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ABSTRACT In this paper, we give advanced study in complex q-rung orthopair 2-tuple linguistic variables
(CQRO2-TLVs). The major theme of the paper is to evaluate the novel concept of CQRO2-TLVs and
their dominant operational laws so that it can be a competent procedure to assess ambiguous and erratic
information in realistic decision problems. Furthermore, we derive the weighted Bonferroni aggregation
operators with weighted Bonferroni mean (WBM) and weighted geometric Bonferroni mean (WGBM)
based on the CQRO2-TLV information for exploring the complex q-rung orthopair 2-tuple linguistic WBM
(CQRO2-TLWBM) and complex q-rung orthopair 2-tuple linguistic WGBM (CQRO2-TLWGBM) opera-
tors. Some flexible and reliable properties and theories for the CQRO2-TLWBM and CQRO2-TLWGBM
operators are investigated. We then introduce two new techniques to manage the multi-attribute decision
making (MADM) issues under the fuzzy environment based on these operators. We know that a green
supply chain management integrates environmental, ethical, and social concerns that make more about
environmental and social responsibility correlated with design, production and distribution. In this paper,
we apply the proposed techniques to green supply chain management to express the efficacy and usefulness
of the proposed techniques. We finally make the comparisons of the proposed operators with some existing
operators that demonstrate the effectiveness of our proposed method.

INDEX TERMS Fuzzy sets, complex q-rung orthopair (CQRO) fuzzy sets, 2-tuple linguistic variables
(2-TLVs), CQRO 2-TLVs, weighted Bonferroni aggregation operators, weighted Bonferroni mean (WBM),
green supply chain.

I. INTRODUCTION
Multi-attribute decision making (MADM) is a procedure
for choosing the most ideal alternative among all accessible
choices. It is important in the decision sciences. For most
parts, choices and decisions in our day-by-day life issues
are very complicated and have a significant part as a result
in which we cannot generally have crisp data. To man-
age such issues, Zadeh [1] in 1965 first gave the idea of
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fuzzy sets (FSs) in which FSs had been applied in vari-
ous areas for handling uncertainty arising from vagueness
and partial belongingness [2], [3]. However, the theory of
FSs has only a belongingness grade. We notice that the
non-belongingness grade is also presented in many real-life
decisions because human beings have the freedom to take
their decision in any direction. For this, intuitionistic FSs
(IFSs) explored by Atanassov [4] are stretched out from FSs
with membership and non-membership values in which they
got various applications in the literature [5], [6], and [7].
Afterwards, Yager and Abbasov [8] proposed Pythagorean
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fuzzy sets (PFSs), an extended version of IFSs, as a com-
pelling device for delineating the vulnerability of MADM
issues. The PFSs are additionally described by the member-
ship and non-membership degrees with a condition that the
sumof the squares of both is not exceeded from a unit interval.
PFSs are broader than IFSs in which they can take care of
issues that IFSs cannot. For example, if a decision-making
problem gives the membership and non-membership degrees
as 0.7 and 0.6, respectively, at that point it is just substantial
for PFSs. After the PFSwas effectively introduced, numerous
researchers started to consider it broadly and profoundly
[9], [10].

Additionally, Yager [11] extended PFSs to be q-rung
orthopair fuzzy sets (QROFSs) with a modified condi-
tion where the sum of q-powers of the membership and
non-membership degrees is not exceeded from a unit interval.
The QROFS is additionally described by the participation
degree and the non-membership degree, whose aggregate of
q-powers is not exactly or equivalent to 1. The QROFS is
broader than PFSs and IFSs in which both IFSs and PFSs are
special cases of QROFSs. The QROFS can take care of issues
that the PFS and IFS cannot, for instance, if a DM problem
gives the enrollment degree and the non-enrollment degree
as 0.9 and 0.8, respectively, at that point it is just substantial
for the QROFS. After the QROFS was effectively introduced,
it got many advance studies [12], [13], [14]. Moreover, in our
day-to-day life, vulnerability and ambiguity that are available
in the information happen simultaneously with changes to the
stage (periodicity) of the information. Along these lines, the
current speculations are inadequate to think about this data,
and thus, there is a data misfortune during the procedure.
Thus, we may ask what will happen if we change the range
of FSs into a unit disc in the complex plane. For coping
with more adequate vulnerability and ambiguity information
in our day-to-day life, Ramot et al. [15] proposed complex
FSs (CFSs) which contain the complex-valued membership
degrees in the form of complex numbers in a unit disc with
the condition that the real part (also for imaginary part)
of the membership degrees is between 0 and 1. As CFSs
only consider the membership degree in the form of polar
co-ordinates, Alkouri and Salleh [16] extended CFSs to
complex IFSs (CIFSs) that contains the membership and
non-membership degrees in the form of complex number in
a unit disc with the condition that the sum of real part (also
for imaginary part) of the membership and non-membership
degrees is not exceeded from a unit interval. Additionally,
Ullah et al. [17] and Akram and Naz [18] modified the CIFSs
to explore the complex PFSs (CPFSs) with the condition of
the sum of squares of real parts (also for imaginary parts) of
the membership and non-membership degrees not exceeded
a unit interval with applications in pattern recognition and
decision making.

Afterwards, Liu et al. [19] proposed complex QROFSs
(CQROFSs) and showed them as a compelling device
for delineating the vulnerability of MADM issues. The
CQROFS is additionally described by the membership and

non-membership degrees, whose aggregate of q-powers of
the real part (also for imaginary part) is not exactly or equiv-
alent to 1. CQROFSs are broader than CIFSs and CPFSs.
Now and again, CQROFSs can take care of issues that the
CPFS and IFS cannot, for instance, if a DM problem gives
the enrollment degree and the non- enrollment degree as
0.9ei2π(0.9) and 0.8ei2π(0.8), respectively, at that point it is
just substantial for CQROFSs. Thus, CQROFSs demonstrate
that they are more impressive for dealing with unsure issues.
After the CQROFS was effectively introduced, numerous
researchers started to consider it broadly and profoundly [20],
[21]. In general, a linguistic variable is a variable whose qual-
ities are words or sentences in the fake language. Zadeh [22]
used linguistic variables in approximate reasoning. Different
analysts had also investigated the philosophy of linguistic
MADM issues [23], [24]. In some handy issues, the single
linguistic term set cannot include those cases, which contains
two terms like truth and lie grades. Formanaging such sorts of
issues, Herrera and Martinez [25] established the 2-tuple lin-
guistic computational model, and Herrera and Martinez [26]
established the fuzzy 2-tuple linguistic representation model.
Further, the intuitionistic fuzzy 2-tuple linguistic terms set
was explored by Liu and Chen [27]. The Pythagorean fuzzy
2-tuple linguistic aggregation operators were explored by
Wei et al. [28], and Ju et al. [29] considered 2-tuple linguistic
variables based on QROFSs.

Addressing or collecting the information into a singleton
set is a very complicated and challenging task for scholars
in which the Bonferroni mean (BM) operator, investigated by
Bonferroni [30], is very flexible and dominant for aggregating
the collection of data. The BM operator became to be a com-
pelling strategy to assess impeccably the interrelationship
among the qualities. The BM operator had resuscitated broad
consideration from specialists and different researchers that
was also effectively used in various fields [31], [32], [33].
On the other hand, global warming and climate change had
heavily affected environment and human life on the earth.
Environmental issues have been increasing. To integrate envi-
ronmental concerns into green supply chain management
(GSCM) becomes more important. Ashley [34] considered
the issue about designing for the environment. Jelinski et al.
[35] gave the concepts and approaches in industrial ecology.
Sarkis [36] considered a decision framework for GSCM.
Srivastava [37] gave a state-of-the-art literature review
for GSCM. More researchers made researches on GSCM
broadly [38], [39]. Furthermore, there were some fuzzy tech-
niques been applied in GSCM in the literature [40], [41],
[42], and [43].
We observe that there is less study in the idea of 2-tuple

linguistic variables based on CQROFSs and no any appli-
cation of CQROFSs in GSCM in the literature. Keeping
the advantages of the CQROFSs and 2-tuple linguistic vari-
ables, we make the advanced study in complex q-rung
orthopair 2-tuple linguistic variables (CQRO2-TLVs). In this
paper, we first give the novel concept of CQRO2-TLVs
and their dominant operational laws, then develop the

139558 VOLUME 11, 2023



Z. Ali et al.: WBAOs on CQRO2-TLVs With Application to GSCM

weighted Bonferroni aggregation operators (WBAOs) with
CQRO2-TLVs, such as complex q-rung orthopair 2-tuple
linguistic (CQRO2-TL) weighted Bonferroni mean (CQRO2-
TLWBM) and CQRO2-TL weighted geometric Bonferroni
mean (CQRO2-TLWGBM). We also apply these operators in
GSCM and make the comparisons of the proposed operators
with some existing operators. The main contributions of the
paper are listed as follows:

1) To evaluate the novel concept of CQRO2-TLVs and
their dominant operational laws.

