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ABSTRACT The occurrence of cracks in brown rice kernels has a substantial impact on grain quality. The
timely and accurate detection of rice grains with cracks is crucial for enhancing the overall quality and
flavor of processed rice. In this study, we developed an optical observation platform and optimized the
original ResNet-18 neural network structure to improve the detection and classification of grain cracks.
We established image datasets for japonica and indica rice varieties, and employed image augmentation and
model migration techniques during training. In addition, we compared the performance of the optimized
model with DenseNet-121 and GoogLeNet. The results demonstrate a notable enhancement in crack
detection accuracy for japonica, reaching 96%, which is a 3.67% improvement over the original model.
Furthermore, we achieved a substantial reduction in average training time, reduced by 58.66%. For indica
rice, after model optimization and migration, the accuracy reached 96.67%. It’s important to note that the
optimized model has limitations and is not suitable for mixed datasets with limited training data. This
technology offers the capability to accurately identify and detect cracks in brown rice kernels under visible
light conditions, presenting a promising solution for enhancing grain quality during processing.

INDEX TERMS Brown rice kernel, crack detection, image processing, model migration, ResNet-18.

I. INTRODUCTION
Rice is a staple food consumed by more than three billion
people worldwide and is an important source of energy,
protein, fat, and vitamins [1]. Before rice can be consumed
it must undergo standardized processing, including shucking,
milling, and polishing. The husk is removed to obtain brown
rice kernel, which consists of bran, endosperm, and embryo,
and white rice is obtained when the bran is properly milled
[2]. During processing, the brown rice kernel is affected
by various mechanical forces, resulting in crack formation
inside the grain, which reduces white rice quality and affects
the classification of marketing grades, which is avoided [3].
The effective identification of cracks in rice grains will
help further expand the use and economic value of rice
grains in actual processing and production. For example,
refining the grain removes bran (combined with germ) from
brown rice, but as a byproduct of grain processing, the
bran is also a product of nutritional value to humans [4].
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Crack detection was used to screen lower-value brown rice
with cracks in advance during grain processing. The use of
brown rice to extract by-products can provide a processing
channel with lower cost but the same yield [5]. Therefore,
the detection of cracked brown rice kernels during processing
is a significant factor in optimizing grade classification and
improving palatability.

In the field of detecting and classifying small agricultural
products, such as grains and seeds, machine vision has many
significant advantages, such as fast identification speed,
high accuracy, and non-destructive testing. For example,
migration training based on the ResNet-18 network was
used to classify and detect camellia sinensis seeds, and final
identification accuracy reached 96.21% [6]. After adding
a multiscale feature extraction module to optimize the
ResNet-18 network, the model’s identification accuracy for
soybean varieties was higher, at 97.36% [7]. In particular,
the ResNet-18 network may be advantageous for crack
detection. It is of reference significance to use three data
recognition networks, which are mainly used in large
databases, AlexNet, ResNet-18, and SqueezeNet, to classify
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4333 road crack images with eight different categories. The
results showed that the recognition accuracy of the ResNet-
18 network was the highest at 85.20% [8], [9]. In addition,
AlexNet, VGGNet-13, and ResNet-18 have been used to
detect and classify crack images in other tasks, and ResNet-
18 produced the most satisfactory recognition effect [10].
The application of deep learning can further improve the
intelligence, stability, and economy of automation systems in
agricultural production management. For example, machine
vision technology can be used to classify multiple rice
varieties [11], [12], [13]. In other practical applications, such
as rice grain type identification, crop and weed identification,
and marble crack detection, the residual network represented
by ResNet-18 and its variants has certain advantages in
detection and recognition tasks [14], [15], [16]. Furthermore,
in the application object, convolutional neural networks
(CNN) have outstanding applications in the classification and
damage detection of rice grains. The R-CNN can be used
to locate and classify rice grains, and the model exhibits
excellent performance [17]. A machine vision system based
on the Deep-CNN model was designed and applied to high-
magnification milled rice images, and the main task was
to divide the damage of milled rice into seven categories.
Finally, five different Deep-CNN models were developed,
and the average individual classification accuracy was
above 95% [18].

