IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 18 November 2023, accepted 5 December 2023, date of publication 8 December 2023,
date of current version 14 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3341360

==l RESEARCH ARTICLE

Storage and Counter Based Logic
Built-In Self-Test

IRITH POMERANZ ", (Fellow, IEEE)

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA

e-mail: pomeranz @purdue.edu

ABSTRACT Recent reports of silent data corruption because of hardware faults in large data centers bring
to the forefront the importance of in-field testing. In-field testing, enabled by logic built-in self-test (LBIST),
addresses defects that occur during the lifetime of a chip and ones that escaped manufacturing tests. A class
of LBIST approaches for scan circuits store partitioned deterministic test data on-chip and produce tests
by combining stored test data entries in one of two ways: 1) pseudo-random combinations are selected
by linear-feedback shift-registers (LFSRs); or 2) deterministic combinations are stored on-chip as sets of
indices of stored test data entries. This article introduces a third option where counters are used for forming
combinations of stored test data entries. Counters do not require additional storage, and ensure complete
fault coverage with a limited number of tests. Experimental results for benchmark circuits demonstrate the
advantages of counters in the context where test data entries for on-chip storage are obtained by partitioning
compressed deterministic tests, and the universally available on-chip decompression logic is used as part of
the test application process.

INDEX TERMS Full scan design, linear-feedback shift-register (LFSR), logic built-in self-test (LBIST),

on-chip test generation, test data compression.

I. INTRODUCTION

Logic built-in self-test (LBIST) is used for in-field testing
during system startup or idle intervals [1], [2], [3], [4], [5],
(61, [71, [81, [91, [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24]. LBIST is important
for detecting defects that occur as chips deteriorate because
of aging as well as defects that escaped manufacturing tests.
Recent reports of silent data corruption because of hardware
faults in large data centers [25], [26] stress the need for
in-field testing enabled by LBIST. Silent data corruption
implies that programs produce incorrect results without the
errors being detected. This is possible when the errors affect
the data in ways that do not cause exceptions to occur. For
example, the incorrect data do not result in division by zero or
access to restricted memory addresses that would have caused
exceptions to occur. As a result, programs can continue to
execute incorrectly for long periods of time.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiao-Sheng Si

The basis for most LBIST approaches is pseudo-random
tests that can easily be produced on-chip using linear-
feedback shift-registers (LFSRs) [1]. For increased fault
coverage, pseudo-random tests are enhanced by one of
several approaches: controlling the probabilities of Os and
Is in the applied tests to obtain weighted pseudo-random
tests [1], using bit-flipping or bit-fixing logic to assign
specific values to certain inputs as in [2] or [11], or using
multiple seeds for the LFSR [3]. Test points are also useful in
increasing the fault coverage [1].

LBIST approaches that are based on storage of determin-
istic test data also exist. The stored test data in [7], [15],
and [16] consist of compressed deterministic tests that are
decompressed on-chip using the universally available on-chip
decompression logic. To reduce the number of stored tests,
each stored test is used in [15] and [16] for applying several
different tests to the circuit. Different tests are obtained by
complementing bits of stored or applied tests. The application
of several tests from the same test data is effective not only
for reducing the storage requirements but also for increasing
the fault coverage [27], [28], [29], and it is used in this article

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 11, 2023

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

139335

https://orcid.org/0000-0002-5491-7282
https://orcid.org/0000-0001-5226-9923

IEEE Access

I. Pomeranz: Storage and Counter Based Logic Built-In Self-Test

circuit
counter decom
undet
based press
test

FIGURE 1. On-chip test generation logic.

as well. In addition to complementing bits of stored test data
or applied tests, other operators are effective in increasing the
fault coverage as discussed later.

The LBIST approaches described in [4], [18], [19], [23],
and [24] store partitioned deterministic test data on-chip.
Tests are formed by combining stored test data entries on-
chip. The large number of options available for combining
test data entries, and the fact that test data entries are derived
from deterministic tests, ensure that high fault coverage can
be achieved.

Partitioning of deterministic tests into scan vectors is
used in [4], [18], [19], and [23]. In [4], all the possible
combinations of the stored test data entries are used for
forming tests. The more recent approaches control the
number of applied tests by combining stored test data entries
in one of two ways. In [18] and [19], pseudo-random
combinations of stored test data entries are selected by
LFSRs.In [18] and [23], deterministic combinations of stored
test data entries are stored on-chip. Each combination is a
set of indices of stored test data entries, indicating which
test data entries should be combined to form a test. The two
approaches for combining test data entries, pseudo-random
and deterministic, may be used exclusively or together. At the
cost of additional storage, deterministic combinations allow
complete fault coverage to be achieved with significantly
reduced numbers of tests compared with pseudo-random
combinations.

This article introduces a third option where counters are
used for forming combinations of stored test data entries.
Counters do not require additional storage. However, they can
ensure that deterministic tests are reproduced from the stored
test data. Thus, complete fault coverage can be achieved with
a limited number of tests.

Experimental results for benchmark circuits demonstrate
the advantages of counters in the context where test data
entries for on-chip storage are obtained by partitioning
compressed deterministic tests. On-chip decompression logic
is used as part of the test application process in this
case as illustrated by Figure 1. The counter-based logic
shown on the left in Figure 1 is the subject of this article.
It produces compressed deterministic tests for the on-chip
decompression logic that produces uncompressed tests for the
circuit-under-test.

Partitioning of compressed deterministic tests was also
used in [24]. However, only LFSRs are used in [24] for form-
ing compressed tests using pseudo-random combinations of
stored test data entries. As a result, a large number of tests
needs to be applied, and the fault coverage is not always
complete. By using counters as suggested in this article,

139336

complete fault coverage is guaranteed, and the number of
tests is reduced. This is achieved in this article without the
storage overhead of deterministic combinations. Both the
fault coverage and the number of applied tests are important
parameters of an LBIST approach. Achieving complete fault
coverage is challenging with on-chip hardware, and it is
common for LBIST approaches to tolerate a fault coverage
loss. Large numbers of applied tests are tolerated to reduce
the fault coverage loss. The counter-based approach does not
require a loss of fault coverage and limits the number of
applied tests. The reports of silent data corruption stress the
importance of these characteristics.

The use of counters requires a new software procedure
for optimizing the stored test data. Such a procedure is
described in this article. The main differences from the
software procedure described in [24] are related to the ability
to achieve complete fault coverage. In [24], a loss of fault
coverage is tolerated when optimizing the stored test data for
pseudo-random combinations.

In summary, the key contribution of this article is to provide
a fundamental improvement to a class of LBIST approaches
where partitioned deterministic test data are stored on-chip,
and tests are produced by combining stored test data entries
on-chip. The number of options available for combining
test data entries, and the fact that they are derived from
deterministic tests, ensure that high fault coverage can be
achieved not only for stuck-at faults, but also for single-cycle
gate-exhaustive faults that are more difficult to detect. Earlier
approaches combined test data entries in one of two ways:
pseudo-randomly, in which case complete fault coverage was
not guaranteed, or deterministically, in which case additional
storage was required. By introducing a third option where
counters are used for forming combinations of stored test
data entries, the article ensures that additional storage is not
required, and yet deterministic tests are reproduced from
the stored test data. Thus, complete fault coverage can be
achieved with a limited number of tests.

