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ABSTRACT In fulfillment centers, efficient inbound transportation and goods storage are crucial factors
that impact overall performance and supply chain costs. Traditional processes often involve human workers
performing repetitive tasks, leading to increased expenses. This study presents a Manned-Unmanned
Teaming (MUM-T) approach that combines unmanned Automated Guided Vehicles (AGVs) with manned
forklift vehicles to automate these processes and minimize costs. The primary objectives are to model AGV-
based unmanned inbound transportation, design a manned traveling forklift problem (TFP) with a shortest
path algorithm, and compare the MUM-T approach to traditional methods in terms of distance, time, and
cost. Results from theoretical analysis and simulations show that the MUM-T approach can reduce traveling
distance, working hours, and operational costs by up to 32%, 38%, and 51%, respectively. Moreover,
the proposed algorithm enables Beginner and Intermediate-level forklift operators to achieve efficiency
comparable to that of Professionals. These findings indicate that implementing the MUM-T approach can
significantly enhance the efficiency and cost-effectiveness of inbound transportation and forklift processes
in fulfillment centers.

INDEX TERMS Automated guided vehicles, fulfillment center, improving efficiency, inbound transporta-
tion, man and unmanned teaming, process automation, traveling forklift problem.

I. INTRODUCTION
As e-commerce continues to grow, so does the demand for
faster and more efficient fulfillment processes. In addition to
the logistical and administrative processes mentioned [1], ful-
fillment centers also face challenges such as labor shortages,
order accuracy, and reducing delivery times. To address these
challenges, many companies are exploring new technologies
such as automation, robotics, and artificial intelligence.
These technologies are being used to automate repetitive
tasks, optimize inventory management, and improve order
picking and packing processes. Yet, as it stands, over 80% of
fulfillment centers predominantly rely on a humanworkforce.
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A mere 15% have adopted mechanized systems, while only
5% have integrated advanced automation equipment and
solutions [2].

E-commerce fulfillment centers play a critical role in the
success of e-commerce businesses. Effective management
of these centers is essential for meeting customer demands,
reducing costs, and maintaining a competitive edge [3],
[4], [5]. As the industry continues to evolve, companies
must adapt to new technologies and processes to improve
efficiency and meet customer expectations.

In recent decades, many processes in fulfillment centers
have been managed manually. Indeed, the human workforce
has been thought to have several advantages over automated
systems, as detailed by Fragapane et al. [6]. These advan-
tages include:
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FIGURE 1. System view of MUM-T.

1) Reliability: Human workers can handle a wide variety
of tasks with minimal errors and can adapt to changing
conditions more effectively than machines. This makes
them a reliable resource in fulfillment centers where
diverse tasks and products are managed.

2) Efficiency in handling and picking diverse products:
Human workers can recognize, handle, and pick
different types of products, even those that are not
easily identified or managed by automated systems.

3) Swift decision-making: Human workers can make
quick decisions based on their experiences, knowledge,
and judgment. This ability to think on their feet
and respond to unexpected situations allows them
to maintain smooth operations in fulfillment centers,
even during periods of high demand or workload
fluctuations.

4) Adaptability toworkload fluctuations: Humanwork-
ers can adjust their workspace and effort to meet the
demands of high sales seasons or other periods of
increased workload.

With the growing volume of goods, increased consumer
expectations, and tighter delivery windows, there’s a pressing
need for efficiency improvements. A major bottleneck
has been the traditional reliance on human workers for
repetitive and mundane tasks, leading to inefficiencies and
higher operational costs [7]. While humans are incredibly
adaptable and capable of handling complex tasks, repetitive
and predictable processes often lead to errors, fatigue, and
inefficiencies [8].

The introduction of automated guided vehicles (AGV)
and autonomous mobile robots (AMR) in various indus-
tries has already shown potential in enhancing operational
efficiency [9], [10]. These unmanned systems follow pre-
determined paths with precision, minimizing errors, and
maximizing throughput. However, to achieve a significant
leap in efficiency, it’s essential to envision a system where
humans andmachines collaborativelywork, eachmaximizing
its unique strengths.

The synergy between manned and unmanned systems
could unlock new levels of cost savings and efficiency in
fulfillment center operations. The goods storing process
is one of the time-consuming and costly operations, and
it can contribute 40%-50% of the total fulfillment center
operating cost [11]. Improving this process can significantly
decrease the expenses for businesses. In this process, daily
received items from various sources and suppliers must
be stored into the facility until they receive orders from
customers. This process largely involves two main tasks:
inbound transportation and forklift processes.
Inbound transportation entails the transportation of goods

from the receiving docks to their designated storage spots.
This routine and repetitive task often involves traveling
considerable distances daily. While in the forklift process,
goods are lifted from the facility floor and placed in assigned
racks using forklift trucks. This task is complex and requires
skilled human operators. In both processes, human workers
may experience fatigue, leading to sub-optimal traveling
path choices around storage racks, potentially impacting
productivity and resulting in financial inefficiencies [12].
This work proposes a Manned and Unmanned Teaming

(MUM-T) approach that aims to harmoniously blend human-
operated forklifts and unmanned AGVs to improve efficiency
in fulfillment centers (Fig. 1). We introduce the traveling
forklifter problem (TFP) and AGV-based inbound transporta-
tion algorithms to optimize traveling time and distance of
manned forklift operators and unmanned AGVs, respectively.
In AGV-based inbound transportation, AGVs perform the
point-to-point delivery of items from the main queue to the
assigned queues by following pre-determined shortest paths.
While in the TFP, the modified nearest neighbors algorithm
guides human forklift operators to complete their task by
following the optimal traveling distance. The design and
algorithms of the proposed MUM-T system are simulated
and tested in various scenarios using Coupang’s Warehouse
dataset. We also empirically assess the efficiency of our
approach against conventional methods by simulating various
operational scenarios based on operator experience levels.

