
Received 5 December 2023, accepted 6 December 2023, date of publication 8 December 2023,
date of current version 29 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3341095

A Fully Outsourced Attribute-Based Signcryption
Scheme Supporting Privacy-Preserving Policy
Update in Mobile Cloud Computing
PATTAVEE SANCHOL AND SOMCHART FUGKEAW , (Member, IEEE)
School of Information, Computer, and Communication Technology (ICT), Sirindhorn International Institute of Technology, Thammasat University,
Pathum Thani 12121, Thailand

Corresponding author: Somchart Fugkeaw (somchart@siit.tu.ac.th)

ABSTRACT Existing fine-grained and secure access control systems deployed in mobile cloud comput-
ing (MCC) typically focus on offloading encryption and/or decryption workloads to the delegated proxy in
the cloud server. However, the privacy and authenticity management of outsourced data with flexible and
efficient access policy update in MCC is generally overlooked by existing works. In fact, the signcryption
feature is generally required in data access control system where the trust between data owner and multiple
mobile users is crucial while the policy update management deals with the dynamic handling of user
privilege control lifecycle. In this paper, we propose a privacy-preserving access control scheme supporting
signcryption and efficient policy update with policy hiding in MCC setting. Essentially, a fully outsourced
attribute-based signcryption (ABSC) and policy update method are devised to allows the data owner to
offload ABS operation and policy update cost to be executed by the delegated proxy. Finally, we present
our experiments to demonstrate that our proposed scheme is computationally more efficient compared to
related works.

INDEX TERMS Access control, CP-ABE, ABSC, mobile cloud, key transformation, policy update.

I. INTRODUCTION
Mobile cloud computing (MCC) offers high flexibility and
accessibility to the mobile users for consuming resources
such as mobile applications and data outsourced in the cloud.
Cloud services and data are fully managed and operated in
the cloud platforms where plentiful system resources and
storages are available to serve a high volume of users. Here,
the computational processing of processes or tasks in using
the services is done at the cloud server while mobile users
only get the service or do partial processing at their mobile
devices.

In addition to a ton of services offered by cloud service
providers (CSPs), most organizations or individuals tend to
outsource their applications and data hosted on cloud and
allow their users to access them via mobile devices.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehdi Sookhak .

Even though MCC delivers more flexibility through the
mobility for accessing outsourced services, the access control
together the data privacy of the shared resources including
data is highly important. Specifically, the content of data that
are transferred between the cloud and mobile devices should
be protected both during the communication and at the user’s
device. To this end, a cryptographic-based access control
featured with data encryption and access control enforce-
ment is required to assure that the data located in the cloud
is accessed by authorized mobile data users. Specifically,
there are three major requirements for the rigorous access
control in MCC. First, the cryptographic-related operations
performed by both data owner and the data user should be
lightweight. This is because the access control requirement
can evolve at any time due to the change of user status and
change of data sharing requirement. To this end, handling the
secure policy update with optimized cost is crucial for the
data owners in MCC environment. In fact, the data owners
may need to share the data using the lightweight encryption

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 145915

https://orcid.org/0009-0005-9367-8738
https://orcid.org/0000-0001-7156-184X
https://orcid.org/0000-0001-5822-3432

P. Sanchol, S. Fugkeaw: Fully Outsourced ABSC Scheme Supporting Privacy-Preserving Policy Update

via their mobile devices and the authorized users can access
the shared data with lightweight cost of decryption. Second,
the anonymous authenticity of data outsourced is important
for rigorous access control in MCC where a large volume of
mobile users access the data. The users should assure that
the data they used is shared by the legitimate owners and
the integrity of the data is preserved. Finally, the flexible
and secure enforcement of the access control in MCC to
their users is non-trivial. This is because the access control
requirement can be evolved any time as of the change of user
status and change of data sharing requirement. To this end,
handling the secure policy update with optimized cost is a
crucial for the data owners in MCC environment.