This contribution is important under the assumption that
the hardware cost of an LBIST solution is justified by the need
to perform in-field testing. In particular, it is assumed that
storing partitioned deterministic test data entries on-chip is
acceptable to achieve complete single stuck-at fault coverage
as well as a high coverage of single-cycle gate-exhaustive
faults.

The main limitations of the counter-based approach are the
following. (1) Depending on the circuit, the requirement to
achieve complete single stuck-at fault coverage may limit the
reduction possible in the storage requirements relative to a
compressed deterministic test set. (2) The software procedure
requires repeated fault simulation to ensure that no loss of
single stuck-at fault coverage occurs. This is a one-time
computational cost that is required for reducing the stored test
data.

The article is organized as follows. The partitioning of
compressed tests into test data entries for on-chip storage is
discussed in Section II. The on-chip test generation logic is

VOLUME 11, 2023

I. Pomeranz: Storage and Counter Based Logic Built-In Self-Test

IEEE Access

TABLE 1. Partitioned seeds.

W= o
—_
(=}
(=]
=
(=3
(=]

TABLE 2. Initial set of subvectors.

Vo vi_ vz [va va Vs [Ve V7 Vg | V9 Vio Vi1
00 0l 10 | 11T 10 11 |10 O 00| Ol 11 __ 0l
TABLE 3. Counter-based combinations.

€0 ‘1 c2 T¢q,0 Ocq,1 Ocq,2

0 1 2 00 01 10 50

1 2 3 01 10 11

2 3 4 10 11 10

3 4 5 11 10 11 s1

4 5 6 10 11 10

5 6 7 11 10 01

6 7 8 10 01 00 s2

7 8 9 01 00 01

8 9 10 00 01 11

9 10 11 01 11 01 3

described in Section III. A software procedure for computing
the stored test data is described in Section IV. Experimental
results for benchmark circuits are presented in Section V.
Section VI concludes the article.

Il. PARTITIONING OF COMPRESSED TESTS

This section describes how partitioning of compressed tests
into test data entries for on-chip storage is carried out. The set
of test data entries is optimized by the procedure described in
Section I'V.

Tests are assumed to be compressed into seeds for an LFSR
that is part of the on-chip decompression logic. For simplicity
of discussion, a test is compressed into a single seed. The
discussion can be extended to the case where several seeds are
used for producing a test. The length of the LFSR is denoted
by L.

A compressed test set Sinir = {50, 51, ..., Sm—1} consists
of m seeds, from which the on-chip decompression logic
produces m deterministic tests.

For on-chip storage, every seed in Sjy;; is partitioned into
p subvectors of equal length. The length of a subvector is
denoted by /. The values of p and / are such that p = [L/I],
resulting in p - [> L. When a seed s; € Si;;; 1S partitioned
into subvectors, the subvectors are denoted by s; 0, 5.1, . - -,
sip—1. If p -1 > L, the seeds are padded with unspecified
values such that their length is equal to p - I. When a seed
is partitioned, unspecified values in its last subvector are
specified randomly.

Table 1 shows an example of four 6-bit seeds for an LFSR
of length L = 6. With p = 3 and / = 2, the subvectors of the
partitioned seeds are shown in Table 1.

The subvectors from S;,;; are included in a set V that will
be optimized and eventually used for on-chip storage. In [24],
duplicated subvectors from S;,;; are avoided in the initial set
V. In this article, all the subvectors from Sj,;; are initially

VOLUME 11, 2023

included in V such that V. = {so0, 50,1, --.» S0,p—1, 51,0
S1,15 «os ST,p—1s -+ > Sm—1,0» Sm—1,1» - - -» Sm—1,p—1}. This is
important for achieving complete fault coverage. For ease
of reference, the subvectors are renumbered such that V =
{vo, v1, ..., vm—1}, where initially, M = m - p.

The initial set V for the example from Table 1 is shown in
Table 2. With p = 3 subvectors required for forming a seed,
three counters will be used in the example.

In general, p counters are required for forming seeds from
the subvectors in V. The counters are denoted by co, ci, .. .,
¢p—1. The counters will go through M — p + 1 combinations
suchthat) <co <M —p,andcijy; =ci+1for0<i<p-—
1. The value of ¢y is sufficient for identifying a combination
because of the relation ¢;41 = ¢;+ 1 for0 <i < p — 1. For
0 < co <M — p, the seed obtained for c¢ is denoted by o,
and oy = (Ve Veys - -+ vC]H) = (Vg Vegtls -+ - Vegtp—1)-

The combinations of counter values for the example from
Tables 1 and 2 are shown in Table 3. For every combination,
the three subvectors that form the corresponding seed are
also shown in Table 3. It can be seen from Table 3 that
00 = (o, V1, V2) = 50 € Sinit» 03 = (v3, V4, V5) = $1 € Sinit,
06 = {v6, V7, v8) = 82 € Sinir, and o9 = (v9, vig, V1) = 83 €
Sinit -

In general, with the initial set V, 0;., = s; € Spy;r for
0 < i < m. Therefore, the use of V with counter-based
combinations guarantees complete fault coverage. It is
important for this property to include in V all the subvectors
obtained by partitioning the seeds from Sj;;.

Ill. ON-CHIP TEST GENERATION

The on-chip test generation logic is discussed in this section.
The logic is similar to that used in [24] with the important
difference that counters replace the LFSRs that produce
pseudo-random combinations in [24].

A. ON-CHIP TEST GENERATION LOGIC
Figure 2 illustrates the on-chip test generation logic for the
example from Tables 1, 2 and 3. The three counters cg, ¢; and
¢y are shown on the left. The memory storing V' is shown
at the top of the figure. The on-chip decompression logic,
with the LFSR it includes, are shown on the right. Three
multiplexers receive control inputs from the counters. Each
multiplexer produces one of the subvectors that is loaded into
the LFSR in the decompression logic. The three subvectors
together form a seed o) = (v, V¢, Ve,). The decompression
logic drives the scan chains of the circuit-under-test (not
shown in Figure 2). The counter c3 will be explained later.

In general, the parameters used for describing the on-chip
test generation logic are the ones introduced in Section II,
i.e., the number of subvectors in V is M, a seed for the LFSR
in the decompression logic is formed from p subvectors each
having [bits, and the length of the LF'SR in the decompression
logic is L. With this notation, the on-chip test generation logic
includes the following components.

(1) V is stored in an (/ - M)-bit memory.

139337

IEEE Access

I. Pomeranz: Storage and Counter Based Logic Built-In Self-Test

‘ Vo ‘ vy ‘ vy ‘ Vs ‘ vy ‘ Vs ‘ Ve ‘ vy ‘ Vg ‘ Vo ‘ Vio ‘ Vi ‘
— [[[|] s
Co +{ mux0 } ve,
— [[[[| N —
cy +{ mux|1 } ve,
— Y v v v vy 'R B R —
&) +{ mux2 } Ve,
generation of compressed tests deCOTlT(l)IérifC?SSiOH

FIGURE 2. On-chip counter-based logic.

(2) p (logaM)-bit counters, cg, ¢1, ..., ¢p—1, hold a
combination that forms a seed oy = (Vegs Veys - - - Ve,).

