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ABSTRACT RGBW remosaicing is an interpolation technique that converts RGBW images captured
using RGBW color filtering arrays into Bayer images. Although recent learning-based approaches using
convolutional neural networks have shown substantial performance improvements, most algorithms require
high computational and memory complexities, which limit their practical applicability. In this work,
we propose an efficient and effective RGBW remosaicing algorithm based on learned kernel-based
interpolation. First, the proposed algorithm extracts deep feature maps from input RGBW images. Then,
we develop a learned kernel-based interpolation module composed of local and non-local interpolation
blocks that generates two intermediate Bayer images. Specifically, the local interpolation block learns local
filters to recover a Bayer image, whereas the non-local interpolation block recovers a Bayer image by
estimating the non-local filters of dynamic shapes. Finally, a reconstructed Bayer image is obtained by
combining the complementary information from the intermediate Bayer images using a spatially weighted
fusion block. Experimental results demonstrate that the proposed algorithm achieves comparable or even
better performance than state-of-the-art algorithms while providing the lowest computational and memory
complexities.

INDEX TERMS RGBW color filter array (CFA), Bayer CFA, remosaicing, learned kernel-based
interpolation.

I. INTRODUCTION
Despite recent advances in digital imaging systems, cap-
turing high-quality images in low-light environments using
conventional cameras remains challenging because of the
limited sensitivity of RGB filters in the Bayer color filter
array (CFA) [1], [2]. To overcome this limitation, several
new CFA patterns with additional panchromatic, or white
(W), pixels that have a higher transmittance of visible light
by increasing the amount of light reaching each pixel, also
known as RGBWCFA, have been developed [1], [3], [4], [5],
[6], [7]. Figure 1 shows examples of common RGBW CFA
patterns used in conventional cameras. As W pixels exhibit
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higher light efficiency than RGB color pixels, the signal-to-
noise ratio of images captured by RGBW CFAs significantly
increases, thereby improving the image quality, especially in
low-light environments. Despite the advantages of RGBW
CFAs over the Bayer CFA in light efficiency, image signal
processing (ISP) pipelines, especially for demosaicing, have
been developed and optimized for the Bayer CFA. Therefore,
to increase the practical use of RGBW CFAs in cameras,
various demosaicing algorithms have been developed to
reconstruct full-color images from RGBW images [8].

A straightforward approach is to develop a demosaicing
algorithm for RGBW CFAs [2], [8], [11], [12], [13], [14],
[15]. However, demosaicing RGBW images, also known
as RGBW demosaicing, is more challenging than Bayer
demosaicing. Because W pixels have no color information
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FIGURE 1. Examples of common CFA patterns. (a) Bayer CFA [9], (b) Sony-RGBW CFA [6], (c) Cannon-RGBW CFA [5],
(d) Kodak-RGBW CFA [4], (e) shifted Kodak-RGBW CFA [10], and (f) Quad-Bayer CFA.1

and the use of W pixels reduces the spatial resolution of
the RGB information, as shown in Figures 1(b)–(e), the
reconstruction of color information at each pixel location is
more challenging. Nevertheless, several RGBW demosaicing
algorithms have been developed because of their practical
importance. For example, in [2], [8], [11], [13], [14], and [15],
color reconstruction models for RGBW demosaicing were
developed based on inter-channel correlations and image
priors of RGBW CFAs. Despite their effectiveness in color
reconstruction, they require high computational complexity
to solve optimization problems. Another approach to RGBW
demosaicing was developed based on pansharpening, which
recasts color reconstruction as a fusion of W and RGB
images [12], [16], [17]. However, this approach relies heavily
on pansharpening algorithms, which are intractable for
deployment in ISP pipelines.

Another effective approach is to convert RGBW images
into Bayer images and then use the existing ISP pipeline
to generate full-color images, which is known as RGBW
sensor remosaicing or simply remosaicing. Due to their
advantages of reusing existing ISP pipelines, various remo-
saicing algorithms [18], [19], [20], [21] have been developed
based on the properties of specific CFAs. Early attempts at
remosaicing have tried to formulate optimization problems
based on prior knowledge of natural images and solve
them. However, solving numerical optimization generally
demands considerable computational resources, limiting their
use in practical applications. Recently, a high-quality dataset
of aligned RGBW and Bayer images was constructed for
RGBW sensor remosaic challenges [10], [22], which can
facilitate the development of deep learning-based algorithms
by learning end-to-end mappings between RGBW and Bayer
images. However, although learning-based algorithms [10],
[22], [23], [24], [25] yield high remosaicing performance,
they require high computational and memory complexities
because of the large number of network parameters, as shown
in Figure 2. This limits their applicability in commercial
cameras, such as smartphones. Therefore, developing an effi-
cient remosaicing algorithm while maintaining performance
is highly desirable.