In the context of fine-grained and secure access control,
ciphertext policy attribute-based encryption (CP-ABE) has
gained popularity for enabling one-to-many data sharing.
In CP-ABE, data owners can define access policies and use
them to encrypt data, while authorized users can employ
their secret keys with matching attributes to decrypt the
ciphertext. However, using CP-ABE directly in mobile cloud
computing (MCC) is impractical due to its resource-intensive
cryptographic operations, particularly in encryption and
decryption. The primary cryptographic costs of CP-ABE
involve pairing operations and exponentiation, which are
unsuitable for resource-constrained devices. Additionally, the
encryption and decryption overheads of CP-ABE increase
linearly with the number of attributes in the access policy
and the size of the message or ciphertext. Even though some
approaches [36], [37] proposed the CP-ABE with constant-
size decryption key and/or ciphertext, the cost of several
decryption requests is non-trivial for mobile devices. In addi-
tion, they generally focused on the reduced cost for user-end.

For years, many research works [1], [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11] have proposed the approaches that
either partially or fully outsource expensive operations of
CP-ABE to be done by the delegated proxy located on the
cloud environment. This technique is recognized as the con-
cept of proxy re-encryption (PRE), originally introduced by
Kawai [12]. The contribution of the computation outsourcing
model is to offload costly operations to be run in the cloud
while the mobile clients only run smaller cost of decryption.

To meet the demand for cryptographic-based access con-
trol with signcryption capabilities, attribute-based signcryp-
tion (ABSC) stands out as a suitable method for ensuring both
data confidentiality and authenticity simultaneously. ABSC
has found application in various access control solutions
based on attribute-based encryption (ABE). Nevertheless,
these solutions were not originally designed to provide
lightweight signcryption and designcryption functionalities
in MCC.

Regarding the policy updates issue, data owners encounter
the challenge of downloading, re-encrypting, or updating
all relevant ciphertexts and then uploading them to store in
the cloud. This process hinders the feasibility of deploy-
ing CP-ABE, particularly when policy changes are frequent,

and there is a substantial user base and a large volume of
ciphertexts stored in the cloud in data-sharing environments.
Moreover, ciphertext generated through CP-ABE typically
includes attribute information, which becomes a critical con-
cern when the access policy contains sensitive attributes.

To the best of our knowledge, no prior works have com-
prehensively addressed the various research gaps mentioned,
which include the development of a unified solution for
lightweight, verifiable, and finely-grained access control with
efficient policy updates in MCC. Essentially, satisfying all
these requirements simultaneously is a real challenge since
implementing secure with lightweight access control proto-
cols for supporting both data owners and data users in mobile
cloud is significant. Fulfilling these requirements is instru-
mental for enhancing the practicality of implementing the
evolvable access control where there are substantial number
of data owners and users in mobile cloud environment. In this
paper, we are thus driven to introduce a Full Ciphertext Pol-
icy Attribute-based Signcryption (FCP-ABSC) outsourcing
scheme that encompasses all of the aforementioned require-
ments. The contributions of our paper are summarized as
follows.

1. We proposed a new lightweight signcryption and design-
cryption scheme that can be efficiently implemented in the
MCC setting. This enables data owners to share data with
privacy-preserving properties and anonymous authentic-
ity. It also allows data users to verify that the accessed data
is shared by the legitimate data owner.

2. Our proposed scheme supports lightweight decryption
and policy update based on our outsourced decryption
and outsourced policy update model. We also intro-
duced ciphertext indexing method to query the affected
ciphertexts when the policy is updated. This enables fast
re-encryption process.

3. Our proposed scheme entails the privacy-preserving pol-
icy enforcement with the support of policy hiding where
the plain attributes constituting in the policy are not
revealed.

4. We conducted the comparative analysis and experiments
to show the efficiency of our proposed scheme.

The remaining sections of this paper are organized as
follows: Section II discusses works related to the scheme
proposed in this paper. Section III provides the theoretical
foundations of CP-ABE which are essential for understand-
ing the proposed scheme. Section IV details the proposed
lightweight data access control scheme formobile cloud com-
puting. SectionV presents security analysis. Section V-D pro-
vides the results of evaluations and experiments. Section VI
presents the concluding remarks of the paper.

II. RELATED WORK
In this section, we provide a review of related literatures
entailing the outsourcing decryption, attribute-based sign-
cryption, and access policy update.

145916 VOLUME 11, 2023

P. Sanchol, S. Fugkeaw: Fully Outsourced ABSC Scheme Supporting Privacy-Preserving Policy Update

A. OUTSOURCING DECRYPTION
In [1], Green et al. introduced a concept called a transforma-
tion key that allows the cloud to translate any ABE ciphertext
satisfied by that user’s attributes into a (constant-size) El
Gamal-style ciphertext [2]. By avoiding the computation-
ally intensive ABE bilinear pairing and distributing some
of the decryption tasks to the users, the scheme achieves a
more lightweight and efficient data access control. This opti-
mization leads to reduced processing overhead on the cloud
service provider’s side and improves the overall performance
for mobile users.