(3) Each one of p multiplexers has (logoM)-bit control
inputs and M [-bit data inputs. The /-bit data output of a
multiplexer is a subvector that is loaded into the LFSR in the
decompression logic.

B. TEST APPLICATION
Test application proceeds as follows. An extension related to
the additional counter c3 in Figure 2 is described later.

For 0 < i < p, the counter ¢; is initialized to the
value i. Thus, initially, the counters hold the combination
(0,1, ..., p—1). The counters are incremented M — p times
to form the combinations (1,2, ...,p), (2,3,...,p+1),...,
M —-p,M —p+1,...,M — 1). These combinations are
illustrated by Table 3.

For every one of the M — p + 1 combinations, i.e., for
0 < cop < M — p, the counters are used for forming a seed
Ocy = (Vegs Veys -+ Ve,). The decompression logic uses oy,
for applying a test to the circuit. The test is denoted by #,.

C. COUNTER Cp

The role of the counter c¢3 in Figure 2 is discussed next.
In general, in addition to the counters cy, ci, ..
a counter denoted by ¢, is used as follows.

The on-chip test generation logic is designed with param-
eters [and p such that 1 <[< L and p = [L/I]. With given
values of / and p, the initial number of subvectors in V (before
it is optimized by the procedure described in Section IV) is
M = |Sinit] - p = |Sinit] - L/1. The number of tests applied to
the circuit is M — p, which is also approximately |Sj,; |- L/!I.
Thus, a higher value of [results in a lower number of applied
tests. With a lower number of applied tests it is more difficult
to optimize V, and the storage requirements of V are likely
to remain higher.

The role of ¢, is to equate the numbers of applied tests for
different values of / and p such that a similar number of tests
is applied based on the initial set V for every / and p. This is
achieved as follows.

. Cp—ls

139338

For a constant Cy, every seed o, produced by the on-chip
test generation logic is used for applying / - C; different tests.
The counter ¢, is initialized to /- C; — 1 for every combination
of g, c1, ..., cp—1, and counts down to zero. A different test is
applied to the circuit based on o, for every value of ¢,. This
ensures that / - Cy tests are applied for every combination.
Thus, with the inclusion of ¢,, the number of applied tests for
the initial set V is approximately (|Si,i| - L/I) - (I - C1) =
|Sinit| - L - C1, and this number is independent of / and p.

To obtain [- Cy different tests from a seed o, for 0 < ¢p <
M — p, the approach from [28] is used. After a seed o, is
loaded into the LFSR, the LFSR is clocked for ¢, cycles. This
takes the LFSR into a new state denoted by accé’ . The state accé’
is used as a seed for applying a test to the circuit.

With0 < ¢y <M —pand 0 < ¢, <[- Cy, the set of tests
applied to the circuit is denoted by T. The number of tests in
Tis(M —p+1)-1-C;. As V is reduced by the procedure
described in Section IV, the number of tests in 7" is reduced
without losing fault coverage.

IV. SOFTWARE PROCEDURE

The software procedure described in this section accepts
a deterministic set of seeds Sinir, and parameters / and p.
It produces an optimized set of subvectors V for the counter-
based LBIST approach. The software procedure is applied
off-line to produce the set V for on-chip storage.

A. PRELIMINARIES

The set S;,;; is a compact set of seeds for single stuck-at
faults. Using the seeds in Sj,i;, without the LBIST logic,
the decompression logic produces the test set Tj,;;. The set
of single stuck-at faults is denoted by Fy. The subset of
Fo detected by Tji; is denoted by Do(Tini:). The LBIST
approach targets a second set of faults, denoted by F, that
consists of single-cycle gate exhaustive faults. The subset
of Fy detected by Tj,; is denoted by Di(Tj,). A second
set of target faults is important for demonstrating the ability
of the LBIST approach to detect faults with more complex
behaviors than single stuck-at faults.

VOLUME 11, 2023

I. Pomeranz: Storage and Counter Based Logic Built-In Self-Test

IEEE Access

With the test set 7 produced by the LBIST logic, the subsets
of detected faults are Do(T) and D(T), respectively. As V
is optimized and both V and T are reduced, the procedure
requires that Do(7T) would not lose any faults relative to
Do(Tinit), and D1(T) would not be smaller than D{(Tjy;).
The asymmetry between the two requirements is based on the
observation that T typically detects significantly more single-
cycle gate-exhaustive faults than Tj,;;, and maintaining the
single stuck-at fault coverage is sufficient for ensuring that
D1(T) would remain significantly larger than D (Tj,;;).

TABLE 4. Subprocedure 1.

(a) Before Removal
Vo V1 V2 V3 Va Vs Ve vr V8 V9 vVio Vi1
00 01 10 11 10 11 10 01 00 Ol 11 01

to X X X

t X X X

t3 X X X

t7 X X X

18 X X X

(b) After Removal

Vo Vi V2 V3 V4 Vs Ve V7 Vg Vg

00 01 10 11 10 11 01 00 01 11
to X X X
28 X X X
15 X X X
1 X X X
t7 X X X
e 1 2 2 1 0 1 2 3 2 1

B. OVERVIEW

The software procedure initializes V as described in
Section II. It then applies two subprocedures iteratively
for removing subvectors from V. In every iteration,
subprocedure 1 is applied first. If it does not remove any
subvectors, subprocedure 2 attempts to remove subvectors
from V one at a time. A new iteration starts as soon
as a subvector is removed. The procedure terminates if
subprocedure 2 considers all the subvectors in V for removal,
and does not remove any one of them.

At the beginning of every iteration, the procedure uses
the set V to compute the test set 7. It then performs fault
simulation with fault dropping of Fp and F| under 7. The
procedure includes in a subset T, C T the tests that are
effective in detecting target faults. It then applies forward-
looking reverse-order fault simulation to remove unnecessary
tests from T, . This does not affect the on-chip test generation
process of the LBIST approach. The set T, is used only by
the software procedure to identify subvectors that are needed
for detecting target faults.

A test tfg € T, is obtained from a seed o, that is formed
from subvectors included in V, and using 0 < ¢;, < [-C;. The
combination that defines o, is given by the counters cy, ci,
..., ¢p—1. In terms of subvectors, o¢, = (Veys Veys - - s Ve, 1).
Based on Ty, the procedure finds, for every subvector v; €
V, the number of tests tcc(’)’ € T that v; participates in. This
number is denoted by e(v;). The value of e(v;) is incremented
by one for every test tccg € Tef with a seed o, such that

VOLUME 11, 2023

Vi € {Vegs Veys -
of e(v;).

The two subprocedures are described next. Subprocedure 1
is unique to the use of counters as suggested in this article, and
is not applicable to the pseudo-random combinations used in
[24]. Subprocedure 2 is similar to the procedure used in [24],
and it is described briefly.

Ve, }. Both subprocedures use the values

C. SUBPROCEDURE 1

Subprocedure 1 removes from V subvectors for which e(v;) =
0 is obtained based on T,r. The removal of these subvectors
does not affect the ability to produce the tests in T.