2) To derive the WBM and WGBM operators based
on CQRO2-TLVs, such as CQRO2-TLWBM and
CQRO2-TLWGBM operators. Some flexible and reli-
able properties for both operators are also derived.

3) Based on the CQRO2-TLWBMandCQRO2-TLWGBM
operators, we give two new techniques to manage the
multi-attribute decision making (MADM) issues.

4) Since a green supply chain management (GSCM) is
important in environment and human life, we apply the
proposed techniques to GSCM to express the efficacy
and usefulness of the proposed techniques.

5) The comparative analysis between the proposed and
existing methods is made to demonstrate the effective-
ness of the proposed method.

The rest of this article is organized as follows. In Section II,
basic notions of CQROFSs, 2-TLVs and their WBM,WGBM
operators are briefly reviewed. In Section III, we evalu-
ate the novel concept of CQRO2-TLVs and their dominant
operational laws. To examine the interrelationships among
CQRO2-TLVs, the WBM and WGBM operators combined
with CQRO2-TLVs are then proposed for exploring the
CQRO2-TLWBM and CQRO2-TLWGBM operators. Fur-
thermore, we also study their properties with more theorems.
In Section IV, we introduce two new techniques to manage
the MADM issues under the fuzzy environment and then
apply it to GSCM to demonstrate the efficacy and useful-
ness of the proposed techniques. We also make comparative
analysis on the proposed and existing operators to show the
effectiveness of our proposed operators. Finally, we give
conclusions in Section V.

II. PRELIMINARIES
Basic notions of CQROFSs, 2-TLVs and theirWBM,WGBM
operators are briefly reviewed in this section. Throughout,
the symbols XUNI , MQCQRP ,MQCQIP ,NQCQRP and NQCQIP

denote the universal set, real part and imaginary part of
the complex-valued supporting grade, real part and imagi-
nary part of the complex-valued supporting against grade,
respectively.
Definition 1 (Liu et al. [19]): A CQROFS is an object of

the following form:

QCQ =
{(
x̃,
(
MQCQ (x̃) ,NQCQ (x̃)

))
: x̃∈XUNI

}
(1)

where MQCQ (x̃) = MQCQRP (x̃) e
i2π

(
MQCQIP (x̃)

)
and

NQCQ (x̃) = NQCQRP (x̃) e
i2π

(
NQCQIP (x̃)

)
denote the complex

grade of supporting and the complex grade of support-
ing against with the conditions: 0 ≤ MqSC

QCQRP
+

N qSC
QCQRP

≤ 1 and 0 ≤ MqSC
QCQIP

+ N qSC
QCQIP

≤ 1.
Additionally, the complex grade of refusal is stated by:

RCQR (x̃) = RCQRRP (x̃) ei2π(RCQRIP(x̃)) =

(
1 −

(
MqSC
QCQRP

+N qSC
QCQRP

))1/qSC
e
i2π

(
1−
(
MqSC
QCQIP

+N qSC
QCQIP

))1/qSC
.The com-

plex q-rung orthopair fuzzy number (CQROFN) is stated by

QCQ =

(
MQCQRPe

i2π
(
MQCQIP

)
,NQCQRPe

i2π
(
NQCQIP

))
.

Definition 2 (Liu et al. [19]): For any two CQROFNs

QCQ−1

=

(
MQCQRP−1e

i2π
(
MQCQIP−1

)
,NQCQRP−1e

i2π
(
NQCQIP−1

))
and

QCQ−2

=

(
MQCQRP−2e

i2π
(
MQCQIP−2

)
,NQCQRP−2e

i2π
(
NQCQIP−2

))
with ϱSC , σSC ≥ 1, the followings are defined:

1. QCQ−1⊕QCQ−2

=



(
MqSC
QCQRP−1

+MqSC
QCQRP−2

−MqSC
QCQRP−1

MqSC
QCQRP−2

) 1
qSC

×

e
i2π

(
MqSC
QCQIP−1

+MqSC
QCQIP−2

−MqSC
QCQIP−1

MqSC
QCQIP−2

) 1
qSC

,

NQCQRP−1
NQCQRP−2

e
i2π

(
NQCQIP−1

NQCQIP−2

)


;

2. QCQ−1⊗QCQ−2

=



MQCQRP−1
MQCQRP−2

e
i2π

(
MQCQIP−1

MQCQIP−2

)
,(

N qSC
QCQRP−1

+N qSC
QCQRP−2

−N qSC
QCQRP−1

N qSC
QCQRP−2

) 1
qSC

×

e
i2π

(
N qSC
QCQIP−1

+N qSC
QCQIP−2

−N qSC
QCQIP−1

N qSC
QCQIP−2

) 1
qSC


;

3. ϱSCQCQ−1 =

(1 −

(
1 −MqSC

QCQRP−1

)ϱSC
) 1
qSC

×e
i2π

(
1−
(
1−MqSC

QCQIP−1

)ϱSC
) 1
qSC

,NϱSC
QCQRP−1

e
i2π

(
NϱSC
QCQIP−1

) ;

4. QϱSC
CQ−1

=


MϱSC
QCQRP−1

e
i2π

(
MϱSC
QCQIP−1

)
,

(
1 −

(
1 −N qSC

QCQRP−1

)ϱSC
) 1
qSC e

i2π
(
1−
(
1−N qSC

QCQIP−1

)ϱSC
) 1
qSC

 .

Definition 3 (Liu et al. [19]): For any CQROFN

QCQ−1

=

(
MQCQRP−1e

i2π
(
MQCQIP−1

)
,NQCQRP−1e

i2π
(
NQCQIP−1

))
,

the score function and accuracy function are defined
as:

SSF
(
QCQ−1

)
=

1
2

(
MqSC
QCQRP−1

−N qSC
QCQRP−1

+MqSC
QCQIP−1

−N qSC
QCQIP−1

)
(2)
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HAF
(
QCQ−1

)
=

1
2

(
MqSC
QCQRP−1

+N qSC
QCQRP−1

+MqSC
QCQIP−1

+N qSC
QCQIP−1

)
(3)

where SSF
(
QCQ−1

)
∈[−1, 1] andHAF

(
QCQ−1

)
∈[0, 1]. For

examining the relationships between any two CQROFNs

QCQ−1

=

(
MQCQRP−1e

i2π
(
MQCQIP−1

)
,NQCQRP−1e

i2π
(
NQCQIP−1

))
and

QCQ−2

=

(
MQCQRP−2e

i2π
(
MQCQIP−2

)
,NQCQRP−2e

i2π
(
NQCQIP−2

))
,

the following properties are followed:
1. If SSF

(
QCQ−1

)
≥ SSF

(
QCQ−2

)
H⇒ QCQ−1 ≥ QCQ−2;

2. If SSF
(
QCQ−1

)
= SSF

(
QCQ−2

)
H⇒

1) IfHAF
(
QCQ−1

)
≥ HAF

(
QCQ−2

)
H⇒ QCQ−1 ≥ QCQ−2;

2) IfHAF
(
QCQ−1

)
= HAF

(
QCQ−2

)
H⇒ QCQ−1 = QCQ−2.

Definition 4 (Herrera and Martinez [25]): For a linguis-
tic term set SLT =

{
sSLT−0 , sSLT−1 , sSLT−2 , sSLT−3 , . . . ., sSLT−2g

}
with βSC∈ [0, 1], the 2-tuple linguistic function 1LT is an
object of the following form:

1LT : [0, 1] → SLT ×

[
−

1
2g

,
1
2g

}
1LT (βSC ) =

(
sSLT−j , αSC

)
(4)

with

 sSLT−j j = round (βSC , g)

αSC = βSC −
j
g

αSC∈

[
−

1
2g

,
1
2g

}
(5)

The 2-tuple linguistic inverse function1−1
LT is an object of the

following form:

1−1
LT : SLT ×

[
−

1
2g

,
1
2g

}
→ [0, 1] (6)

1−1
LT

(
sSLT−j , αSC

)
=

j
g

+ αSC = βSC (7)

Definition 5: For any positive numbersQj,j=1, 2, 3,..,m,
the weighted Bonferroni mean (WBM) operator is an object
of the following form:

WBM sCQ,tCQ (Q1,Q2, ..,Qm)

=

(∑m

j,k=1
ωW−jωW−kQ

sCQ
j QtCQ

k

) 1
sCQ+tCQ

(8)

where ωW = (ωW−1, ωW−2, . . . , ωW−m)T denotes the
weight vector with the condition

∑m
j=1 ωW−j = 1.

Definition 6: For any positive numbersQj,j=1, 2, 3,..,m,
the weighted geometric BM (WGBM) operator is an object
of the following form:

WGBM sCQ,tCQ (Q1,Q2, ..,Qm)

=
1

sCQ + tCQ

∏m

j,k=1

(
sCQQj + tCQQk

)ωW−jωW−k (9)

where ωW = (ωW−1, ωW−2, . . . , ωW−m)T denotes the
weight vector with the condition

∑m
j=1 ωW−j = 1.