The remainder of this paper is structured as follows:
Section II presents the literature review, Section III details
the methodological approach, Section IV discusses the simu-
lation of the proposed approach, Section V examines various
human-machine interaction scenarios and their effects on
time and cost, Section VI compares the results based on the
scenarios discussed. Finally, Section VII concludes the paper,
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highlighting theoretical implications, limitations, and future
research directions.

II. LITERATURE REVIEW
The trend of using AGVs is on the rise due to the current
issues faced by fulfillment centers, such as a lack of
skilled workers, high labor expenses, and the need for
24/7 operations. Additionally, the decrease in cost has
made AGVs a practical alternative to human and manual
methods for transporting pallets within a warehouse and load-
ing/unloading palletized vehicles. Global companies have
been investing billions of dollars to create smarter fulfillment
centers by widely deploying AGVs, Artificial Intelligence
(AI), and the Internet of Things (IoT) technologies.

For instance, the Alibaba group constructed a smart
e-commerce fulfillment center to support online shopping
in the Beijing-Tianjin-Hebei megalopolis in 2014 [13].
Over 500 AGV robots and AI have been widely deployed
in the fulfillment center to handle daily 150, 000 orders by
providing same-day or next-day delivery. AGVs are used for
inbound delivery by following optimal paths and decreasing
human power and traveling distance, while AI is deployed
for sales forecasting, robot scheduling, and route planning.
Therefore, the manpower is reduced by up to 70% and the
overall efficiency is increased by up to 40%.

The other global company, Amazon, has been managing its
orders and maintenance of warehouse goods by completely
automating its fulfillment center for over a decade now [14].
They aim to make work safer and more productive. Toward
this revolution, Amazon deployed over 520, 000 mobile robot
drive units across numerous fulfillment centers. These robots
perform lifting and placing heavy items in a rack by using
Cardinal AGVs which are equipped with advanced AI and
computer vision. Amazon has slashed operating costs by 22%
by deploying robots, the transition on a great scale could lead
to a massive saving of about 2.5 billion.

Many researches have been conducted to improve the
efficiency and minimize costs in fulfillment centers by
optimizing goods storing [15], order picking [16], [17],
batching sequencing [18], [19], goods loading [20] and so on.
This work represents an iterated local search algorithm to

solve order batching, batch sequencing, picker assignment,
and routing problems in warehouse management based
on industrial information integration (IIT) [18]. Hybrid
iterated local search algorithms embedded with heuristic
rules provide an effective and efficient scheduling method
by solving batching, assignment, sequencing, and routing
problems. Li et al. introduces a heuristic ant colony algorithm
to automate AGV operations with path optimization [21].
An improved ant colony algorithm that overcomes the
shortcomings of the traditional method, avoiding local
optimal issues and providing a more efficient route. It extends
from two-dimensional planning to optimizing paths in a
three-dimensional warehouse space. By converting distances
into horizontal and vertical lines, the algorithm optimizes the
AGV’s path through multi-row three-dimensional shelving.

The study [17] provides an optimized storage policy
known as scattered-correlation storage policy based on the
commodity classification (SCSPCC) by taking into account
commodity classification, commodity storage, and consumer
demand pattern. It is designed to enhance client satisfaction
and lower warehouse operating expenses. This approach is
only viable if a significant number of customers consistently
purchase related products. However, if buying patterns
become erratic then this solution may lose its effectiveness
and relevance.

A two-stage hybrid heuristic algorithm (TS-HHA) [19]
aims to decrease the number of trips made by the robot to
fulfill a request. Using dynamic programming and an adaptive
neighborhood search algorithm with a constructive heuristic
algorithm, the two stages of reducing and assigning help
to locate a crucial rack set, which can focus attention on
the most promising racks and accelerate problem-solving
to provide high-quality simultaneous assignment schemes.
However, a robotic mobile fulfillment system observes high
calculation time.

Autonomous aerial robots are popular in some warehouses
and manufacturing centers. Its agile navigation and faster
processes encouraged owners to use them to automate
manufacturing warehouses [22]. While unmanned aerial
vehicles are functional, they present notable issues. Safety
remains a primary concern due to the risk of objects dropping.
Given the uniform appearance of warehouse racks, robots
often struggle to locate specific items.

Industrial Internet of Things (IIoT) based warehouse
automation systems have been proposed in the past as
an effective management approach [23]. These IIoT-based
robotic warehouse systems are used to manage goods and
autonomous robots and, in turn, increase the competitiveness
of logistics companies. Despite the benefits, various down-
sides are observed. IIoT-driven systems have weak security
and privacy configurations, therefore they can be hacked by
various network attacks [24], [25].

Above mentioned and many other existing studies
described in the literature [26], [27], [28] have primarily
focused on boosting overall efficiency by refining warehouse
processes or by implementing AGVs with optimized paths.
In our work, seeking solutions beyond traditional practices,
we present the concept of MUM-T, efficient teaming of auto-
mated robots like AGVs and human-driven forklifts. AGVs
performmundane and repetitive inbound transportation tasks,
while human-driven forklifts are employed to optimize the
loading process of items onto designated storage racks.

III. DATA ANALYSIS AND PROBLEM STATEMENT
A. DATA COLLECTION AND ANALYSIS
We focus on the Coupang’s Warehouse located in Incheon,
South Korea [29], [30]. This warehouse serves as an
e-commerce fulfillment center for the Coupang e-commerce
platform, selling a wide range of products, such as household
products, fashion, beverages, food, and beauty products by
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TABLE 1. Performance (boxes/hour) and velocity (m/s) of operators.

international and local brands. The fulfillment center has
facilitated exponential benefits for customers by providing
same-day, dawn, and rocket fresh delivery options.

