
Received 22 November 2023, accepted 4 December 2023, date of publication 8 December 2023,
date of current version 27 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3341154

Robust Air Target Intention Recognition Based on
Weight Self-Learning Parallel Time-Channel
Transformer Encoder
ZIHAO SONG , YAN ZHOU , WEI CHENG, FUTAI LIANG, AND CHENHAO ZHANG
Intelligence Department, Air Force Early Warning Academy, Wuhan 430019, China

Corresponding author: Yan Zhou (yunshanlele@sina.com)

This work was supported in part by the Graduate Student Sponsored Projects under Grant JY2022A017.

ABSTRACT Most existing air target intention recognition methods use only single-moment information,
risking failure when acquiring data containing noise andmany outliers. The robustness ofmethods that utilize
continuous moment information has yet to be explored. This paper designs a robust recognition method
for air target intention to address the above problems. The method takes data with noise and outliers as
the object, based on a parallel time-channel Transformer Encoder and a weight self-learning unit. First,
a detailed introduction to air target intention recognition and robust recognition is given, and the intention
space and feature space are defined. Subsequently, the data samples are reconstructed using a fixed-step
sliding window to increase the information utilized with multi-moment information as input. Finally, step-
wise and channel-wise correlations are extracted using a time-axis Transformer Encoder and a channel-axis
Transformer Encoder, respectively, and the weights of the two branches’ outputs are automatically learnt
using a weight self-learning unit. This enhanced self-attention network allocates attention weights between
elements in the time and channel domain sequences to capture their long-range and short-range relationships
and extract recognizable representations, making it robust to outliers and noise. The experimental results
show that the model’s recognition accuracy and composite F1 score reach 96.9% and 0.9676, and its
performance remainswell when the noise level and outliers proportion increase. The ablation and comparison
experiments show its advantage in accuracy over other models.

INDEX TERMS Air target, intention recognition, transformer encoder, weight self-learning unit, multi-head
attention.

I. INTRODUCTION
In many fields, it is of great significance to identify the
intention of agents and their affiliated devices, which can help
enhance cooperation and coordination among members of
our group to form greater synergy, and can detect potential
threats posed by enemy agents. Intention recognition is a
typical pattern recognition problem that is often confused
with activity recognition, as both rely on time series to tackle
classification problems about agents’ behavior. It is necessary
to note that activity recognition focuses more on identifying
the behavior that the agent has completed, while intention
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recognition is more concerned with identifying the agent’s
intention during the process of the agent’s action, so that we
have enough time to respond, that is, identifying its intention
before its purpose is achieved. The normalized definition
of intention recognition was first given by Kautz and Allen
[1]. After that, intention recognition has attracted widespread
attention in human-computer interaction [2], [3], recommen-
dation system [4], [5], [6], pedestrian trajectory prediction
[7], [8], [9], and driver lane change prediction [10], [11], [12].
Existing intention recognition methods can be divided into
model-based and data-based methods. The former predefines
the model and dynamically adaptively adjusts the relevant
parameters, and finally forms a deterministic model to carry
out the discriminant intention. The latter is based on machine
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learning classifiers and neural networks, learning hidden pat-
terns directly from data or features to complete intention
identification.

In the military and defense fields, the recognition and
understanding of enemy intentions is also of great concern.
As the core activity of battlefield situation cognition and
understanding, identifying enemy target intentions can effec-
tively enhance battlefield awareness and decision-making
efficiency [13], [14]. And in information and intelligent war-
fare, air targets, as very active, highly threatening, with great
uncertainty and combat capability potential, are important
objects of intention recognition. The accurate recognition
of air target intentions can enable our side to enhance
understanding of the situation and gain the initiative in the
air battlefield [15], [16]. With the development of military
technology and aerospace weapons, the confrontation and
complexity of air defense battlefields have increased sig-
nificantly, showing the following characteristics: air target
types and numbers have increased sharply, the amount of
data obtained and processed by sensors has exploded, the
intensity of confrontation and the degree of the game are
significantly improved, the decision-making time has been
greatly shortened, the electromagnetic environment is more
complex, and the desirability of data is difficult to guarantee
[17], [18]. In this case, in the face of a large amount of data
with noise and outliers, it is difficult for back-office techni-
cians and front-office commanders to quickly and correctly
extract the hidden key situation elements from them, and
then infer the intention. Therefore, there is an urgent need
to use automated and intelligent means to achieve air target
intention recognition.

In the past, researchers havemostly focused on the problem
of target activity identification in air situation understand-
ing [19], [20], [21], [22]. Undoubtedly, activity recognition
is of great help in enriching intention recognition knowl-
edge. However, real-time inference of intentions has stronger
military application value. Recently, there has been a prolif-
eration of work on intention recognition as the need for and
awareness of in-event intention recognition has increased.
By analyzing a large number of works on air target intention
recognition, we found that: (1) A great deal of them only
utilize state information at a single moment in time, and
information prior to that moment is not applied. Generally,
the intention of the target often needs to be reflected through
continuous stable behavior or behavior changes over a while.
Hence, it is one-sided to use only the information at the
current moment for intention recognition [23], [24], [25];
(2) Methods that utilize multi-moment information depend
on the perfect data assumption and do not investigate per-
formance when there are imperfections in the data, such as
outliers and noise. In fact, within the intricate adversarial
landscape of modern warfare, the presumption of flawless
data is untenable.

In this study, our focus is on the issue of intention
recognition in the presence of noisy and outlier-laden data.
Specifically, we propose a robust intention recognition

model based on multi-moment information features and an
improved self-attention-based network. The model is named
as WSPTCTE-IR. WSPTCTE refers to weight self-learning
parallel time-channel Transformer Encoder, IR refers to
intention recognition. Our contributions are as follows:

(1)We describe and analyze the problem of robust air target
intention recognition. Based on the general framework for
intention recognition, this paper summarizes solution paths
for robust recognition. Additionally, due to the instability
and uncertainty of non-numerical target features, the feature
space is restructured to be dominated by numerical target
features.