Table 4 shows an example based on the example in
Tables 1, 2 and 3. For simplicity, the counter ¢, is not used
in this example. For Table 4(a), Tefr = {t0, 11, 3, t7, 3}. The
subvectors for every test are marked with x’s in Table 4(a).
Thus, ty is obtained from o9 = (vg, vi, v2) = (00, 01, 10),
t1 is obtained from o7 = (v{, v, v3) = (01, 10, 11), and #g is
obtained from og = (vg, v9, vig) = (00, 01, 11).

The values of e(v;) are shown in the last row of Table 4(a).
With these values, vg and v{| can be removed from V. The set
V after the removal of these subvectors is shown in Table 4(b).
The subvectors are renumbered vg, vy, ..., v9. The tests that
were included earlier in Ty are available (with different
subvector indices). For example, o7 = (v7,vs,v9) =
(00, 01, 11) was oy earlier.

After removing subvectors from V, the procedure starts a
new iteration where it recomputes the test sets 7 and Ty .
Table 4(b) shows the tests in T, based on the updated set V.
An additional subvector can be removed from V, vq4.

In general, at the beginning of every iteration, the
procedure computes 7" and T, based on V. Based on T,y it
finds the value of e(v;) for every v; € V. Subprocedure 1 then
removes every subvector v; € V for which e(v;) = 0. If any
subvector is removed from V/, the iteration ends, and a new
iteration starts.

D. SUBPROCEDURE 2

Subprocedure 2 is called only if subprocedure 1 cannot
remove any subvector from V. Subprocedure 2 is based on
the observation that it may be possible to remove a subvector
v; € V even if e(v;) > 0. The removal of v; allows the
procedure to form new tests based on V. These tests may
detect all the target faults. In this case, the removal of v; is
acceptable.

Subprocedure 2 considers the subvectors from V one by
one until it finds a subvector that can be removed. The order
by which subprocedure 2 considers the subvectors is the
ascending value of e(v;). This is based on the assumption that
a subvector is more likely to be removed if e(v;) is lower.

After removing a subvector v; € V, subprocedure 2
computes the test sets " and T . If | Do(7')| does not decrease
relative to its value before the removal of v;, and |D{(T)| >
D1 (Tinit), the removal of v; is accepted, and a new iteration
starts. Otherwise, v; is reintroduced into V, and additional
subvectors are considered for removal by subprocedure 2.

139339

IEEE Access

I. Pomeranz: Storage and Counter Based Logic Built-In Self-Test

TABLE 5. Values of / and p for s1423.

[} p subpl entire
3 6 0.400 0.173
9 2 0.436 0.155
2 9 0.444 0.103
7 3 0.445 0.184
11 2 0489 0.167
6 3 0.491 0.176
10 2 0.495 0.192
1 18 | 0504 0.130
17 2 0515 0.155
4 5 0.521 0.158
5 4 0.525 0.182
8 3 0.558 0.226
13 2 0.578 0236
12 2 0.594 0.218
15 2 0.652 0.258
14 2 0.665 0.226
16 2 0.679 0210

TABLE 6. Values of / and p for b04.

] P subpl entire
7 4 0.838 0.228
1 28 | 0.860 0.505
21 2 0.860 0.287
4 7 0.866 0.176
2 14 | 0872 0.258
3 10 | 0.873 0.262
5 6 0.882 0.247
14 2 0.882 0.309
15 2 0914 0.252
6 5 0945 0284
22 2 0.971 0.324
16 2 0975 0.252
10 3 0977 0.284
8 4 0.992 0.269
17 2 1.000 0.286
11 3 1.075 0.289
12 3 1.084 0277
9 4 1.116 0217
18 2 1.153 0.284
19 2 1.158 0339
24 2 1.185 -
13 3 1.188
20 2 1.239
23 2 1.377
26 2 1.393
25 2 1.418
27 2 1.446

V. EXPERIMENTAL RESULTS

The software procedure was applied to benchmark circuits
considering single stuck-at and single-cycle gate-exhaustive
faults.

A. SETUP AND COMPARISON

The implementation of the software procedure was performed
in an academic environment using academic software tools.
The procedure was applied to benchmark circuits that are
available for academic research, and to which the academic
software tools are applicable.

The counter-based approach is compared with two other
approaches, for which a direct comparison is possible: the
test set S, represents the case where test data compression is
used without partitioning of compressed tests as in [7], [15],
and [16]; and the results from [24] represent the case where
partitioned compressed tests are combined pseudo-randomly.
LBIST approaches typically do not consider single-cycle
gate-exhaustive faults, and many of them do not achieve

139340

complete single stuck-at fault coverage. A comparison with
an approach that results in lower fault coverages is not
meaningful since the cost of achieving fault coverage can
be high for an LBIST approach. In addition, approaches that
store test data that is derived from uncompressed tests have
significantly higher storage requirements.

To allow a direct comparison with [24], the set of seeds
Sinir 1s the compact deterministic set of seeds for single stuck-
at faults used in [24]. The set of single-cycle gate-exhaustive
faults Fy is also the one used in [24].

The case where / = L and p = 1 corresponds to storing
the entire set Si,;;, and using all the seeds from Sj,;; for test
application. This case is designated by an I (for initial). The
storage requirements for this case are computed as |Sj,i;| - L,
corresponding to storage of |S;,;;| L-bit seeds.

For comparison with [24], up to two cases from [24] are
reported. These cases are designated by an R (for pseudo-
random combinations), and differ in the values of [/ and
p. The first case has [= 1 and p = L. In this case,
the procedure from [24] produces 1,000,000 pseudo-random
seeds. When this number of pseudo-random seeds does
not achieve complete single stuck-at fault coverage, the
procedure from [24] selects touse [> 1 and p = [I/L]
for increased fault coverage. The value of / > 1 selected in
[24] is the second case reported. In this case, the procedure
uses 1,000,000 pseudo-random combinations of subvectors
to form seeds.

The software procedure for the counter-based approach
was applied with 1 < I < L — 1, p = [L/I] and
C1 = 16. To select values for / and p without applying the
entire software procedure to every pair of values, a single
application of subprocedure 1 was used for obtaining a set
of subvectors denoted by V; , for every / and p. The number
of bits required for storing V; , is computed as [- |V; ,|. The
entire software procedure was applied with the 20 values of
[and p that have the smallest values of / - |V} ,|. The results
are reported for the values of / and p with the smallest final
storage requirements.

Tables 5 and 6 illustrate this selection process considering
benchmarks s1423 and b04 with L = 18 and L = 28,
respectively. The fraction of storage requirements for V
relative to Sy is computed as (I - [V ,)/(L - |Sinit|), and
reported for every pair of / and p values under column subp1.
The values of [and p are given in the ascending order of
this fraction. For the first 20 pairs of values, the fraction of
storage requirements is also reported after the entire software
procedure is applied under column entire. The best storage
requirements are obtained for the third pair in Table 5, and
for the fourth pair in Table 6. These pairs are selected for the
circuits.