III. THE PROPOSED CQRO2-TLV WITH CQRO2-TLWBM
AND CQRO2-TLWGBM OPERATORS
In this section, we first propose the novel approach of
CQRO2-TLV. We give the definitions of CQRO2-TLV with
their operational laws, score function, accuracy function,
and also examine the relationships among CQRO2-TLVs.
We consider the weighted Bonferroni mean (WBM) and
weighted geometric Bonferroni mean (WGBM) operators,
and then propose the complex q-rung orthopair 2-tuple
linguistic WBM (CQRO2-TLWBM) and complex q-rung
orthopair 2-tuple linguistic WGBM (CQRO2-TLWGBM)
operators.

A. COMPLEX Q-RUNG ORTHOPAIR 2-TUPLE LINGUISTIC
VARIABLES (CQRO2-TLV)
Definition 7: ACQRO2-TLV is defined as an object of the

following form:

QCQTL

=
{((

sSLT (x̃), αSC
)
,
(
MQCQTL (x̃) ,NQCQTL (x̃)

))
: x̃∈XUNI

}
(10)

where MQCQTL = MQRPTL e
i2πMQIPTL and NQCQTL =

NQRPTL e
i2πNQIPTL , with the conditions: 0 ≤ MqSC

QRPTL
(x̃) +

N qSC
QRPTL

(x̃) ≤ 1, 0 ≤ MqSC
QIPTL

(x̃) + N qSC
QIPTL

(x̃) ≤ 1 where
the pair

(
sSLT (x̃), αSC

)
is called 2-tulpe linguistic variable with

αSC∈

[
−

1
2g ,

1
2g

}
and sSLT (x̃)∈SLT . Moreover,

ζQCQTL (x̃)

= ζQRPTL e
i2πζQIPTL =

(
1 −

(
MqSC
QRPTL

(x̃)

+N qSC
QRPTL

(x̃)
) 1
qSC

)
e
i2π

(
1−
(
MqSC
QIPTL

(x̃)+N qSC
QIPTL

(x̃)
) 1
qSC

)

is called refusal grade, and the complex q-rung orthopair
2-tuple linguistic number (CQRO2-TLN) is represented by

QCQTL

=
((
sSLT , αSC

)
,
(
MQCQTL ,NQCQTL

))
=

((
sSLT , αSC

)
,
(
MQRPTL e

i2πMQIPTL ,NQRPTL e
i2πNQIPTL

))
.

Definition 8: For any two CQRO2-TLVs

QCQTL−1 =

((
sSLT−1 , αSC−1

)
,
(
MQRPTL−1e

i2πMQIPTL−1 ,

× NQRPTL−1e
i2πNQIPTL−1

))
and

QCQTL−2 =

((
sSLT−2 , αSC−2

)
,
(
MQRPTL−2e

i2πMQIPTL−2 ,

× NQRPTL−2e
i2πNQIPTL−2

))
,
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the following operators are defined:
1. QCQTL−1⊕CQTLQCQTL−2

=



1LT

(
1−1
LT

(
sSLT−1 , αSC−1

)
+ 1−1

LT

(
sSLT−2 , αSC−2

))
,

MqCQ
QRPTL−1

+MqCQ
QRPTL−2

−

MqCQ
QRPTL−1

MqCQ
QRPTL−2


1

qCQ

e

i2π

M
qCQ
QIPTL−1

+MqCQ
QIPTL−2

−

MqCQ
QIPTL−1

MqCQ
QIPTL−2


1

qCQ

,

(
NQRPTL−1

NQRPTL−2

)
e
i2π

(
NQIPTL−1

NQIPTL−2

)




;

2. QCQTL−1⊗CQTLQCQTL−2

=



1LT

(
1−1
LT

(
sSLT−1 , αSC−1

)
× 1−1

LT

(
sSLT−2 , αSC−2

))
,

(
MQRPTL−1

MQRPTL−2

)
e
i2π

(
MQIPTL−1

MQIPTL−2

)
,

N qCQ
QRPTL−1

+N qCQ
QRPTL−2

−

N qCQ
QRPTL−1

N qCQ
QRPTL−2


1

qCQ

e

i2π

N
qCQ
QIPTL−1

+N qCQ
QIPTL−2

−

N qCQ
QIPTL−1

N qCQ
QIPTL−2


1

qCQ




;

3. QδSC
CQTL−1

=



1LT

(
1−1
LT

(
sSLT−1 , αSC−1

)δSC ) ,
MδSC

QRPTL−1
e
i2πMδSC

QIPTL−1 ,

(
1 −

(
1 −N qCQ

QRPTL−1

)δSC
) 1

qCQ
e
i2π

(
1−
(
1−N qCQ

QIPTL−1

)δSC
) 1

qCQ




;

4. δSCQCQTL−1

=



1LT

(
δSC × 1−1

LT

(
sSLT−1 , αSC−1

))
,

(
1 −

(
1 −MqCQ

QRPTL−1

)δSC
) 1

qCQ
e
i2π

(
1−
(
1−MqCQ

QIPTL−1

)δSC
) 1

qCQ

,

N δSC

QRPTL−1
e
i2πN δSC
QIPTL−1




.

Definition 9: For any two CQRO2-TLVs

QCQTL−1 =

((
sSLT−1 , αSC−1

)
,
(
MQRPTL−1e

i2πMQIPTL−1 ,

× NQRPTL−1e
i2πNQIPTL−1

))
and

QCQTL−2 =

((
sSLT−2 , αSC−2

)
,
(
MQRPTL−2e

i2πMQIPTL−2 ,

× NQRPTL−2e
i2πNQIPTL−2

))
,

the score and accuracy functions are defined as (11), shown
at the bottom of the next page.

Ȟ
(
QCQTL−1

)
= 1−1

LT

(
sSLT−1 , αSC−1

)
×

(
MqSC
QRPTL−1

+MqSC
QIPTL−1

+N qSC
QRPTL−1

+N qSC
QIPTL−1

)
(12)

Based on the above two notions, the compassion between
two CQROF2-TLNs is given by:

1. If Ş
(
QCQTL−1

)
> Ş

(
QCQTL−2

)
, then QCQTL−1 >

QCQTL−2;

2. If Ş
(
QCQTL−1

)
= Ş

(
QCQTL−2

)
, then:

1) If Ȟ
(
QCQTL−1

)
> Ȟ

(
QCQTL−2

)
, then

QCQTL−1 > QCQTL−2;
2) If Ȟ

(
QCQTL−1

)
= Ȟ

(
QCQTL−2

)
, then

QCQTL−1 = QCQTL−2.

Example 1: For any two CQROF2-TLNs

QCQTL−1 =

((
sSLT−2 , 0.01

)
,
(
0.8ei2π(0.8), 0.6ei2π(0.6)

))
and

QCQTL−2 =

((
sSLT−4 , −0.02

)
,
(
0.9ei2π(0.9), 0.4ei2π(0.4)

))
for qSC = δSC = 2.

Then
1. QCQTL−1⊕CQTLQCQTL−2

=


1LT

(
1−1
LT

(
sSLT−2 , 0.01

)
+ 1−1

LT

(
sSLT−4 , −0.02

))
,((

0.82 + 0.92 − 0.82 × 0.92
) 1

2 ei2π
(
0.82+0.92−0.82×0.92

) 1
2

,

(0.6 × 0.4) ei2π(0.6×0.4)

)
=


1LT

((
2
4 + 0.01

)
+

(
4
4 − 0.02

))
,(

(0.9652)ei2π(0.9652) ,

(0.24)ei2π(0.24)

)  =

 1LT (1.49),(
(0.9652)ei2π(0.9652) ,

(0.24)ei2π(0.24)

) =


(
sSLT−4 , 0.49

)
,(

(0.9652)ei2π(0.9652) ,

(0.24)ei2π(0.24)

) .

2. QCQTL−1⊗CQTLQCQTL−2

=


1LT

(
1−1
LT

(
sSLT−2 , 0.01

)
× 1−1

LT

(
sSLT−4 , −0.02

))
,(

(0.8 × 0.9) ei2π(0.8×0.9) ,(
0.62 + 0.42 − 0.62 × 0.42

) 1
2 ei2π

(
0.62+0.42−0.62×0.42

) 1
2

) =


1LT

((
2
4 + 0.01

)
×

(
4
4 − 0.02

))
,(

(0.72)ei2π(0.72) ,

(0.68)ei2π(0.68)

) 
=

 1LT (0.4998),(
(0.72)ei2π(0.72) ,

(0.68)ei2π(0.68)

) =


(
sSLT−3 , 0.1665

)
,(

(0.9652)ei2π(0.9652) ,

(0.24)ei2π(0.24)

) .

3. Q2
CQTL−1

=


1LT

(
1−1
LT

(
sSLT−2 , 0.01

)2)
, 0.82ei2π0.8

2
,(

1 −
(
1 − 0.62

)2) 1
2
e
i2π

(
1−
(
1−0.62

)2) 1
2


 =


1LT

(
(0.51)2

)
,(

0.64ei2π0.64 ,(
1 − (1 − 0.36)2

) 1
2 ei2π

(
1−(1−0.36)2

) 1
2

)

=

 1LT (0.2601),(
0.64ei2π0.64 ,

0.7684ei2π0.7684

) =


(
sSLT−1 , 0.0101

)
,(

0.64ei2π0.64 ,
0.7684ei2π0.7684

) .