In the field of general detection, the model with a good
detection effect may be large in volume and have many
parameters; the model learning efficiency is low and the
time is long. Therefore, the models are driven to optimize,
which is expected to have shorter learning times and higher
recognition accuracy in a single field. The model functions
were refined, such as the detection of crack defects, color
defects, or positioning. How can the model be dedicated to a
task using the optimized original ResNet-18 as an example?
Many optimization methods already exist, roughly two types
of optimization methods. One type was to improve a certain
attribute of the residual network by combining it with
other characteristic modules. For example, ResNet with the
CBAM module and ResNet-18 with random clipping could
be designed, both of which lightly improved the classification
accuracy for apple leaf disease [19]. The average recognition
accuracy of wheat quality was improved by combining the
residual network with an Attention Mechanism [20]. The
second is to change the model structure of the residual
network and fine-tune the layer structure of the neural
network. The ResNet-18 network large convolution kernel
was decomposed, effectively improving the detailed and
image features that were extracted more fully [21]. The 3D
convolutional layer was used in the ResNet-18 network to
learn spectral derivatives which cannot be learned by the
2D convolutional layer, and (1 × 1) 2D convolution layer
was applied to reduce the sampling of data dimensions,
enabling the ResNet-18 network to perform more accurate
regression analysis [20]. The model improvement method of
this experiment should integrate the advantages of the above

two methods, mainly to adjust the model structure while
adding newmodules, especially the connection of the old and
new modules.

In this study, japonica and indica rice datasets were
created for model training and testing. The conventional
neural network model ResNet-18 was chosen, the NiN
block before the residual network was added to reduce the
model size parameter, and the discard layer suppression
parameter afterward was added to reduce the chance of
overfitting. In addition, based on the training of a single
variety of brown rice kernels, mixed brown rice seed
crack detection tests were used to explore the applicability
and reliability of the optimized model. Meanwhile, during
the three experiments (single variety japonica rice crack
detection, indica rice crack detection base on migration,
and mixed dataset test), four models (original ResNet-
18, optimized ResNet-18, DenseNet-121, and GoogLeNet)
were used to test and compare the model learning
effects.

II. MATERIALS AND METHODS
A. BROWN RICE KERNEL OBTAINED
In the study, two typical rice samples were selected
(purchased at location farmer’s market in November 2022):
Nanjing 5055 (short japonica rice) and Guiyu 11 (long
indica rice), providing clear dimensions variability for the
establishment of the training dataset [22]. Before the test, the
rice hull was stripped to obtain the brown rice kernel, and
kernels with a full body and no fracture were selected as the
training samples.

B. PREPARING THE KERNEL WITH CRACK
The internal factors contributing to crack formation in brown
rice kernels are the structure, rice composition, and humidity
[23]. External factors include moisture and temperature.
During milling, brown rice kernels are exposed to high levels
of heat and pressure, resulting in stress gradient differences
within the kernel. This stress causes cracks to form in areas
with high stress, resulting in visible cracks that expand
and ultimately fracture. The crack dimension and depth are
affected by the moisture content inside the kernel. Therefore,
based on the above principle, kernel samples with cracks can
be artificially produced.

An adequate amount of brown rice kernel was placed in a
glass vessel with pure water, soaking for 30 min, after which
the kernels were removed and left to stand. After 5 min,
it can be observed that the soaked kernels gradually started
to present obvious cracks, and then they were collected as
training samples, which is shown in Figure 1.

C. IMAGE COLLECTIONS SYSTEM
To better photograph the brown rice kernel with crack,
a shooting platform was built based on the light transmission
principle. Figure 2 shows a schematic of the brown rice
grain image-collection system. The system is composed of
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FIGURE 1. The crack formation process within brown rice kernels.

an enclosed metal support frame, glass panel, light source,
white paper, industrial camera (model: MV-CA060-10GC),
a camera bracket, computer, and transmission data lines.
During shooting, the light source was placed inside a closed
support frame, and light passed through the white paper and
acted on the kernel, causing the internal crack to be presented
(wave-particle duality), kernel images with the crack were
obtained by an industrial camera (Hangzhou Hikvision
Digital Technology Co., Ltd., China) located directly above.
The finished pictures were sent to the computer for saving
through the image acquisition channel, and the subsequent
image processing was performed.