We collected data in two main phases. First, we gath-
ered information on process participants from Coupang’s
fulfillment center and a variety of secondary media sources,
including company websites and online articles. In the
second phase, we delved into CCTV recordings and surveyed
employee performance in the goods storing processes.
Additionally, to ensure the integrity of the collected data,
managers were interviewed for validation. Afterward, data
underwent a refinement process to address outliers and
inconsistencies, preparing it for the simulation model.

Several participants (actors and objects) are involved in the
goods storing process in fulfillment centers. We explain the
role of participants used to build our proposedMUM-Tmodel
in detail as follows:

• Main Queue-goods that first enter the warehouse are
placed here temporarily until they are sent to each rack’s
queues by the Transporter.

• Transporter operator-performs inbound transportation
and distributes received goods from themain queue zone
to each rack’s queue zone.

• Forklift operator-lifts the goods located on the floor of
each rack’s queue zones to their assigned racks.

• Racks-store huge amounts of items until receiving orders
from customers.

• Rack Queues- each rack has an empty area adjacent to it
to temporarily place the goods on the floor until they are
lifted to assigned racks by the forklift.

• Automated Guided Vehicle (AGV)-transports items from
the main queue to each rack’s queue by following
optimal predetermined pathways.

The proficiency levels of human operators can vary
according to their years of experience, efficiency in tasks,
and overall performance. Therefore, transporter and forklift
operators’ working levels are categorized as Beginner,
Intermediate, and Professional in the fulfillment center.
Beginner and Intermediate level workers have limited and
moderate amounts of experience, respectively. Whereas,
a Professional has a high level of knowledge and experience
in transportation and forklift processes.

In addressing the performance disparities between expert
and non-expert operators in inbound transportation, it is
crucial to consider various factors beyond just knowledge
of navigation plans or forklift operation skills. Non-expert

FIGURE 2. Random path selection challenge in inbound transportation.

operators may have a basic understanding of the navigation
plan and the warehouse layout, but they often lack the
advanced skills needed to anticipate potential obstacles,
optimize routes in real time, and handle the forklift efficiently
under varying warehouse conditions. Moreover, even expe-
rienced operators can experience a decline in performance
due to the monotony of repetitive tasks, leading to fatigue.
Therefore, an optimized forklift process is necessary to
provide a standardized path and set of visiting nodes for
operators of all skill levels.

Table 1 represents the hourly performance and velocity
of the transporter and forklift operators in boxes per hour
(b/h) and meters per second (m/s), respectively based on
the proficiency level of operators. As can be seen, beginner,
intermediate, or professional-level transporters deliver 20-24,
26-30, and 32-36 boxes per hour, respectively, from the
main queue to each rack queue. Whereas the delivered
boxes are stacked on each rack by beginner, intermediate,
or professional-level forklift operators. Their hourly boxes’
stacking performance is 35-40, 41-46, and 47-52 boxes per
hour, respectively. However, the same velocity ranges can be
observed in the transporter and forklift operators. Beginner,
Intermediate, and Professional operators’ velocity range from
0.6-0.8 m/s, 0.8-1.0 m/s, and 1.0-1.2 m/s respectively.

B. THE PROBLEM STATEMENTS
1) CHALLENGES IN INBOUND TRANSPORTATION
Human transporters must perform inbound delivery by
moving items from the main queue to each rack queue, which
is a repetitive and menial task. This task usually requires
traveling many miles a day and as a result, human workers
lose productivity by feeling tired, beingmore distracted while
carrying items, and choosing pathways randomly to deliver
the items.

Consider the following example as shown in Fig. 2,
to effectively represent the challenge of a Transporter. The
primary task of a human transporter is to deliver boxes
from the main queue to the target queue. To accomplish this
task, there are several paths (A, B, C, D) available. Human
transporters can choose any of them randomly, however, Path
A is the shortest and most optimal path to travel between
the main and target queue among available paths. Moreover,

139590 VOLUME 11, 2023



A. Khudoyberdiev et al.: Study of the Man and Unmanned Teaming System

FIGURE 3. Random path selection challenge in item forklift.

human transporters can choose path A to deliver the item but
can choose the longest path C to return to the main queue.
When a human transporter selects a random path, it adds
to the waste of time, energy, and money for the fulfillment
center. This problem can be accumulated and amplified in a
large fulfillment center, which can contain hundreds of racks.

The results of data analysis show that the beginner-level
transporter chooses the sub-optimal paths 5-6 times out of
ten, due to poor experience, feeling tired, or various other
distractions.Whereas, the intermediate and professional level
transporters follow sub-optimum paths 3-4 and 0.5-1 times
out of 10, respectively. As a result, their final overall
performance, the number of boxes they delivered, and
traveling distance are different in the transportation process.
Therefore, we introduce point-to-point delivery using AGVs
to optimize and automate the item transportation process.
A detailed description has been given in Section IV-A.

2) CHALLENGES IN ITEM FORKLIFT PROCESS
The forklift process starts after or during the inbound
transportation process. The forklift drivers or operators’
primary responsibility is to load and unload received items to
and from the rackwhile trying to optimize the loading paths to
ensure operational efficiency and avoid damage to vehicles.

According to proficiency level, experience, or personal
behavior, the operators might choose a different path to
complete the overall forklift process. Even if the operator has
remarkable personal experience, repetitive tasks might bring
fatigue and less productivity and, as a result, forklift operators
might choose sub-optimum paths to complete the work.

One of the worst-case scenarios in the forklift process is
represented in Fig. 3. The forklift driver has selected random
racks to fill and moves from rack to rack without following
an optimal path. This results in a waste of time and energy for
the company, because for each extra working hour, the driver
has to be paid. In addition, the queued items wait longer to be
stacked on the racks.

The above-mentioned random path selection and the
traveling problem can be described as Traveling Fork-Lifter
Problem (TFP). To solve TFP, the forklift operator should
traverse the most optimal path around the fulfillment center.