In this work, we develop a simple yet effective RGBW
remosaicing algorithm based on learned kernel-based inter-
polation. The proposed algorithm consists of a feature

1https://www.sony.com/en/SonyInfo/News/Press/201807/18-060E

FIGURE 2. Comparison of performance and runtime of the proposed
algorithm and recent deep learning-based RGBW remosaicing algorithms
on the MIPI-RGBW dataset [22]. The size of the circles depicts the
numbers of network parameters.

extractor, learned kernel-based interpolation, and spatially
weighted fusion modules. First, the feature extractor extracts
the deep feature maps of an input RGBW image for interpo-
lation. Next, the learned kernel-based interpolation module
generates two Bayer images using local and non-local inter-
polation blocks. Specifically, the local interpolation block
recovers a Bayer image by learning local filters, whereas
the non-local interpolation block estimates the dynamic
shapes of the filters to recover a Bayer image. Finally,
the spatially weighted fusion module adaptively merges
these intermediate images from the interpolation modules
to generate a reconstructed Bayer image. Experimental
results demonstrate that the proposed algorithm achieves
comparable or even better performance while incurring the
lowest computational and memory complexities compared
with state-of-the-art learning-based algorithms [10], [22].
Figure 2 shows that the proposed algorithm achieves the
best performance in terms of M4 with the least number of
parameters and the fastest runtime.

In summary, we make the following contributions:
• We propose a simple yet effective kernel learning-based
RGBW remosaicing algorithm that converts RGBW
images into Bayer images by adaptively combining
local and non-local information extracted from an input
RGBW image.

• We develop a learned kernel-based interpolation algo-
rithm that learns dynamic local kernels and adaptive
offsets to effectively recover pixels in a Bayer image by
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extracting valid information from an RGBW image both
locally and non-locally.

• We experimentally demonstrate that the proposed algo-
rithm achieves state-of-the-art remosaicing performance
while significantly reducing the model size and runtime,
thus achieving a graceful tradeoff between performance
and complexity.

The remainder of this paper is organized as follows.
Section II reviews the related work. Section III describes the
proposed RGBW remosaicing algorithm, and Section IV dis-
cusses the experimental results. Finally, Section V concludes
the paper.

II. RELATED WORK
A. RGBW DEMOSAICING
RGBW demosaicing algorithms have been developed based
on Bayer demosaicing and can be broadly divided into two
categories according to how the properties of RGBW CFAs
are exploited. Algorithms in the first category attempt to
derive mathematical models by incorporating handcrafted
model information based on the properties of RGBW
CFAs. For example, the linear relationship between W and
RGB pixels [8], [11], frequency structures of CFAs [26],
image colorization [13], sparse representation [14], and low-
dimensional manifolds [15] have been employed. However,
these algorithms require substantial computational resources
to solve optimization problems, making them unsuitable to
deploy on resource-constrained mobile devices. Algorithms
in the second category generate full-color images based
on pansharpening [12], [16], [17]. Specifically, they first
decomposed an RGBW image into a full-resolution W image
and a low-resolution RGB image and then interpolated
the missing W pixels and color pixels in each image.
The interpolated full-resolution W and low-resolution RGB
images are then combined using a pansharpening algorithm
to obtain the final full-color image. However, the efficiency
and performance of these algorithms depend on the choice
of Bayer demosaicing, interpolation, and pansharpening
algorithms, making their use on the ISP pipeline in practical
applications challenging.

Recently, several deep learning-basedRGBWdemosaicing
algorithms that learn end-to-end mappings from RGBW
images to full-color images have been developed. For
example, Chakrabarti [27] developed a two-path neural
network that jointly learns the RGBW CFA pattern and
color reconstruction. Sharif and Jung [28] proposed two
sequential networks based on pansharpening to reconstruct
full-color images of sparse RGBW CFAs. However, the
construction of real image pairs of RGBW CFAs and their
corresponding full-color images is more difficult than that of
the Bayer CFA [8], which limits the generalization ability of
learning-based algorithms in real-world applications.