In [3], Asim et al. introduced an outsourced CP-ABE
encryption and decryption approach using dual proxy model
to support outsource encryption and decryption process.
Specifically, the decryption is based on the concept of trans-
formation key computation [1].

In [4], Fugkeaw proposed an efficient access control mech-
anism aimed at providing robust and detailed data access
control in MCC while minimizing the computational burden
of ciphertext decryption. This approach involves employing
a two-tier encryption scheme. Initially, the data is encrypted
using random strings, generating an intermediate cipher-
text. Subsequently, the intermediate ciphertext undergoes an
additional layer of encryption using the CP-ABE method,
resulting in the production of the final ciphertext. To secure
the random string and user secret key, they are both encrypted
using the user’s public key. For the decryption process, the
proxy has the secret key to decrypt the outer layer of the
ciphertext utilizing the CP-ABE decryption algorithm. Here-
after, the intermediate ciphertext is sent back to the user for
final decryption.

In [10], Li et al. proposed a privacy-preserving access
control scheme for mobile multimedia in the cloud. In this
scheme, online encryption with policy hiding and user
decryption are proposed. For the encryption, the data owner
specifies the policy for online encryption using CP-ABE
method. The decryption process involves partial outsourcing
of CP-ABE decryption to the cloud service provider (CSP).
The provider takes on the responsibility of performing the
matching test between attribute names and access policies.
As of the matching test, the user obtains the intermediate
ciphertext. The final encrypted element is then returned to
the user, requiring only one modular exponential operation to
obtain the original message.

In [5], Li et al. presented a lightweight data access control
scheme for mobile cloud computing. This scheme combines
both symmetric encryption and the CP-ABE algorithm. The
data is encrypted using the symmetric encryption algorithm,
while the symmetric key itself is encrypted using the
CP-ABE algorithm. A significant aspect of this scheme is the
offloading of the access control tree transformation, which
is a computationally intensive process in CP-ABE, to be
executed by proxy servers. Furthermore, the authors intro-
duced a lazy revocation method to support user revocation
functionality.

In [6], Wang et al. proposed a fast CP-ABE system to
support access control in mobile healthcare network. In this
scheme, three semi-trusted third parties were employed to
run key generation, encryption, and decryption separately.
The scheme guarantees the accuracy of the decryption result
at the mobile user by using a Boneh–Lynn–Shacham short
signature scheme. However, this scheme heavily relied on the
service providers to serve the core cryptographic operations.

In [14], Yu et al. proposed an attribute-based signa-
ture (ABS) scheme providing expressive access policy and
efficient the signature. The verification method is based on
the signature transformation algorithm to encrypt a signature
and sends to the server in the cloud compute an intermediate
signature and returns it to the verifier.

In [32], we introduced the outsourced CP-ABE decryption
method to support lightweight decryption in MCC. Initially,
the data is encrypted using symmetric encryption, and then
the symmetric key is further encrypted using the CP-ABE
method. The outsourced proxy is responsible for running the
CP-ABE decryptionwhile the data user can compute the sym-
metric key through the symmetric key derivation function.
Hence, the mobile user only deals with AES decryption in
their device.

In [38], Li et al. proposed an ABE scheme with verifiable
outsourced decryption scheme that is able to simultane-
ously check the correctness for transformed ciphertext for
the authorized users and unauthorized users based on the
different access policies. In addition, each ciphertext is added
a MAC to enable the user to verify the correctness of the
transformed ciphertext.

In [39], the authors proposed a decentralized attribute-
based server-aid signature (DABSAS) scheme. In the
DABSAS scheme, a server is delegated to perform costly
computation in the signature and verification algorithms.
Therefore, the users only perform light computation in the
signing algorithm.