The causes of crack in rice under light conditions
were briefly described. Faults are formed in the structural
weaknesses of rice grain because of uneven stress dislocation
that occurs on the surface and inside in the process of rice
grain volume change, under the effect of external impact or
thermal expansion and contraction. Therefore, it is difficult
for light to propagate in the direction perpendicular to the
section when light travels, which will produce a brightness
fault that is similar to the performance of cracks.

FIGURE 2. Brown rice kernel image acquisition system.

D. BUILD THE KERNEL DATASET
An image with brown rice kernels has flaws, including pixels,
redundant information, and an abnormal aspect ratio, which
need to be processed and added with the corresponding
label before becoming the dataset [24]. After obtaining the
source images of the rice grains, pre-processing operations
were performed, which included two fundamental steps:
cropping and resizing. Precise cropping was employed to
remove irrelevant background elements from the source
pictures effectively, resulting in uniformly cropped square
images with dimensions of 512× 512 pixels. Before feeding
the images into the network, they were scaled to fit the
dimensions of the network. Using the ‘‘resize’’ function
in the PIL library, an image processing library in Python,

the nearest-neighbor interpolation method was employed to
resize the image pixel dimensions to 256 × 256 pixels. The
images in the dataset were color images and the data type was
256×256×3. The images were manually checked for cracks,
and when the overall brightness of the brown rice grains was
consistent, no cracks were observed. When there are two or
more areas with significantly different brightness values, the
brown rice grains are considered to have cracks. A CSV file
was then created, including serial numbers (image No.) and
labels (intact kernels labeled as 0, kernels with cracks labeled
as 1) to build a complete dataset. The schematic of the brown
rice kernel dataset is shown in Figure 3.

FIGURE 3. The dataset: (A) Japonica; (B) Indica.

Finally, two datasets were created: japonica rice and
indica rice. The training set of the japonica rice dataset
contained 1000 images, consisting of 497 images without
cracks and 503 images with cracks. The ratio was close to
1: 1 and the distribution was even. The test dataset contained
300 images, with 104 images lacking cracks and 196 images
with cracks. For the indica rice training dataset, there were a
total of 300 images, comprising 148 images without cracks
and 152 images with cracks. The test dataset consisted of
150 images with 55 crack-free and 95 image cracks. The test
sets of both japonica and indica rice were divided into three
groups (A, B, and C), but their amounts and compositions
were different. The test set for the japonica rice experiment
comprised 100 images of japonica rice per group, and the test
set for the indica rice migration test comprised 50 images for
each group of indica rice. The test set for the mixed rice test
consisted of 100 images per group, including 50 images of
japonica rice and 50 images of indica rice.

III. NETWORK OPTIMIZATION AND MODEL
PRE-TRAINING
A. ResNet-18, DenseNet-121 AND GoogLeNet
A residual Network is one of the convolutional neural
networks, increasing network depth and restraining training
error reverse increases in network characteristics, which can
solve the problem of gradient disappearing and network
degradation during the deep learning process (the residual
block is the base block of the residual network, which is
the link to realize input data propagation across the data
layer, training an effective deep neural network). Meanwhile,
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in the actual training process, residual mapping is easier to
optimize. When the target mapping learned by the model
is close to the identity mapping, subtle changes in identity
mapping are better captured by the residual mapping.

The optimized object of this experiment was the original
ResNet-18, which consisted of four modules composed
of residual blocks. Each residual block has four main
convolution layers, together with the convolutional layer at
the beginning of the model and the fully connected layer at
the end for classification, there are 18 layers in total, namely
ResNet-18 [25].

DenseNet-121 and GoogLeNet were used to compare
and validate the model optimization effect. DenseNet-
121, GoogLeNet, and ResNet-18, all three are classic
convolutional neural networks originally designed for image
classification and classification tasks and play an important
role in deep learning research and applications. DenseNet-
121, GoogLeNet as a comparison model, and ResNet-18
have both similarities and differences, which highlights the
advantages of the optimization model.