B. RGBW REMOSAICING
An alternative approach is RGBW remosaicing, which
converts RGBW images into Bayer images and then uses

existing ISP pipelines. Owing to this advantage, various
remosaicing algorithms have been developed. Early attempts
were made to exploit the prior knowledge of natural color
images [18] or employ spatial filters [19], [20], [21].
Recently, with the construction of a dataset of real image pairs
for RGBW and RGB CFAs [10], several deep learning-based
RGBW remosaicing algorithms have been developed [10],
[22], [25]. In addition, because RGBW remosaicing can
be regarded as image restoration in that it reconstructs a
Bayer image by recovering missing color pixels, state-of-the-
art networks [23], [24], modules or blocks [29], [30], [31],
[32], and transformer layers [33], [34] for image restoration
have been employed for RGBW remosaicing. For example,
Fan et al. [25] employed transformer layers to exploit
long-range dependencies in input images by computing the
similarity between pixels. However, existing learning-based
algorithms focus only on performance improvement with-
out considering efficiency, which is crucial for practical
applications.

Another related work similar to RGBW remosaicing
is Quad-Bayer remosaicing [10], [35], [36], [37], [38]—
a conversion from Quad-Bayer CFAs, which contain four
adjacent pixels clustered with the same-colored pixels in
Figure 1(f), to Bayer CFAs. However, because Quad-Bayer
CFAs have different numbers of RGB pixels from RGBW
CFAs and do not have W pixels, the image priors of CFAs
for remosaicing should differ from those of RGBW CFAs.

C. LEARNED KERNEL-BASED INTERPOLATION
The learned kernel-based interpolation technique generates
dynamic filters to synthesize a target image for various
image processing and computer vision tasks [39], [40], [41],
[42], [43], [44], [45]. For example, Jia et al. [39] proposed
a filter-generating network that learns filter coefficients
to generate future frames adaptive to motion patterns.
Gharbi et al. [40] developed an image enhancement algorithm
that estimates filter coefficient maps for color transformation.
In [41], [42], and [43], spatiotemporal filter coefficients were
dynamically learned to interpolate a new frame between
temporally adjacent video frames. Cheng and Chen [45]
developed a learned kernel-based frame interpolation algo-
rithm that learns deformable offsets for adaptive kernel
shapes. Vien and Lee [44] developed a dynamic interpolation
network that learns local filter coefficients to combine useful
information and restore missing information. In this work,
we develop an RGBW remosaicing algorithm based on
learned kernel-based interpolation that learns the dynamic
filter coefficients and adaptive kernel shapes to take into
account an irregular grid of W pixels.

III. PROPOSED ALGORITHM
Figure 3 shows an overview of the proposed algorithm, which
is composed of three main modules: a feature extractor,
learned kernel-based interpolation, and spatially weighted
fusion. The feature extractor first extracts the input feature
map F in from the input RGBW image Iin. Then, the
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FIGURE 3. Overview of the proposed algorithm. Given an RGBW image Iin, the proposed algorithm first extracts the feature map F in. Then, these
features are used to obtain two intermediate images ĨL and ĨNL via local and non-local interpolation blocks, respectively. Finally, the spatially weighted
fusion block adaptively fuses ĨL and ĨNL to synthesize the final remosaiced Bayer image IR .

FIGURE 4. Architecture of the local interpolation block.

learned kernel-based interpolation module generates two
intermediate Bayer images, ĨL and ĨNL , by learning the
dynamic weights and offsets simultaneously via local and
non-local interpolation, respectively. Finally, the spatially
weighted fusion module learns spatial weight maps to merge
ĨL and ĨNL and obtains the final reconstructed Bayer image IR.

A. FEATURE EXTRACTOR
Given an input RGBW image Iin ∈ RW×H×1, whereW andH
denote the width and height of the input image, respectively,
the feature extractor extracts the deep feature map F in ∈

RW×H×32 for local as well as non-local interpolation.
We employ U-Net [46], which contains an encoder and
a decoder, as the feature extractor, as shown in Figure 3.
Specifically, the encoder contains eleven convolution blocks,
each of which is composed of a convolution layer with a
Gaussian error linear unit (GELU) [47] activation function.
It takes an RGBW image Iin and extracts a 4-level feature
pyramid with 32, 64, 128, and 256 feature channels.
A convolution layer with a 2×2 kernel and a stride of 2 is used
for downsampling. The decoder then takes 4-level feature
maps via skip-connections and generates the reconstructed
feature map F in in a coarse-to-fine manner through six
convolution blocks. A convolution layer with a pixel shuffle
operator [48] is used for upsampling.

FIGURE 5. Architecture of the non-local interpolation block.