B. ATTRIBUTE-BASED SIGNCRYPTION
In 2010, Gagné et al. [24] firstly proposed an ABSC to
achieve higher security of data. They formally defined the
concept of message confidentiality and ciphertext unforge-
ability satisfying signcryption property in ABE model. Later,
many works adopted this model for supporting ABSC
in cryptographic-based data access control. For example,
S. Belguith et al. [25] proposed the Threshold Attribute Based
Signcryption for Cloud Application. Wang and Huang [26]
applied an ABSC scheme in the monotone tree access struc-
ture. Then, Han et al. [27] proposed an ABSC scheme to
be used in the nonmonotonic access structure supporting a
constant length of signature.

In [28], Liu et al. proposed an ABSC scheme to support
secure personal health record (PHR) system in cloud. In this
scheme, the users are divided into professional domain and
social domain which are specific to healthcare setting. How-
ever, this scheme does not support batch verification.

VOLUME 11, 2023 145917

P. Sanchol, S. Fugkeaw: Fully Outsourced ABSC Scheme Supporting Privacy-Preserving Policy Update

In [30], the authors proposed the ABSC scheme support-
ing verifiable outsourcing of designcryption. In this scheme,
the designcryption process is outsourced to be executed in
the cloud server while the constant computation is run on the
user side.

In [31], Yu et al. proposed the ABSC by integrating the
ciphertext-policy ABE and the key-policy ABS as a hybrid-
policy ABSE scheme. In this scheme, the length of signature
is designed to be constant. Also, the operations including
signing, verification, and decryption are outsourced to be
done in the fog nodes.

In [33], Ahene et al. proposed a heterogenous sign-
cryption with proxy re-encryption (PRE) to provide secure
access control to PHR system with anonymous authentica-
tion. In addition, the authors employed blockchain to support
auditability and authentication.

However, all the above approaches do not achieve full out-
sourcing both signcryption and designcryption. In addition,
they did not support policy update.

C. ACCESS POLICY UPDATE
Crucially, current approaches that tackle the issue of updating
access policies within the CP-ABE model can be classified
into two primary techniques: proxy re-encryption [15], [19],
[20], [21], [22] and the ciphertext update [16], [17], [18].
In the PRE method, a semi-trusted proxy is introduced to

serve the computationally intensive overheads of ciphertext
re-encryption and key update [16] caused by the policy update
or the revocation. For instance, Fugkeaw [17] proposed a
lightweight policy update model to support data outsourcing
in multi-authority environment. In this scheme, the ciphertext
re-encryption caused by the policy update is fully offloaded
to the proxy.

For ciphertext update, there is a process of the com-
putation of ciphertext key update to enable the ciphertext
elements containing the updated attribute in the policy to be
updated without the re-encryption. For example, Li et al. [20]
proposed a policy update outsourcing model based on the
assistance of proxy server located in the cloud. When the
policy updated initiated by the data owner, the data owner
exploits the ciphertext key update parameters and sends to
the proxy to perform the major ciphertext update operation.
In [21], Guan et al. proposed a policy update mechanism in
edge computing. This scheme supports outsourced decryp-
tion based on the proxy on cloud and policy update run
by the cloud. If the policy is updated, the policy update
key operation is required and it is used to update the
ciphertext.

In [22], Belguith et al. proposed the PROUD model that
supports verifiable policy update in IoT cloud. In this scheme,
the designcryption overhead is outsourced to be executed
by an edge server. Only the designcrypted result sent from
the edge server is required to be done by the users. Nev-
ertheless, this approach deals with the complexity of the
cost of deciphering aggregated transformed key to compute

the secret key. Furthermore, this approach does not support
policy hiding.

However, all the above approaches did not provide mech-
anism to support ciphertext retrieval when there is a policy
update case. This problem even becomes crucial when there
are a large number of ciphertexts stored in the cloud because
the naïve search to invoke the affected ciphertexts would sig-
nificantly degrade the ciphertext re-encryption or ciphertext
update process.

III. PRELIMINARIES
Bethencourt et al. [23] proposed the original ciphertext policy
CP-ABE scheme in 2007. Its foundational construct is based
on the bilinear maps. In this section, we define our access
policy based on the access tree [23] where the attribute name
and value are anonymized using hash-based method.
Definition 1: Access Tree T[24, 18]. Let T be a tree rep-

resenting an access structure. Each non-leaf node of the tree
represents a threshold gate, described by its children and a
threshold value. If numx is the number of children of a node
x and kx is its threshold value, then 0 < kx ≤ numx . When
kx = 1, the threshold gate is an OR gate and when kx = numx ,
it is an AND gate. Each leaf node x of the tree is described by
an attribute and a threshold value kx = 1. The kofn threshold
gate is also allowed in T , in this case kx = k where k is the
threshold value. determined in the kofn gate.