(2) We develop a robust data-driven end-to-end model for
recognizing intention amidst data containing noise and out-
liers based on WSPTCTE. The model is designed to operate
effectively without the need for outlier or noise processing.
Here, the fixed-step sliding window is utilized to reconstruct
the intention recognition features in the time axis to increase
the data used. Additionally, we utilize the self-attention
mechanism on the channel and time dimensions to acquire
more extensive global and local correlations. This approach
facilitates the extraction of implicit information in both
temporal and channel domains. And the introduced weight
self-learning unit can adaptively learn the weights of the two
parallel branches’ outputs to avoid performance decay when
brutely concatenating them. To the best of our knowledge,
this is the first time that a time-channel self-attention-based
network has been applied to air target intention recognition.

(3) We conduct a large number of comparative experi-
ments, robustness tests, and ablation experiments to explore
the influence of sliding window length, batch size, learning
rate, epoch, dropout probability value, noise level, the propor-
tion of outliers, and other factors on the intention recognition
results, which can prove the model’s effectiveness and robust-
ness and provide very beneficial references for subsequent
research.

II. RELATED WORKS
Air target intention recognition is a cognitive activity that
analyses and identifies the air target’s combat intention in the
game process, and finally forms an identification conclusion
for further analysis by technicians and then assists comman-
ders in decision-making. It is the focus of the air battlefield
situation understanding and analysis and a hotspot in current
research. This section introducesmodel-based and data-based
intention recognition methods, and the pros and cons of both
are explained.

A. MODEL-BASED METHODS
The model-based method mainly includes template match-
ing, expert system, decision theory, Bayes network, etc. Xia
analyzed the situation knowledge base and event associa-
tion in intention recognition reasoning, further studied the
matching inference framework of intention recognition, pro-
posed an intention recognition template matching method
based on Dempster-Shafer evidence theory, and illustrated

VOLUME 11, 2023 144761



Z. Song et al.: Robust Air Target Intention Recognition

the possibility of the method to identify and judge the target
intention with an example [26]. Aiming at target tactical
intention recognition in ship command decision-making and
according to the characteristics of domain knowledge, Leng
et al. proposed an algorithm for the support degree of target
real-time state to the intention type based on the similar-
ity of feature components, and the evidence theory is used
to integrate the support degree of each moment to form
a sequential recognition approach of target tactical inten-
tion [27]. Li et al. constructed a template-based intention
recognition reasoning framework, studied the situation esti-
mation inference algorithm, and proposed a general template
matching algorithm for situation estimation [28]. Template
matching methods are simple to implement and conform to
basic human cognition. However, establishing its template
database relies heavily on expert knowledge, and it is difficult
to be competent in intention reasoning in the case of undesir-
able data.

Expert systems are intelligent computer program systems
that contain a large number of knowledge and experience
of experts in a specific field. It can apply artificial intelli-
gence and computer technology to imitate human experts’
decision-making process based on the system’s knowledge
and experience to carry out reasoning and judgment and
further solve complex problems that require human experts
to cope. Moreover, domain knowledge bases and infer-
ence frameworks or models are at their core. Song et al.
constructed a reasoning decision support system for target
intention characterized by an expert system and established
an intention hierarchical reasoning framework by utilizing
decision trees and a data-driven reasoning control mechanism
based on the distributed characteristics of intention reason-
ing input information and the hierarchical decomposition of
intention [29]. Wu and Li proposed a model for determining
air target attack intention based on intuitionistic fuzzy gen-
erative rule reasoning and multi-attribute decision-making
theory, which avoids the problem of combinatorial explosion
of expert knowledge due to excessive battlefield information
and ensures the computational speed of the system [30].
Expert systems are capable of knowledge representation and
computational reasoning. However, abstracting a complete
knowledge base and inference rules makes them more chal-
lenging to implement, less fault-tolerant, and less capable of
learning. In an information and intelligent battlefield with a
complex electromagnetic environment, it is difficult to rely
on mechanical rules of reasoning to summarize the complex
evolution of the situation and achieve an accurate understand-
ing of target intentions.

There has also been much work using decision theory
to achieve intention recognition of air targets. Most of
this work model intention recognition as a multi-attribute
decision problem. Li proposed a sequential three-branch
decision-making method based on the characteristics of
delayed decision-making and the time-series relevance of
air target combat intention recognition. By establishing a
mathematical model combining multi-category three-branch

decision-making, sequential ideas, and target intention recog-
nition, the intention recognition process is divided into
several stages on the timeline, and the three-branch decision-
making-based air target intention recognitionmodel is used to
obtain the intention recognition results of the target in the cur-
rent stage [31]. Yang proposed a cost-sensitivemulti-category
three-branch decision-based method for air target intention
recognition. The method calculated the intention with the
lowest misclassification cost loss value at each recogni-
tion stage and obtained a remarkable recognition result,
thus avoiding conflicting results. Simultaneously, the method
solves the non-recognition problem caused by the miss-
ing delay domain of multi-category three-branch decision
methods [32]. Intention recognition based on multi-attribute
decision methods has a solid mathematical basis. However,
it is cumbersome and has a high risk of failure when the
decision variables are undesirable.

The Bayesian network, derived from the Bayes Rule, has
been widely used to solve uncertainty problems. The steps
involved in using the Bayesian network to recognize target
intentions can be briefly summarized as follows: construct-
ing the network, determining the parameters, updating the
parameters, and outputting the results at the final [33]. Yue
proposed a dynamic Bayesian network model-based behav-
ioral intention inference method based on time, space, target,
event, and mission knowledge elements. By analyzing the
decomposition and execution process of behavioral inten-
tion, a sequential Bayesian network model was established
to describe the behavioral intention planning and analyzing
process, which can complete the intention inference of group
targets in a complex naval battlefield environment [34]. Qing
et al. proposed an optimized Bayesian network algorithm for
air swarm target combat intention recognition by extracting
external features of target swarm data chains as network
nodes, and the effectiveness of the algorithm was verified
through simulation [35]. Xu et al. introduced information
entropy to optimize dynamic sequential Bayesian networks to
objectively assign attribute weights by analyzing the amount
of helpful information from different participating attributes
to identify air target combat intention effectively [36]. The
Bayesian network has strong causal probabilistic inference
capabilities, allowing inferences from incomplete, imprecise,
or anomalous information segments. However, it has great
difficulty in determining the prior and conditional probabil-
ities at each node, which limits their application to some
extent.

