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ABSTRACT Recent reports of silent data corruption because of hardware faults in large data centers bring
to the forefront the importance of in-field testing. In-field testing, enabled by logic built-in self-test (LBIST ),
addresses defects that occur during the lifetime of a chip and ones that escaped manufacturing tests. A class
of LBIST approaches for scan circuits store partitioned deterministic test data on-chip and produce tests
by combining stored test data entries in one of two ways: 1) pseudo-random combinations are selected
by linear-feedback shift-registers (LFSRs); or 2) deterministic combinations are stored on-chip as sets of
indices of stored test data entries. This article introduces a third option where counters are used for forming
combinations of stored test data entries. Counters do not require additional storage, and ensure complete
fault coverage with a limited number of tests. Experimental results for benchmark circuits demonstrate the
advantages of counters in the context where test data entries for on-chip storage are obtained by partitioning
compressed deterministic tests, and the universally available on-chip decompression logic is used as part of
the test application process.

INDEX TERMS Full scan design, linear-feedback shift-register (LFSR), logic built-in self-test (LBIST ),
on-chip test generation, test data compression.

I. INTRODUCTION
Logic built-in self-test (LBIST ) is used for in-field testing
during system startup or idle intervals [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24]. LBIST is important
for detecting defects that occur as chips deteriorate because
of aging as well as defects that escaped manufacturing tests.
Recent reports of silent data corruption because of hardware
faults in large data centers [25], [26] stress the need for
in-field testing enabled by LBIST . Silent data corruption
implies that programs produce incorrect results without the
errors being detected. This is possible when the errors affect
the data in ways that do not cause exceptions to occur. For
example, the incorrect data do not result in division by zero or
access to restrictedmemory addresses that would have caused
exceptions to occur. As a result, programs can continue to
execute incorrectly for long periods of time.
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The basis for most LBIST approaches is pseudo-random
tests that can easily be produced on-chip using linear-
feedback shift-registers (LFSRs) [1]. For increased fault
coverage, pseudo-random tests are enhanced by one of
several approaches: controlling the probabilities of 0s and
1s in the applied tests to obtain weighted pseudo-random
tests [1], using bit-flipping or bit-fixing logic to assign
specific values to certain inputs as in [2] or [11], or using
multiple seeds for the LFSR [3]. Test points are also useful in
increasing the fault coverage [1].
LBIST approaches that are based on storage of determin-

istic test data also exist. The stored test data in [7], [15],
and [16] consist of compressed deterministic tests that are
decompressed on-chip using the universally available on-chip
decompression logic. To reduce the number of stored tests,
each stored test is used in [15] and [16] for applying several
different tests to the circuit. Different tests are obtained by
complementing bits of stored or applied tests. The application
of several tests from the same test data is effective not only
for reducing the storage requirements but also for increasing
the fault coverage [27], [28], [29], and it is used in this article
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FIGURE 1. On-chip test generation logic.

as well. In addition to complementing bits of stored test data
or applied tests, other operators are effective in increasing the
fault coverage as discussed later.

The LBIST approaches described in [4], [18], [19], [23],
and [24] store partitioned deterministic test data on-chip.
Tests are formed by combining stored test data entries on-
chip. The large number of options available for combining
test data entries, and the fact that test data entries are derived
from deterministic tests, ensure that high fault coverage can
be achieved.

Partitioning of deterministic tests into scan vectors is
used in [4], [18], [19], and [23]. In [4], all the possible
combinations of the stored test data entries are used for
forming tests. The more recent approaches control the
number of applied tests by combining stored test data entries
in one of two ways. In [18] and [19], pseudo-random
combinations of stored test data entries are selected by
LFSRs. In [18] and [23], deterministic combinations of stored
test data entries are stored on-chip. Each combination is a
set of indices of stored test data entries, indicating which
test data entries should be combined to form a test. The two
approaches for combining test data entries, pseudo-random
and deterministic, may be used exclusively or together. At the
cost of additional storage, deterministic combinations allow
complete fault coverage to be achieved with significantly
reduced numbers of tests compared with pseudo-random
combinations.

This article introduces a third option where counters are
used for forming combinations of stored test data entries.
Counters do not require additional storage. However, they can
ensure that deterministic tests are reproduced from the stored
test data. Thus, complete fault coverage can be achieved with
a limited number of tests.