In our system, all attribute values are hashed and they are
modeled in the leaf nodes with its corresponding attribute
names. Accordingly, the values of all attributes are hidden
while the policy is located in the cloud. Fig. 1 illustrates an
example of the mapping between a normal policy and its
corresponding hiding model.

FIGURE 1. Access tree with attributes hiding.

IV. OUR PROPOSED SCHEME
In this section, we introduce the system model and the
collection of cryptographic algorithms that constitute their

145918 VOLUME 11, 2023

P. Sanchol, S. Fugkeaw: Fully Outsourced ABSC Scheme Supporting Privacy-Preserving Policy Update

proposed scheme. The primary goal of our proposed scheme
is to enable fine-grained, lightweight, and secure access con-
trol with policy update in the MCC environment.

A. SYSTEM OVERVIEW
We proposed a scalable and efficient Attribute Based Sign-
Cryption (ABSC) outsourcing scheme with the support of the
efficient access policy update. Figure 2 illustrates the system
overview of our proposed system model.

FIGURE 2. System model.

The system model consists of the following entities.

1) Attribute Authority (AA) is the trusted entity who issues,
revokes, and updates users’ attributes. AA is responsible
for issuing the secret keys to data users.

2) Data Owners (DOs) outsource their data to cloud stor-
age. DOs are responsible to update the access policies
upon the access control requirement. In our system,
DOs computes the hash value of message M . Then,
M is encrypted based on the AES algorithm. Then,
the symmetric key is signed and encrypted with the
hash value of message M, H (M) through our proposed
ABSC-signcryption method.

3) Mobile users or data users (DU) are authorized to access
the outsourced data using their mobile devices. Each
user has a secret key issued by the AA. When DUs need
to access the data, they send the designcryption request
to the proxy.

4) Cloud Storage is the storage service provided by the
cloud service provider (CSP). It is a centralized storage
system where data can be stored and accessed by users
over the internet.

5) Proxy server is a semi-trusted entity situated in the
cloud environment, responsible for performing various
cryptographic operations, such as data signcryption,
designcryption, and re-signcryption. In this model, the
proxy server is delegated the task of holding the user
secret key (SKDU), which suggests that the proxy acts
on behalf of the user for certain cryptographic tasks, like
decryption or re-signing. This delegation of authority
enables the proxy to perform outsourced designcryption,

reducing the computational burden on the user’s device
and enhancing the overall efficiency of the system.

B. SECURITY MODEL
In this section, we introduce four security models of our
scheme.

1) MESSAGE CONFIDENTIALITY
This security model is defined on the indistinguishabil-
ity of ciphertext against adaptive chosen ciphertext attack
(IND-CCA2) in the selective access structure model. Our
scheme is said to be indistinguishable for such attack if
there is no probabilistic polynomial time (PPT) adversary
that can win the Expconf security game with non-negligible
advantage. The Expconf security game between adversary A
and a challenger C is defined as follows.
Setup. The challenger C runs CreateAttributeAuthority

and KeyGetFuncGenerator algorithms to generate master
keyMK, KeyGFN ., then gives the PK and the KeyGFN . to the
adversary A.
Phase1: The adversary A makes repeated secret key SK

queries corresponding to sets of attributes S1, S2, . . . , Sq. The
challenger responds the adversary by executing the User.Key
Gen algorithm.
Challenge. The adversary A submits two equal lengths of

messageM0 andM1 such that |M0| = |M1| (both themessages
are of equal length). In addition, A also provides access struc-
ture T∗ such that none of the sets S1, S2, . . . , Sq from phase
1 satisfies the access structure T∗. The challenger flips a coin
b: b ∈ {0; 1} and generate random value RVb and signcrypt
RVb under the access structure T∗. while Mb is encrypted by
AES_Encryption(Mb, KeyGFN (RVb)) The ciphertext CTRV ∗

corresponding to an access structure T∗ and CTM ∗ is given to
the adversary A
Phase 2. Phase 1 is repeated with the restriction that

none of the sets Sq+1, Sq+2, . . . , Sq+r satisfies the access
structure T∗ corresponding to the challenge ciphertext CTRV ∗

and CTM ∗.
Guess The adversary outputs a guess b0 of b and wins a

game if b′
= b. Let Adv = Pr

[
b′

= b
]
−

1
2 be the advantage

of the adversary A in this game is defined.
Definition 2: Our scheme satisfies the INDCCA2 con-

fidentiality property if the probability Adv
[
Expconf

]
is

negligible for adversaries.