For both pseudo-random and counter-based combinations,
the number of applied tests is the number of tests from 7 that
need to be applied until the final fault coverages are obtained
for Fy and F;. Thus, although 1,000,000 tests are considered
in [24], the number of applied tests may be lower if the fault
coverages reach their final values before applying 1,000,000

VOLUME 11, 2023

I. Pomeranz: Storage and Counter Based Logic Built-In Self-Test

IEEE Access

TABLE 7. Experimental results group 1.

circuit typ inp L] P iter subv bits tests eff s.a. diff g.exh diff ntime
835932 1 1763 13 13 1 0 57 741 . 57 57 89.809 0.000 98.509 0.000 1.00
835932 R 1763 13 1 13 0 2 2 0.003 232 81 89.809 0.000 99.996 1.488 3.71
835932 C 1763 13 7 2 3 3 21 0.028 224 81 89.809 0.000 99.989 1.480 29.29
8asc 1 132 13 | 13 1 0 41 533 . 41 41 100.000 0.000 67.374 0.000 1.00
8asc R 132 13 1 13 0 2 2 0.004 416 167 100.000 0.000 93.923 26.550 4.83
3asc C 132 13 9 2 3 3 27 0.051 262 151 100.000 0.000 92.007 24.633 29.67
des_area I 367 14 | 14 1 0 158 2212 . 158 158 100.000 0.000 72.424 0.000 1.00
des_area R 367 14 1 14 0 2 2 0.001 739 538 100.000 0.000 93432 21.008 4.06
des_area C 367 14 8 2 4 5 40 0.018 503 416 100.000 0.000 90.316 17.892 30.53
systemcdes I 320 14 | 14 1 0 102 1428 . 102 102 100.000 0.000 93.391 0.000 1.00
systemcdes R 320 14 1 14 0 2 2 0.001 1297 184 100.000 0.000 99.646 6.255 4.48
systemcdes C 320 14 3 5 7 12 36 0.025 381 171 100.000 0.000 98.428 5.037 105.82
$1423 1 91 18 18 1 0 55 990 . 55 55 99.076 0.000 90.381 0.000 1.00
81423 R 91 18 1 18 0 2 2 0.002 25579 137 99.076 0.000 99.758 9.377 54.11
81423 C 91 18 2 9 95 51 102 0.103 1352 115 99.076 0.000 97.883 7.502 19123.00
usb_phy I 112 18 18 1 0 36 648 . 36 36 100.000 0.000 82.536 0.000 1.00
usb_phy R 112 18 1 18 0 2 2 0.003 2913 114 100.000 0.000 99.677 17.141 18.00
usb_phy C 112 18 3 6 21 16 48 0.074 525 118 100.000 0.000 99.224 16.688 837.00
b04 I 78 28 | 28 1 0 34 952 . 34 34 99.851 0.000 79.263 0.000 1.00
b04 R 78 28 1 28 0 2 2 0.002 46318 239 99.851 0.000 98.560 19.297 136.00
b04 C 78 28 4 7 161 42 168 0.176 2241 125 99.851 0.000 91.014 11.751 64278.00
aes_core 1 788 28 | 28 1 0 380 10640 . 380 380 100.000 0.000 98.259 0.000 1.00
aes_core R 788 28 1 28 0 2 2 0.000 3548 695 100.000 0.000 99.997 1.738 3.76
aes_core C 788 28 | 21 2 6 8 168 0.016 2250 707 100.000 0.000 99.979 1.720 55.09
systemcaes 1 928 29 | 29 1 0 109 3161 . 109 109 99.995 0.000 79.613 0.000 1.00
systemcaes R 928 29 1 29 0 2 2 0.001 39418 1047 99.995 0.000 99.989 20.376 14.78
systemcaes C 928 29 5 6 139 37 185 0.059 2491 902 99.995 0.000 97.080 17.467 8435.29
85378 I 214 36 | 36 1 0 133 4788 . 133 133 99.131 0.000 67.605 0.000 1.00
$5378 R 214 36 1 36 0 2 2 0.000 53432 898 99.131 0.000 99.533 31.928 43.62
$5378 C 214 36 7 6 201 108 756 0.158 11476 865 99.131 0.000 97.853 30.247 99321.78
b07 I 53 36 | 36 1 0 41 1476 . 41 41 99.915 0.000 59.459 0.000 1.00
b07 R 53 36 1 36 0 2 2 0.001 37994 388 97.041 -2.874 | 96.674 37214 3168.50
b07 R 53 36 5 8 10 22 110 0.075 | 963258 404 99.915 0.000 99.636 40.177 81965.01
b07 C 53 36 [6 126 59 354 0.240 5089 320 99.915 0.000 92.256 32.796 85992.00
simple_spi 1 146 38 | 38 1 0 46 1748 46 46 100.000 0.000 55.066 0.000 1.00
simple_spi R 146 38 1 38 0 2 2 0.001 129112 453 98.620 -1.380 | 97.568 42.503 2078.71
simple_spi R 146 38 2 19 1 3 6 0.003 | 620445 511 100.000 0.000 99.873 44.807 271229
simple_spi C 146 38 3 13 154 108 324 0.185 4561 454 100.000 0.000 98.176 43.110 65494.50
i2c I 145 43 | 43 1 0 58 2494 58 58 100.000 0.000 73.974 0.000 1.00
i2c R 145 43 1 43 0 2 2 0.001 261195 278 96.577 -3.423 | 93.748 19.774 2086.92
i2c R 145 43 | 15 3 138 35 525 0.211 158072 332 100.000 0.000 97.797 23.823 142832.39
i2c C 145 43 2 22 65 771 1542 0.618 23969 291 100.000 0.000 97.301 23.327 | 100125.00
spi 1 274 44 | 44 1 0 360 15840 360 360 99.985 0.000 67.073 0.000 1.00
spi R 274 44 1 44 0 2 2 0.000 65510 2432 99.354 -0.631 | 97.956 30.883 162.45
spi R 274 44 6 8 13 51 306 0.019 | 683691 2536 99.985 0.000 99.931 32.858 1213.15
spi C 274 44 | 12 4 610 69 828 0.052 12593 2243 99.985 0.000 94.900 27.827 81388.95
513207 I 700 47 | 47 1 0 251 11797 251 251 98.462 0.000 62.259 0.000 1.00
s13207 R 700 47 1 47 0 2 2 0.000 190271 1905 98.462 0.000 97.623 35.364 181.57
513207 C 700 47 | 27 2 203 83 2241 0.190 35243 1603 98.462 0.000 92.959 30.700 | 100089.23

tests. For the counter-based approach the number of tests is
(M —p+1)-1-Cy, but the final fault coverages may be reached
for a lower number of tests.

The test application time is determined by the number of
applied tests as follows. Let the number of applied tests be
Ny. Let the number of flip-flops in the longest scan chain
be K. Each test requires the LFSR to be loaded with a seed.
With the counter ¢, under the counter-based approach, the
LFSR is clocked for an average of [- C1/2 = 8 [clock
cycles before a seed is obtained. A test consists of a scan-in
operation of K scan shift cycles, a functional capture cycle,
and a scan-out operation of K scan shift cycles. Scan-in
and scan-out operations of consecutive tests are overlapped.
Therefore, the test set requires 8IN clock cycles for the
LFSR if cp is used, (N4 + 1)K scan shift cycles, and N
functional capture cycles. Scan shifting is typically carried
out using a slower clock than the functional clock or the LF'SR
clock. With K > 1, K > L > [and Ny > 1, the test
application time is approximately that of Ny - K scan shift

VOLUME 11, 2023

cycles. Thus, the number of applied tests also determines
the test application time, and a comparison of the number of
applied tests between different cases provides a comparison
of the test application time between the same cases. A more
detailed comparison is discussed later.