Experimental results for benchmark circuits demonstrate
the advantages of counters in the context where test data
entries for on-chip storage are obtained by partitioning
compressed deterministic tests. On-chip decompression logic
is used as part of the test application process in this
case as illustrated by Figure 1. The counter-based logic
shown on the left in Figure 1 is the subject of this article.
It produces compressed deterministic tests for the on-chip
decompression logic that produces uncompressed tests for the
circuit-under-test.

Partitioning of compressed deterministic tests was also
used in [24]. However, only LFSRs are used in [24] for form-
ing compressed tests using pseudo-random combinations of
stored test data entries. As a result, a large number of tests
needs to be applied, and the fault coverage is not always
complete. By using counters as suggested in this article,

complete fault coverage is guaranteed, and the number of
tests is reduced. This is achieved in this article without the
storage overhead of deterministic combinations. Both the
fault coverage and the number of applied tests are important
parameters of an LBIST approach. Achieving complete fault
coverage is challenging with on-chip hardware, and it is
common for LBIST approaches to tolerate a fault coverage
loss. Large numbers of applied tests are tolerated to reduce
the fault coverage loss. The counter-based approach does not
require a loss of fault coverage and limits the number of
applied tests. The reports of silent data corruption stress the
importance of these characteristics.

The use of counters requires a new software procedure
for optimizing the stored test data. Such a procedure is
described in this article. The main differences from the
software procedure described in [24] are related to the ability
to achieve complete fault coverage. In [24], a loss of fault
coverage is tolerated when optimizing the stored test data for
pseudo-random combinations.

In summary, the key contribution of this article is to provide
a fundamental improvement to a class of LBIST approaches
where partitioned deterministic test data are stored on-chip,
and tests are produced by combining stored test data entries
on-chip. The number of options available for combining
test data entries, and the fact that they are derived from
deterministic tests, ensure that high fault coverage can be
achieved not only for stuck-at faults, but also for single-cycle
gate-exhaustive faults that are more difficult to detect. Earlier
approaches combined test data entries in one of two ways:
pseudo-randomly, in which case complete fault coverage was
not guaranteed, or deterministically, in which case additional
storage was required. By introducing a third option where
counters are used for forming combinations of stored test
data entries, the article ensures that additional storage is not
required, and yet deterministic tests are reproduced from
the stored test data. Thus, complete fault coverage can be
achieved with a limited number of tests.

This contribution is important under the assumption that
the hardware cost of an LBIST solution is justified by the need
to perform in-field testing. In particular, it is assumed that
storing partitioned deterministic test data entries on-chip is
acceptable to achieve complete single stuck-at fault coverage
as well as a high coverage of single-cycle gate-exhaustive
faults.

The main limitations of the counter-based approach are the
following. (1) Depending on the circuit, the requirement to
achieve complete single stuck-at fault coverage may limit the
reduction possible in the storage requirements relative to a
compressed deterministic test set. (2) The software procedure
requires repeated fault simulation to ensure that no loss of
single stuck-at fault coverage occurs. This is a one-time
computational cost that is required for reducing the stored test
data.

The article is organized as follows. The partitioning of
compressed tests into test data entries for on-chip storage is
discussed in Section II. The on-chip test generation logic is
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TABLE 1. Partitioned seeds.

TABLE 2. Initial set of subvectors.

TABLE 3. Counter-based combinations.

described in Section III. A software procedure for computing
the stored test data is described in Section IV. Experimental
results for benchmark circuits are presented in Section V.
Section VI concludes the article.

II. PARTITIONING OF COMPRESSED TESTS
This section describes how partitioning of compressed tests
into test data entries for on-chip storage is carried out. The set
of test data entries is optimized by the procedure described in
Section IV.

Tests are assumed to be compressed into seeds for an LFSR
that is part of the on-chip decompression logic. For simplicity
of discussion, a test is compressed into a single seed. The
discussion can be extended to the case where several seeds are
used for producing a test. The length of the LFSR is denoted
by L.

A compressed test set Sinit = {s0, s1, . . . , sm−1} consists
of m seeds, from which the on-chip decompression logic
produces m deterministic tests.