2) CIPHERTEXT UNFORGEABILITY
This security model is defined on existential unforgeabil-
ity against adaptive chosen message attack in the selective
attribute set model through the following game between
adversary A and a challenger C .

Setup. The challenger C runs CreateAttributeAuthority
and KeyGetFuncGenerator algorithms to generate master
key MK, KeyGFN ., then gives the PK and the KeyGFN to the
adversary A.

Query Phase:The adversaryAmakes signcryption queries
for message M and random value RV corresponding to sets

VOLUME 11, 2023 145919

P. Sanchol, S. Fugkeaw: Fully Outsourced ABSC Scheme Supporting Privacy-Preserving Policy Update

of attributes S1, S2, . . . , Sq. and Access Policy T. The chal-
lenger responds the adversary by executing the User.KeyGen
algorithm. Then the challenger C performs signcryption
RVb under the access structure T, and encrypts Mb using
AES_Encryption(Mb, KeyGFN (RVb)). Then, C outputs the
ciphertext CTRV ∗ corresponding to an access structure T
and CTM ∗.
Forgery Phase: In this phase, the adversary A com-

putes and outputs the ciphertext CTRV ∗ and CTM∗ , that
did not obtain from the Query Phase. Then the challenger
C performs designcryption of the CTRV ∗ and CTM∗ by
executing the User.Decrpt and Proxy.Decrypt algorithm.
In this case, A wins a game if the RV and M are correctly
designcrypted.
Definition 3: Our scheme is unforgeable against chosen-

message attack (EUF-CMA), if the probability Adv
[
Expunf

]
is negligible for all adversaries.

3) VERIFIABILITY
This securitymodel is defined on the following game between
adversary A and a challenger C .
Setup. The challenger C runs CreateAttributeAuthority

and KeyGetFuncGenerator algorithms to generate master
key MK, KeyGFN . Then C forwards the PK and the KeyGFN
to the adversary A.

Challenge: The adversary A makes secret key SK queries
corresponding to sets of attributes S1, S2, . . . , Sq. The chal-
lenger responds the adversary by executing the User.KeyGen
algorithm and sends SK to A.
Output: The adversaryA provides access structure T∗ such

that the sets S1, S2, . . . , Sq satisfies the access structure T∗ to
the challenger C for signcrypting the messageM and random
value RV and runs the designcryption phase to get RV andM .
In this model, A win this game if RV /∈{RV∗,⊥}, whereM∗ is
the associated plaintext of CT∗.
Definition 4: Our scheme is verifiable if any data user who

possesses a set of attributes SDU satisfying the access control
policy T can successfully verify and decrypt the signcrypted
message associated with that policy.

4) PRIVACY
Signer privacy means that the signature’s distribution is
not influenced by the secret key employed in its creation.
Essentially, the signature of a message should not disclose
any extra details about the attribute set determined by the
access structure, except for confirming its adherence to the
access structure. Our system is considered computationally
private if an adversary A, operating within polynomial time,
cannot achieve victory in the Expano security game with non-
negligible advantage. The Expano security game is formally
outlined in the interaction between an adversary A and a
challenger C as follows:
Setup: the adversary A chooses an attributes universe

U where |U | = n and sends it to the challenger C .
Then, the challenger runs CreateAttributeAuthority and

KeyGetFuncGenerator algorithms to generate master key
MK, KeyGFN ., then gives the PK and the KeyGFN to the
adversary A.

Challenge Phase: the adversary A chooses an access pol-
icy T , two attribute sets AS1 and AS2 satisfying the threshold
access policy such that |AS1 ∩ S| = |AS2∩ S| = t, a random
value RV and a message M and sends them to the chal-
lenger C . Afterwards, C picks a random bit b: b∈ {0; 1} and
executes the User.Keygen and computes a signcryption SRVb
by running the algorithm Proxy.Signcrypt(PK, RVb, SKEb, T)
→ CTRVb. The signcrypted random value CTRVb is sent to the
adversary A as a challenge message.

