 64 action categories
were randomly selected from the dataset as the training
set and 24 categories as the test set. At the same time,
select 100 samples for each category. The HMDB51 dataset
contains a total of 51 types of actions, with a total of
6849 videos. Each type of action consists of at least 50 videos
from websites such as YouTube and Google. The HMDB51
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FIGURE 10. Examples of heatmaps and feature maps in the shallow layers.
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TABLE 1. Quantitative comparison with SOTA methods on the SSV2 dataset.

TABLE 2. Quantitative comparison with SOTA methods on the HMDB51 dataset.

dataset has extremely strong appearance properties, that is,
there are generally frames with high similarity in a video.
We followed the dataset partitioning strategy of the previous
small sample action recognition method, using 31 categories
as the training set and 10 categories as the test set.

In order to quantitatively evaluate the effectiveness of
the design model, the evaluation index commonly used
in computer vision recognition tasks, namely multi-class
accuracy, is adopted. Multi-class accuracy is defined as the
proportion of correctly classified samples to the number of
samples, and the formula is as follows:

Accuracy =
ncorrect
ntotal

(13)

Among them, ncorrect is the number of correctly
classified samples and ntotal is the total number of
samples.

In experiments, we use ResNet as the backbone net-
work to extract each frame feature of the video and
load pretrained weights on ImageNet. Like the previous
method, each video is sparsely sampled by 8 frames.
During the training phase, basic data augmentation methods
such as horizontal flipping are used, with each frame
cropped to 224 × 224. With the Stochastic Gradient
Descent (SGD) optimizer, the initial learning rate is set to
0.001. Due to the significant memory overhead required
for each meta task, one meta task is run at a time,
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TABLE 3. Ablation study under 5-way 1-shot.

FIGURE 11. Ablation study on the effect of changing the number of input video frames under the 5-way 1-shot.

with gradient averaging and backpropagation performed for
every 16 meta tasks. During testing, randomly perform
10000 dimensional tasks on the test set for evaluation, and
then report the average accuracy of the 10000 dimensional
tasks.

This experiment is carried out on the Windows 10 oper-
ating system, with a memory size of 64G. We utilize a
GPU powered by an NVIDIA GeForce 3060. For learning
frameworks, Pytorch-GPU 1.8.1, Cuda11.1, and Cudnn
8.0.5 are employed.

Figure 10 demonstrates the feature maps in the learning
stage. We show the salient features in the second row of
Figure 10, which shows that the network focuses on the
salient object in the classification rather than the whole scene.
From the third to last row of Figure 10 shows feature maps
in the shallow layers. It is worth noting that in the deep
layers, the network collects the global features which seems
not intuitive to human vision.

B. COMPARATIVE ANALYSIS AND DISCUSSION
This section compares the proposed model Multi-Scale
Interactive Adaptive Network (MIAN) with various latest
methods on different datasets. As shown in Table 1, the model
in this work surpasses all the current latest methods on both
datasets under the 5-way 1-shot setting. The experimental
results demonstrate the effectiveness of the method. Based
on the experimental results in Tables 1 and 2, the following
findings are made.

(1) Compared with the most advanced method of C3D
using backbone networks, such as TARN, our method
achieved a significant improvement of 15.8% in HMDB51.
Because 3D CNN networks introduce a large number of
model parameters, it is easy to cause overfitting of the model
under the setting of small sample learning. In the cross
scale alignment module, we did not introduce additional
parameters, but only spliced the temporal features of different
scales, and used the improved Hausdorff distance to measure,
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FIGURE 12. Ablation study on the effect of changing the number of heads under the 5-way 1-shot.

which is more conducive to the generalization of the
model.

(2) Compared with the backbone network being ResNet’s
most advanced method, our method achieved performance
improvements of 0.8% and 0.4% on HMDB51 and SSV2-
small, respectively. The experimental results demonstrate that
our model can learn rich and effective features even when the
sample size is very small, thus exhibiting high generalization
performance. Ourmodel can achieve interactive perception of
local frame level information and global video information,
as well as interactive perception between different temporal
scales, further enhancing the model’s generalization ability.

Compared with the most advanced methods of single scale
temporal alignment, our method achieved the best results,
thus proving the effectiveness of the multi-scale mixed
alignment strategy in small sample action recognition.

C. ABLATION EXPERIMENT
To verify the effectiveness of each module proposed in the
proposed algorithm, the following variant methods were
designed. Baseline: the baseline method only includes single
scale temporal feature extraction and single scale temporal
feature matching.

Baseline w/MTFEM: this variant method uses the multi-
scale feature extractionmoduleMTFEM to obtainmulti-scale
temporal features, which are then measured and matched
separately.

MIAN: this is the complete version of the model in
this work, which explores small sample action recognition
through cross scale alignment matching between multi-scale
temporal information and matching between video global
information and local frame level information.

Baseline w/MTFEM+CSAM: based on the variant method
of Baseline w/MTFEM, the multi-scale temporal feature
information obtained is input into the cross scale alignment
module CSAM for temporal matching.