B. DATA-BASED METHODS
Unlike model-based approaches, data-based approaches are
data-centric and rely on machine learning and deep learning
techniques to improve intention recognition performance.
Meng used support vector machine (SVM) and 19 low cor-
relation features to identify the most concerned multi-aircraft
coordinated air warfare attack intention. The method also
combined the use of dynamic Bayesian network, radar
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models, and threat assessment models to extract key features
that can be utilized for generic intention recognition, resulting
in a considerable improvement in the accuracy [37]. Hu et al.
built an air target intention recognition model based on the
random forest (RF) algorithm, and the results showed that its
recognition accuracy has advantages over other algorithms
[38]. Yang et al. proposed a cascaded SVM-based online
phased recognition method for the tactical intention of over-
the-horizon air combat targets, constructed a progressive
identification model from target maneuver elements, tactical
maneuver behavior to the tactical intention [39]. Wang and
Li proposed an XGboost-based target intention recognition
method to improve the accuracy, which ultimately relies on
D-S evidence theory to output sequential intention prob-
abilities [40]. Machine learning methods are theoretically
well-grounded and excel at intention recognition with com-
plete data. However, their inability to extract deep features
from large-scale data has limited potential for further appli-
cation when facing extensive undesirable data.

Over the past decade, deep learning algorithms have been
applied to computer vision, natural language processing, rec-
ommendation systems, time series analysis, and other fields,
achieving remarkable results [33]. By using deep neural
networks (DNNs) to learn and process intention features
layer-by-layer, the high-level information of the battlefield
situation can be progressively extracted from the shallow fea-
tures. Xue et al. proposed a method for intention recognition
of air targets based on convolutional long and short-term
memory (LSTM) networks, which combines the temporal
feature extraction capability of LSTM layers with the local
feature mining capability of convolutional neural networks
(CNNs) to improve recognition performance [41]. Teng et al.
constructed a deep neural network for air target intention
recognition, which improves the accuracy of recognition by
using an attention mechanism to assign weights to each
attribute prior to the backbone network [42]. The above
approaches provide instrumental explorations using deep
learning methods. However, they treat intention recognition
as a post-event analysis activity, which tends to confuse it
with activity recognition. Intention recognition should be
more of an in-event analysis activity. Some scholars viewed it
as an in-event analysis activity, and several recognition algo-
rithms using deep learning methods were proposed. Qu fed
the critical motion state information and the corresponding
labels into the designed fully connected network (FCN),
CNN, and LSTM. The experimental results showed that the
LSTM-based recognition model achieved the best results
[43]. Wang et al. proposed a hybrid neural network-based
quick-in-event intention recognition model using neural net-
work modules adapted to different data types [44]. Focusing
on the requirements of timeliness and interpretability of air
target intent recognition, Wang proposes a method based on
the bidirectional gate recurrent unit (BiGRU) and conditional
randomfield. It can provide more accurate recognition results
at any time [33]. Wang et al. proposed a real-time target tac-
tical intention recognition algorithm based on bi-directional

long short-term memory (BiLSTM); the simulation results
show the effectiveness [45].

Of all the available deep-learning-basedmethods, the RNN
is the most commonly used backbone network. RNN’s recur-
sive structure enables it to process temporal information in
sequences. However, this structure can lead to gradient van-
ishing and long-term dependency issues, which means that
researchers tend to use smaller input lengths when employing
the RNN for intention recognition. Unfortunately, such an
approach curtails the amount of information that can be uti-
lized. Furthermore, it is challenging for RNNs to prioritize the
correlation information among attributes, and their sequential
operations result in computational inefficiency. Furthermore,
the above work does not analyze the robustness of their
proposed method in the presence of noise and outliers in the
data obtained.

To deal with these limitations and effectively recognize
the intention of air targets when noise and outliers exist
in the data acquired, we choose the deep learning and
construct a robust recognition model based on WSPTCTE.
The enhanced self-attention network, WSPTCTE, allocates
attention weights between elements in the time and chan-
nel domain sequences to capture their relationships and
generate outputs, making it robust to outliers and noise. Addi-
tionally, the self-attention mechanism can more effectively
capture both long and short-term dependencies and has a
greater capacity for feature extraction. In the next section, the
robust intention recognition of air targets was described in
detail. After that, we introduce our proposed WSPTCTE-IR
model.

III. ROBUST AIR TARGET INTENTION RECOGNITION
A. THE DESCRIPTION
Air target intention recognition is analyzing and identify-
ing the intention of an air target based on military domain
knowledge in a real-time, hostile battlefield environment
using information about the air target’s state gathered from
sensors. It differs from activity recognition in that it focuses
on continuous identification during the event so that we can
react to the enemy target’s intentions quickly [46], [47].
The intention often represents the enemy’s operational plans
and implicit mappings of the enemy’s mindset that are not
directly accessible and available through data and are dif-
ficult to describe. However, the enemy targets must have
the appropriate location, speed, and other characteristics to
fulfil the operational intent and thus advance the operational
plan. In other words, the enemy must be guided by plans to
achieve intentions through reasonable actions and states that
can be detected, which is the most fundamental basis for our
recognition of intentions.

In the information and intelligent battlefield, the elec-
tromagnetic environment is complex and volatile, and the
data acquired by non-cooperative receivers often contains
uncertainty that includes noise and outliers, in addition to
data fluctuating within an acceptable range. Robust intention
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FIGURE 1. The data flow for air target intention generation and recognition. In this figure, In the figure, we take an example of an enemy target
carrying out an attack intention.

recognition is concerned with constructing and designing
algorithms and models to achieve high-level recognition
accuracy when the data captured by sensors contain noise and
significant outliers.

Air targets have always attracted much attention as very
active, highly threatening elements and have great uncertainty
and combat capability potential. Moreover, with the devel-
opment of military technology and aerospace weapons, the
confrontation and complexity of the air defense battlefield
have increased significantly, making the air target intention
data we acquired contain outliers and noise, which makes
some recognition methods decline in performance or even
fail. Therefore, there is a very urgent need and a promising
military application for robust recognition of air target inten-
tion. Here we first give the data flow for air target intention
generation and recognition in Figure 1.