B. RESULTS

The results are reported in Tables 7, 8 and 9. For the
circuits in Table 7, the procedure from [24] achieves complete
single stuck-at fault coverage. For the circuits in Table 8§,
the procedure from [24] achieves less than complete single
stuck-at fault coverage. With counter-based combinations as
suggested in this article the single stuck-at fault coverage is
always complete, equal to that of S;,;;. For the circuits in
Table 9, only the procedure for the counter-based approach is
applied to demonstrate its applicability to these circuits. The
first subprocedure is used for selecting values of / and p for
these circuits.

139341

IEEE Access

I. Pomeranz: Storage and Counter Based Logic Built-In Self-Test

TABLE 8. Experimental results group 2.

circuit typ inp L [P iter subv bits tests eff s.a. diff g.exh diff ntime
wb_dma 1 738 47 47 1 0 84 3948 1.000 84 84 100.000 0.000 73.840 0.000 1.00
wb_dma R 738 47 1 47 0 2 2 0.001 | 252167 771 99.615 -0.385 99.077 25.237 577.39
wb_dma R 738 47 5 10 4 28 140 0.035 | 838936 767 99.978 -0.022 99.532 25.692 6023.19
wb_dma R 738 47 10 5 0 277 2770 0.702 | 986814 792 99.989 -0.011 99.577 25.737 472.61
wb_dma C 738 47 16 3 126 84 1344 0.340 20942 695 100.000 0.000 95.885 22.045 100059.36
s15850 1 611 57 57 1 0 197 11229 1.000 197 197 96.682 0.000 73.285 0.000 1.00
$15850 R 611 57 1 57 0 2 2 0.000 | 261955 1788 94.559 -2.124 87.761 14.475 2007.22
$15850 R 611 57 4 15 1 15 60 0.005 | 999797 2267 96.119 -0.563 92.853 19.567 3443.86
$15850 C 611 57 29 2 34 350 10150 0.904 | 161473 1849 96.682 0.000 90.213 16928 | 100362.86
89234 I 247 75 75 1 0 134 10050 1.000 134 134 93.475 0.000 70.825 0.000 1.00
$9234 R 247 75 1 75 0 2 2 0.000 | 261492 921 90.761 -2.714 91.300 20.475 2836.36
$9234 R 247 75 3 25 0 8 24 0.002 | 996368 1093 92.796 -0.679 96.131 25.306 2512.70
89234 C 247 75 25 3 63 321 8025 0.799 | 127201 889 93.475 0.000 93.116 22.291 100497.60
$38584 1 1464 98 98 1 0 218 21364 1.000 218 218 95.852 0.000 88.313 0.000 1.00
838584 R 1464 98 1 98 0 2 2 0.000 | 130393 1687 95.648 -0.204 99.513 11.201 1061.35
838584 R 1464 98 5 20 4 28 140 0.007 | 995504 1724 95.796 -0.055 99.766 11.453 62243.02
838584 C 1464 98 14 7 127 492 6888 0.322 | 108641 1664 95.852 0.000 99.750 11.437 | 100141.85
tv80 1 372 109 | 109 1 0 370 40330 1.000 370 370 99.527 0.000 77.264 0.000 1.00
tv80 R 372 109 1 109 0 2 2 0.000 | 261397 2106 97.947 -1.579 94.625 17.361 421.39
tv80 R 372 109 7 16 4 124 868 0.022 | 998072 2320 98.919 -0.607 97424 20.159 33913.94
tv80 C 372 109 37 3 94 811 30007 0.744 | 478337 2262 99.527 0.000 97.533 20.269 | 100253.98
bl5 1 483 113 113 1 0 266 30058 1.000 266 266 98.580 0.000 59.444 0.000 1.00
bl5 R 483 113 1 113 0 2 2 0.000 | 261591 1387 95.186 -3.393 71.993 12.549 1297.76
bl5 R 483 113 5 23 0 32 160 0.005 | 999779 1635 97.708 -0.872 83.513 24.069 1104.02
bl5 C 483 113 19 6 49 1216 23104 0.769 | 367912 1513 98.610 0.030 81.348 21904 | 100515.74
b20 1 527 119 | 119 1 0 238 28322 1.000 238 238 93.304 0.000 64.250 0.000 1.00
b20 R 527 119 1 119 0 2 2 0.000 | 260752 1355 87.714 -5.589 84.857 20.606 2647.18
b20 R 527 119 5 24 3 29 145 0.005 | 997430 1525 88.861 -4.442 86.057 21.807 13758.22
b20 C 527 119 1 119 10 23102 | 23102 0.816 | 367729 1484 93.308 0.004 87.756 23.506 | 100975.23
bl4 1 280 128 128 1 0 290 37120 1.000 290 290 94.960 0.000 72.068 0.000 1.00
bl4 R 280 128 1 128 0 2 2 0.000 2040 278 79.020 -15.940 | 67.510 -4.558 4204.46
bl4 R 280 128 3 43 3 5 15 0.000 | 973582 790 85.883 -9.077 78.680 6.612 36678.39
bl4 C 280 128 32 4 47 254 8128 0.219 | 128001 625 90.221 -4.739 79.983 7.916 100601.54
bl4 C 280 128 32 4 23 910 29120 0.784 | 463873 810 94.960 0.000 84.670 12.602 101007.50
TABLE 9. Experimental results group 3.

circuit typ inp L] p iter subv bits frac tests eff s.a. diff g.exh diff ntime

wb_conmax I 1900 54 | 54 1 0 911 49194 1.000 911 911 99.353 0.000 | 86.218 0.000 1.00

wb_conmax C 1900 54 | 23 3 1 31 713 0.014 | 10336 3833 | 99.370 0.017 | 92.382 6.164 | 14.13

bl7 I 1444 94 | 94 1 0 1307 | 122858 1.000 1307 1307 | 78.544 0.000 | 45.782 0.000 1.00

bl7 C 1444 94 1 94 1 1168 1168 0.010 | 17191 2769 | 78.802 0.257 | 49.064 3.282 | 29.14

The first row for every circuit, with / under column #yp,
considers S;,;;. The next one or two rows for every circuit,
with R under column #yp, show the results from [24] with [=
1, and /[> 1 if it increases the single stuck-at fault coverage.
The last row shows the results of the counter-based procedure
suggested in this article.

For b14, an additional row is shown for the counter-based
procedure (the row before last) where a loss of fault coverage
is allowed. The best result with the approach from [24] has
a 9% fault coverage loss. The counter-based approach was
allowed a 5% fault coverage loss to demonstrate that this
reduces significantly its storage requirements. The article
does not advocate a fault coverage loss, although this is
common under LBIST. The additional row is included only
to demonstrate the tradeoff between the storage requirements
and the fault coverage.