Guess: the adversary outputs a bit b′ and wins the game if
b′

= b. The advantage of the adversary A in the above games
defined as Adv

[
ExpaMSE−CDH]

= |Pr
[
b = b′

]
−

1
2 |.

Definition 5: A threshold attribute-based signcryption
scheme is computationally private if Adv [Expano] is negligi-
ble with respect to the security parameter κ , for any adversary
A running in a polynomial time.

C. OUR CRYPTOGRAPHIC CONSTRUCTION
This section presents the list of our proposed cryptographic
algorithms. To ease of explanation, we define the notations
used in our model as shown in Table 1.

Our cryptographic model encompasses of five major
phases including System Setup, Key Generation, Signcryp-
tion, Designcryption, and Policy update.

• Phase 1: System Setup
There are two algorithms in this phase including Cre-
ateAttributeAuthority and KeyGetFuncGenerator. The first
algorithm is run by the AA for creating the attribute author-
ity (AA) system responsible for issuing the attribute-based
secret key to the users while the latter algorithm is for
generating an initial key get function (KeyGFN) used to
generate the symmetric key for data encryption. The algo-
rithmic details of these two operations are described as
follows.

(1)CreateAttributeAuthority AA.Initial(1κ) → (PK ,MK).
The algorithm accepts a security parameter κ as its input
and generates public key PK and master key MK as outputs.
It selects a tripple bilinear group G0, G1 and GT of prime
order p, a collusion resistant hash function H: {0,1}∗

→ (Z
/ pZ)∗ and a specifies an encodinng function τ : U → (Z /
pZ)∗, where |U | = m and U is an attribute universe, m is
number of attribute. then selects generator g of G0 and h
of G1. Next choose a set D = {d1, d2, . . . , di−1}, where
i <= m – 1. pairwise different elements of (Z / pZ)∗. Then,
it chooses two randomα, γ ∈ (Z / pZ)∗. The public key is
computed as:

PK k = τ
{
G0,G1,GT , ê, {hαγ i

}{i=0,...,2m−1},D, τ,

u = gαγ , e
(
gα, h

)
,H
}
.

and the master key MK is (g, α , γ) where α , γ are two
random from values (Z / pZ)∗.

145920 VOLUME 11, 2023

P. Sanchol, S. Fugkeaw: Fully Outsourced ABSC Scheme Supporting Privacy-Preserving Policy Update

TABLE 1. Notation used in our model.

(2) KeyGetFuncGenerator(randomFunc()) → KeyGFn
The below function describes how the KeyGFn is

generated.
Def keyGetFuncGenerator(randomFunction()): KeyGFn
{

RandomValueList R =randomFunction()
return Def function(string RV): string {
k = RV
For ri in R:

k = k⊕ ri
End for
return k

}
}
The randomFunc is produced based on the cryptograph-

ically secure pseudorandom number generator (CSPRNG).
It outputs the 256-bit RV. The following code illustrates the
procedure of randomFunc()

Def randomFunc(): SecretKey {
int keyBitSize = 256
KeyGeneratorinit(keyBitSize,
SecureRandom());
SecretKey R = KeyGenerator.generateKey();
return R;

}
When the KeyGFN_id is obtained, DO encrypts it by using

DUs’ public keys before it is forwarded to all DUs. In our
scheme, we assume that all users are required to have a
key pair and the X.509 cerificate issued by the certifica-
tion authority. Upon the receipt of the encrypted KeyGFN_id ,
the DU decrypts it by using his private key to obtain the
KeyGFN_id which will be used for the data decryption.

• Phase 2: Key Generation
This phase is run by the AA to generate the user secret
key and data owner secret key which are generated
through the User.KeyGen and DataOwner.KeyGen algorithm
respectively.

(1) User .KeyGen(PK ,MK , SDU) → (SKDU).
AA executes the User.KeyGen algorithm using PK, MK,

and a set of attributes assigned to the DU as inputs. The
algorithm then outputs the secret of the data user SKDU .
For any subset Si⊂U the algorithm first chooses a random

r∈(Z / pZ)∗. Then it generates the key as:

SK = ({g
r

γ+τ (a) }aϵS , {h
rγ i

}i=0,...,m−2, h
r−1
γ)

When the DU gets SKDU , he then forwards it to the proxy via
the SSL communication. Then, the proxy encrypts the SKDU
with its public key and keeps it in its server. Hereafter, the
proxy system generates the RefKeyId for the key retrieval and
return to DU, he uses in the future decryption stage.