4. 2 ×QCQTL−1

=


1LT

(
2 × 1−1

LT

(
sSLT−2 , 0.01

))
,(1 −

(
1 − 0.82

)2) 1
2
e
i2π

(
1−
(
1−0.82

)2) 1
2

,

0.62ei2π0.6
2


 =


1LT (2 × 0.51) ,(1 − (1 − 0.64)2

) 1
2 ei2π

(
1−(1−0.64)2

) 1
2

,

0.62ei2π0.6
2




=

 1LT (1.02),(
0.9330ei2π0.9330 ,

0.36ei2π0.36

) =


(
sSLT−4 , 0.02

)
,(

0.9330ei2π0.9330 ,
0.36ei2π0.36

) .

Furthermore, we examine the interrelationship between two
CQRO2-TLVs with the help of score functions with

Ş
(
QCQTL−1

)
=

1−1
LT

(
sSLT−2 , 0.01

)
×
(
1 + 0.82 + 0.82 − 0.62 − 0.62

)
4

=
(0.51) × (1.56)

4
= 0.1989

and

Ş
(
QCQTL−2

)
=

1−1
LT

(
sSLT−4 , −0.02

)
×
(
1 + 0.92 + 0.92 − 0.42 − 0.42

)
4

=
(0.98) × (2.3)

4
= 0.5635.

Thus, we have Ş
(
QCQTL−2

)
> Ş

(
QCQTL−1

)
. If

Ş
(
QCQTL−2

)
= Ş

(
QCQTL−1

)
, then we use the accu-

racy function which will be discussed next in Eq. (15) of
Theorem 2.

B. THE CQRO2-TLWBM AND CQRO2-TLWGBM
OPERATORS
We present the novel approach of the CQRO2-TLWBM and
CQRO2-TLWGBM operators with their properties and theo-
rems.
Definition 10: For any family of CQRO2-TLVs with

QCQTL−j =

((
sSLT−j , αSC−j

)
,
(
MQRPTL−je

i2πMQIPTL−j ,

× NQRPTL−je
i2πNQIPTL−j

))
, j = 1, 2, 3, ..,m,

the CQRO2-TLWBM operator is defined as the following
form:

CQRO2−TLWBM sCQ,tCQ
(
QCQTL−1,QCQTL−2, ..,QCQTL−m

)
=

(
⊕CQTL

m
j,k=1

(
ωW−jωW−k

(
QsCQ
CQTL−j
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⊗CQTLQ
tCQ
CQTL−k

))) 1
sCQ+tCQ (13)

where ωW = (ωW−1, ωW−2, . . . , ωW−m)T denotes the
weight vector with the condition

∑m
j=1 ωW−j = 1.

Theorem 1: For any family of CQRO2-TLVs with

QCQTL−j =

((
sSLT−j , αSC−j

)
,
(
MQRPTL−je

i2πMQIPTL−j ,

× NQRPTL−je
i2πNQIPTL−j

))
, j = 1, 2, 3, ..,m,

by using Definition 8 we can obtain the following aggregated
value (14), as shown at the bottom of the next page.

Proof:We prove Eq. (14) with as shown in the equation
at the bottom of the next page.

Then

QsSC
CQTL−j⊗CQTLQtSC

CQTL−k

=



1LT

(
1−1
LT

(
sSLT−j , αSC−j

)sSC1−1
LT

(
sSLT−k , αSC−k

)tSC) ,
MsSC
QRPTL−j

MtSC
QRPTL−k

e
i2πMsSC

QIPTL−j
MtSC
QIPTL−k ,(

1 −

(
1 −N qCQ

QRPTL−j

)sSC(
1 −N qCQ

QRPTL−k

)tSC) 1
qCQ

×

e
i2π

(
1−
(
1−N

qCQ
QIPTL−j

)sSC (
1−N

qCQ
QIPTL−k

)tSC) 1
qCQ




further, as shown in the equation at the bottom of page 8.

Thus, Eq. (14) is proved. ■
Additionally, we can prove the properties of Idempotency,

Monotonicity, and Boundedness.
Theorem 2: For any family of CQRO2-TLVs

QCQTL−j =

((
sSLT−j , αSC−j

)
,
(
MQRPTL−je

i2πMQIPTL−j ,

× NQRPTL−je
i2πNQIPTL−j

))
, j = 1, 2, 3, ..,m,

if QCQTL = QCQTL−j, we have

CQRO2 − TLWBM sCQ,tCQ
(
QCQTL−1,QCQTL−2, ..,QCQTL−m

)
= QCQTL (15)

Proof:We prove Eq. (15) by

CQRO2 − TLWBM sCQ,tCQ
(
QCQTL−1,QCQTL−2, ..,QCQTL−m

)
=

(
⊕CQTL

m
j,k=1

(
ωW−jωW−k

(
QsCQ
CQTL⊗CQTLQ

tCQ
CQTL

))) 1
sCQ+tCQ

= QCQTL

(
⊕CQTL

m
j,k=1ωW−jωW−k

) 1
sCQ+tCQ

= QCQTL .

■
Theorem 3: For any two families of CQRO2-TLVs

QCQTL−j =

((
sSLT−j , αSC−j

)
,
(
MQRPTL−je

i2πMQIPTL−j ,

×NQRPTL−je
i2πNQIPTL−j

))

and

QCQTL−∗j =

((
sSLT−∗j , αSC−∗j

)
,
(
MQRPTL−∗je

i2πMQIPTL−∗j ,

×NQRPTL−∗je
i2πNQIPTL−∗j

))
, j = 1, 2, 3, ..,m,

if QCQTL−j ≤ QCQTL−∗j, then we have

CQRO2−TLWBM sCQ,tCQ
(
QCQTL−1,QCQTL−2, ..,QCQTL−m

)
≤ CQRO2 − TLWBM sCQ,tCQ

×
(
QCQTL−∗1,QCQTL−∗2, ..,QCQTL−∗m

)
(16)

Proof: By hypothesis, it is given that

QCQTL−j ≤ QCQTL−∗j H⇒
(
sSLT−j , αSC−j

)
≤
(
sSLT−∗j , αSC−∗j

)
,MQRPTL−j ≤ MQRPTL−j ,

MQIPTL−j ≤ MQIPTL−∗j ,NQRPTL−j ≤ NQRPTL−∗j ,

NQIPTL−j ≤ NQIPTL−∗j

Then

1LT

 m∑
j,k=1

ωW−jωW−k

(
1−1
LT

(
sSLT−j , αSC−j

))sCQ
×

(
1−1
LT

(
sSLT−k , αSC−k

))tCQ) 1
sCQ+tCQ

≤ 1LT

 m∑
j,k=1

ωW−∗jωW−∗k

(
1−1
LT

(
sSLT−∗j , αSC−∗j

))sCQ
×

(
1−1
LT

(
sSLT−∗k , αSC−∗k

))tCQ) 1
sCQ+tCQ

Further, we check it for the real part of supporting grade,
such that as shown in the equation at the bottom of page 9.

Similarly, we can find the imaginary part of supporting
grade with
 1−

m∏
j,k=1

(
1−

MqSC sSC
QIPTL−j

MqSC tSC
QIPTL−k

)ωW−jωW−k


1

qSC


1

sCQ+tCQ

≤


 1−

m∏
j,k=1

(
1−

MqSC sSC
QIPTL−∗j

MqSC tSC
QIPTL−∗k

)ωW−jωW−k


1

qSC


1

sCQ+tCQ

Similarly, we can find the real and imaginary part of support-
ing against grade with as shown in the equation at the bottom
of page 9. From the above analysis, we get the result that

CQRO2−TLWBM sCQ,tCQ
(
QCQTL−1,QCQTL−2, ..,QCQTL−m

)
≤ CQRO2 − TLWBM sCQ,tCQ

Ş
(
QCQTL−1

)
=

1−1
LT

(
sSLT−1 , αSC−1

)
×

(
1 +MqSC

QRPTL−1
+MqSC

QIPTL−1
−N qSC

QRPTL−1
−N qSC

QIPTL−1

)
4

(11)
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×
(
QCQTL−∗1,QCQTL−∗2, ..,QCQTL−∗m

)
■
Theorem 4: For any family of CQRO2-TLVs

QCQTL−j =

((
sSLT−j , αSC−j

)
,
(
MQRPTL−je

i2πMQIPTL−j ,

× NQRPTL−je
i2πNQIPTL−j

))
, j = 1, 2, 3, ..,m,

if

Q+

CQTL

=

max
j

(
sSLT−j , αSC−j

)
,

max
j
MQRPTL−je

i2π max
j
MQIPTL−j

,

min
j
NQRPTL−je

i2π min
j
NQIPTL−j




and

Q−

CQTL

=

min
j

(
sSLT−j , αSC−j

)
,

min
j
MQRPTL−je

i2π min
j
MQIPTL−j

,

max
j
NQRPTL−je

i2π max
j
NQIPTL−j


 ,

then we have that

Q−

CQTL ≤CQRO2 − TLWBM sCQ,tCQ
(
QCQTL−1,QCQTL−2, ..,

QCQTL−m
)