For on-chip storage, every seed in Sinit is partitioned into
p subvectors of equal length. The length of a subvector is
denoted by l. The values of p and l are such that p = ⌈L/l⌉,
resulting in p · l ≥ L. When a seed si ∈ Sinit is partitioned
into subvectors, the subvectors are denoted by si,0, si,1, . . .,
si,p−1. If p · l > L, the seeds are padded with unspecified
values such that their length is equal to p · l. When a seed
is partitioned, unspecified values in its last subvector are
specified randomly.

Table 1 shows an example of four 6-bit seeds for an LFSR
of length L = 6. With p = 3 and l = 2, the subvectors of the
partitioned seeds are shown in Table 1.

The subvectors from Sinit are included in a set V that will
be optimized and eventually used for on-chip storage. In [24],
duplicated subvectors from Sinit are avoided in the initial set
V . In this article, all the subvectors from Sinit are initially

included in V such that V = {s0,0, s0,1, . . ., s0,p−1, s1,0,
s1,1, . . ., s1,p−1, . . ., sm−1,0, sm−1,1, . . ., sm−1,p−1}. This is
important for achieving complete fault coverage. For ease
of reference, the subvectors are renumbered such that V =

{v0, v1, . . . , vM−1}, where initially, M = m · p.
The initial set V for the example from Table 1 is shown in

Table 2. With p = 3 subvectors required for forming a seed,
three counters will be used in the example.

In general, p counters are required for forming seeds from
the subvectors in V . The counters are denoted by c0, c1, . . .,
cp−1. The counters will go throughM − p+ 1 combinations
such that 0 ≤ c0 ≤ M − p, and ci+1 = ci + 1 for 0 ≤ i < p−

1. The value of c0 is sufficient for identifying a combination
because of the relation ci+1 = ci + 1 for 0 ≤ i < p− 1. For
0 ≤ c0 ≤ M − p, the seed obtained for c0 is denoted by σc0 ,
and σc0 = ⟨vc0 , vc1 , . . . , vcp−1⟩ = ⟨vc0 , vc0+1, . . . , vc0+p−1⟩.

The combinations of counter values for the example from
Tables 1 and 2 are shown in Table 3. For every combination,
the three subvectors that form the corresponding seed are
also shown in Table 3. It can be seen from Table 3 that
σ0 = ⟨v0, v1, v2⟩ = s0 ∈ Sinit , σ3 = ⟨v3, v4, v5⟩ = s1 ∈ Sinit ,
σ6 = ⟨v6, v7, v8⟩ = s2 ∈ Sinit , and σ9 = ⟨v9, v10, v11⟩ = s3 ∈

Sinit .
In general, with the initial set V , σi·p = si ∈ Sinit for

0 ≤ i < m. Therefore, the use of V with counter-based
combinations guarantees complete fault coverage. It is
important for this property to include in V all the subvectors
obtained by partitioning the seeds from Sinit .

III. ON-CHIP TEST GENERATION
The on-chip test generation logic is discussed in this section.
The logic is similar to that used in [24] with the important
difference that counters replace the LFSRs that produce
pseudo-random combinations in [24].

A. ON-CHIP TEST GENERATION LOGIC
Figure 2 illustrates the on-chip test generation logic for the
example from Tables 1, 2 and 3. The three counters c0, c1 and
c2 are shown on the left. The memory storing V is shown
at the top of the figure. The on-chip decompression logic,
with the LFSR it includes, are shown on the right. Three
multiplexers receive control inputs from the counters. Each
multiplexer produces one of the subvectors that is loaded into
the LFSR in the decompression logic. The three subvectors
together form a seed σc0 = ⟨vc0 , vc1 , vc2⟩. The decompression
logic drives the scan chains of the circuit-under-test (not
shown in Figure 2). The counter c3 will be explained later.
In general, the parameters used for describing the on-chip

test generation logic are the ones introduced in Section II,
i.e., the number of subvectors in V isM , a seed for the LFSR
in the decompression logic is formed from p subvectors each
having l bits, and the length of the LFSR in the decompression
logic is L. With this notation, the on-chip test generation logic
includes the following components.

(1) V is stored in an (l ·M )-bit memory.
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FIGURE 2. On-chip counter-based logic.