The traveling fork-lifter problem answers the following
question: from a given arrangement of queues and distances
between each pair of queues, what is the shortest possible
route the forklift driver can follow so that it visits each queue
exactly once, without the need to return to the starting point
after visiting all queues? By solving the TFP problem, we can
provide the most optimal and accurate map to achieve the
shortest path and time to complete the forklift process.

IV. PROPOSED MUM-T APPROACH
After analyzing challenges in inbound transportation and
item forklift processes, we propose the MUM-T approach to
solve both inbound transportation and item forklift issues.
Fig. 4 represents a high-level overview of reconstructing
the traditional goods-storing process with the proposed
MUM-T-based approach. As can be seen, the traditional
human-assisted goods storing process is divided into two
sub-processes in the proposed approach, namely, AGV-
based point-point inbound delivery and traveling fork-lifter
problems.

AGV-based point-to-point inbound delivery is introduced
to optimize the traveling time and distance of human
transporters who navigate the storage center to transport
boxes from the main queue to all specific rack queues. Once
the rack queues are filled with boxes, the human-operated
forklift can navigate to each of the rack queues using the
optimal shortest path to stack those boxes onto the respective
racks. This decreases the overall traveling time and distance
as compared to the time required for the traditional random
path selection approach.

A. AGV-BASED OPTIMAL INBOUND TRANSPORTATION
The overall traveling distance and time are different among
the three different working levels. According to the CCTV
videos and survey data, professional and intermediate-level
transporter drivers are experienced enough to navigate via
the optimal route, while, beginner-level drivers may find
it difficult to navigate around a larger fulfillment center
and hence have a higher chance of choosing non-optimal
routes. The overall traveling distance for AGV and human
transporters can be calculated using the following equation.

DA,B,I ,P =

Q∑
Q=0

(M × N × 2+ α × D) (1)

where DA,B,I ,P presents the overall traveling distance for
AGVs, beginner, intermediate, and professional level trans-
porters. Q presents the number of queues, N is the number
of boxes required for each queue, whereas M represents the
distance between the main queue and each of the specific
rack queues. Multiplying with 2, accounts calculate the
going and coming back distance from the main queue to
the specific queue. α represents the inefficiency weights
of the human transporters, and their values lie between
0 and 1, which implies that a professional driver has
the lowest inefficiency weights (0-0.1), while intermediate
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FIGURE 4. Overview of the proposed MUM-T-based fulfillment center.

and beginner level transporters have (0.1-0.2) and (0.2-0.3)
inefficiency weights respectively. This inefficiency weight
parameter has been extracted from the historical overall
performance data based on different levels of workers.

The calculation of the traveling time is quite straightfor-
ward. Based on the traveling distance required to fill all of the
queues and the traveling speed of the transporter and AGVs,
the required time to complete all point-to-point deliveries can
be computed with (2).

TA,B,I ,P =
DA,B,I ,P

VA,B,I ,P
(2)

where T presents the required overall time to deliver
the required items for each queue for AGV, beginner,
intermediate, and professional-level drivers. D is the overall
traveling distance for each actor and V is the velocity (speed)
of the actors. Based on the above equations, we can compute
the point-to-point traveling distance and required time for
human-assisted Transporter and AGVs using Algorithm 1.

B. TRAVELING FORK LIFTER PROBLEM (TFP)
The TFP is the name coined in this paper as the traveling
salesman problem (TSP) [31] whose objective is to find the
shortest travel path of the forklift. The difference to the
TSP is that the forklift does not return to the starting point.
We introduce a modified nearest neighbors algorithm to solve
the TFP. Given a set of nodes for the forklift to travel to, the
algorithm features a user-specified probability of selecting
a random node instead of its nearest neighbor. This feature
simulates real-world situations where a less experienced
forklift driver may often choose a longer route because
they are not familiar with the optimal path. Furthermore,

Algorithm 1 The AGV-Based Optimal Inbound Transporta-
tion Algorithm
Require: Q,N ,M , α,D,V
Ensure: DA,B,I ,P, TA,B,I ,P
1: Initialize DA,B,I ,P = 0
2: for q = 0 to Q do
3: DA,B,I ,P← DA,B,I ,P + (M [q]× N × 2+ α × D) ▷

Eq. 1
4: end for
5: TA,B,I ,P←

DA,B,I ,P
V ▷ Eq. 2

6: return DA,B,I ,P, TA,B,I ,P

experienced operators are well-acquainted with warehouse
infrastructure and typically choose the shortest routes to
the next queue. Therefore, the purpose of this algorithm is
twofold: first, to simulate travel routes for operators with
various skill levels. Secondly, to compute the most optimal
routes using the nearest neighbors algorithm.

By contrasting the optimal path with the simulated route,
we can identify the potential improvements a driver could
achieve by adhering to the nearest neighbors method.
By following this optimal path, less experienced drivers not
only reduce travel distance and time but can also achieve
the same level of efficiency as professional forklift drivers,
without requiring extensive training.