≤ Q+

CQTL (17)
Proof: By using Theorems 2 and 3, we have

CQRO2 − TLWBM sCQ,tCQ
(
Q+

CQTL ,Q
+

CQTL , ..,Q
+

CQTL

)
= Q+

CQTL

CQRO2 − TLWBM sCQ,tCQ
(
QCQTL−1,QCQTL−2, ..,QCQTL−m

)

=



1LT

(∑m
j,k=1 ωW−jωW−k

(
1−1
LT

(
sSLT−j , αSC−j

))sCQ(
1−1
LT

(
sSLT−k , αSC−k

))tCQ) 1
sCQ+tCQ

,


 1−∏m

j,k=1

(
1−

MqSC sSC
QRPTL−j

MqSC tSC
QRPTL−k

)ωW−jωW−k


1

qSC


1

sCQ+tCQ

×

e

i2π




1−∏m
j,k=1

(
1−

MqSC sSC
QIPTL−j

MqSC tSC
QIPTL−k

)ωW−jωW−k


1

qSC



1
sCQ+tCQ

,


1−

∏m
j,k=1

 1−(
1−

N qSC
QRPTL−j

)sSC(
1−

N qSC
QRPTL−k

)tSC
ωW−jωW−k


1

sCQ+tCQ


1

qSC

×

e

i2π




1−

∏m
j,k=1

 1−(
1−

N qSC
QIPTL−j

)sSC(
1−

N qSC
QIPTL−k

)tSC
ωW−jωW−k



1
sCQ+tCQ



1
qSC





(14)

QsSC
CQTL−j =


1LT

(
1−1
LT

(
sSLT−j , αSC−j

)sSC) , MsSC
QRPTL−j

e
i2πMsSC

QIPTL−j ,

(
1 −

(
1 −N qCQ

QRPTL−j

)sSC) 1
qCQ e

i2π
(
1−
(
1−N

qCQ
QIPTL−j

)sSC) 1
qCQ





QtSC
CQTL−k =


1LT

(
1−1
LT

(
sSLT−k , αSC−k

)tSC) ,
MtSC
QRPTL−k

e
i2πMtSC

QIPTL−k ,(
1 −

(
1 −N qCQ

QRPTL−k

)tSC) 1
qCQ

e
i2π

(
1−
(
1−N

qCQ
QIPTL−k

)tSC) 1
qCQ




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⊕CQTL
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Definition 11: For any family of CQRO2-TLVs
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the CQRO2-TLWGBM operator is defined as the following
form:

CQRO2 − TLWGBM sCQ,tCQ

×
(
QCQTL−1,QCQTL−2, ..,QCQTL−m

)
=

1
sCQ + tCQ

(
⊗CQTL

m
j,k=1

(
sCQQCQTL−j

⊕CQTL tCQQCQTL−k
))ωW−jωW−k (18)

where ωW = (ωW−1, ωW−2, . . . , ωW−m)T denotes the
weight vector with the condition

∑m
j=1 ωW−j = 1.

Theorem 5: For any family of CQRO2-TLV

QCQTL−j =

((
sSLT−j , αSC−j

)
,
(
MQRPTL−je

i2πMQIPTL−j ,

× NQRPTL−je
i2πNQIPTL−j

))
, j = 1, 2, 3, ..,m,

the aggregated values by using Definition 8 are as follows
(19), shown at the bottom of the next page.
Proof: Proof of this theorem is similar to the proof of

Theorem 1. ■
Theorem 6: For any family of CQRO2-TLVs

QCQTL−j =

((
sSLT−j , αSC−j

)
,
(
MQRPTL−je

i2πMQIPTL−j ,

× NQRPTL−je
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))
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×
(
QCQTL−1,QCQTL−2, ..,QCQTL−m

)
= QCQTL (20)

Proof: Proof of this theorem is similar to the proof of
Theorem 2. ■
Theorem 7: For any two families of CQRO2-TLVs

QCQTL−j =

((
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)
,
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))
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)
,
(
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×NQRPTL−∗je
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))
, j = 1, 2, 3, ..,m,

if QCQTL−j ≤ QCQTL−∗j, then we have
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×
(
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)
≤ CQRO2 − TLWGBM sCQ,tCQ

(
QCQTL−∗1,QCQTL−∗2,

..,QCQTL−∗m
)

(21)

Proof: Proof of this theorem is similar to the proof of
Theorem 3. ■
Theorem 8: For any family of CQRO2-TLVs

QCQTL−j =

((
sSLT−j , αSC−j

)
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then we have

Q−

CQTL ≤ CQRO2 − TLWGBM sCQ,tCQ
(
QCQTL−1,QCQTL−2,

..,QCQTL−m
)

≤ Q+

CQTL (22)

Proof: Proof of this theorem is similar to the proof of
Theorem 4

IV. APPLICATION TO GREEN SUPPLY CHAIN
MANAGEMENT WITH COMPARATIVE ANALYSIS
In this section, we first construct the MADM tech-
nique by using the proposed CQRO2-TLWBM and
CQRO2-TLWGBM operators, and then apply then to
green supply chain management (GSCM) with com-
parative analysis. By using the explored operators of
CQRO2-TLWBM and CQRO2-TLWGBM, we can con-
struct the MADM technique to resolve problems for
estimating ambiguous and impulsive information of real-
istic decision theory. To resolve such kind of issues,
we choose the family of alternatives and their attributes
based on weight vectors, whose information is stated as
follows: AAL = {AAL−1, AAL−2, . . . , AAL−m} , GAT =

{GAT−1, GAT−2, . . . , GAT−n} , ωW = {ωW−1, ωW−2,

. . . , ωW−n} with the condition
∑n

j=1 ωW−j = 1. For
addressing these problems effectively, we choose the com-
plex q-rung orthopair 2-tuple linguistic information, which
is in the form of QCQTL−jk =

((
sSLT−jk , αSC−jk

)
,(

MQRPTL−jk e
i2πMQIPTL−jk ,NQRPTL−jk e

i2πNQIPTL−jk

))
, j =

1, 2, 3, ..,m, k = 1, 2, 3, .., n. The procedures of the MADM
technique is stated as follows:
Step 1:Based on CQRO2-TLVs, we construct a decision

matrix, which is in the form of

RDM =
(
rjk
)
m×n

Step 2:We normalize the decision matrix by using the
following Eq. (23):

RDM =
(
rjk
)
m×n
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=



((
sSLT−jk , αSC−jk

)
,
(
MQRPTL−jk e

i2πMQIPTL−jk ,

NQRPTL−jk e
i2πNQIPTL−jk

))
for benefit type((

sSLT−jk , αSC−jk
)
,
(
NQRPTL−jk e

i2πNQIPTL−jk ,

MQRPTL−jk e
i2πMQIPTL−jk

))
for cost type

(23)

Step 3:By using Eq. (14), we aggregate the normalized
decision matrix.
Step 4:By using Eq. (11), we examine the score values of

the aggregated values.
Step 5:Rank to all alternatives, and examine the best one.
Step 6:The end.

A. APPLICATION TO GREEN SUPPLY CHAIN
MANAGEMENT
We know that global warming and climate change had heav-
ily affected environment, and so integrating environmental
concerns into green supply chain management (GSCM) is
important. There were numerous researchers had applied
fuzzy set and its extensions in GSCM, such as Wang et al.
[40] and Krishankumar et al. [41], Riaz et al. [42] and
Zulqarnain et al. [43]. However, there is no complex QROFSs
(CQROFSs) applied in GSCM. We next apply these pro-
posed operators of CQROFSs to GSCM. To choose the green

suppliers (GSs) in GSCMbased onCQRO2-TLVs, we choose
the fiveGSs in theGSCMOCM−j, j = 1, 2, 3, 4, 5. To resolve
this problem, the expert chooses the four attributes, whose
details are as follows:

1) CAT−1: Product quality factor;
2) CAT−2: Environmental factors;
3) CAT−3: Delivery factor;
4) CAT−4: Price factor.

To resolve the above issue, we choose a weight vector ωW =

(0.1, 0.2, 0.3, 0.4)T . Thus, the procedures of the MADM
technique is as follows:
Step 1:Based on the complex intuitionistic 2-tuple linguis-

tic numbers (CI2-TLNs), we construct a decision matrix,
which is in the form of Table 1.
Step 2:Wenormalize the decisionmatrix by using Eq. (23),

which is given in step 1, if needed. But, the information of
Table 1 is not needed to be normalized, so we have considered
the data of Table 1 for continuing the processes of theMADM
technique.

Step 3: By using Eq. (14), we aggregate the normalized
decision matrix by using qSC = 1, which is as follows:
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=

(
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(
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))
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=
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))
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)ωW−jωW−k


1

qSC



1
sCQ+tCQ





(19)
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TABLE 1. Original decision matrix, whose values in the form of complex intuitionistic 2-tuple linguistic variables.