In each row, after the circuit name, and the type of the
procedure used, column inp shows the number of inputs.
Column L shows the length of the LFSR. Columns / and p
show the values of the corresponding parameters. Column
iter shows the iteration of the software procedure. Column
subv shows the number of subvectors in V. Column bits
shows the number of bits required for V, which equals
[- |V]. Column frac shows the number of bits required

139342

for V divided by the number of bits required for S;,.
The fraction is computed as (/ - [V|)/(L - |Sinit|). Column
tests shows the number of applied tests until the final fault
coverages are obtained. Column eff shows the number of
tests in T,. The tests in T,y increase the fault coverages
when they are applied. Column s.a. shows the single stuck-at
fault coverage. Column g.exh shows the single-cycle gate-
exhaustive fault coverage. For both fault coverages, column
diff shows the increase in the fault coverage relative to Sj,i
(a negative number implies a reduction relative to Si;).
Column ntime shows the runtime of the software procedure
divided by the runtime required for fault simulation of S;,;;.
This is referred to as the normalized runtime. The normalized
runtime measures the computational effort in terms of the
fault simulation time of the basic test set S;;;;.

C. DISCUSSION

The following points can be seen from Tables 7, 8 and 9.
The set Siir, in the first row for every circuit, represents the
conventional approach to test data compression. Under this
approach, deterministic tests are compressed into seeds for
an LFSR. For both [24] and the counter-based approach in
this article, and most of the circuits considered, the storage

VOLUME 11, 2023

I. Pomeranz: Storage and Counter Based Logic Built-In Self-Test

IEEE Access

frac
0.6

0.4}

0.2+

[m%(@
Qo000
ooooooooOOOOO o
0o 0000 @
co0Q

10000

50000

100000 ntime

FIGURE 3. Storage reduction vs. normalized runtime for s5378.

requirements of V are significantly lower than the storage
requirements of S;,;;. The reduction is made possible by the
partitioning of S;,;; into subvectors, and the reduction of V
that is possible when combinations of subvectors use each
subvector multiple times for test application.

In Table 7, both the procedure from [24] and the counter-
based procedure achieve complete single stuck-at fault cover-
age. With up to 1,000,000 pseudo-random combinations, the
procedure from [24] has lower storage requirements for V.
However, it typically needs to apply significantly more tests
than the counter-based procedure described in this article.

The increased number of tests translates into a higher
number of clock cycles required for test application. The test
application time was discussed in Section V-A. Taking all
the clock cycles into account, and assuming that the same
clock is used for scan shifting, functional capture cycles,
and LFSR clocking, s13207 requires 133M clock cycles for
the tests from [24] (without any LFSR clocking), and 32M
clock cycles for the counter-based approach (with LFSR
clocking included). This is a 4-fold reduction in the number
of clock cycles using the counter-based approach. A similar
calculation for spi shows a 40-fold reduction.

The single-cycle gate-exhaustive fault coverage is higher
than that of Sj,;; for both LBIST approaches. With more
applied tests, the fault coverage is typically higher with the
approach from [24].

In Table 8, the procedure from [24] does not achieve
complete single stuck-at fault coverage, whereas the
counter-based approach does. Even with the higher sin-
gle stuck-at fault coverage, the counter-based approach
uses fewer tests than the approach from [24] that uses
pseudo-random combinations.

The normalized runtime does not increase with the size of
the circuit. Thus, the software procedure scales similar to a
fault simulation procedure for the basic test set S;,;;. Fault
simulation time is manageable for circuits of any size.

It is possible to reduce the runtime of the software
procedure by noting that the procedure saturates, causing later
iterations to take longer while achieving smaller reductions in
the storage requirements. To demonstrate this point, Figure 3

VOLUME 11, 2023

shows the storage reduction as a function of the normalized
runtime for benchmark circuit s5378. Based on Figure 3, a
significant reduction in storage requirements is achieved even
if the normalized runtime is limited.

Overall, the counter-based approach achieves complete
single stuck-at fault coverage with reduced storage require-
ments compared with Sj;;;, and a reduced number of tests
even with a higher single stuck-at fault coverage compared
with [24]. The single-cycle gate-exhaustive fault coverage is
significantly higher than that of Sj,;;.

VI. CONCLUDING REMARKS

This article introduced a new option for the formation of tests
under a class of logic built-in self-test (LBIST) approaches
that store partitioned deterministic test data on-chip, and
produce tests by combining stored test data entries. The
two options considered earlier used pseudo-random combi-
nations, or deterministic combinations that were also stored
on-chip. Under the counter-based option introduced in this
article, combinations of stored test data entries that form tests
are created using counters. Counters do not require additional
storage. However, they can ensure that deterministic tests
are reproduced from the stored test data. Thus, complete
fault coverage can be achieved with a limited number of
tests. A software procedure optimized the stored test data
for counter-based test application, and reduced the storage
requirements, without losing fault coverage. Experimental
results for benchmark circuits demonstrated the advantages
of the counter-based approach when test data entries are
obtained by partitioning compressed deterministic tests.
In this case, the universally available on-chip decompression
logic is part of the on-chip test generation logic.

Future work can consider the following directions to obtain
an industry-strength implementation of the counter-based
approach. (1) Instead of the academic implementation
reported in this article, it is possible to implement the
counter-based approach using commercial software tools.
(2) Verilog code can be written for automating the insertion of
the LBIST logic. (3) A functional memory (one that already

139343

IEEE Access

I. Pomeranz: Storage and Counter Based Logic Built-In Self-Test

exists on-chip) can be used for storing test data entries,
instead of using a dedicated memory for LBIST .

REFERENCES

[1] P. H. Bardell, W. H. McAnney, and J. Savir, Built-in Test for VLSI
Pseudorandom Techniques. Hoboken, NJ, USA: Wiley, 1987.

[2] N. A.Touba and E. J. McCluskey, “Bit-fixing in pseudorandom sequences
for scan BIST,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 20, no. 4, pp. 545-555, Apr. 2001.

[3] S. Hellebrand, H.-G. Liang, and H.-J. Wunderlich, “A mixed mode BIST
scheme based on reseeding of folding counters,” J. Electron. Test., vol. 17,
pp. 341-349, Jun. 2001.

[4] 1. Pomeranz and S. M. Reddy, “A storage based built-in test pattern
generation method for scan circuits based on partitioning and reduction
of a precomputed test set,” IEEE Trans. Comput., vol. 51, no. 1,
pp. 1282-1293, Nov. 2002.

[5] S. Pateras, “Security vs. test quality: Fully embedded test approaches are
the key to having both,” in Proc. Int. Test Conf., 2004, p. 1413.

[6] D.Xiang, M. Chen, and H. Fujiwara, “Using weighted scan enable signals
to improve test effectiveness of scan-based BIST,” IEEE Trans. Comput.,
vol. 56, no. 12, pp. 1619-1628, Dec. 2007.

[7]1 D.J. C. Alves and E. Barros, “A logic built-in self-test architecture that
reuses manufacturing compressed scan test patterns,” in Proc. 22nd Annu.
Symp. Integr. Circuits Syst. Design, Chip Dunes, Aug. 2009, pp. 1-6.

[8] L.-T. Wang, X. Wen, S. Wu, H. Furukawa, H.-J. Chao, B. Sheu, J.
Guo, and W.-B. Jone, “Using launch-on-capture for testing BIST designs
containing synchronous and asynchronous clock domains,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 29, no. 2, pp. 299-312,
Feb. 2010.