In the forklifting process, the forklift moves from one
‘‘assigned queue’’ to another to load items in each queue to
its corresponding rack. To clarify the meaning of ‘‘assigned
queues’’, only the assigned queues contain the items the
forklift needs to load, while unassigned queues in the
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warehouse are empty and are thus not visited. In this process,
the overall forklift working time can be divided into two
parts: the total time required to move between queues, known
as the travel time, and the time required to load items in all
the assigned queues to their respective racks, known as the
loading time. This is shown in the following equation:

T = Tl + Td (3)

where T is the total forklift operating time, Tl is the loading
time, and Td the travel time. The overall forklift loading time
can then be calculated using the following equation:

Tl =
Q∑
i=0

(t × Ni) (4)

where Tl is the total forklift loading time, Q is the number of
assigned queues, t is the average time spent loading one item
to a rack, and Ni is the number of boxes to load for queue i.
To calculate the total travel time Td , the total distance

required to move between queues or travel distance has to
be evaluated first. This is defined by the following equation:

Td =
Df
vf
=

∑Q−2
i=0 d(pi, pi+1)

vf
(5)

where Df is the total travel distance, vf is the fixed forklift
travel speed, Q is the number of assigned queues to travel to,
and d(pi, pi+1) is the Manhattan distance between queues i
and i+ 1, which is defined by the following equation:

d(p1, p2) = |n× δx| + |m× δy| = |x2 − x1| + |y2 − y1|

(6)

where δx is the horizontal distance between neighboring
queues, δy is the distance between neighboring rows, n is the
number of queues the nodes are apart horizontally and m is
the number of rows the nodes are apart vertically.

The traveling forklift problem therefore attempts to
minimize d(pi, pi+1) between each i and i + 1 queue and,
as a result, optimizes travel time Td , while loading time Tl
is a problem to consider separately. The problem lies with
inexperienced forklift drivers choosing sub-optimal paths and
to compare the difference in performance between the three
different skill levels, the first task is to simulate the paths
taken by all three levels. This is done by implementing an
algorithm such that, given a starting node, it repeatedly selects
an unvisited node to travel to from the current node until all
nodes are visited.

The algorithm represents the overall set of assigned queues
of the warehouse as an undirected, weighted, complete graph
where each queue with items waiting to be loaded into the
racks is a node and an edge is theManhattan distance between
any two queues. Note that all the nodes are connected to
every other node to form a complete graph and this is done so
that the path-finding algorithm has the option to freely select
any unvisited node to reach the next. The pseudo-code for
the path-finding algorithm is shown in Algorithm 2. Detailed

Algorithm 2 The Path Finding Algorithm for the Traveling
Forklifter Problem
Require: Nodes ▷ List of all nodes to visit
Require: β ∈ [0, 1] ▷ Probability of choosing nearest node

instead of a random node
Require: io ▷ The starting node
1: Initialize empty list path
2: i← io
3: repeat
4: Append i to path
5: r ← random real number ∈ [0, 1]
6: if r ≤ β then
7: for each j in Nodes and not in path do
8: Compute d(i, j)
9: end for
10: j∗ ← argmin j (d(i, j)) ▷ Simply choose the

nearest neighbor j from the current point i.
11: else
12: j∗ ← random node not in path.
13: end if
14: i← j∗
15: until all nodes in Nodes also in path

explanations for the algorithm complexity and analysis are
shown in Section IV-C.
As shown in Algorithm 2, the user has to input a

real number β that ranges from 0-1, which represents the
probability that the pathfinding algorithm will choose the
next nearest unvisited node with respect to current instead
of choosing a random unvisited node as its next point. The
starting node is also selected by the user and from there, the
algorithm repeatedly chooses the next point not yet in path
until all assigned nodes are visited. After all nodes are in path,
the entire sequence of nodes in the appended order can then
be defined as one travel path. As the distances between all
subsequent nodes in path are known, Eq. 5 can then be used
to find the travel distance Df , which is finally divided by vf
to obtain the travel time.

The difference in driver proficiency levels is solely
represented by the β value in step 1. This ratio is manually
set by the user before running the algorithm and a number
closer to one indicates a higher skill level. For each decision
on which node to visit next, a professional driver has
a higher probability (set within the range of 0.9-1) of
selecting an optimal node compared to a beginner (0.3-0.5)
and an intermediate (0.5-0.8) driver. For a fair and direct
comparison, the starting queue is the same for all skill
levels.

In this case, the optimal node choice is the current node i’s
nearest neighbor. Although the nearest neighbor is a greedy
algorithm that selects the local optimum without considering
the global minimum, it accomplishes the goal of reducing
the traveling distance compared to a totally random path
selection.
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C. COMPLEXITY ANALYSIS OF PROPOSED ALGORITHMS
The complexity of Algorithm 1 is as follows. The algorithm
begins with the initialization of DA,B,I ,P = 0, and this
initialization step is executed in constant time, denoted as
O(1). The AGVs must deliver all items for the assigned
queues in a total of (Q) times, therefore there is a loop
structured as for q = 0 to Q. Within this loop, the operation
Eq. 1 is carried out. Each of these operations, regardless
of the values, executes in constant time. Thus, the time
complexity for this part is also O(1). The algorithm only uses
a constant amount of additional space regardless of the input
size. Considering the entire algorithm, with the loop running
Q times and each iteration having a constant time complexity,
the cumulative time and space complexity of the AGV-based
optimal inbound transportation algorithm is O(Q) and O(1),
respectively.

The TFP algorithm is divided into two major segments.
Firstly, before running the algorithm, the user-defined
parameters, a pre-arranged set of assigned queues, and an
adjacency matrix are initialized to efficiently determine the
distance between any pair of nodes. Secondly, for each
skill level (beginner, intermediate, and professional), the
TFP algorithm generates m paths to compute the average
travel distances. For generating a single path, the function
nearestPlusRandom() representing the entire Algorithm 2,
determines the order of all points from the prearranged set and
returns the sequence. Inside nearestPlusRandom() contains
two sub-functions, chooseNearest() and chooseRandom(),
to perform the next node selection on a path.

For the first part, for each skill level lvl and a prearranged
set of n points Qn = {p0, p1, . . . , pn} the forklift has to
travel to, the user has to specify the number of paths m to
generate, βlvl from Algorithm 2, the forklift speed vf ,lvl from
Eq.5, and the average time spent for loading one item to a
rack tlvl from Eq.4. After initializing Qn, a n × n adjacency
matrix A is created to list the distances between any two
points, where accessing the ith row and jth column of A
returns the Manhattan distance between points i and j. With
a total of n2 elements to compute distance in A and the
Manhattan distance calculation takingO(1) time, the time and
space complexity to initialize the adjacency matrices are both
O(n2).