TABLE 2. Original decision matrix, whose values in the form of complex Pythagorean 2-tuple linguistic variables.

OCM−3

=

(
(s1, 0.1205) ,

(
0.4649ei2π(0.4649), 0.5856ei2π(0.5856)

))
OCM−4

=

(
(s1, 0.1587) ,

(
0.4735ei2π(0.4735), 0.5745ei2π(0.4745)

))
OCM−5

=

(
(s1, 0.2432) ,

(
0.4823ei2π(0.4823), 0.5638ei2π(0.5638)

))
Step 4:By using Eq. (11), we examine the score values of

the aggregated values, which are as follows:

SSF
(
OCM−1

)
= 0.1235,SSF

(
OCM−2

)
= 0.1297,SSF

(
OCM−3

)
= 0.1405,SSF

(
OCM−4

)
= 0.1631,SSF

(
OCM−5

)
= 0.2064

Step 5:Rank to all alternatives, and examine the best one,
which is discussed as follows:

OCM−5 ≥ OCM−4 ≥ OCM−3 ≥ OCM−2 ≥ OCM−1

The best one is OCM−5.
Step 6:The end.
To examine the proficiency and effectiveness of the

proposed operators, we construct more numerical results,
whose values are in the form of complex Pythagorean
2-tuple linguistic numbers (CP2-TLNs), complex q-rung

orthopair 2-tuple linguistic numbers (CQRO2-TLNs), and
intuitionistic 2-tuple linguistic numbers (I2-TLNs) to evalu-
ate uncertain and awkward information in genuine decision
issues. The decision matrix, whose information in the form
of complex Pythagorean 2-tuple linguistic variables are
stated in the form of Table 2. To resolve the above issue,
we choose the weight vector ωW = (0.1, 0.2, 0.3, 0.4)T ,
and then the procedures of the MADM technique are as
follows:
Step 1:Based on CP2-TLVs, we construct the decision

matrix, which is in the form of Table 2.
Step 2: We normalize the decision matrix by using

Eq. (23), which is given in step 1, if needed. But the infor-
mation of Table 2 is not needed to be normalized, and so we
use the data of Table 2 for continuing the processes of the
MADM technique.

Step 3: By using Eq. (14), we aggregate the normalized
decision matrix by using qSC = 2, which is as follows:

OCM−1

=

(
(s1, 0.1144) ,

(
0.5745ei2π(0.5745), 0.7604ei2π(0.7604)

))
OCM−2

=

(
(s1, 0.1111) ,

(
0.5835ei2π(0.5835), 0.7545ei2π(0.7545)

))
OCM−3

=

(
(s1, 0.1205) ,

(
0.5926ei2π(0.5926), 0.7487ei2π(0.7487)

))
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TABLE 3. Original decision matrix, whose values in the form of CQRO2-TLVs.

OCM−4

=

(
(s1, 0.1587) ,

(
0.6018ei2π(0.6018), 0.7427ei2π(0.7427)

))
OCM−5

=

(
(s1, 0.2432) ,

(
0.6111ei2π(0.6111), 0.7367ei2π(0.7367)

))
Step 4: By using Eq. (11), we examine the score values of
the aggregated values, which are as follows:

SSF
(
OCM−1

)
= 0.0918, SSF

(
OCM−2

)
= 0.0979, SSF

(
OCM−3

)
= 0.1077, SSF

(
OCM−4

)
= 0.1269, SSF

(
OCM−5

)
= 0.1631

Step 5: Rank to all alternatives, and examine the best one,
which is discussed below:

OCM−5 ≥ OCM−4 ≥ OCM−3 ≥ OCM−2 ≥ OCM−1

The best one is OCM−5.
Step 6: The end.
The decisionmatrix whose information in the form of com-

plex q-rung orthopair 2-tuple linguistic variables is stated in
the form of Table 3. To resolve the above issue, we choose the
weight vector ωW = (0.1, 0.2, 0.3, 0.4)T , and the procedures
of the MADM technique are as follows:
Step 1: Based on CQRO2-TLVs, we construct the decision

matrix with the form of Table 3.
Step 2:Wenormalize the decisionmatrix by using Eq. (23),

which is given in step 1, if needed. But the information of
Table 3 is not needed to be normalized, so we consider the
data of Table 3 for continuing the processes of the MADM
technique.
Step 3: By using Eq. (14), we aggregate the normalized

decision matrix by using qSC = 5, which is as follows:

OCM−1

=

(
(s1, 0.1144) ,

(
0.7774ei2π(0.7774), 0.909ei2π(0.909)

))
OCM−2

=

(
(s1, 0.1111) ,

(
0.7874ei2π(0.7874), 0.9054ei2π(0.9054)

))

OCM−3

=

(
(s1, 0.1205) ,

(
0.7977ei2π(0.7977), 0.9017ei2π(0.9017)

))
OCM−4

=

(
(s1, 0.1587) ,

(
0.8082ei2π(0.8082), 0.8978ei2π(0.8978)

))
OCM−5

=

(
(s1, 0.2432) ,

(
0.8189ei2π(0.8189), 0.8938ei2π(0.8938)

))
Step 4: By using Eq. (11), we examine the score values of
the aggregated values, which are as follows:

SSF
(
OCM−1

)
= 0.0595, SSF

(
OCM−2

)
= 0.0702, SSF

(
OCM−3

)
= 0.0841, SSF

(
OCM−4

)
= 0.1068, SSF

(
OCM−5

)
= 0.1469

Step 5: Rank to all alternatives, and examine the best one,
which is discussed below:

OCM−5 ≥ OCM−4 ≥ OCM−3 ≥ OCM−2 ≥ OCM−1

The best one is OCM−5.
Step 6: The end.

B. COMPARATIVE ANALYSIS
In this subsection, we make comparisons between the pro-
posed operators and some existing operators. These existing
operators are as follows. Liu and Chen [27] discovered the
theory of intuitionistic 2-tuple linguistic aggregation oper-
ators, Wei et al. [28] explored the Pythagorean 2-tuple
linguistic aggregation operators, Tang et al. [32] presented the
Pythagorean 2-tuple linguistic Bonferroni mean operators,
and Ju et al. [29] pioneered the q-rung orthopair 2-tuple
linguistic Maclaurin symmetric mean operators. The compar-
ative analysis by using the information of Table 1 is shown in
Table 4.
From the analysis, we get the results in which the

explored operators of WBM and WGBM are given the same
results, which are discussed in Table 4. The best alternative
is OCM−5. Both concepts provide that the first two terms
are same, but the last three terms are different due to its
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TABLE 4. Comparison between explored works with some existing works by using the information of Table 1.

TABLE 5. Comparison between explored works with some existing works by using the information of Table 2.

structure. Therefore, the best alternative is OCM−5 by using
the explored WBM and WGBM operators.

From the above analysis, we get the results in which the
proposed operators of WBM and WGBM are given the same
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TABLE 6. Comparison between proposed works with some existing works by using the information of Table 3.

FIGURE 1. Geometrical representations of Table 4

results, which are discussed in Table 5. The best alternative
is OCM−5. Both concepts provide that the first two terms are
same, but the last three terms are different due to its structure.
Therefore, the best alternative is OCM−5 by using the pro-
posed WBM and WGBM operators. Furthermore, we get the
results in which the proposed operators ofWBM andWGBM
are given the same results, which are shown in Table 6. The
best alternative is OCM−5. Both concepts provide that the
first two terms are same, but the last three terms are different
due to its structure. Therefore, the best alternative is OCM−5

by using the proposed WBM and WGBM operators.

C. GRAPHICAL REPRESENTATIONS OF THE PROPOSED
OPERATORS
The concept of CQRO2-TLV is extensive powerful and more
proficient technique to cope with awkward information in
genuine decision issues. We further demonstrate the compas-
sions between the proposed operators and existing operators
of Liu and Chen [27], Wei et al. [28], Tang et al. [32] and
Ju et al. [29] with the help of figures. These figures are
quite helpful for easily understanding the difference between
values and their ranking. The geometrical representations of
the information in Tables 4, 5, and 6 are discussed below,
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FIGURE 2. Geometrical representations of Table 5

FIGURE 3. Geometrical representations of the Table 6

which express the reliability and superiority of the proposed
operators based on CQRO2-TLVs.

The graphical interpretations of Table 4 are shown in Fig. 1.
From Fig. 1, it is clear that, it contains five series which
express the set of alternatives with different colors. These
different colors denote the flow of the values, as shown in
Fig. 1. Only the proposed works for q=1, q=2, and q=5,
provide that the values and existing operators cannot solve
it because it contains two-dimension information in a single
set. From Fig. 1, we easily get the best alternative, which is
OCM−5.