(2) p (log2M )-bit counters, c0, c1, . . ., cp−1, hold a
combination that forms a seed σc0 = ⟨vc0 , vc1 , . . . , vcp−1⟩.

(3) Each one of p multiplexers has (log2M )-bit control
inputs and M l-bit data inputs. The l-bit data output of a
multiplexer is a subvector that is loaded into the LFSR in the
decompression logic.

B. TEST APPLICATION
Test application proceeds as follows. An extension related to
the additional counter c3 in Figure 2 is described later.
For 0 ≤ i < p, the counter ci is initialized to the

value i. Thus, initially, the counters hold the combination
⟨0, 1, . . . , p− 1⟩. The counters are incrementedM − p times
to form the combinations ⟨1, 2, . . . , p⟩, ⟨2, 3, . . . , p+1⟩, . . .,
⟨M − p,M − p + 1, . . . ,M − 1⟩. These combinations are
illustrated by Table 3.

For every one of the M − p + 1 combinations, i.e., for
0 ≤ c0 ≤ M − p, the counters are used for forming a seed
σc0 = ⟨vc0 , vc1 , . . . , vcp−1⟩. The decompression logic uses σc0
for applying a test to the circuit. The test is denoted by tc0 .

C. COUNTER CP
The role of the counter c3 in Figure 2 is discussed next.
In general, in addition to the counters c0, c1, . . ., cp−1,
a counter denoted by cp is used as follows.

The on-chip test generation logic is designed with param-
eters l and p such that 1 ≤ l ≤ L and p = ⌈L/l⌉. With given
values of l and p, the initial number of subvectors in V (before
it is optimized by the procedure described in Section IV) is
M = |Sinit | · p ≈ |Sinit | · L/l. The number of tests applied to
the circuit isM − p, which is also approximately |Sinit | · L/l.
Thus, a higher value of l results in a lower number of applied
tests. With a lower number of applied tests it is more difficult
to optimize V , and the storage requirements of V are likely
to remain higher.

The role of cp is to equate the numbers of applied tests for
different values of l and p such that a similar number of tests
is applied based on the initial set V for every l and p. This is
achieved as follows.

For a constant C1, every seed σc0 produced by the on-chip
test generation logic is used for applying l ·C1 different tests.
The counter cp is initialized to l ·C1−1 for every combination
of c0, c1, . . ., cp−1, and counts down to zero. A different test is
applied to the circuit based on σc0 for every value of cp. This
ensures that l · C1 tests are applied for every combination.
Thus, with the inclusion of cp, the number of applied tests for
the initial set V is approximately (|Sinit | · L/l) · (l · C1) =

|Sinit | · L · C1, and this number is independent of l and p.
To obtain l ·C1 different tests from a seed σc0 , for 0 ≤ c0 ≤

M − p, the approach from [28] is used. After a seed σc0 is
loaded into the LFSR, the LFSR is clocked for cp cycles. This
takes the LFSR into a new state denoted by σ

cp
c0 . The state σ

cp
c0

is used as a seed for applying a test to the circuit.
With 0 ≤ c0 ≤ M − p and 0 ≤ cp < l · C1, the set of tests

applied to the circuit is denoted by T . The number of tests in
T is (M − p + 1) · l · C1. As V is reduced by the procedure
described in Section IV, the number of tests in T is reduced
without losing fault coverage.

IV. SOFTWARE PROCEDURE
The software procedure described in this section accepts
a deterministic set of seeds Sinit , and parameters l and p.
It produces an optimized set of subvectors V for the counter-
based LBIST approach. The software procedure is applied
off-line to produce the set V for on-chip storage.