For the second part, a function nearestPlusRandom()
is called that returns a generated list of Point objects
Qn,lvl,i, which is a sequence of n ordered points representing
a single forklift travel path. Inside the function, either
chooseNearest() will be called with probability βlvl or
chooseRandom() otherwise. The time complexity of using
either function is O(n), as chooseNearest() traverses through
the ith row of the adjacency matrix A to find pi’s nearest
neighbor and chooseRandom() traverses through unvisited,
a list of n or less unvisited points, to find and remove the
visited point. With n points total to choose from, the time
complexity of nearestPlusRandom() is therefore n× O(n) =
O(n2) while the space complexity is O(n) from returning

TABLE 2. Simulation model and system components.

Qn,lvl,i containing n O(1) points. Repeating m times, the total
time and space complexities are thereforeO(mn2) andO(mn),
respectively.

After computing average travel distances for all skill levels,
a separate code calculates the travel and box unloading times
using user-defined parameters. These time calculations are
straightforward and all done in O(1) time and space. To sum
up, the overall worst/best/average case time complexity of the
TFP algorithm is O(mn2) while space complexity is either
O(n2) if n > m or O(mn) otherwise.

V. SIMULATION AND SCENARIOS
A. MODEL SIMULATION
The traditional (baseline) and proposed MUM-T models
were developed using a FlexSim ® simulation software.
The FlexSim is an object-oriented software environment that
allows to develop, model, simulate, visualize, and analyze
dynamic-flow processes in various systems, including, ware-
housing, healthcare, material handling, manufacturing and
just to name a few [32].
To generate a visually realistic simulation model,

Coupang’s e-commerce fulfillment center’s overview was
deeply analyzed to trace the required components to simulate
the proposed system. The simulation model and proposed
system components are summarized in Table 2. The simulator
software allowed us to deploy the logic, and input the rack
size, vehicle speed, rack capacity, number of racks, the
distance between the main queue and the racks’ queue,
processing time, and other parameters. Those parameters
were carefully chosen in the model development. However,
these parameters can be easily adjusted, allowing for the
simulation model to be scaled over various industries and
fulfillment centers. Based on event types and various input
parameters, the developed model provided the output values
in terms of traveling distance and time and operational
efficiency for both baselines and proposed approaches.

To further illustrate the feasibility of the proposed
MUM-T approach and algorithm in actual fulfillment centers,
Coupang’s fulfillment center plan has been simulated for
the case analysis. The simulated storage plan is presented
in Fig. 5. The storage is divided into two main areas: the
main queue area and the storage area. The received items
from various sources are kept in the main queue until they
are delivered to specific racks to store. Transporter operators
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FIGURE 5. Fulfillment center storage plan for goods storing process.

or AGVs deliver the received items to the queue zones from
the main queue.

Afterward, delivered items are stacked on the racks by
forklift operators from each queue zone to their asso-
ciated racks. As discussed above, beginner, intermediate,
or professional-level transporters can follow any path based
on their personal experience to deliver the items to each
rack’s queue zones by traveling in the storage area. Whereas
AGVs follow the predetermined optimal collision-free routes
to perform point-to-point delivery. The storage area consists
of 8 × 8 racks (R0,0 to R7,7), and each rack has its queue
zone. The length and width of each rack are 10 and 2 meters,
respectively. The distance between horizontal and vertical
racks is 2 and 3 meters, respectively. Racks and their
associated queue zones allow for keeping received items up
to 100 boxes.

B. VARIOUS SCENARIOS
Various scenarios are designed to test the efficiency of the
proposed MUM-T approach compared with the baseline
scheme. For the baseline scheme, human operators control
the overall inbound transportation and forklift processes.
Whereas in the MUM-T approach, an unmanned AGV is
coupled with a manned forklift operator to perform those
processes as a team.

A scenario is defined as a prearranged set of assigned
racks and box frequency distributions. Here, assigned racks
refer to all the non-empty racks the inbound delivered goods
are eventually stored on during one batch unloading period.
In each scenario, both the point-to-point item delivery phase
and the item loading phase of the goods-storing process are
involved. Each phase can also be divided into the overall
working time achieved by the three skill levels and theMUM-
T-based solution for comparison.

TABLE 3. The number of boxes and assigned racks for the five scenarios.

Table 3 represents the number of boxes, assigned racks, and
average box rate for each assigned racks for each scenario.
Each of the five scenarios only varies by the number and
location of queues and boxes. For instance, in Scenario 1,
232 boxes must be distributed among 10 racks with an
average λ =23.2 rate. In the remaining scenarios: 20, 30, 40,
and 64 racks have been assigned to distribute 431, 558, 664,
and 1208 boxes, respectively.

The Poisson probability distribution [33] is used to
calculate the probability of the given number of boxes
distribution among assigned racks (Eq. 7).

P(X = k) =
e−λλk

k!
(7)

where P(X = k) is the probability of k boxes being stored,
λ is the average rate of box storage per rack, e is the
mathematical constant approximately equal to 2.71828, and
k! is the factorial of k .

VI. EXPERIMENTAL RESULTS
This section of the paper presents comparative analyses of the
baseline and proposedMUM-T approach results by analyzing
traveling distance, time, and operational cost.

A. AGV-BASED POINT-TO-POINT DELIVERY RESULTS
The results for the inbound delivery of items from the
main queue to the rack queue by different working-level
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TABLE 4. Assigned parameters in the transportation process.

operators and AGV are described in this subsection. The
human operator delivers items using a transporter vehicle
by choosing the paths based on their personal experience.
While AGV follows the predetermined optimal path to deliver
the received items from the main queue to each rack queue.
Based on the five different scenarios, the traveling distance,
time, and operational cost required for the delivery of items
by transporter and AGV are computed using the velocity,
inefficiency weights and operational salary parameters as
described in Table 4.