The graphical interpretations of Table 5 are shown in Fig. 2.
From Fig. 2, it is clear that, it contains five series which
express the set of alternatives with different colors. These
different colors denote the flow of the values, as shown in
Fig. 2. Only the proposed works for q=2, and q=5, provides
that the values and existing operators cannot solve it because
it contains two-dimension information in a single set. Based
on Fig. 2, we easily get the value of the best alternative,
which is OCM−5. Furthermore, the graphical interpretations
of Table 6 are shown in Fig. 3. From Fig. 3, it is clear that,
it contains five series which express the set of alternatives
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with different colors. These different colors denote the flow
of the values as shown in Fig. 3. Only the proposed work for
q=5, provides that the values and existing operators cannot
solve it because it contains two-dimension information in a
single set. According to Fig. 3, we easily get the value of the
best alternative, which is OCM−5.

The reasons of these results are that, for Fig. 1, we choose
the complex intuitionistic 2-tuple linguistic kind of informa-
tion, for Fig. 2, we choose the complex Pythagorean 2-tuple
linguistic kind of information, and for Fig. 3, we choose the
complex q-rung orthopair 2-tuple linguistic kind of infor-
mation. The parented work cannot solve it by using any
one operator, but the existing work easily solve it by using
explored work, due to its structure. The complex q-rung
orthopair 2-tuple linguistic set contains 2-TLV, complex-
valued supporting grade, and complex-valued supporting
against grade with the conditions that is the sum of q-powers
of the real part (also for imaginary part) of the supporting
grade and supporting against grade cannot exceed from a
unit interval. Therefore, the explored concept and operators
are more proficient and extensive superior than these existing
methods.

V. CONCLUSION
The proposed complex q-rung orthopair 2-tuple linguistic
variable (CQRO2-TLV) is a mixture of the two various theo-
ries of CQROFS and 2-TLV. CQRO2-TLV comprises 2-TLV
and the grades of supporting and supporting against in the
complex plane. According to these properties and theories
of CQRO2-TLV with its operational laws presented in the
paper, it can be a competent procedure to assess ambiguous
and erratic information in most decision problems. The two
new techniques with the complex q-rung orthopair 2-tuple
linguistic WBM (CQRO2-TLWBM) and complex q-rung
orthopair 2-tuple linguistic WGBM (CQRO2-TLWGBM)
operators are used to manage the MADM problems under
fuzzy environment. Based on the CQRO2-TLWBM and
CQRO2-TLWGBM operators, we constructed a MADM
technique to cope ambiguous and impulsive information
in real decision problems. We then applied it to a green
supply chain management (GSCM) for choosing green sup-
pliers (GSs). To examine the advantages of the presented
MADM techniques, we used different methods, whose values
are in the form of complex pythagorean 2-tuple linguistic
numbers (CP2-TLNs), complex q-rung orthopair 2-tuple lin-
guistic numbers (CQRO2-TLNs) and intuitionistic 2-tuple
linguistic numbers (I2-TLNs), to make comparisons between
the proposed method and some existing methods. Based
on the obtained results, the proposed method by employ-
ing CQRO2-TLWBM and CQRO2-TLWGBM operators is
well suited in handling different kinds of sets in the fuzzy
environment with legitimacy and prevalence of the pro-
posed technique by contrasting other existing operators.
Although the proposed method is good in complex q-rung
orthopair fuzzy environment. However, it can only han-
dle the two-dimensional information with membership and

non-membership. In the case of three-dimensional informa-
tion, such as representing truth, falsity and indeterminacy, the
proposed technique will fail because it can only represent
two of them under two dimensions. For handling three-
dimensional information, the spherical fuzzy sets [44] and
T-spherical fuzzy sets [45], [46] need to be considered. In our
future work, we will extend the proposed method to complex
spherical fuzzy sets and complex T-spherical fuzzy sets so
that three-dimensional information with truth, falsity and
indeterminacy can be handled and applied in more extents
of MADM problems.

REFERENCES
[1] L. A. Zadeh, ‘‘Fuzzy sets,’’ Inf Control, vol. 8, no. 3, pp. 338–353, 1965.
[2] J. Yu and M.-S. Yang, ‘‘Analysis of parameter selection for Gustafson–

Kessel fuzzy clustering using Jacobian matrix,’’ IEEE Trans. Fuzzy Syst.,
vol. 23, no. 6, pp. 2329–2342, Dec. 2015.

[3] E. H. Ruspini, J. C. Bezdek, and J. M. Keller, ‘‘Fuzzy clustering: A his-
torical perspective,’’ IEEE Comput. Intell. Mag., vol. 14, no. 1, pp. 45–55,
Feb. 2019.

[4] K. T. Atanassov, ‘‘Intuitionistic fuzzy sets,’’ Fuzzy Sets Syst., vol. 20, no. 1,
pp. 87–96, Aug. 1986.

[5] C. M. Hwang and M. S. Yang, ‘‘New construction for similarity measures
between intuitionistic fuzzy sets based on lower, upper and middle fuzzy
sets,’’ Int. J. Fuzzy Syst., vol. 15, pp. 359–366, Sep. 2013.

[6] H. Garg and K. Kumar, ‘‘Linguistic interval-valued Atanassov intuitionis-
tic fuzzy sets and their applications to group decision making problems,’’
IEEE Trans. Fuzzy Syst., vol. 27, no. 12, pp. 2302–2311, Dec. 2019.

[7] M.-S. Yang, Z. Hussain, and M. Ali, ‘‘Belief and plausibility measures on
intuitionistic fuzzy sets with construction of belief-plausibility TOPSIS,’’
Complexity, vol. 2020, Aug. 2020, Art. no. 7849686.

[8] R. R. Yager and A. M. Abbasov, ‘‘Pythagorean membership grades, com-
plex numbers, and decision making,’’ Int. J. Intell. Syst., vol. 28, no. 5,
pp. 436–452, May 2013.

[9] B. Sarkar and A. Biswas, ‘‘A unified method for Pythagorean fuzzy
multicriteria group decision-making using entropy measure, linear pro-
gramming and extended technique for ordering preference by similar-
ity to ideal solution,’’ Soft Comput., vol. 24, no. 7, pp. 5333–5344,
Apr. 2020.

[10] M. Saqlain, P. Kumam,W. Kumam, and S. Phiangsungnoen, ‘‘Proportional
distribution based Pythagorean fuzzy fairly aggregation operators with
multi-criteria decision-making,’’ IEEE Access, vol. 11, pp. 72209–72226,
2023.

[11] R. R. Yager, ‘‘Generalized orthopair fuzzy sets,’’ IEEE Trans. Fuzzy Syst.,
vol. 25, no. 5, pp. 1222–1230, Oct. 2017.

[12] R. R. Yager, N. Alajlan, and Y. Bazi, ‘‘Aspects of generalized orthopair
fuzzy sets,’’ Int. J. Intell. Syst., vol. 33, no. 11, pp. 2154–2174,
Nov. 2018.

[13] K. Bai, D. Jia, W. Meng, and X. He, ‘‘Q-rung orthopair fuzzy Petri
nets for knowledge representation and reasoning,’’ IEEE Access, vol. 11,
pp. 93560–93573, 2023.

[14] Y. Qin, Q. Qi, P. J. Scott, and X. Jiang, ‘‘Multiple criteria decision making
based onweighted Archimedean power partitioned Bonferroni aggregation
operators of generalised orthopair membership grades,’’ Soft Comput.,
vol. 24, no. 16, pp. 12329–12355, Aug. 2020.

[15] D. Ramot, R. Milo, M. Friedman, and A. Kandel, ‘‘Complex fuzzy sets,’’
IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 171–186, Apr. 2002.

[16] A. J. S. Alkouri and A. R. Salleh, ‘‘Complex intuitionistic fuzzy sets,’’ in
Proc. AIP Conf., 2012, pp. 464–470.

[17] K. Ullah, T. Mahmood, Z. Ali, and N. Jan, ‘‘On some distance mea-
sures of complex Pythagorean fuzzy sets and their applications in
pattern recognition,’’ Complex Intell. Syst., vol. 6, no. 1, pp. 15–27,
Apr. 2020.

[18] M. Akram and S. Naz, ‘‘A novel decision-making approach under complex
Pythagorean fuzzy environment,’’ Math. Comput. Appl., vol. 24, no. 3,
pp. 1–13, Jul. 2019.

[19] P. Liu, T. Mahmood, and Z. Ali, ‘‘Complex q-rung orthopair fuzzy aggre-
gation operators and their applications in multi-attribute group decision
making,’’ Information, vol. 11, no. 1, p. 5, Dec. 2019.

VOLUME 11, 2023 139573



Z. Ali et al.: WBAOs on CQRO2-TLVs With Application to GSCM

[20] Z. Ali, T. Mahmood, J. Gwak, and N. Jan, ‘‘A novel extended Por-
tuguese of interactive and multi-criteria decision making and Archimedean
Bonferroni mean operators based on prospect theory to select green sup-
plier with complex q-rung orthopair fuzzy information,’’ CAAI Trans.
Intell. Technol., vol. 8, no. 1, pp. 177–191, Mar. 2023.

[21] W. Ren, Y. Du, R. Sun, and Y. Du, ‘‘Development of complex cubic
q-rung orthopair fuzzy aggregation operators and their application in
group decision-making,’’ J. Math. Anal. Appl., vol. 519, no. 2, Mar. 2023,
Art. no. 126848.