To demonstrate the effectiveness of each module in the
proposed method, the performance results of each variant
method on two datasets are reported in Table 3. Based on the
experimental results, there are several discussions.

After introducing multi-scale temporal features, Baseline
w/MTFEM achieved some performance improvement on
both datasets, indicating that in small sample action recog-
nition tasks, the acquisition of multi-scale temporal features
helps to deepen a comprehensive understanding of action
behavior.

Compared with the previous variant method, Baseline
w/MTFEM+CSAM achieved improvements of 0.3% and
1.6% on two datasets, respectively, indicating that cross scale
alignment helps achieve robust matching between videos
with different motion speeds.

The performance improvement of the final method in this
work indicates that the fusion of information at different
temporal scales, as well as the fusion of global and local
information, can coordinate with each other and jointly
promote performance improvement. This is consistent with
the work [28] that features are required to be considered
jointly.

D. ANALYSIS OF THE IMPACT OF DIFFERENT VIDEO
FRAME NUMBERS
For fair comparison, the model MIAN in this work is
compared under the input frame number T = 8. In order to
analyze the impact of inputting different video frames under
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FIGURE 13. Qualitative results on the collected classroom teaching videos.

the small sample learning setting on the experimental results,
2, 4, 6, 7 and 8 frames were sampled for the experiment.
As shown in Figure 11, as the number of input frames
increases, the model performance increases from fast to slow,
and gradually saturates. The experimental results show that
the more input frames, the more significant the performance
improvement. At the same time, the model in this work
can achieve performance comparable to many advanced
methods when the input frame number is 4. Previous studies
have shown that multi-head self attention can focus on

different patterns within features and thus capture different
features [29], [30]. In Figure 12, the effect of changing the
number of heads in multi-head self-attention on performance
is studied. The experiment shows that the impact of the
number of multiple heads is significant, with a performance
impact far exceeding one point.

Compared with other methods, we introduce MTFEM and
CSAM in the multi-scale interactive adaptive network. A rise
in the complexity seems inevitable. In terms of the MTFEM
as shown in Figure 5, it includes two GLRM and the feature
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TABLE 4. Quantitative results on the collected classroom teaching videos.

maps mix stage. The key module in GLRM is the multi-
self attention, which depends on the length of the input
sequence n and dimension d, i.e. O(n2·d). In terms of the
CSAM as shown in Figure 7, the key module is the BiGRU
to propagate information between neurons in the forward and
backward stages. The complexity of BiGRU depends on its
layers which can be reduced to be 3-4 layers, which can meet
the requirements of Action Behavior classification in video
sequence. The learning stages take us about 81.6 hours, and
the classification stage relies on the length of the sequence.

In order to show our scalability, we conduct the proposed
on our collected video sequences. We have 138 videos, con-
taining 6 actions related to the classroom teaching, namely
board writing, teaching, reading, taking note, answering and
listening. Each action has no less than 20 videos, the video
resolution is 460 × 380. Our qualitative results are shown
in Figure 13. Experiments show that the proposed algorithm
obtains the correct labels in each video when it has no
ambiguity in actions. The quantitative results are calculated
based on the ratio of accurately classified as shown in Table 4,
which shows the average accuracy is up to 0.75.

V. CONCLUSION
This work conducts research on small sample action recog-
nition tasks. Small sample action recognition tasks can
overcome the dependence on large-scale annotated data and
use an extremely small number of annotated samples to
classify categories that have not appeared in the training set.
However, there are two issues in the current small sample
action recognition: (1) a single temporal scale of information
cannot fully display the semantics of action behavior; (2) the
matching between local information is not effective.

This work proposes a multi-scale interactive perception
network to fully utilize themulti-scale and global information
of videos to achieve robust matching between different action
behaviors. We enhance robust matching between videos
through the fusion of long-term and short-term temporal
dependencies, as well as the mutual perception of global and
local information. The multi-scale temporal feature extrac-
tion module (MTFEM) and cross scale alignment module
(CSAM) enhance the temporal understanding of actions from
two aspects: representation and measurement, to achieve
matching between actions with different motion speeds.
At the same time, the global information interactionmatching
module promotes the matching of global information and
local frame level features of videos, thereby maximizing
the consistency between local and global features of the
same type of action. The multi-scale temporal interactive
perception network proposed in this work is compared with

the current state-of-the-art methods on multiple datasets,
demonstrating the superiority and effectiveness of the pro-
posed method.

Our multi-scale temporal interactive perception network
model provides a new solution for small sample action recog-
nition and achieves advanced results. However, the algorithm
still has certain shortcomings. Future work improvements
mainly focus on two aspects: (1) our multi-scale temporal
extraction introduces a certain amount of parameters, and in
the future, we try to reduce the module’s parameter quantity
without reducing performance. (2) the current small sample
action recognition method is only applicable to a single
dataset and lacks domain generalization ability. In the future,
the cross domain recognition ability of small sample action
recognition models can be further enhanced.
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