Several factors, such as limited space, tight turns, and
obstacles, can influence the velocity of human operators.
Beginner and intermediate transporters have average 0.7 and
0.9 meters per second velocity. The professional operators
and AGV have an average of 1.1 and 0.8 meters per
second velocity. Weight (α) shows the inefficiency rate of
human operators, meaning that beginner, intermediate, and
professional operators have a 20%-30%, 10%-20%, and
0%-10% chance to choose a sub-optimal path, respectively.
AGVs, on the other hand, have nearly 0% inefficiency weight
because their optimal path has been predetermined.

Based on overall experience and efficiency rate, human
operators require various operational costs (hourly salary),
while AGVs require purchase, installment, and maintenance
costs. One way is the cost of the AGV can be spread out
over its lifespan and factored into the overall operational cost
of the system [34], [35]. This cost should include the initial
installation and maintenance fees, as well as any ongoing
repair or replacement costs.

According to the navigation type, AGVs’ cost can
be between $15k (USD) and $100k [36]. In a standard
project, the installation cost of magnetic, natural, and laser
navigation AGVs could cost around $20k, $10k, and $40k
for 3 to 4 AGVs, respectively. Other AGV peripherals, such
as navigation tape and charging stations, can cost between
$400 and $2k.

In this work, we considered the Wellwit 500kg capacity
Lidar SLAM rotating AGV robot family [37]. The robot
cost is around $27k and the manufacturer provides a one-
year warranty and service. The battery life is eight hours
with <1.5 hours of charging time. That robot can work about
20 hours a day. The installation cost and charging stations can
be a maximum of $8k for one AGV. Therefore, one AGV’s
installation and purchase cost about $35k for the fulfillment
center. If AGV is used around 320-340 days per year with a
20-hour work schedule, then per hour the AGV operational
cost can be $5.

FIGURE 6. Comparative analyses of traveling distance in inbound
transportation for human transporters and AGV.

FIGURE 7. Comparative analyses of traveling time comparison results in
inbound transportation for human transporters and AGV.

Fig. 6 represents comparative analyses of traveling dis-
tances for beginner, intermediate, professional, and AGV in
inbound delivery. X-axes present five scenarios, while y-axes
illustrate the traveling distance of vehicles. In Scenario 1,
beginner, intermediate, and professional-level operators trav-
eled 29.9, 24.8, and 19.6 km, respectively, to distribute
232 boxes among 10 assigned racks. To complete the same
task, the AGV traveled 0.6 km longer compared to the
professional-level operator. The former indeed follows the
optimal predetermined path, but the latter has better knowl-
edge of shortcut selections. In all scenarios, the beginner
passes the longest distance compared to the remaining actors.

Overall, AGV-based point-to-point delivery has a 10% and
19.4% higher efficiency than the beginner and intermediate-
level operators, respectively. However, due to a high level
of experience, alternative route selection approaches profes-
sional operators to have around 6% efficiency than AGVs.

Fig. 7 represents working hours for three different working
level transporters and AGV to complete the five assigned
scenarios. The beginner spent 10.6, 19.6, 24.9, and 54.9 hours
for five scenarios. Due to higher velocity, efficiency rate, and
hourly performance, the intermediate driver could complete
the assigned tasks in 8.3, 15.4, 22.5, 24.1, and 46.5 hours,
respectively. The professional-level operator’s and the AGV’s
working hours are quite similar; the latter spent about 7%
more time completing all the scenarios.
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TABLE 5. Assigned parameters in the forklift process.

B. TRAVELING FORKLIFT PROBLEM RESULTS
The TFP explicitly computes the optimal path (β = 1.0)
and visiting nodes. This optimal path can be provided by
managers, or navigation maps to the forklift operators on
their personal smartphone or an embedded navigation device
within the forklift. Using the optimal path selection map,
all skill levels share the same travel path and this allows
them to increase their efficiency. However, even if all forklift
operators share the same travel path, results still vary between
the skill levels due to the differences in other skill-related
parameters, such as forklift driving speed and loading time
per box.

Themethod of obtaining the results is explained as follows:
For each skill level of each scenario, Algorithm 2 is run
50 times on specified Nodes (provided from the scenario)
and β value (from Table 5) and the resulting travel distances
are then averaged to obtain a single total travel distance Df .
Given the remaining parameters in Table 5, the total travel
time Td , loading time Tl , and the overall working time T
for each skill level and scenario can then be calculated using
Equations 3 to 5. The parameters are obtained based on an
averaged collection of company data showing the operators’
performances. Finally, this entire method is repeated to obtain
results for the proposed approach, where the only difference
in its inputs relative to the baseline configuration is that all
skill levels have β = 1.0.

Table 6 represents the comparative analysis of baseline and
proposed MUM-T-based optimal path selection algorithm
results for items forklift process. First, according to the
forklift operators’ skill level, the traveling distance and time
are varied in the baseline scheme. For instance, in Scenario 1,
beginner and intermediate operators frequently chose the
sub-optimal paths. Therefore, their traveling distances were
393 and 302 meters, respectively. A professional, on the
other hand, traveled 246 meters to distribute boxes among
assigned racks. Secondly, all forklift operators followed the
provided MUM-T-based optimal path, therefore the traveling
distance of beginner and intermediate operators has decreased
remarkably. In Scenario 5, the traveling distance of the
beginner operators has been decreased to 376 meters from
2158 meters (nearly 5.7 times).

The same considerations apply to traveling time opti-
mization results. Due to inefficient traveling distances,
in Scenario 3, with a baseline scheme, beginner and interme-
diate operators spent 22.17 and 11.55 minutes, respectively.
The proposed approach allowed the traveling time to decrease
to 7.23 and 5.78 minutes. Due to the different velocities of

TABLE 6. Comparative analysis of the baseline and proposed MUM-T
results in forklift process.