A. PRELIMINARIES
The set Sinit is a compact set of seeds for single stuck-at
faults. Using the seeds in Sinit , without the LBIST logic,
the decompression logic produces the test set Tinit . The set
of single stuck-at faults is denoted by F0. The subset of
F0 detected by Tinit is denoted by D0(Tinit ). The LBIST
approach targets a second set of faults, denoted by F1, that
consists of single-cycle gate exhaustive faults. The subset
of F1 detected by Tinit is denoted by D1(Tinit ). A second
set of target faults is important for demonstrating the ability
of the LBIST approach to detect faults with more complex
behaviors than single stuck-at faults.
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With the test set T produced by theLBIST logic, the subsets
of detected faults are D0(T ) and D1(T ), respectively. As V
is optimized and both V and T are reduced, the procedure
requires that D0(T ) would not lose any faults relative to
D0(Tinit ), and D1(T ) would not be smaller than D1(Tinit ).
The asymmetry between the two requirements is based on the
observation that T typically detects significantly more single-
cycle gate-exhaustive faults than Tinit , and maintaining the
single stuck-at fault coverage is sufficient for ensuring that
D1(T ) would remain significantly larger than D1(Tinit ).

TABLE 4. Subprocedure 1.

B. OVERVIEW
The software procedure initializes V as described in
Section II. It then applies two subprocedures iteratively
for removing subvectors from V . In every iteration,
subprocedure 1 is applied first. If it does not remove any
subvectors, subprocedure 2 attempts to remove subvectors
from V one at a time. A new iteration starts as soon
as a subvector is removed. The procedure terminates if
subprocedure 2 considers all the subvectors in V for removal,
and does not remove any one of them.

At the beginning of every iteration, the procedure uses
the set V to compute the test set T . It then performs fault
simulation with fault dropping of F0 and F1 under T . The
procedure includes in a subset Teff ⊂ T the tests that are
effective in detecting target faults. It then applies forward-
looking reverse-order fault simulation to remove unnecessary
tests from Teff . This does not affect the on-chip test generation
process of the LBIST approach. The set Teff is used only by
the software procedure to identify subvectors that are needed
for detecting target faults.

A test t
cp
c0 ∈ Teff is obtained from a seed σc0 that is formed

from subvectors included in V , and using 0 ≤ cp < l ·C1. The
combination that defines σc0 is given by the counters c0, c1,
. . ., cp−1. In terms of subvectors, σc0 = ⟨vc0 , vc1 , . . . , vcp−1⟩.
Based on Teff , the procedure finds, for every subvector vi ∈

V , the number of tests t
cp
c0 ∈ Teff that vi participates in. This

number is denoted by e(vi). The value of e(vi) is incremented
by one for every test t

cp
c0 ∈ Teff with a seed σc0 such that

vi ∈ {vc0 , vc1 , . . . , vcp−1}. Both subprocedures use the values
of e(vi).

The two subprocedures are described next. Subprocedure 1
is unique to the use of counters as suggested in this article, and
is not applicable to the pseudo-random combinations used in
[24]. Subprocedure 2 is similar to the procedure used in [24],
and it is described briefly.

C. SUBPROCEDURE 1
Subprocedure 1 removes fromV subvectors for which e(vi) =

0 is obtained based on Teff . The removal of these subvectors
does not affect the ability to produce the tests in Teff .

Table 4 shows an example based on the example in
Tables 1, 2 and 3. For simplicity, the counter cp is not used
in this example. For Table 4(a), Teff = {t0, t1, t3, t7, t8}. The
subvectors for every test are marked with x’s in Table 4(a).
Thus, t0 is obtained from σ0 = ⟨v0, v1, v2⟩ = ⟨00, 01, 10⟩,
t1 is obtained from σ1 = ⟨v1, v2, v3⟩ = ⟨01, 10, 11⟩, and t8 is
obtained from σ8 = ⟨v8, v9, v10⟩ = ⟨00, 01, 11⟩.

The values of e(vi) are shown in the last row of Table 4(a).
With these values, v6 and v11 can be removed from V . The set
V after the removal of these subvectors is shown in Table 4(b).
The subvectors are renumbered v0, v1, . . ., v9. The tests that
were included earlier in Teff are available (with different
subvector indices). For example, σ7 = ⟨v7, v8, v9⟩ =

⟨00, 01, 11⟩ was σ8 earlier.
After removing subvectors from V , the procedure starts a

new iteration where it recomputes the test sets T and Teff .
Table 4(b) shows the tests in Teff based on the updated set V .
An additional subvector can be removed from V , v4.
In general, at the beginning of every iteration, the

procedure computes T and Teff based on V . Based on Teff it
finds the value of e(vi) for every vi ∈ V . Subprocedure 1 then
removes every subvector vi ∈ V for which e(vi) = 0. If any
subvector is removed from V , the iteration ends, and a new
iteration starts.