The enemy’s operational plans lead to the creation of cor-
responding intentions, as can be seen in Figure 1. To achieve
that intention, the enemy target needs to launch actions.
Guided and driven by different operational intentions, the

state information will inevitably diverge, and this divergence
is the fundamental basis for intention differentiation. Steps
such as data acquisition, pre-processing, feature extraction,
and finally, recognition using rules, templates, or offline
trained models are performed sequentially on the receiving
side (in this case, on our side).

Formally, air target intention recognition can be described
as mapping the target state information acquired by our
sensors to the enemy’s operational intention. In complex
electromagnetic environments, the air target information col-
lected may contain noise and significant outliers, rendering
the data unusable at some point. They cannot be relied upon
to infer intention.

The usual idea for this problem is to construct some
specialized work in the data pre-processing and feature
extraction phase:

(1) In data pre-processing: for noisy data, the denoising
algorithm is used to improve the signal-to-noise ratio; for data
with significant outliers, the anomaly detection algorithm is
used to detects and smooths the outliers.
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FIGURE 2. The intention recognition framework.

(2) In feature extraction: specialized work at the data
pre-processing stage is not always effective when faced with
data containing noise and significant outliers. Therefore,
more robust features need to be prudently extracted to ensure
performance.

Moreover, another solution is not to do special processing
on data with noise and outliers, and to build a recognition
model using target state information from several successive
moments, i.e., to construct and learn the following implicit
mapping relations:

Specifically, the set of features utilized at moment t is
defined as X t , X t = xt−N+1, xt−N+2, · · · , xt }, t ⩾ N , where
denotes the features at the N − th moment before t; and the
target’s intention at moment t is denoted as, then the mapping
of the target feature set to the target’s intention can be denoted
as Y t = f (X t ) = f ({xt−N+1, xt−N+2, · · · , xt }),t ⩾ N .
And there is no doubt that such solutions require the design
of algorithms or networks with high robustness and great
learning capability.

Based on the above analysis, a robust air target intention
recognition method based on multi-moment data information
and WSPTCTE is proposed, which does not require anomaly
detection, smoothing and de-noising operations on data with
noise and outliers in the preprocessing stage. The framework
is shown in Figure 2.

The method is divided into two stages: offline training &
learning and online recognition. Offline training & learning
refer to relying on a pre-organized air target intention dataset,
following the general paradigm of deep learning methods,

using the train set to learn and optimize the weight param-
eters, to finally obtain a trained intention recognition model
which implicitly establishes a mapping relationship from the
feature set to intention space. In the online recognition phase,
the real-time data is pre-processed by normalization and cod-
ing and form the temporal test set; then the processed data
is fed into the trained model in sequence to obtain real-time
intention recognition results.

B. AIR TARGET INTENTION SPACE AND FEATURE SPACE
1) AIR TARGET INTENTION SPACE
The nature and granularity of intention vary with different
operational contexts, weapon and equipment employment,
and combat intensity. Therefore, an essential basis for iden-
tifying enemy intention is a reasonably prudent definition of
the target’s intention space based on the relevant operational
context, the primary attributes and capabilities of the enemy’s
and our combat units, and the operational plan.

In this paper, we focus primarily on the air defense early
warning operation. In this context, the target intention space
is established by considering the attributes and tasks of
the enemy targets. This intention space contains six inten-
tions: {attack, anti-submarine, aerial refueling, police patrol,
retreat, and airborne warning and control (AWAC)}, and a
detailed description is shown in Table 1.

It is essential to clarify that in a dynamically changing air
battlefield, there may be more than one intention of the target
at a given time, and the intention of the target may also change
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TABLE 1. The description of air target intentions.

FIGURE 3. Intention coding and decoding.

in response to the battlefield situation and the missions of our
fighters. The subsequent study in this paper assumes that each
target has only one primary intention at a given time and uses
it to label and identify the sample data.

Intention recognition is a multi-classification problem and
therefore requires supervised learning during training. More-
over, the intention space of airborne targets is cognitive
knowledge learned and stored by the human brain. In the
offline training & learning phase, we need to translate that
knowledge into digital labels of intention that the neural
network can process and recognize. Label construction relies
heavily on humans, i.e., the commander or operator extracts
valuable features from battlefield situational data, follows
rules of thumb, and identifies the enemy target’s inten-
tion concerning the target’s past activity patterns. The rule
shown in Figure 3 is utilized to label the above six inten-
tions, which facilitates the training and recognition of the
model.

2) AIR TARGET INTENTION FEATURE SPACE
The air target’s intention is reflected by its actions, status
and the variation of both, which may vary considerably in
different operational contexts and for the same operational
intention. Therefore, we first give the operational scenario
considered in this paper: enemy air targets take tactical
actions against our entity, the target type, radar status, and
electronic reconnaissance equipment status of the enemy are
not available, and we can only rely on the trajectory of the
fusion center to track andmonitor the target, but the trajectory
of the fusion center contains noise and outliers.

Since air targets will inevitably take specific tactical
actions or maneuvers to achieve intentions when driven by
a mission, the motion states of air targets in the time domain

with different intentions and their evolution can be used as
a basis for intention recognition. For example, aircraft with
anti-submarine intention often fly at low altitudes and can
be observed moving from medium to high altitudes to low
altitudes and hovering around priority targets, and corre-
sponding changes in altitude and speed, as well as nearly
cyclical reciprocation of heading angle and azimuth, can be
observed; AWAS aircraft will have to fly in an arc or oval
shape over a range of altitudes to detect a target, which
results in significant nearly periodic trends in heading angle,
distance, and azimuth; aircraft with attack intention often use
low altitude penetration, so the frequency of change in speed,
height, acceleration, heading angle, azimuth and distance is
high; aircraft with retreat intention will gradually get further
away from to our entity.

Based on the above analysis and considering data availabil-
ity, six motion state features, such as velocity, acceleration,
height, heading angle, azimuth and distance, are chosen to
build the intention feature set. Furthermore, the description
of them is given in Table 2.