[22] L. A. Zadeh, ‘‘The concept of a linguistic variable and its application to
approximate reasoning-III,’’ Inf. Sci., vol. 9, no. 1, pp. 43–80, Jan. 1975.

[23] M. Delgado, J. L. Verdegay, and M. A. Vila, ‘‘On aggregation operations
of linguistic labels,’’ Int. J. Intell. Syst., vol. 8, no. 3, pp. 351–370, 1993.

[24] Y. Dong, Y. Xu, and S. Yu, ‘‘Computing the numerical scale of the
linguistic term set for the 2-Tuple fuzzy linguistic representation model,’’
IEEE Trans. Fuzzy Syst., vol. 17, no. 6, pp. 1366–1378, Dec. 2009.

[25] F. Herrera and L. Martinez, ‘‘The 2-tuple linguistic computational model:
Advantages of its linguistic description, accuracy and consistency,’’ Int. J.
Uncertainty, Fuzziness Knowl.-Based Syst., vol. 9, pp. 33–48, Sep. 2001.

[26] L. Martinez and F. Herrera, ‘‘A 2-tuple fuzzy linguistic representation
model for computing with words,’’ IEEE Trans. Fuzzy Syst., vol. 8, no. 6,
pp. 746–752, 2000.

[27] P. Liu and S.-M. Chen, ‘‘Multiattribute group decision making based
on intuitionistic 2-tuple linguistic information,’’ Inf. Sci., vols. 430–431,
pp. 599–619, Mar. 2018.

[28] G. Wei, M. Lu, F. E. Alsaadi, T. Hayat, and A. Alsaedi, ‘‘Pythagorean
2-tuple linguistic aggregation operators in multiple attribute decision mak-
ing,’’ J. Intell. Fuzzy Syst., vol. 33, no. 2, pp. 1129–1142, Jul. 2017.

[29] Y. Ju, A. Wang, J. Ma, H. Gao, and E. D. R. Santibanez Gonzalez, ‘‘Some
q-rung orthopair fuzzy 2-tuple linguistic Muirhead mean aggregation oper-
ators and their applications to multiple-attribute group decision making,’’
Int. J. Intell. Syst., vol. 35, no. 1, pp. 184–213, Jan. 2020.

[30] C. Bonferroni, ‘‘Sulle medie multiple di potenze,’’ Bolletino dell’Unione
Matematica Italiana, vol. 5, nos. 3–4, pp. 267–270, 1950.

[31] D. Liang, Y. Zhang, Z. Xu, and A. P. Darko, ‘‘Pythagorean fuzzy
Bonferroni mean aggregation operator and its accelerative calculating
algorithm with the multithreading,’’ Int. J. Intell. Syst., vol. 33, no. 3,
pp. 615–633, Mar. 2018.

[32] X. Tang, Y. Huang, and G. Wei, ‘‘Approaches to multiple-attribute
decision-making based on Pythagorean 2-tuple linguistic Bonferroni mean
operators,’’ Algorithms, vol. 11, no. 1, p. 5, Jan. 2018.

[33] M.-S. Yang, Z. Ali, and T. Mahmood, ‘‘Complex q-rung orthopair uncer-
tain linguistic partitioned Bonferroni mean operators with application in
antivirus mask selection,’’ Symmetry, vol. 13, no. 2, p. 249, Feb. 2021.

[34] S. Ashley, ‘‘Designing for the environment,’’ Mech. Eng., vol. 115, no. 3,
pp. 5–52, 1993.

[35] L. W. Jelinski, T. E. Graedel, W. D. Laudise, D. W. McCall, and K. N.
Patel, ‘‘Industrial ecology: Concepts and approaches,’’ Proc. Nat. Acad.
Sci. USA, vol. 89, pp. 793–797, Feb. 1996.

[36] J. Sarkis, ‘‘A strategic decision framework for green supply chain manage-
ment,’’ J. Cleaner Prod., vol. 11, no. 4, pp. 397–409, Jun. 2003.

[37] S. K. Srivastava, ‘‘Green supply-chain management: A state-of-the-art
literature review,’’ Int. J. Manage. Rev., vol. 9, no. 1, pp. 53–80, Mar. 2007.

[38] A.A. Zaid, A.A.M. Jaaron, andA. Talib Bon, ‘‘The impact of green human
resource management and green supply chain management practices on
sustainable performance: An empirical study,’’ J. Cleaner Prod., vol. 204,
pp. 965–979, Dec. 2018.

[39] H. Gao, Y. Ju, E. D. R. Santibanez Gonzalez, and W. Zhang, ‘‘Green
supplier selection in electronics manufacturing: An approach based on
consensus decision making,’’ J. Cleaner Prod., vol. 245, Feb. 2020,
Art. no. 118781.

[40] J. Wang, H. Gao, G. Wei, and Y. Wei, ‘‘Methods for multiple-attribute
group decision making with q-rung interval-valued orthopair fuzzy infor-
mation and their applications to the selection of green suppliers,’’
Symmetry, vol. 11, no. 1, p. 56, Jan. 2019.

[41] R. Krishankumar, Y. Gowtham, I. Ahmed, K. S. Ravichandran, and S. Kar,
‘‘Solving green supplier selection problem using q-rung orthopair fuzzy-
based decision framework with unknown weight information,’’ Appl. Soft
Comput., vol. 94, Sep. 2020, Art. no. 106431.

[42] M. Riaz, D. Pamucar, H. M. Athar Farid, and M. R. Hashmi, ‘‘Q-rung
orthopair fuzzy prioritized aggregation operators and their application
towards green supplier chain management,’’ Symmetry, vol. 12, no. 6,
p. 976, Jun. 2020.

[43] R. M. Zulqarnain, X. L. Xin, H. Garg, and W. A. Khan, ‘‘Aggrega-
tion operators of Pythagorean fuzzy soft sets with their application for
green supplier chain management,’’ J. Intell. Fuzzy Syst., vol. 40, no. 3,
pp. 5545–5563, Mar. 2021.

[44] S. Ashraf, S. Abdullah, T. Mahmood, F. Ghani, and T. Mahmood, ‘‘Spher-
ical fuzzy sets and their applications in multi-attribute decision making
problems,’’ J. Intell. Fuzzy Syst., vol. 36, no. 3, pp. 2829–2844, Mar. 2019.

[45] P. Liu, Q. Khan, T. Mahmood, and N. Hassan, ‘‘T-spherical fuzzy power
Muirhead mean operator based on novel operational laws and their appli-
cation in multi-attribute group decision making,’’ IEEE Access, vol. 7,
pp. 22613–22632, 2019.

[46] M. N. Abid, M.-S. Yang, H. Karamti, K. Ullah, and D. Pamucar, ‘‘Similar-
ity measures based on T-spherical fuzzy information with applications to
pattern recognition and decision making,’’ Symmetry, vol. 14, no. 2, p. 410,
Feb. 2022.

ZEESHAN ALI received the B.S. degree in mathe-
matics from Abdul Wali Khan University Mardan,
Pakistan, in 2016, and the M.S. degree in math-
ematics from International Islamic University
Islamabad, Pakistan, in 2018, where he is currently
pursuing the Ph.D. degree in mathematics. He has
published more than 100 articles in reputed jour-
nals. His research interests include aggregation
operators, fuzzy logic, and fuzzy decision making
and their applications.

TAHIR MAHMOOD received the Ph.D. degree
in mathematics from Quaid-i-Azam University,
Islamabad, Pakistan, in 2012. He is currently
an Assistant Professor in mathematics with the
Department of Mathematics and Statistics, Inter-
national Islamic University Islamabad, Pakistan.
He has published more than 190 international
publications and he has also produced more
than 45 M.S. students and six Ph.D. students.
His research interests include algebraic structures,

fuzzy algebraic structures, and soft sets and their generalizations.

MIIN-SHEN YANG received the B.S. degree in
mathematics from Chung Yuan Christian Univer-
sity, Taoyuan, Taiwan, in 1977, the M.S. degree
in applied mathematics from National Chiao Tung
University, Hsinchu, Taiwan, in 1980, and the
Ph.D. degree in statistics from the University of
South Carolina, Columbia, USA, in 1989. In 1989,
he joined as a Faculty Member of the Department
of Mathematics, Chung Yuan Christian University
(CYCU), as an Associate Professor, where he has

been a Professor, since 1994. From 1997 to 1998, he was a Visiting Professor
with the Department of Industrial Engineering, University of Washington,
Seattle, USA. From 2001 to 2005, he was the Chairperson of the Department
of Applied Mathematics, CYCU. Since 2012, he has been a Distinguished
Professor of the Department of Applied Mathematics. He was the Director
of Chaplain’s Office and the Dean of the College of Science, CYCU. His
research interests include applications of statistics, fuzzy clustering, soft
computing, pattern recognition, and machine learning. He was an Associate
Editor of IEEE TRANSACTIONSON FUZZY SYSTEMS, from 2005 to 2011, and is an
Editorial Board Member of the Computer Science and Engineering Section
in the journal Electronics (MDPI).

139574 VOLUME 11, 2023