D. SUBPROCEDURE 2
Subprocedure 2 is called only if subprocedure 1 cannot
remove any subvector from V . Subprocedure 2 is based on
the observation that it may be possible to remove a subvector
vi ∈ V even if e(vi) > 0. The removal of vi allows the
procedure to form new tests based on V . These tests may
detect all the target faults. In this case, the removal of vi is
acceptable.

Subprocedure 2 considers the subvectors from V one by
one until it finds a subvector that can be removed. The order
by which subprocedure 2 considers the subvectors is the
ascending value of e(vi). This is based on the assumption that
a subvector is more likely to be removed if e(vi) is lower.

After removing a subvector vi ∈ V , subprocedure 2
computes the test sets T and Teff . If |D0(T )| does not decrease
relative to its value before the removal of vi, and |D1(T )| ≥

D1(Tinit ), the removal of vi is accepted, and a new iteration
starts. Otherwise, vi is reintroduced into V , and additional
subvectors are considered for removal by subprocedure 2.
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TABLE 5. Values of l and p for s1423.

TABLE 6. Values of l and p for b04.

V. EXPERIMENTAL RESULTS
The software procedure was applied to benchmark circuits
considering single stuck-at and single-cycle gate-exhaustive
faults.

A. SETUP AND COMPARISON
The implementation of the software procedurewas performed
in an academic environment using academic software tools.
The procedure was applied to benchmark circuits that are
available for academic research, and to which the academic
software tools are applicable.

The counter-based approach is compared with two other
approaches, for which a direct comparison is possible: the
test set Sinit represents the case where test data compression is
used without partitioning of compressed tests as in [7], [15],
and [16]; and the results from [24] represent the case where
partitioned compressed tests are combined pseudo-randomly.
LBIST approaches typically do not consider single-cycle
gate-exhaustive faults, and many of them do not achieve

complete single stuck-at fault coverage. A comparison with
an approach that results in lower fault coverages is not
meaningful since the cost of achieving fault coverage can
be high for an LBIST approach. In addition, approaches that
store test data that is derived from uncompressed tests have
significantly higher storage requirements.

To allow a direct comparison with [24], the set of seeds
Sinit is the compact deterministic set of seeds for single stuck-
at faults used in [24]. The set of single-cycle gate-exhaustive
faults F1 is also the one used in [24].

The case where l = L and p = 1 corresponds to storing
the entire set Sinit , and using all the seeds from Sinit for test
application. This case is designated by an I (for initial). The
storage requirements for this case are computed as |Sinit | · L,
corresponding to storage of |Sinit | L-bit seeds.
For comparison with [24], up to two cases from [24] are

reported. These cases are designated by an R (for pseudo-
random combinations), and differ in the values of l and
p. The first case has l = 1 and p = L. In this case,
the procedure from [24] produces 1,000,000 pseudo-random
seeds. When this number of pseudo-random seeds does
not achieve complete single stuck-at fault coverage, the
procedure from [24] selects to use l > 1 and p = ⌈l/L⌉

for increased fault coverage. The value of l > 1 selected in
[24] is the second case reported. In this case, the procedure
uses 1,000,000 pseudo-random combinations of subvectors
to form seeds.

The software procedure for the counter-based approach
was applied with 1 ≤ l ≤ L − 1, p = ⌈L/l⌉ and
C1 = 16. To select values for l and p without applying the
entire software procedure to every pair of values, a single
application of subprocedure 1 was used for obtaining a set
of subvectors denoted by Vl,p for every l and p. The number
of bits required for storing Vl,p is computed as l · |Vl,p|. The
entire software procedure was applied with the 20 values of
l and p that have the smallest values of l · |Vl,p|. The results
are reported for the values of l and p with the smallest final
storage requirements.

Tables 5 and 6 illustrate this selection process considering
benchmarks s1423 and b04 with L = 18 and L = 28,
respectively. The fraction of storage requirements for Vl,p
relative to Sinit is computed as (l · |Vl,p|)/(L · |Sinit |), and
reported for every pair of l and p values under column subp1.
The values of l and p are given in the ascending order of
this fraction. For the first 20 pairs of values, the fraction of
storage requirements is also reported after the entire software
procedure is applied under column entire. The best storage
requirements are obtained for the third pair in Table 5, and
for the fourth pair in Table 6. These pairs are selected for the
circuits.