The DenseNet-121 network consists of 121 layers in total
and comprises multiple dense blocks, transition layers, and
a final output layer [26]. DenseNet-121 and ResNet have
similarities, such as using skip connections to improve the
flow of information through the network to avoid the problem
of gradient disappearance, but differ in their approach to
information flow and parameter sharing within the network.
ResNet directly sums inputs and outputs, whereas DenseNet-
121 connects inputs and outputs in the channel dimension.
A comparison of the training results of DenseNet-121 and
ResNet-18 showed the role and advantages of the residual
network in rice crack detection.

GoogLeNet, also known as Inception v1, consists of
22 layers in total [27]. GoogLeNet is characterized by its use
of Inception modules that allow networks to learn features
at multiple scales and auxiliary classifiers that are used
to mitigate the problem of vanishing gradients and global
average pooling. Both GoogLeNet and NiN were designed
to reduce the number of parameters in the model without
sacrificing performance using 1 × 1 convolutional layers
as a means of dimensionality reduction. ResNet and NiN
modules were the main components of the optimized model.
A comparison of the training results of GoogLeNet and
ResNet-18 can further demonstrate the role of the NiN
module in the optimization model and whether it affects the
recognition accuracy of the residual network.

B. OPTIMIZED MODEL STRUCTURE
Figure 4 shows the model structure of the optimized ResNet-
18 neural network. After coloring brown rice kernel images
with 256 × 256 × 3 enter the optimized model, the batch
normalization and activation function are used to enhance
the gradient in data backpropagation, and the NiN block
and max-pooling layer can better achieve the information
transmission (NiN block is the basic block for constructing

the network (NiN), which is composed of a common
convolutional layer and a 1 × 1 convolutional layer similar
to fully connected layers, reducing the parameter size of
the optimized model and overfitting phenomenon during the
learning) [28], [29]. Meanwhile, the data dimension was
gradually increased in the ResNet block, and 20% of the data
were randomly discarded in the dropout layer, suppressing
further overfitting phenomena easily occurring in the residual
network. Then, all channel elements are averaged in the
global average pooling layer, which is used directly for
classification, which finally outputs a two-dimensional array
representing the samples and features by a fully connected
layer.

FIGURE 4. The structure of the optimized ResNet-18 model.

C. IMAGE AUGMENTATION
Image augmentation is a method of image preprocessing,
producing similar but not identical training samples by
randomly changing to training images, and it can transform
data type without changing the image’s label, increasing
the size and variety of training datasets labeled to improve
learning affection [30]. Meanwhile, the method is also
an implicit regularization technique and can reduce the
appearance of overfitting, improving model performance and
generalization ability. In this study, image augmentation-
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specific methods include random flip, brightness change,
cropping, and tint change. Part of the image augmentation
results of the brown rice kernel image are shown in Figure 5.
When performing image augmentation, resizing allows the
model to learn the features of rice grains with different shapes
and sizes. Flipping is beneficial for the model to learn both
sides of a single rice grain with cracks. Variations in lighting
and color temperature can help mitigate the impact of image
quality fluctuations caused by changes in lighting conditions.

FIGURE 5. Schematic diagram of image augmentation of brown rice
kernel image.

D. PERFORMANCE MEASURE INDICATOR
The performance measure (PM) is an evaluation indicator for
the deep learning model’s effectiveness, reflecting the degree
of difference between the model prediction and the actual
data set, and task-wide work is guided by PM, including
training number, model structure, and hyperparameter (PM
is not equivalent to the loss function of the training model
in the test). In addition, during the test, it was noted that
the optimized model task is the detection and classification
of brown rice kernels with cracks, indicating that the model
detection accuracy is a critical indicator.

The accuracy rate calculation equation is:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(1)

where TP is the true positive number, FN is the false negative
number, TN is the true negative number and FP is the false
positive number during the training.

The PR curve is the precision (P) and recall (R), and their
calculation equation is as follows:

P =
TP

(TP+ FP)
(2)

where the denominator is the total number of positive samples
in the predicted results, including those predicted correctly
and incorrectly.

R =
TP

(TP+ FN )
(3)

where the denominator is actual positive sample number.