B. LEARNED KERNEL-BASED INTERPOLATION
1) OVERVIEW
Several deep networks and modules for image restoration
tasks have been applied to RGBW remosaicing to restore
missing color pixels in target Bayer images [10], [22],
[25]. Although they achieved superior performances, their
computational complexity is too high for use in resource-
constrained devices. In addition, recent researches [25], [49]
found that exploiting local as well as non-local information
of inputs improves restoration performance. In this work,
we develop an efficient yet effective remosaicing module
based on learned kernel-based interpolation by exploiting
both local and non-local information to fully utilizeW pixels.
Specifically, the proposed interpolation module consists of
local and non-local interpolation, which are described in
detail below.

2) LOCAL INTERPOLATION
As the RGBW CFA has a high proportion of W pixels,
which contain a large amount of useful information in the
input, effectively extracting meaningful information from the
W pixels is essential for effective remosaicing [22]. To this
end, we develop a local interpolation block that enables the
network to dynamically estimate the relative importance of
neighboring pixels. Figure 4 illustrates the architecture of the
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proposed local interpolation block, which takes the extracted
feature map F in and RGBW image Iin and then adaptively
combines them with the neighboring pixels to output the
intermediate Bayer image ĨL .

The proposed local interpolation block comprises four
convolution layers for estimating the local filter coefficients
kLC ∈ RW×H×(3×3), where W and H denote the width
and height of the input feature map, respectively. Three
3×3 convolution layers with GELU [47] activation functions
and a single 3 × 3 convolution layer are stacked to generate
the filter coefficients. The number of channels in the first
three convolution layers is 32, and that in the last convolution
layer is 9. Thus, the local interpolation block fuses 3 × 3
neighboring pixels adaptively in the RGBW image Iin.
Specifically, for each pixel (x, y) of Iin, we obtain the
intermediate Bayer image ĨL via local convolution (LC) as

ĨL(x, y) =

1∑
i=−1

1∑
j=−1

kLC (i, j)Iin(x + i, y+ j), (1)

where (i, j) denote local coordinates around (x, y), and
the filter coefficients are normalized, i.e.,

∑1
i=−1

∑1
j=−1

kLC (i, j) = 1.

3) NON-LOCAL INTERPOLATION
As shown in Figure 1, RGBW CFAs contain significantly
more W pixels than R, G, and B pixels, and more G pixels
than R and B pixels. Thus, the interpolation using fixed local
kernels in the previous section may fail to accurately estimate
the corresponding color pixels because of insufficient color
information in the local region. To address this limitation,
we develop a non-local interpolation algorithm based on
deformable convolution [45], [50], which allows the network
to use more pixels outside the rectangular grid of the kernel
window.

Figure 5 illustrates the proposed non-local interpolation
block, which consists of three branches with the same
architecture. Each branch estimates different elements for
the deformable convolution. The first branch estimates the
global filter coefficients w ∈ R3×3 for the input pixels.
The second branch learns 2D offsets 1P = {1ph, 1pv} ∈

RW×H×(2×3×3) for all pixels, where 1ph and 1pv denote
the horizontal and vertical offsets, respectively. These offsets
enable non-local interpolation by resampling the pixels
outside the rectangular window for convolution. Finally, the
third branch learns a modulation mask 1m ∈ RW×H×(3×3)

that enables the network to focus on the more important
pixels, which improves the performance of deformable
convolution [50]. In addition, global average pooling (GAP)
is employed in the first branch to obtain a global kernel, while
a sigmoid function is used in the third branch to constrain
the values in 1m in the range of [0, 1]. Similar to the local
interpolation block, the number of channels in the first three
convolution layers of each branch is 32.

Then, the deformable convolution block in Figure 5
takes the estimated filter coefficients w, offsets 1P, and

FIGURE 6. Architecture of the weight learning network.

modulation masks 1m and adaptively combines non-local
pixels in Iin to generate an intermediate Bayer image ĨNL(x, y)
at the pixel location (x, y) as

ĨNL(x, y) =

1∑
i=−1

1∑
j=−1

w(i, j)1m(x, y, i, j)

× Iin
(
x + i+ 1ph(i, j), y+ j+ 1pv(i, j)

)
. (2)