Here, (xtarget, ytarget, ztarget) and (xop, yop, zop) are the coor-
dinates of the air target and our unit in the Cartesian
coordinate system. It should be noted that the latitude, lon-
gitude, and height obtained from the fusion center need to be
converted to Cartesian coordinate system coordinate values
using the coordinate system conversion formula to obtain the
above values more efficiently [25].

IV. RECOGNITION MODEL
In this paper, a robust recognition model for air target inten-
tion based on WSPTCTE and data containing noise and
outliers is constructed. The steps ofWSPTCTE-IR are shown
below:
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TABLE 2. The description of air target intention features.

Step 1 Preprocess basic information and construct the
dataset. Feature extraction and unified coding of air target
trajectory information are performed to build a normative
data set.

Step 2 The train and test sets are divided according to
a specific ratio. The train set is normalized, followed by
the normalization of the test set using the same parameters.
Finally, the data is sliced with the same size sliding window
and step to obtain the final train and test set. The train set is
used for offline training & learning, and the test set is used
for online recognition.

Step 3 A parallel time-channel Transformer Encoder net-
work is built, using the self-attention mechanism to mine and
extract step-wise and channel-wise correlations in time and
channel dimension, respectively, to try to eliminate the harm-
ful effects of noise and outliers; and a weight self-learning
unit is conducted to automatically learn theweights of outputs
of two branches to avoid possible performance degradation
caused by direct concatenating.

A. DATA PREPROCESSING AND DATASET ESTABLISHMENT
First, we generated trajectories for six intentions in the com-
bat simulation system based on principles of air warfare,
the attribute and capability of air targets, and guidance from
domain experts. We then extracted the motion state informa-
tion from the raw data.

Noise and a variable percentage of outliers are added to the
motion state data to bring the simulation data closer to the
actual data acquired by the non-cooperative receiver during
operations in complex electromagnetic environments, and the
process can be expressed as:

M (t) = [d, v, a, θ1, θ2, 1H ]T + v (t) + u (t) (1)

where M (t) represents the feature vector at time t , v (t)
represents the Gaussian noise:

v (t) ∼ N ([0]6×1,Q) (2)

Q = diag(σ 2
d , σ 2

v , σ 2
a , σ 2

h σ 2
d , θ21 , θ22 ) (3)

σ represents the variances of corresponding Gaussian noise,
u (t) represents possible outliers at time t:

u (t) = [u1, u2, . . . , u6]T, ui ∈ R (4)

The dataset is then divided into a train set and a test
set according to a specified scale, after which the data are
normalized to remove the effects of unit and scale differences
between the features: the train set data is first normal-
ized using the min-max normalization method, and then the
test set data are normalized using the same procedure and
parameters:

xNormi,j,k =
xi,j,k − xmin

j

xmax
j − xmin

j

(5)

where xi,j,k represents raw values for the k-th sample under
the j-th class of features, at the i-th sampling point, xmin

j
and xmax

j denotes the minimum and maximum values of the
j-th dimension of features in all samples in train set, xNormi,j,k
represents normalized data.

In the online recognition phase, we must input feature seg-
ments with a fixed length in sequence to the trained model to
obtain real-time intention recognition results. Here, a sliding
window with a fixed step and length is used to slice the
entire feature time series to assemble the data for subsequent
model parameter learning in the offline training and online
recognition. The feature input is a matrix X t of 6×s,

X (t) = [M(t − s+ 1),M(t − s+ 2), . . . ,M(t)], s < t ⩽ T

(6)

where s represents the length of the sliding window, and T
denotes the entire time series length. M (t) represents the
feature vector of 6 × 1 at moment t .

B. THE WSPTCTE NETWORK
The general framework of the recognition network con-
structed in this paper is shown in Figure 5.

As can be seen from the figure, the input to the model
is an N×s matrix with values in the range [0,1]. The net-
work consists of two parallel branches, which are similar in
structure but have distinctly different functions: the upper
branch is time-axis Transformer Encoder (TTE) used to
extract step-wise correlations, and the lower is channel-axis
Transformer Encoder (CTE) used to extract channel-wise
correlations. Subsequently, a weight self-learning unit (WSU)
is introduced to learn the weights of the two branches’
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FIGURE 4. The illustration of the heading angle and azimuth.

FIGURE 5. The general framework of the WSPTCTE.

outputs adaptively. Finally, the output elements of the two
branches are multiplied with corresponding weights. The
two are concatenated and fed into the fully connected layer
(FCL) and the Softmax classifier to obtain the classification
result.

This section introduces embedding, the Transformer
Encoder, multi-head attention, the feed forward layer, and the
weight self-learning unit.

1) EMBEDDING
The original Transformer uses learnable embeddings to trans-
form input tokens into word vectors of dimension dmodel; the
purpose of the embedding layer is to reduce the dimension-
ality of the word vectors [48]. In this paper, the role of the
embedding layer is to increase dimensionality to improve
the discriminability of features in low-dimensional spaces.
We simply change the embedding layer to the FCL, and the
tanh function is added to replace linear projection,

tanh (x) =
sinh (x)
cosh (x)

=
ex − e−x

ex + e−x
(7)

In addition, since the Transformer is hard to capture the
natural sequential relation of the time step, it is necessary
to fuse the positional encoding into the time-step features.
Here a fixed positional encoding is utilized (only in the upper
branch) and shown below:

PE(pos,2i) = sin

(
pos

10000
2i

dmodel

)
(8)

PE(pos,2i+1) = cos

(
pos

10000
2i

dmodel

)
(9)

where pos represents location information for each moment,
dmodel represents the dimension of the output of the embed-
ding layer, PE(pos, 2i) ∈ Rdmodel and PE(pos, 2i+ 1) ∈

Rdmodel denotes the positional encoding when the dimension
index is even and odd, i = 0, 1, 2 · · · ,

dmodel
2 −1. In this paper,

dmodel is set to 512.
Moreover, it is essential to note that the position of the

channels has no relative or absolute correlation with the input,
as the input should have no change if we switch the order of
the channels. Therefore, position encoding is only utilized in
the upper branch.
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FIGURE 6. Attention mechanism.