E. PRE-TRAINING OF NETWORK MODELS
The control variable method was adopted to optimize the
critical hyperparameters, including the learning rate and
learning rate attenuation coefficient, and 100 images with
japonica rice and 20 images with tested rice were pre-tested.
Hyperparameters refer to parameters that are not learned
during the training process but need to be manually set before
training. These parameters are used to control the behavior
and performance of the model, rather than being directly
learned from the training data. The selection and adjustment
of hyperparameters are crucial for the model’s performance
and generalization ability.

During training, the batch size was 10, the total number
of training batches was 40, and the learning rate decayed
to a certain value after each 10 training batches. The
hyperparameter value was determined by related curves,
including the loss function, training accuracy, and precision-
recall (PR). After the convergence, average loss values and
training accuracy of the last five training batches were used
to quantify the learning effect of different hyperparameters;
the results of pre-training are shown in Figure 6.

FIGURE 6. Small batch pre-test results.

Before the test, based on the pre-test results, the optimiza-
tion method SGD (Stochastic Gradient Descent) was chosen,
the momentum parameter was set to 0.5, the learning rate was
set to 0.08, the decay rate was set to 0.5, the batch size was
25, and the number of iterations was 80.

IV. MODEL TRAINING RESULTS AND DISCUSSION
A. JAPONICA RICE KERNEL TEST AND ANALYSIS
Then, the dataset with 1000 japonica rice images was used
as the training model, and the training curves of four types
of models (original ResNet-18 network, optimized ResNet-
18, DenseNet-121, and GoogLeNet) are shown in Figure 7,
including the loss function, accuracy curves, average training
time and PR curves.
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FIGURE 7. Loss function, accuracy curves, average training time, and PR
curves.

After model training, 100 japonica rice images in the test
set of Group A were used for testing, including 48 crack
images and 52 uncracked images. The test results of the
four models are shown in Figure 8. The optimized network
model test results indicated an increased recognition accuracy
of 6% and an optimized model accuracy of up to 98%,
while the original model has only 92% detection accuracy.
Based on the model training accuracy curves, the training
accuracy of the twomodels is approximately 96%. Therefore,
the original network appeared to be overfitted and the
optimized network reflected better learning results. The loss
function and training accuracy curves of DenseNet-121 and
GoogLeNet tended to converge with minimal training time
determined by the model structure. However, the training
results were worse than those of the residual network, the
loss function was too high, and the training accuracy was
too low.

FIGURE 8. Test results of the four models in three experiments (japonica
rice crack detection, indica rice crack detection based on migration, and
mixed dataset test) by using Group A test set.

Furthermore, on training time for one epoch, the original
model’s average training time was 0.05108 s and the
optimized time was 0.02128 s, indicating that the optimized
ResNet-18 model presents significant advantages, which
can be explained from the perspective of data dimension
monitoring changes. In the original Res-18 model, the data
passes through a 3 × 3 convolutional layer and batch
normalization layer before entering themain residual network
with dimensions (1, 64, 256, 256). In the optimized ResNet-
18 model, the data passes through the added NiN block and
the max-pooling before entering, the data dimension is (1, 64,
128, 128), and the data to be processed is reduced by 75% in
the main residual network.

In the NiN block, a two-dimensional convolutional layer
can reduce the input data size when entering themain residual
network, ensuring algorithm advantage and improving the
training speed under reduced data conditions. In the model,
the NiN block influences convolutional layers, causing the
perceptual vision to become extensive (input data reduction
does not equal the loss of vast information features).
In addition, note that the dropout layer can suppress the
overfitting phenomenon after optimizing the ResNet-18
model, ensuring the consistency of the model training and
test results. The advantage of optimizing the model was
not only that the reduction of training parameters led to an
increase in model training speed, but also the reduction of
model training hardware requirements.When trainingwith an
Nvidia Tesla T4 (16GB) graphics card, the optimized model
requires 5.4GB video memory, while the original model
requires 10.1GB video memory. The advantages of using
optimization models were significant.

B. INDICA RICE KERNEL TEST BASED ON MODEL
MIGRATION
The long indica rice dimension presents obvious differences
from japonica, and the normal crack model building method
requires 1000 indica images for retraining, resulting in
resource waste. Under small-batch indica image conditions,
the model migration work can exploit the universal knowl-
edge on crack identification, satisfying further training model
can match the crack classification on indica rice.