C. SPATIALLY WEIGHTED FUSION
In Figure 3, two intermediate images ĨL and ĨNL are
interpolated using the local and non-local interpolation
blocks, respectively. Since the two images are independently
interpolated using different blocks, they have different
characteristics with complementary information. Therefore,
to effectively preserve complementary information from the
two images ĨL and ĨNL , we combine them to synthesize the
final Bayer image IR.
To this end, we develop a spatially weighted fusion module

to estimate the dynamic filter coefficients kfuse that determine
the adaptive weights between ĨL and ĨNL for fusion. Figure 6
shows the architecture of the weight learning network.
It contains seven 3×3 convolution layers with symmetric skip
connections to estimate kfuse(x, y) ∈ RW×H×2×(d×d) at each
pixel location (x, y), where d denotes the size of the kernel—
d × d neighboring pixels in each image are fused. Each
convolution layer is followed by a GELU activation function
except for the last convolution. The number of channels in
the first six convolution layers is 32, while that of the last
convolution layer is two.

Finally, the fused Bayer image IR is obtained via LC as

IR(x, y) =

2∑
l=1

∑
i

∑
j

kfuse(i, j, l )̃I (x + i, y+ j, l), (3)

where (i, j) are the local coordinates around (x, y) and Ĩ =

{̃IL , ĨNL} ∈ RW×H×2. The coefficients are normalized, i.e.,∑2
l=1

∑
i
∑

j kfuse(i, j, l) = 1.

D. LOSS FUNCTIONS
To train the proposed algorithm, we define the total lossLtotal
as the weighted sum of the Bayer loss LBayer , reconstruction
loss Lr , SSIM loss LSSIM , and perceptual loss Lper as

Ltotal = LBayer + λrLr + λSSIMLSSIM + λperLper , (4)

where λr , λSSIM , and λper are the hyperparameters to balance
the four losses.
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TABLE 1. Quantitative comparison of the proposed algorithm with the conventional algorithms on the test sets using five quality metrics. For each metric,
the best result is boldfaced, while the second best is underlined.

The Bayer lossLBayer measures the difference between the
reconstructed Bayer image IR and its ground-truth Igt as

LBayer = ∥IR − Igt∥1. (5)

As the estimated Bayer image IR should be demosaiced
for use in real applications, we compute the losses using
the full-color images obtained by demosaicing. To this end,
we employ a demosaicing algorithm G [51] with pretrained
weights from [10] and [22] and the gamma function to obtain
full-color images as

IRGBR =

(
G

(
(IR)1/γ

))γ

, (6)

IRGBgt =

(
G

((
Igt

)1/γ ))γ

(7)

for IR and Igt , respectively. In this work, we fixed γ = 2.2.
We compute the l1-norm as the reconstruction loss Lr as

Lr = ∥IRGBR − IRGBgt ∥1. (8)

We employ the SSIM loss LSSIM to qualify the structure and
contrast information, which is given by

LSSIM = 1 − SSIM (IRGBR , IRGBgt ), (9)

where SSIM (·) is the structural similarity index. Finally,
we use the perceptual loss Lper to compare the high-level
differences between the two images, which is defined as

Lper = LPIPS(IRGBR , IRGBgt ), (10)

where LPIPS(·) denotes the LPIPS score [52] using a
pretrained AlexNet [53].

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETTINGS
1) DATASET
We evaluate the performance of the proposed algorithm on
the MIPI-RGBW [10] and Kodak2 datasets.

• MIPI-RGBW [10]: This dataset contains captured
RGBW and Bayer image pairs with a resolution of
1800 × 1200, which are composed of 70 training and
15 validation pairs. We use the validation set for the
testing and randomly select ten images from the training

2https://r0k.us/graphics/kodak/

pairs for validation; thus, the new training set contains
60 pairs.

• Kodak: This dataset was constructed by synthesizing
RGBW and Bayer image pairs using 24 full-color
images with a resolution of 3072 × 2048. Specifically,
following [12], [27], and [54], we synthesize a panchro-
matic W image using the linear relationW = R+G+B
and then generate a pair of a synthetic RGBW image
with the RGBWpattern in Figure 1(e) and a Bayer image
with the GBRG pattern in Figure 1(a).

Although we evaluate the proposed algorithm using these two
datasets, we use only the MIPI-RGBW dataset for training.

2) IMPLEMENTATION DETAILS
The proposed algorithm comprises three modules: a feature
extractor, learned kernel-based interpolation, and spatially
weighted fusion. We experimentally found that training these
networks in a two-step manner provides better performance
than end-to-end training. Specifically, we first train the
feature extractor and learned kernel-based interpolation
jointly to obtain two intermediate images. Then, with these
two modules fixed, we train the spatially weighted fusion
module end-to-end. The fixed feature extractor and learned
kernel-based interpolation enable training the spatially
weighted fusion module to converge faster and the network
to improve reconstruction performance.