For both pseudo-random and counter-based combinations,
the number of applied tests is the number of tests from T that
need to be applied until the final fault coverages are obtained
for F0 and F1. Thus, although 1,000,000 tests are considered
in [24], the number of applied tests may be lower if the fault
coverages reach their final values before applying 1,000,000
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TABLE 7. Experimental results group 1.

tests. For the counter-based approach the number of tests is
(M−p+1)·l ·C1, but the final fault coverages may be reached
for a lower number of tests.

The test application time is determined by the number of
applied tests as follows. Let the number of applied tests be
NA. Let the number of flip-flops in the longest scan chain
be K . Each test requires the LFSR to be loaded with a seed.
With the counter cp under the counter-based approach, the
LFSR is clocked for an average of l · C1/2 = 8 l clock
cycles before a seed is obtained. A test consists of a scan-in
operation of K scan shift cycles, a functional capture cycle,
and a scan-out operation of K scan shift cycles. Scan-in
and scan-out operations of consecutive tests are overlapped.
Therefore, the test set requires 8lNA clock cycles for the
LFSR if cp is used, (NA + 1)K scan shift cycles, and NA
functional capture cycles. Scan shifting is typically carried
out using a slower clock than the functional clock or the LFSR
clock. With K ≫ 1, K ≫ L ≥ l and NA ≫ 1, the test
application time is approximately that of NA · K scan shift

cycles. Thus, the number of applied tests also determines
the test application time, and a comparison of the number of
applied tests between different cases provides a comparison
of the test application time between the same cases. A more
detailed comparison is discussed later.

B. RESULTS
The results are reported in Tables 7, 8 and 9. For the
circuits in Table 7, the procedure from [24] achieves complete
single stuck-at fault coverage. For the circuits in Table 8,
the procedure from [24] achieves less than complete single
stuck-at fault coverage. With counter-based combinations as
suggested in this article the single stuck-at fault coverage is
always complete, equal to that of Sinit . For the circuits in
Table 9, only the procedure for the counter-based approach is
applied to demonstrate its applicability to these circuits. The
first subprocedure is used for selecting values of l and p for
these circuits.
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TABLE 8. Experimental results group 2.

TABLE 9. Experimental results group 3.

The first row for every circuit, with I under column typ,
considers Sinit . The next one or two rows for every circuit,
with R under column typ, show the results from [24] with l =

1, and l > 1 if it increases the single stuck-at fault coverage.
The last row shows the results of the counter-based procedure
suggested in this article.

For b14, an additional row is shown for the counter-based
procedure (the row before last) where a loss of fault coverage
is allowed. The best result with the approach from [24] has
a 9% fault coverage loss. The counter-based approach was
allowed a 5% fault coverage loss to demonstrate that this
reduces significantly its storage requirements. The article
does not advocate a fault coverage loss, although this is
common under LBIST . The additional row is included only
to demonstrate the tradeoff between the storage requirements
and the fault coverage.

In each row, after the circuit name, and the type of the
procedure used, column inp shows the number of inputs.
Column L shows the length of the LFSR. Columns l and p
show the values of the corresponding parameters. Column
iter shows the iteration of the software procedure. Column
subv shows the number of subvectors in V . Column bits
shows the number of bits required for V , which equals
l · |V |. Column frac shows the number of bits required

for V divided by the number of bits required for Sinit .
The fraction is computed as (l · |V |)/(L · |Sinit |). Column
tests shows the number of applied tests until the final fault
coverages are obtained. Column eff shows the number of
tests in Teff . The tests in Teff increase the fault coverages
when they are applied. Column s.a. shows the single stuck-at
fault coverage. Column g.exh shows the single-cycle gate-
exhaustive fault coverage. For both fault coverages, column
diff shows the increase in the fault coverage relative to Sinit
(a negative number implies a reduction relative to Sinit ).
Column ntime shows the runtime of the software procedure
divided by the runtime required for fault simulation of Sinit .
This is referred to as the normalized runtime. The normalized
runtime measures the computational effort in terms of the
fault simulation time of the basic test set Sinit .