FIGURE 8. Forklift traveling distance comparison results based on
baseline and proposed optimal path algorithms for all scenarios.

forklift operators, the final task completion time varied in
all scenarios even though all skill-level operators traveled the
same distance.

Fig. 8 compares the baseline and proposed MUM-T-based
optimal path scheme results for traveling distance across
all scenarios. The overall traveling distances of beginner,
intermediate, and professional level operators are 5.69,
3.46, and 1.99 km, respectively. Whereas, the proposed
path optimization algorithm decreases the traveling distance
of operators to 1.59 km to complete forklift tasks in all
scenarios. The optimal path calculation algorithm allowed the
efficiency of traveling distance of beginner, intermediate and
professional operators to 72%, 54.1%, and 21%, respectively.

After analyzing the overall baseline and optimal traveling
distance results, we computed the overall traveling time of
forklift operators. As can be seen from Fig. 9, traveling
times of forklift operators are 118.6, 57.7, and 28.3 minutes,
respectively. However, using the optimal path computation
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FIGURE 9. Forklift traveling time comparison results based on baseline
and proposed optimal path algorithms for all scenarios.

algorithm, the traveling time of operators has decreased
remarkable and required 33.2, 26.5, and 22.1 minutes of
traveling time, respectively. In overall, by following the
optimal path, beginner, intermediate, and professional-level
operators’ traveling time decreased to 71.2%, 54%, and 22%,
respectively.

C. COMPARATIVE ANALYSIS OF OVERALL PROCESSING
TIME AND OPERATIONAL COST
Fig. 10 presents the overall working hours for each operator
and AGV. T and F represent the Transporter and Forklift
operators, respectively. The point-to-point delivery time
varied according to the skill level of each transporter,
and the professional-level forklift operator spent the least
time completing the delivery task. However, the AGV-
based transportation approach has achieved fewer working
hours compared to the beginner and intermediate levels of
transporters.

The overall working hours of forklift operators are
computed using Eq. 3, which is the result of combining the
travel and loading time. Since the load time of each skill
level varies, further differences in the operating time can
be observed within the same scenario. For instance, forklift
beginner, intermediate, and professional operators’ operating
times are 3.6, 3, and 2.3 hours, respectively. It can be observed
that the item loading time from the rack’s queue to the
rack is a challenging task in the forklift process, therefore it
contributes to the majority of the total operating time.

According to the overall working hours and operational
expenses (Table 4 and 5) for operators, we comparatively
analyzed the operational cost of the proposed approach
according to the human to human, and machine-to-human
teaming for all scenarios as represented in Table 7. Beginner
transporter and professional forklift operators’ teaming
achieved the lowest operational cost in the last three scenarios
in terms of human-to-human teaming, while to achieve the
lowest operational costs, the professional forklift operator
must be teamed with beginner and intermediate operators in
the first and second scenarios, respectively.

TABLE 7. Comparative analysis of operational cost in USD($).

Machine-to-human teaming, on the other hand, is less
expensive compared to human-to-human operational cost
such as, for all five scenarios, the human-to-human teaming
requires $168.4, $317, $408.8, $462.4 and $894.8 operational
cost. While the AGV-to-professional forklift operator team
needed $83, $157.5, $208, $244, and $455 expenses,
respectively. In overall, proposed MUM-T based fulfillment
center has 51% cost efficiency compared to the traditional
fulfillment center.

AGVs can indeed work during the full day and night
shift to perform point-to-point transportation. Human forklift
operators, on the other hand, can be hired for the day shift
to stack the delivered items to the racks. But the number of
orders can increase remarkably in fulfillment centers during
peak shopping seasons such as holidays (e.g. Christmas,
Thanksgiving, Black Friday, Cyber Monday), and major
sales events (e.g. Amazon Prime Day). Therefore, based
on the overall working hours, we need to compute the
required number of human forklift operators and AGVs for
the fulfillment center by considering the parallel working as
presented in Fig. 11.

Bar charts represent the number of different level forklift
operators with their working hours, while line charts depict
the number of AGVs with their working hours. The working
hours of AGVs are remarkably high compared to forklift
operators. Since the AGV robot can achieve nearly equal
performance over time, increasing the number of AGVs can
decrease their working hours. For instance, if we consider
a single AGV and a single various forklift operator as a
team, the AGV needs 7.4 hours to complete the delivery
task, and 3.6, 3 or 2.3 hours are required for beginner,
intermediate, and professional forklift operators to complete
the task in Scenario 1. We need at least two AGVs to decrease
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FIGURE 10. Overall working hours by considering loading/unloading time of boxes.

FIGURE 11. Required number of AGV and transporters for the inbound
transportation of goods.

the overall operational time. However, as more boxes and
distribution racks increase, more AGVs are required. The
optimal working hours of AGVs must lie in the same line
as forklift operators’ working hours. Therefore, three or four
AGV’s can be optimal, to complete the work in the shortest
time if they work on the same work shift.

VII. CONCLUSION AND FUTURE WORKS
This study offers a compelling argument for the integration of
unmanned AGVs with human forklift operators in traditional
fulfillment centers, proposing a MUM-T approach. This
method streamlines tasks, assigning menial tasks to machines
and complex, strategic ones to humans. Utilizing an AGV-
based point-to-point delivery and a traveling forklift problem
solution, the study illustrates significant efficiencies: a
10− 19.4% reduction in traveling distance for transportation

and a 22−70% reduction for forklift processes depending on
operator experience level. Overall, this leads to a remarkable
51% operational cost efficiency improvement in e-commerce
fulfillment centers, demonstrating the substantial potential of
the MUM-T approach for modern logistics.
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