[9] R.S. Oliveira, J. Semido, I. C. Teixeira, M. B. Santos, and J. P. Teixeira,
“On-line BIST for performance failure prediction under aging effects in
automotive safety-critical applications,” in Proc. 12th Latin Amer. Test
Workshop (LATW), Mar. 2011, pp. 1-6.

[10] Y. Sato, H. Yamaguchi, M. Matsuzono, and S. Kajihara, “Multi-cycle test
with partial observation on scan-based BIST structure,” in Proc. Asian Test
Symp., Nov. 2011, pp. 54-59.

[11] M. E. Imhof and H.-J. Wunderlich, “Bit-flipping scan—A unified
architecture for fault tolerance and offline test,” in Proc. Design, Autom.
Test Eur. Conf. Exhib. (DATE), Mar. 2014, pp. 1-6.

[12] F. Reimann, M. GlaB, J. Teich, A. Cook, L. R. Gémez, D. Ull,
H.-J. Wunderlich, U. Abelein, and P. Engelke, “Advanced diagnosis: SBST
and BIST integration in automotive E/E architectures,” in Proc. 51st
ACM/EDAC/IEEE Design Autom. Conf. (DAC), Jun. 2014, pp. 1-6.

[13] G. Contreras, N. Ahmed, L. Winemberg, and M. Tehranipoor, ‘Predictive
LBIST model and partial ATPG for seed extraction,” in Proc. IEEE Int.
Symp. Defect Fault Tolerance VLSI Nanotechnol. Syst. (DFTS), Oct. 2015,
pp. 139-146.

[14] C.-M. Shiao, W.-C. Lien, and K.-J. Lee, “A test-per-cycle BIST
architecture with low area overhead and no storage requirement,” in Proc.
Int. Symp. VLSI Design, Autom. Test (VLSI-DAT), Apr. 2016, pp. 1-4.

[15] Y.Liu, N. Mukherjee, J. Rajski, S. M. Reddy, and J. Tyszer, ““Deterministic
stellar BIST for in-system automotive test,” in Proc. IEEE Int. Test Conf.
(ITC), Oct. 2018, pp. 1-9.

[16] B. Kaczmarek, G. Mrugalski, N. Mukherjee, J. Rajski, L. Rybak, and
J. Tyszer, “Test sequence-optimized BIST for automotive applications,”
in Proc. IEEE Eur. Test Symp. (ETS), May 2020, pp. 1-6.

[17] A. Koneru and K. Chakrabarty, “An interlayer interconnect BIST and
diagnosis solution for monolithic 3-D ICs,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 39, no. 10, pp.3056-3066,
Oct. 2020.

[18] I. Pomeranz, *“Storage-based built-in self-test for gate-exhaustive faults,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 40, no. 10,
pp. 2189-2193, Oct. 2021.

[19] I. Pomeranz, “Zoom-in feature for storage-based logic built-in self-test,”
in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI Nanotechnol. Syst.
(DFT), Oct. 2021, pp. 1-6.

[20] D. K. Maity, S. K. Roy, and C. Giri, “A cost-effective built-in self-test
mechanism for post-manufacturing TSV defects in 3D ICs,” ACM J.
Emerg. Technol. Comput. Syst., vol. 18, no. 4, pp. 1-23, Oct. 2022.

[21] M. B. G. Remadevi and R. Bakthavatchalu, “Design of a programmable
low power linear feedback shift register for BIST applications,” in Proc.
IEEE Int. Test Conf. India (ITC India), Jul. 2022, pp. 1-4.

139344

[22] S. Wang, X. Zhou, Y. Higami, H. Takahashi, H. Iwata, Y. Maeda, and
J. Matsushima, “Test point insertion for multi-cycle power-on self-test,”
ACM Trans. Design Autom. Electron. Syst., vol. 28, no. 3, pp. 1-21,
May 2023.

[23] S. Gopalsamy and I. Pomeranz, “Fully deterministic storage based logic
built-in self-test,” in Proc. IEEE 41st VLSI Test Symp. (VTS), Apr. 2023,
pp. 1-7.

[24] 1. Pomeranz, “Storage-based logic built-in self-test with partitioned
deterministic compressed tests,” I[EEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 31, no. 9, pp. 1259-1268, Sep. 2023.

[25] H. D. Dixit, S. Pendharkar, M. Beadon, C. Mason, T. Chakravarthy,
B. Muthiah, and S. Sankar, “Silent data corruptions at scale,” 2021,
arXiv:2102.11245.

[26] P. H. Hochschild, P. Turner, J. C. Mogul, R. Govindaraju, P. Ranganathan,
D. E. Culler, and A. Vahdat, “Cores that don’t count,” in Proc. Workshop
Hot Topics Operating Syst., Jun. 2021, pp. 9-16.

[27] 1. Pomeranz and S. M. Reddy, ‘““Static test data volume reduction using
complementation or modulo-M addition,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 19, no. 6, pp. 1108-1112, Jun. 2011.

[28] I.Pomeranz, “Extra clocking of LFSR seeds for improved path delay fault
coverage,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 2,
pp. 544-552, Feb. 2020.

[29] 1. Pomeranz, “Input test data volume reduction using seed complemen-
tation and multiple LFSRs,” in Proc. IEEE 38th VLSI Test Symp. (VTS),
Apr. 2020, pp. 1-6.

IRITH POMERANTZ (Fellow, IEEE) received the
B.Sc. degree (summa cum laude) in computer
engineering and the D.Sc. degree from the Depart-
ment of Electrical Engineering, Technion—Israel
Institute of Technology, Haifa, Israel, in 1985 and
1989, respectively.

From 1989 to 1990, she was a Lecturer with
the Department of Computer Science, Technion—
Israel Institute of Technology. From 1990 to 2000,
she was a Faculty Member with the Department of
Electrical and Computer Engineering, The University of Iowa, Iowa City, IA,
USA. In 2000, she joined Purdue University, West Lafayette, IN, USA, where
she is currently the Cadence Professor with in the Elmore Family School of
Electrical and Computer Engineering.

Dr. Pomeranz is a Golden Core Member of the IEEE Computer Society.
She was a recipient of the NSF Young Investigator Award, in 1993, and the
University of Iowa Faculty Scholar Award, in 1997. Three of her conference
papers won best paper awards and four other papers were nominated
for best paper awards. One of the papers she coauthored was selected
by the 2016 International Test Conference as the most significant paper
published ten years before. She delivered a keynote speech at the 2006 Asian
Test Symposium. She was one of the very first three featured authors on IEEE
Xplore, posted in February 2020. She served as the Program Co-Chair for
the 1999 Fault-Tolerant Computing Symposium. She served as the Program
Chair for the 2004 and 2005 VLSI Test Symposiums and the General
Chair for the 2006 VLSI Test Symposium. She served as an Associate
Editor for ACM Transactions on Design Automation, IEEE TRANSACTIONS
oN CompuTERS, and IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION
(VLSI) Systems. She served as a Guest Editor for IEEE TRANSACTIONS ON
Computers Special Issue on “Dependability of Computing Systems,” in
January 1998.

VOLUME 11, 2023