C. DISCUSSION
The following points can be seen from Tables 7, 8 and 9.
The set Sinit , in the first row for every circuit, represents the
conventional approach to test data compression. Under this
approach, deterministic tests are compressed into seeds for
an LFSR. For both [24] and the counter-based approach in
this article, and most of the circuits considered, the storage
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FIGURE 3. Storage reduction vs. normalized runtime for s5378.

requirements of V are significantly lower than the storage
requirements of Sinit . The reduction is made possible by the
partitioning of Sinit into subvectors, and the reduction of V
that is possible when combinations of subvectors use each
subvector multiple times for test application.

In Table 7, both the procedure from [24] and the counter-
based procedure achieve complete single stuck-at fault cover-
age. With up to 1,000,000 pseudo-random combinations, the
procedure from [24] has lower storage requirements for V .
However, it typically needs to apply significantly more tests
than the counter-based procedure described in this article.

The increased number of tests translates into a higher
number of clock cycles required for test application. The test
application time was discussed in Section V-A. Taking all
the clock cycles into account, and assuming that the same
clock is used for scan shifting, functional capture cycles,
and LFSR clocking, s13207 requires 133M clock cycles for
the tests from [24] (without any LFSR clocking), and 32M
clock cycles for the counter-based approach (with LFSR
clocking included). This is a 4-fold reduction in the number
of clock cycles using the counter-based approach. A similar
calculation for spi shows a 40-fold reduction.
The single-cycle gate-exhaustive fault coverage is higher

than that of Sinit for both LBIST approaches. With more
applied tests, the fault coverage is typically higher with the
approach from [24].

In Table 8, the procedure from [24] does not achieve
complete single stuck-at fault coverage, whereas the
counter-based approach does. Even with the higher sin-
gle stuck-at fault coverage, the counter-based approach
uses fewer tests than the approach from [24] that uses
pseudo-random combinations.

The normalized runtime does not increase with the size of
the circuit. Thus, the software procedure scales similar to a
fault simulation procedure for the basic test set Sinit . Fault
simulation time is manageable for circuits of any size.

It is possible to reduce the runtime of the software
procedure by noting that the procedure saturates, causing later
iterations to take longer while achieving smaller reductions in
the storage requirements. To demonstrate this point, Figure 3

shows the storage reduction as a function of the normalized
runtime for benchmark circuit s5378. Based on Figure 3, a
significant reduction in storage requirements is achieved even
if the normalized runtime is limited.

Overall, the counter-based approach achieves complete
single stuck-at fault coverage with reduced storage require-
ments compared with Sinit , and a reduced number of tests
even with a higher single stuck-at fault coverage compared
with [24]. The single-cycle gate-exhaustive fault coverage is
significantly higher than that of Sinit .

VI. CONCLUDING REMARKS
This article introduced a new option for the formation of tests
under a class of logic built-in self-test (LBIST ) approaches
that store partitioned deterministic test data on-chip, and
produce tests by combining stored test data entries. The
two options considered earlier used pseudo-random combi-
nations, or deterministic combinations that were also stored
on-chip. Under the counter-based option introduced in this
article, combinations of stored test data entries that form tests
are created using counters. Counters do not require additional
storage. However, they can ensure that deterministic tests
are reproduced from the stored test data. Thus, complete
fault coverage can be achieved with a limited number of
tests. A software procedure optimized the stored test data
for counter-based test application, and reduced the storage
requirements, without losing fault coverage. Experimental
results for benchmark circuits demonstrated the advantages
of the counter-based approach when test data entries are
obtained by partitioning compressed deterministic tests.
In this case, the universally available on-chip decompression
logic is part of the on-chip test generation logic.

Future work can consider the following directions to obtain
an industry-strength implementation of the counter-based
approach. (1) Instead of the academic implementation
reported in this article, it is possible to implement the
counter-based approach using commercial software tools.
(2) Verilog code can be written for automating the insertion of
the LBIST logic. (3) A functional memory (one that already

VOLUME 11, 2023 139343



I. Pomeranz: Storage and Counter Based Logic Built-In Self-Test

exists on-chip) can be used for storing test data entries,
instead of using a dedicated memory for LBIST .
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