We use the Adam optimizer [55] with β1 = 0.9, β2 =

0.999, an initial learning rate of 10−4, and a batch size of
5 for 1000 epochs. The learning rate is halved after the 200th
and 300th epochs. We augment the training dataset by a
geometric transformation of 90◦ rotation, random flipping,
and cropping of 256 × 256 patches. The hyperparameters
λr , λSSIM , and λper in (4) are fixed to 1.0, 0.75, and 0.1,
respectively, to provide the best overall subjective quality.

3) STATE-OF-THE-ART ALGORITHMS FOR COMPARISONS
We evaluate the RGBW remosaicing performance of the pro-
posed algorithm with those of five top-ranked algorithms in
the challenges [10], [22]: DRUNet, NAFNet, and UNet-ResT
in MIPI 2022 [10] and NAFNet-SSA and OTST [25] in
MIPI 2023 [22]. For a fair comparison, we retrained these
algorithms using the training dataset in Section IV-A1
using the parameter settings recommended by the respective
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FIGURE 7. Comparison of box plots for the five metrics in Table 1 on the MIPI-RGBW dataset.

FIGURE 8. Qualitative comparison of demosaiced full-color images obtained using a simple ISP [22] on the MIPI-RGBW dataset. The second, fourth, and
sixth rows show the enlarged parts for the red rectangles in the first, third, and fifth rows, respectively.

authors. The source code of UNet-ResT was obtained from
the author’s website,3 whereas we implemented DRUNet,
NAFNet, NAFNet-SSA, and OTST. We will provide the
source codes and pretrained models on our project website.4

B. PERFORMANCE COMPARISON
We evaluate the RGBW remosaicing performance using
five quality metrics: PSNR, SSIM, LPIPS [52], Kullback-
Leibler divergence (KLD), and M4. As each quality metric
assesses different aspects of the image quality, using a

3https://github.com/Joyies/ECCVW22-RGBW-Remosaic-Challenge
4https://github.com/viengiaan/RGBW_Remosaicing

single metric for performance comparison is difficult. Thus,
an overall weighted metric, M4, was developed in the RGBW
remosaicing challenge [22] for the overall performance
evaluation, which is defined as

M4 = PSNR × SSIM × 2(1−LPIPS−KLD). (11)

The PSNR, SSIM, and LPIPS scores are computed
between full-color images converted from the restored
and ground-truth Bayer images using a simple ISP [22],
whereas the KLD score is computed directly from the Bayer
images. Higher PSNR, SSIM, and M4 scores indicate better
performance, whereas lower LPIPS and KLD scores indicate
better performance.
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FIGURE 9. Qualitative comparison of demosaiced full-color images obtained using a simple ISP [22] on the Kodak dataset. The second, fourth, and sixth
rows show the enlarged parts for the red rectangles in the first, third, and fifth rows, respectively.

Table 1 quantitatively compares the RGBW remosaicing
performances on the MIPI-RGBW and Kodak datasets. First,
the proposed algorithm achieves the best KLD and M4
scores on both datasets because it synthesizes the most
accurate Bayer images by exploiting both local and non-local
information in the RGBW images. Specifically, the proposed
algorithm obtains 0.16 and 0.34 higher M4 scores than the
second-best algorithm, DRUNet, on the MIPI-RGBW and
Kodak datasets, respectively. Second, the proposed algorithm
yields the best LPIPS and comparable SSIM and PSNR
scores to those of the best algorithm, OTST, on the MIPI-
RGBW dataset. Note that, although the proposed algorithm
provides inferior PSNR and SSIM scores to conventional
algorithms, it produces visually more plausible results as
will be shown subsequently. This is because the proposed
algorithm is trained to minimize both pixel-wise differences
and perceptual quality as described in Section III-D, whereas
the conventional algorithms consider only the pixel-wise
differences. The effects of different losses on the performance
will be analyzed in Section IV-C4.
Figure 7 shows the box plots for the five metrics presented

in Table 1 for the MIPI-RGBW dataset. The red lines
and crosses for each metric denote the median values
and outliers, respectively. The proposed algorithm achieves
the lowest median values for LPIPS and KLD scores in
Figures 7(c) and (d), respectively, and the highest median
value for M4 in Figure 7(e). In addition, the proposed
algorithm produces the smallest number of outliers. These

results confirm that the proposed algorithm is more effective
and stable than the conventional algorithms.