2) THE TRANSFORMER ENCODER
In the WSPTCTE, the upper and lower Transformer Encoder
both has two sub-layers. The first is a multi-head attention
mechanism (MHA) layer, and the second is a feed forward
network (FFN). And a residual connection is utilized around
each sub-layer, followed by layer normalization (LayerNorm)
operation [49], [50]. The output of each sub-layer is

LayerNorm(x + sublayer(x)) (10)

where sublayer(x) refers to MHA or FFN. To facilitate these
residual connections, all sub-layers and embedding layers in
the model produce the same outputs of the same dimension
dmodel.

3) MULTI-HEAD ATTENTION
The Transformer Encoder uses MHA to capture long-range
dependencies, and the heart of MHA is scaled dot-product
attention that maps a query and key-value pair to an output
where query, key, value, and output are all vectors, as shown
in Figure 6.
Q,Kand V represent query, key, value, and the dimensions

of three are dmodel, and the attention weight matrix is given
by:

Attention(Q,K,V ) = Softmax

(
QKT

√
dmodel

)
V (11)

Softmax (zi) =
ezi∑C
c=1 e

zc
(12)

where zi represents the output of i-th node, C represents the
number of output nodes.

Instead of performing a single attention function, MHA
linearly project the queries, keys and values h times with dif-
ferent learned linear projections to dk , dk and dv dimensions
respectively. The process can be expressed as

headx = Attention(QW x
q,KW

x
k ,VW

x
v) (13)

MultiHead(Q,K,V ) = (
h
∥
x=1

headx)Wo (14)

where W x
q,W

x
k ∈ Rdmodel×dk ,W x

v ∈ Rdmodel×dv and
Wo ∈ Rh·dv×dmodel denotes corresponding mapping param-

eter matrix,
h
∥
x=1

(·) denotes the concatenating operation on

heads, h denotes the number of attention heads. In this paper,
we employ h = 8 heads, dk = dv =64.

4) FEED FORWARD NETWORK
Feed forward network consists of two cascades of FCLs and a
ReLu function, and the arithmetic process is as Equation (15)

Feed Forward (x) = W2max(0,W1x + b1) + b2 (15)

where W1∈Rdmodel×dhidden represents the first linear mapping
parameter matrix, andW2∈Rdhidden×dmodel represents the sec-
ond one. b1 ∈ Rdhidden , b2 ∈ Rdmodel are bias vectors, and x
represents the input. In this work, dhidden is set to 1024.

5) WEIGHT SELF-LEARNING UNIT
One of the simplest ways to merge the upper and lower
branch Transformer output features is to concatenate them
directly, but this approach may degrade performance. Here
a weight self-learning unit (WSU) is introduced to determine
the weights of the upper and lower branches automatically:

1. The outputs of both (O1and O2) are flattened separately
and then concatenated to get a vector, followed by a FCL to
get h.

2. After calculating by the Softmax function, the weight of
the upper and lower are h1 and h2.
3. Both outputs are multiplied by their respective weights

and finally packed to output the final feature vector. The
process is shown below:

h = W · Concat(O1,O2) + b (16)
[h1, h2] = Softmax (h) (17)

y = Concat(O1.h1,O2, h2) (18)

V. EXPERIMENTAL ANALYSIS
A. EXPERIMENTAL DATA AND ENVIRONMENT
A combat simulation system provides the experimental data
used in this paper. We construct the following scenario: in an
early warning air defense combat, the enemy is conducting
operations against our essential entity, which can receive air
target movement status information from the early warning
intelligence fusion center, but the information contains noise
and outliers. The intentions of the different enemy targets
vary, but they are all directed at a single important target.
Note that our proposed model is primarily used to identify
the intentions of air targets and to provide a reliable basis and
aid for the following command, but it is not used for sub-
sequent decision-making. In the experimental data, the time
series characteristics data are derived from the backend of the
simulation system, and they contain Gaussian white noise and
a 15∼20%proportion of outliers, and themeasurement noises
are σ 2

v = (5m/s)2, σ 2
d = (1000 |m)2, σ 2

h = (100 |m)2, σ 2
θ1

=

σ 2
θ2

= (1 ◦)2, and σ 2
a = (1m/s2)2, respectively. The index of

the location where the outlier occurs is random; the labels are
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given by early warning intelligence and air warfare experts.
In the alternative data, 1000 samples were selected for each
class of intention, the data reception frequency is 10 Hz, and
the sample length is roughly between [1000, 3000]; 80% of
the sample set is used to build the train set, and the remainder
is used to build the test set. A sliding window with a step
of two was used to slice the data of two sets for offline and
online phases. The model input is a matrix of 6×s, where s
is the sliding window length, which was determined through
experiments.

B. EVALUATION METRICS
The model is trained using the train set, and the test set is
used for model performance evaluation. Accuracy, Precision,
Recall, F1 Score, and Loss are used to assess the model’s
performance.

1) ACCURACY
Accuracy is the ratio of the number of samples correctly
predicted to the total number of samples in the test set.

ACC =
TP + TN

TP + FP + TN + FN
(19)

where TP, TN, FP, and FN represent the number of samples
whose true labels are positive and the classification results are
positive, the number of sampleswhose true labels are negative
and the classification results are negative, the number of
samples whose true labels are negative but the classification
results are positive, and the number of samples whose true
labels are positive but the classification results are negative.

2) F1 SCORE
The F1 Score is the summed average of Precision and Recall.
Specifically, the expressions for Precision, Recall and F1
score are as follows:

Precision =
TP

TP + FP
(20)

Recall =
TP

TP + FN
(21)

F1Score =
2 × Precison × Recall
Precision + Recall

(22)

For the multiclassification problem, we use the composite
F1 Score as an indicator with the following expression:

Composite F1 Score =
1
K

∑K

k=1
F1k (23)

where K denotes the number of categories of intention, and
F1k denotes the F1Score corresponding to the k-th intention.

3) LOSS
Loss is the cross-entropy loss of the model on the test set,
denoted as L:

L(y, ŷ) = −
1
K

∑K

k=1
(ylnŷ+ (1 − y)ln(1 − ŷ)) (24)

where K denotes the number of samples in the test set, y
denotes the label, and ŷ denotes the recognition result.