Therefore, the fine-tuning method frommigration learning
was used to implement the model migration task, all design
parameters in the japonica crack detection model were
replicated, and new data were re-added (indica images).
In contrast to the model migration test for cross-category
recognition, which was quite different, the rice crack images
identified before and after this migration test are highly sim-
ilar in their characteristics. As a result, the hyperparameter
settings of the model trained on japonica rice images are
equally applicable to the migration experiment involving
indica rice images. For the indica rice migration experiment,
only the number of training iterations was adjusted to match
the smaller quantity of indica rice images, whereas the
model’s internal weights were inherited from the japonica
rice image experiment. During migration training, the model
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learns from the newly added indica rice images and fine-
tunes its internal weights to adapt to the new indica rice crack
detection task. In training, indica rice training dataset 300 and
test 50 (indica test set in group A test set) were used, and the
focus of the model migration task was on optimized ResNet-
18.

Themodel migration training curves are shown in Figure 9.
The curve information indicates that the optimizedResNet-18
network satisfies the detecting crack task, and the advantage
of short training time is retained. After fine-tuning the
optimized ResNet-18 model, the results indicate that the
classification test model accuracy was 96% for indica rice
crack. The accuracies of DenseNet-121 and GoogLeNet in
detecting cracks were slightly improved, but the final results
were still worse than those of the residual network. The
migration test results of four models are shown in Figure 8.

FIGURE 9. Migration training curves for four models.

C. BROWN RICE KERNEL MIXING TEST
Reducing the model parameter size can improve the learning
time; however, the reliability and applicability of this opti-
mization strategy need to be further investigated. Therefore,
in this study work, the mixed dataset of japonica and indica
rice kernels was constructed. The training dataset contained
600 images and the test set contained 100 images (mixed rice
grains in the group A test set), and two kernels each in half.
The momentum parameter was set to 0.5, the learning rate
was set to 0.08, the learning attenuation coefficient was set to
0.5, the batch size was 25, and 72 iterations were performed.

Figure 10 shows the training curves of the mixed-model
dataset. The curve information indicates that the training loss
function and accuracy of the optimized model are better than
those of the original, test result pretends a disadvantage (the
original model detection accuracy is 96% and the optimized
is 86%), indicating that the optimized model is more prone to
overfitting for the same number of training sessions.

The test results of the four models on the mixed rice
grain dataset are shown in Figure 8. The training and test

FIGURE 10. Mixed data set training curves.

results of the optimized and original models can be explained
from the perspective of model capacity. First, model capacity
refers to a model’s ability to fit various functions, measuring
the amount of information or complexity that the model
can represent and learn. With the addition of the NiN
module, the optimized model introduces additional non-
linear operations and parameters, thereby increasing the
representational capacity of the model compared to the orig-
inal residual model. Overfitting can occur when the model’s
capacity becomes too large relative to the limited training
data. By analyzing the training curves in conjunction with
the mixed dataset, the results indicate that the optimized
model exhibits severe overfitting. The original model had a
relatively small capacity and was more suitable for situations
with less training data (a mixed dataset of 600 images in
total); therefore, the overfitting phenomenon was relatively
mild. It is worth noting that in the mixed rice grain data set,
both the optimized model and the original model suffered
from overfitting, but to different extents.

D. MULTI-DATASET TRAINING RESULTS BEFORE AND
AFTER ResNet-18 MODEL OPTIMIZATION
In the test set data of Group A, the recognition characteristics
of the rice grain cracks by the four models have been
obtained. Compared with the residual network, DenseNet-
121 and GoogLeNet have no advantages, and the gap is large.
In the Res-18 model before and after optimization, although
there are basic results on the recognition accuracy of the three
test sets, to reduce experimental errors, two sets of B and C
training sets were chosen specifically for the models before
and after optimization. The number and composition of the
test sets of Groups B and C were the same as those of Group
A, and the test results are listed in Table 1.