Figure 8 compares the demosaiced full-color images
obtained by applying a simple ISP [22] to the Bayer
images reconstructed by each algorithm on the MIPI-RGBW
dataset. DRUNet, NAFNet, UNet-ResT, and NAFNet-SSA
in Figures 8(c)–(f) generate false-color artifacts in regions
with high-frequency textures because they fail to effectively
extract useful information from the W pixels for texture
restoration. Although OTST in Figure 8(g) produces better
results, it still generates visible artifacts in the fourth
row. In contrast, the proposed algorithm in Figure 8(h)
produces full-color images with less false-color artifacts by
accurately recovering textures using both local and non-
local interpolation. For example, conventional algorithms
yield strong false-color artifacts in the second, fourth, and
sixth rows because of inaccurate texture restoration, e.g., the
high contrast edges in the fourth row, which are effectively
recovered by the proposed algorithm.

Figure 9 shows the RGBW remosaicing results for the
Kodak dataset. DRUNet in Figure 9(c) produces severe color
distortions, especially in the second and sixth rows, due to the
ineffective exploitation ofWpixels for the estimation ofmiss-
ing color pixels. By adopting more complicated restoration
modules, NAFNet, UNet-ResT, NAFNet-SSA, and OTST in
Figures 9(d)–(g), respectively, generate better color tones
than DRUNet. However, they still produce strong visible
artifacts in the homogeneous regions in the second and sixth
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TABLE 2. Comparisons of computational complexity in terms of the
number of network parameters, GMACC, and runtime in seconds.

FIGURE 10. Qualitative comparison of synthesized results obtained using
different feature extractors. The second row shows the enlarged parts for
the red rectangles in the first row.

rows and color-false artifacts in the fourth row. In contrast, the
proposed algorithm in Figure 9(h) yields results that are most
similar to the ground-truths in Figure 9(b) with less visible
artifacts, which confirms the effectiveness of the proposed
learned kernel-based interpolation blocks.

Table 2 compares the numbers of network parameters
and giga multiply-accumulate (GMACC) operations and
the average runtime of different algorithms to process the
test images in the MIPI-RGBW dataset on an Nvidia
RTX 3090 GPU. The proposed algorithm is the most efficient
for all the complexity measurement metrics. In particular,
the proposed algorithm requires 14 times fewer network
parameters and 1.3 times fewer GMACCs and is 2.1 times
faster than the second-most efficient algorithm, NAFNet-
SSA. This superior efficiency is due to the lower complexity
of learned kernel-based interpolation compared to that of end-
to-end mapping in conventional algorithms. These results
indicate that the proposed algorithm provides comparable or
even better remosaicing performance than conventional algo-
rithms, while demanding significantly lower computational
complexity, thus, achieving a desirable tradeoff between
performance and complexity.

C. MODEL ANALYSIS
We conduct several ablation studies to analyze the contri-
butions of the key components of the proposed algorithm.
In addition, we analyze the effects of different fusion
strategies for the fusion block and each loss component on
the synthesis performance. All the experiments are performed
using the MIPI-RGBW dataset.

1) FEATURE EXTRACTOR
To analyze the effectiveness of the feature extractor of
the proposed algorithm, we train the proposed network

FIGURE 11. Comparison of the error maps for different settings of
interpolation.

using three widely used backbone architectures: residual
dense network (RDN) [56], dilated residual dense network
(DRDN) [57], andU-Net [46]. Table 3 compares the synthesis
performances. U-Net achieves the best performance for all
metrics with the smallest network parameters and GMACCs.
This indicates that the multiscale feature map extracted
by U-Net is more effective for RGBW remosaicing than
the single-scale feature maps extracted by the RDN and
DRDN. We also visually compare the results obtained using
different feature extractors in Figure 10. TheRDNandDRDN
produce results with false-color artifacts due to ineffective
feature extraction, whereas U-Net produces considerably
better results by exploiting multiscale rich information.

2) LOCAL AND NON-LOCAL INTERPOLATION
To analyze the effectiveness of different interpolation blocks,
local and non-local interpolation, in Figure 3, we train the
proposed algorithm using different settings. Table 4 compares
the synthesis performances under different settings. First,
using only the local interpolation block yields the worst
performance for all metrics, because local neighboring pixels
may not contain sufficient color information given the high
sampling rate of W pixels, to recover the corresponding color
pixels accurately. Second, non-local interpolation achieves
better performance because it uses more color information
outside the rectangular grid of the filter. Finally, combining
the results of local and non-local interpolation via spatially
weighted fusion significantly improves the performance by
exploiting the complementary information extracted from
both interpolation blocks. In addition, Figure 11 shows
the error maps for each setting in Table 4. Local and
non-local interpolation yield complementary results, and the
proposed algorithm improves the performance by combining
complementary information.