TABLE 3. The recognition performance of different sliding window
lengths.

C. SLIDING WINDOW LENGTH DETERMINATION
Sliding window slicing of the raw time series data is required
in both the offline training & learning and online recogni-
tion phases to increase the information used. The sliding
window’s length directly determines the model input’s size
and significantly impacts training and recognition. Too small
a sliding window will result in utilizing too little informa-
tion, making it difficult for the model to adequately extract
implicitly discriminative information and thus fail to learn
the mapping relationship between air target features and
intention; too large a sliding window length will result in a
significant increase in the computational cost of the model
and increase the training time of the model during the offline
phase and recognition time during the online phase. It is,
therefore, necessary to determine the appropriate length of
the sliding window.

Table 3 shows that the model’s accuracy gradually
improves, and the time used gradually increases as the s
increases. And from Figure 7, we can see that the recogni-
tion accuracy fluctuates widely, and the model has difficulty
converging when s is set too small (e.g. s= 8,s= 16). The
convergence is significantly improved when s > 64. And
when s is set to 128, the recognition accuracy reaches 96.90%,
after which increasing the s value does not result in an
increase in accuracy. However, instead, the time continues
to increase. Considering recognition accuracy and time, the
sliding window length s is set to 128, that is, the input size of
the model is 6 × 128.

D. PARAMETER DETERMINATION
Hyperparameters have a significant impact on the recog-
nition performance of deep learning algorithms. Therefore,
it is necessary to set up comparison experiments to deter-
mine the values of some hyperparameters to improve the
performance of intention recognition. Here the Adagrad opti-
mizer is selected for the model, and the number of iterations
EPOCH, batch size BS, learning rate LR, dropout value DP,
Etc., are the primary hyperparameters to consider [51]. Based
on experience in designing deep learning networks, the alter-
native hyperparameters set is set as EPOCH= {20,30,40,50},
BS = {32,64,96,128}, LR = {0.001,0.002,0.003} and
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TABLE 4. Accuracy with different hyperparameters.

FIGURE 7. The recognition accuracy with different sliding window
lengths.

DP = {0.2,0.4,0.6}. Moreover, the accuracy in the test set
is used to evaluate the performance.

The results are shown in Table 4. From Table 4, the highest
recognition accuracy of the model on the test set is 96.90%
when the hyperparameters are BS=64, LR=0.002, DP=0.4,
and EPOCH=50. Therefore, epoch number EPOCH, batch
size BS, learning rate LR, and dropout probability DP are
finally set to 50, 64, 0.002, and 0.4.

E. EXPERIMENTS AND ANALYSIS
1) RECOGNITION PERFORMANCE ANALYSIS
After above experiments, the final hyperparameters and
parameters are determined, shown in the Table 5. The

TABLE 5. Hyperparameter and network parameter of WSPTCTE.

experimental results of the recognitionmodel with the param-
eters and hyperparameters above are shown in Figure 8.

In Figure 8, we can see that the loss decreases sharply
until 30 epochs, but after 30 epochs, the decrease is no longer
significant, which indicates that the model converges in about
30 epochs. After the model is trained, the accuracy of the
train set reaches 100%, and the loss value is approximately
0.0015; the accuracy of the test set reaches 96.9%, and the
corresponding loss value is approximately 0.07. In addition,
we analyze the recognition performance of the model for
samples with different intention. The confusion matrix of the
test set is shown in Figure 9, where different colors of the
right heat map scale indicate different levels of recognition
accuracy. The darker the color means the higher the accuracy.
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FIGURE 8. (a) The accuracy of WSPTCTE-IR; (b) The loss value of WSPTCTE-IR.

FIGURE 9. Confusion matrix of the WSPTCTE-IR.

And the AT, AS, AR, PP, RE, and AWAC represent attack,
anti-submarine, aerial refueling, police patrol, retreat, and
airborne warning and control.

Figure 9 shows that the model we propose has a high
recognition accuracy for all six intention samples. Moreover,
the recognition accuracy rate of attack intention is 100%,
the highest among them, which means that the samples of
attack intention can all be identified successfully. This result
is mainly due to the special maneuvering status of targets with
attack intention: they often take low-altitude and high-altitude
penetration, resulting in a sharp rise or fall in altitude and a
sharp reduction or increase in distance in a short time. Targets
with other intentions are mainly unable and will not carry out
such actions. Of the six intentions, the model has the lowest
recognition accuracy of about 93% for the samples with aerial
refueling intention. The results showed that the model would
misclassify 3% of aerial refueling samples as anti-submarine
and 2% of the anti-submarine samples as aerial refueling,
which is due to the significant near-periodic variation in
features such as heading angle, azimuth, and distance for both
the anti-submarine and aerial refueling intention samples,

which to some extent, leads to partially incorrect identifica-
tion results.

Sample runs under each intention category (except attack
intention) are also performed to intuitively show the per-
formance of the proposed model. Figure 10 presents the
predicted intention during the recognition process.

For the selected sample with anti-submarine intention, the
recognition model outputs correct results after about 1.2 s,
after which the output values fluctuate. After approximately
3 s, the output values remainedmainly correct and stable. And
the model outputs correct and stable identification results
after about 2.9 s for aerial refueling intention. For the sample
with police patrol intention, the model outputs correct results
after about 0.6 s, and the recognition result remains mainly
stable and correct. For the retreat intention sample, note that
after about 0.2 s, the intention has been identified correctly
first, but the identification result does not remain stable until
5.8 s. Finally, the model outputs correct and stable identifica-
tion results after about 1.8 s for AWAC intention. The above
results show that the recognition results stabilize over time,
and the rapidness and stability of the established model are
proved.

2) ROBUSTNESS TESTS
We then explore the recognition performance of the model for
different noise levels and proportions of outliers. The noise
level is defined as

M ′(t)
= [d, v, a, θ1, θ2, 1H ]T + v (t)NL + u (t) (25)

where NL represents the noise level. When we explore the
impact of noise levels on performance, it should be noted
that the percentage of outliers is kept at 15∼20%. Similarly,
when we explore the impact of the proportion of outliers on
performance, the noise level remains 1.