In the japonica rice data set, indica, and mixed data set,
the average test accuracy rates of the optimized model were
96%, 96.67%, and 84%, respectively, and the average test
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TABLE 1. Recognition accuracy of ResNet-18 in each training set before
and after optimization.

accuracy rates of the original model were 92.33%, 96.67%,
and 92%, respectively. Regardless of whether it was the
original ResNet-18 neural network or the optimized model,
there was a significant difference in the recognition accuracy
of ground rice without basic pre-training parameters.

The results of the japonica rice test and the indica rice
migration test can also be further explained based on changes
in model capacity. In the test to identify cracks in japonica
rice, the capacity of the original model was relatively low.
Under the same training conditions (1,000 images of japonica
rice), the model tended to oversimplify the representation
of the data and did not fully capture the feature structure.
Therefore, the training accuracy and recall rate of the training
results of the original model were slightly lower than those
of the optimized model, and the test set recognition accuracy
was also 2∼6% lower than that of the optimized model.

After the model before and after optimization learned
through 1,000 images of japonica rice and migration learning
of 300 images of indica rice, sufficient training data allowed
the two models with different capacities to achieve a balance
in their ability to identify rice grain cracks and obtain the
best performance. With the increase of training data, the
model canmore easily capture the characteristics of rice grain
cracks, which also reduces the impact of model capacity on
the learning effect. Therefore, in the test set of the migration
experiment, the test results of the optimized and original
models were consistent. In summary, the optimization model
is not suitable for mixed rice experiments with less training
data. The optimization model requires more training data to
realize the potential and advantages of the model.

E. SUMMARY AND DISCUSSION
The optimized model with the NiN module significantly
reduces the average training time, resulting in a remarkable
decrease of 58.66%. The reduction in training time can
further save labor costs and hardware resources required for
training, and improve detection efficiency. With relatively
sufficient training data, the optimized model can reach
the training equilibrium state faster and obtain the best
performance, with a recognition accuracy of more than 96%,

which is better than the original ResNet-18 model. The
improvement in crack detection accuracy can help reduce the
loss rate of rice grains during large-scale rice processing and
improve the use efficiency of intact rice grains.

In mixed-grain experiments with limited training data,
the optimized model exhibits lower accuracy. However,
as the volume of training data increases, the accuracy of
the optimized model is similar to that of the original model.
The higher training speed highlights the advantages of the
optimized model. A sufficient amount of training data is
essential to fully unlock the potential of the optimized model.

Fast and accurate rice crack detection can reduce the
circulation of defective rice grains and food safety risks.
It can also reduce food waste caused by false alarms. It also
accelerates the rice processing workflow and enhances the
efficiency of rice production and processing. Through the
selection and exclusion of defective grains, this technology
contributes to improving resource utilization efficiency and
reducing negative environmental impacts. It provides higher-
quality, safer, and more efficient rice products.

Looking ahead, it is possible to enhance the detection
of rice grain cracks of different types and varying degrees
by combining multiple image modalities, such as infrared
and ultrasound. Additionally, further development can be
undertaken to create a rice grain crack detection system
suitable for real-time and embedded applications to meet
the fast detection requirements of rice processing production
lines.

V. CONCLUSION
In this study, a shooting platform was built to capture
cracks in brown rice kernels. In the presence of light
illumination, different regions of cracked rice kernels exhibit
varying brightness, thereby enabling the clear detection of
cracks in the rice grains. The experiment provides a low-
cost and high-efficiency method for crack detection in rice
grains, which can be extended to other transparent grain
seeds. The conventional ResNet-18 network was optimized
by adding NiN blocks and adjusting the positions of the
max-pooling and dropout layers to reduce the overfitting
phenomenon in model training. Meanwhile, under the same
training conditions, the optimization strategy can reduce the
model parameter size and maintain effective model training.
This significantly reduces the resources required for model
training. The results indicated that the training time of the
optimized ResNet-18 network was significantly reduced,
and the accuracy of the single-variety kernel crack was
improved. The improvement in rice crack detection accuracy
will help improve the quality of finished rice and reducewaste
caused by misjudgment. The reduction in training time and
improvement in detection speed will help reduce labor costs
in rice processing and improve the efficiency of rice crack
detection. This study provides a promising method to reduce
training time and increase the accuracy of single-species rice
crack detection.
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