3) FUSION BLOCK
We analyze the effectiveness of the proposed spatially
weighted fusion block described in Section III-C by training
the proposed algorithm using various fusion strategies, i.e.,
global 1×1 convolution, DRDN [57], and spatially weighted
fusion using three kernel sizes, i.e., d = 1, d = 3, and
d = 5. Note that if d = 1, the fusion in (3) becomes
the weighted sum of two intermediate images with pixel-
wise weights. Table 5 and Figure 12 presents quantitative
and qualitative comparisons of the different fusion strategies.
The 1× 1 convolution yields the worst performance because
it cannot fully exploit the complementary information in
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TABLE 3. Comparison of synthesis performance using different backbone networks for feature extractor.

TABLE 4. Impacts of local interpolation, non-local interpolation, and spatially weighted fusion on synthesis performance.

TABLE 5. Comparison of synthesis performance using different fusion strategies.

FIGURE 12. Qualitative comparison of results using different fusion strategies. The second row shows the enlarged parts for the red rectangles in the
first row.

TABLE 6. Impacts of losses on synthesis performance.

each interpolated image; thus, it generates visible artifacts
in the result, e.g., the splotchy artifacts around the edges
in Figure 12(c). A more complex network, the DRDN,
provides better performance than the 1 × 1 convolution.
For example, the DRDN in Figure 12(d) generates a result
with less splotchy artifacts. However, this comes at the cost
of 1.83 times higher complexity in GMACCs compared
to 1 × 1 convolution. In contrast, the proposed spatially
weighted fusion with d = 1 achieves the best quantitative

and qualitative performances with comparable complexities.
Furthermore, as the kernel size increases, the synthesis
performance deteriorates because large kernels use more
neighboring pixels for fusion, making learning more difficult.
For example, the spatially weighted fusion with d = 3 and
d = 5 in Figures 12(f) and (g), respectively, yield visible
artifacts near the edges, indicating that large kernels fail
to effectively determine the useful neighboring pixels for
fusion.
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4) LOSS FUNCTIONS
Finally, we conduct ablation studies to analyze the contribu-
tion of each component in the loss function in Section III-D
by training the proposed algorithm using various combina-
tions of losses. Table 6 compares average scores. Using only
the Bayer lossLBayer yields the worst performance on PSNR,
SSIM, LPIPS, and M4 but the best KLD score. The addition
of the losses computed between the full-color images, i.e.,
reconstruction loss Lr , SSIM loss LSSIM , and perceptual
loss Lper , improves the performance for PSNR, SSIM, and
LPIPS, but slightly degrades the KLD performance. For
example, adding Lr increases the PSNR and SSIM scores by
minimizing the pixel-wise differences, and adding both Lr
and LSSIM achieves the highest PNSR and SSIM scores by
preserving the structure and contrast. The combination of Lr
and Lper yields the second-best LPIPS and best M4 scores
by preserving high-level context. Finally, the proposed loss
Ltotal achieves the best LPIPS andM4 scores and comparable
PSNR, SSIM, and KLD scores to other combinations to
generate images with the best overall perceptual quality with
comparable fidelity.

V. CONCLUSION
RGBW remosaicing is an interpolation technique for con-
verting RGBW images into Bayer images to use the existing
ISP pipeline to generate full-color images. Although recent
learning-based RGBW remosaicing algorithms have shown
significant performance improvement, they demand high
computational and memory complexities, limiting their
practical uses. In this work, we proposed an efficient and
effective RGBW sensor remosaicing algorithm based on
learned kernel-based interpolation. The proposed algorithm
comprises a feature extractor, learned kernel-based inter-
polation, and spatially weighted fusion modules. We first
extracted deep feature maps from an input RGBW image
using a feature extractor. The main contribution of this work
is the development of a learned kernel-based interpolation
module that generates two intermediate Bayer images by
exploiting local and non-local pixels in the input RGBW
image. Finally, the spatially weighted fusion block aggregates
complementary information in the intermediate Bayer images
to obtain a reconstructed Bayer image. Experimental results
demonstrated that the proposed algorithm provides compa-
rable or even better remosaicing performance than state-of-
the-art algorithms while requiring 14 times fewer network
parameters, 1.3 times fewer GMACCs, and 2.1 times faster
runtime.
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