The results of robustness tests are presented in Table 6 and
Table 7. In Table 6, we can see that as the noise level increases,
the accuracy of intention recognition becomes less accurate.
However, at a noise level of 6, the recognition accuracy still
exceeds 90%.
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FIGURE 10. Sample run of different intention types (except attack intention). The output stepped
line in (a), (b), (c), (d) and (e) represent the recognition process for the selected sample with AS, AR,
PP, RE and AWAC intention. The output is coded in the same way as in Figure 3.

TABLE 6. The recognition accuracy on data with different noise levels.

Table 7 shows the recognition accuracy concerning the pro-
portion of outliers. The trend of the accuracy is similar to that
of Table 6, i.e., as the ratio of outliers increases, the accuracy
of recognition decays. Note that the accuracy of the recog-
nition model still exceeds 90% when the outliers proportion

TABLE 7. The recognition accuracy on data with different outlier
proportion.

reaches 30%. The identification results can still provide a
useful reference for the commander’s decision-making.

3) ABLATION EXPERIMENTS
Ablation experiments are conducted on the same dataset to
verify the WSPTCTE-IR’s effectiveness. X-Mask indicates
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TABLE 8. Results of ablation experiments.

TABLE 9. The precision of different models.

FIGURE 11. The recognition accuracy of models with different assembly
combinations.

the use of masked MHA instead of MHA [48]. The setting
and performance are presented in Table 8. Furthermore, the
curves of recognition accuracy of models for different assem-
bly combinations are shown in Figure 11.
From Table 8, we can see that the recognition accuracy of

WSPTCTE-IR (Model 6) is optimal. Experimental results of
TTE (Model 1) and TTE-Mask (Model 2) show that intro-
ducing Masked MHA decreases recognition performance.
This is because the masked MHA reduces the data utilized
on the classification task. In addition, directly concatenat-
ing the outputs of TTE and CTE (Model 3) can cause a
decline in recognition performance. Specifically, the recog-
nition accuracy of the parallel time-channel Transformer
Encoder (PTCTE, Model 4) slips by approximately 0.8%
compared to the CTE. In Figure 11, the seven models gen-
erally improve recognition accuracy as the training epochs
increase, with WSPTCTE-IR consistently outperforming the

other six models after 20 epochs. The results show that intro-
ducing WSU can effectively improve recognition accuracy.
Compared to TTE, CTE, and PTCTE, the recognition accu-
racy is improved by 3.7%, 0.6%, and 1.4%, respectively.

Then the precision, recall, and F1 score are utilized to
assess the recognition accuracy of the sevenmodels, as shown
in Table 9, Table 10, and Table 11. WSPTCTE-IR has the
highest precision value, recall value, and F1 score for almost
every intention. Consistent with the previous analysis, simply
concatenating the TTE and CTE is hard to bring perfor-
mance improvement, while introducing WSU can effectively
learn the weights beneficial for classification, resulting in
improved recognition performance. Furthermore, comparing
the six types of intentions, the precision, recall, and F1 Score
of the aerial refueling intention is lowest for most mod-
els because the feature of aerial refueling intention has the
cyclical character that exists in some other intentions. The
highest recall, precision, and F1 score are obtained for attack
intention because the maneuvers and tactical actions of attack
intention are apparent, and the model can learn its characters
better.

4) COMPARISON EXPERIMENTS
Since no public dataset exists for air target intention recogni-
tion, we used other air target intention recognition methods
from the references to conduct comparison experiments.
In addition, due to the difficulty of defining the parameters
of the model-based methods, some data-based methods are
used for comparison in this paper.

The method used are XGboost [40], SVM [37], Ran-
dom Forrest (RF) [38], FCN [43], CNN [43], LSTM [43],
BiGRU-ATTENTION [52], CNN-BiLSTM-ATTENTION
[53]. Under the same sliding window length, intention feature
and space, the methods are trained, and the final recognition
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TABLE 10. The recall of different models.

TABLE 11. The f1-score of different models.

TABLE 12. The recognition performance comparison of the method our
proposed and works from other papers.

performance are obtained. The comparison experiments
results are shown in Table 12.

From results in Table 12, we can see that the recognition
accuracy and F1 Score ofWSPTCTE-IR are higher than those
of several air target intention recognition approaches. Specif-
ically, the recognition accuracy is 96.9% and the composite
F1 score is 0.9676.

The comparison shows that deep-learning-based methods
outperformmost machine-learning-classifier-based methods.
In machine-learning-classifier-based methods, XGboost out-
performs others in accuracy and Composite F1 score, which
indicates that tree boosting strategy allows for more effective
air target intention recognition. Among deep-learning-based
methods, RNN-basedmethods outperformCNN-basedmeth-
ods in general. In addition, most of the methods that uses the
attention mechanism improves recognition accuracy. Finally,
it is worth noting that more complex network structures do
not necessarily lead to performance gains, e.g., the recog-
nition accuracy of CNN-BiLSTM-ATTENTION is 91.17%,
which is lower than the recognition accuracy of LSTM and
BiGRU-ATTENTION.

VI. CONCLUSION
To enable commanders and operators to effectively ana-
lyze the battlefield situation and improve the rationality of
decision-making when the acquired information contains
noise and outliers, a robust air target intention recognition
model based on the WSPTCTE is proposed in this paper. The
input to the model is enemy target state information contain-
ing noise and outliers, and the output is the intention label.
The model extracts step-wise and channel-wise correlations
by building a Transformer Encoder model on the time and
channel axes. It also introduces WSU to automatically learn
the weights of two parallel branches to avoid possible perfor-
mance decay from directly concatenating them. Experimental
results show that the method has higher recognition accuracy
and F1 score than othermethods. In addition, the performance
is explored when the noise level and the ratio of outliers
increase, and the results demonstrate the robustness of the
model. Finally, ablation experiments verify the effectiveness
of the model.

Furthermore, the analysis of the experimental results shows
that the model’s recognition process aligns with the gen-
eral commanders’ situational awareness thinking. In future,
we plan to conduct further research on air target intention
recognition in combat scenarios with more confrontation,
more detailed intention granularity and a wider variety of
targets to further increase the generality and robustness of the
proposed model.
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