(2) DataOwner .KeyGen(PK ,MK , SDO) → (SKDO).
AA runs the DataOwner.KeyGen by taking as inputs PK,

MK, and a set of attributes issued to the DO. It outputs the
secret of the data owner, SKDO. The process of creating SK’s
DO is the same as the User.KeyGen algorithm. Finally, the
algorithm produces the SKDO which is sent to the DO.

• Phase 3: Signcryption
This phase is run by the DU and the proxy to sign-
crypt message M . In this phase, there are three major
algorithms including DO.Encrypt, Proxy.Signcrypt and
Proxy.CiphertextIndexingGen.

(1) DO.Encrypt(KeyGFn_id ,M) → CTM
DO runs KeyGFn_id to get the symmetric key to encrypt the

message or data (M). Then, the algorithm outputs ciphertext
of the data, CTM . The below function shows how the CTM .

is produced:
Def DO.Encryption(KeyGFn_id , M): CTM {

RV = randomFunc()
SymKey = KeyGFN_id (RV)
CTM = AES_Encrypt(M, SymKey)
H(M) = Hash(M)
RVC = RV.concat(H(M))
Store and return CTM

}

VOLUME 11, 2023 145921

P. Sanchol, S. Fugkeaw: Fully Outsourced ABSC Scheme Supporting Privacy-Preserving Policy Update

As shown in the above function, DO (1) runs randomFunc
to compute the initial RV and takes it into the KeyGFN_id to
produce a SymKey; (2) encrypts M by using the Symkey to
generate the ciphertext CTM ; and (3) computes hash value of
the message H(M). Hereafter, DO concatenates RV with ID
of KeyGFN and H(M) as RVC then sends them to the proxy
for signcryption.

(2) Proxy.Signcrypt(PK ,RVC , SKDO,T) → CTRV .
The proxy runs this algorithm by taking as inputs PK,

RVC , SKDO,and T to signcrypt the RVC and it outputs the
ciphertext of RVC , CTRV . We give the details of how the
ABSC-Signcrypt algorithm works. First, the algorithm uses
the secret key of the data owner SKDO and the aggregate
algorithm Aggreg to computes T1 as follows.

T1 = Aggreg

({
g
rDOid
γ+τ (a) , τ (a)

}
aϵHSDO

)
= g

rDO∏
aϵHSDO

(γ+τ (a))

Then the algorithm defines the polynomial P(DOid ,S)(γ)

P(DOid ,S)(γ) =
1
γ
(

∏
aϵS∪Dn+1−1−s\DOid

(γ + τ (a))

−

∏
aϵS∪Dn+1−1−s\DOid

τ (a))

Next, the algorithm takes as input {g
r

γ+τ (a) }aϵS from SKDO for
signcryption.

B = h
rDOid P(HSDO,S)(γ)/

∏
aϵS∪Dn+1−1−s\DOid

τ (a)

The algorithm computes hash value of RVC , H(RVC)and
generates the signature σ = σ1, σ2, σ3 as:

σ1 = T1 · gg
H(RVC)∏

aϵHSDO
(γ−τ(a))

σ2 = {hrγ
i
}i=0,...,m−2 · B

· h
H (RVC)P(DOid ,S)(γ)/

∏
aϵS∪Dn+t−1−s\DOid

τ (a)

σ3 = hαH (RVC)

Finally, the algorithm picks a random k ∈ (Z/pZ)∗. and
computes C1, C2, C3 as:

C1 = (gα·γ)−k

C2 = hkα·
∏
aϵS (γ+τ (a))

∏
dϵDn+t−1−s

(γ+d)

C3 = ê(g, h)α·k
· ê (g, h)α·H(RVC)

· RVC = K · RVC

Thus,

CT RVC=(C1,C2,,C3,, σ 1
, σ2, σ3,P(DOid ,S) (γ) ,B)

(3) Proxy.CiphertextIndexingGen(CTRV ,CTM ,T) →

EncCTList .
The proxy runs this function which takes as inputs the

ciphertext of RV, CTRV , the ciphertext of the message,
CTM , and access policy T to generate the access policy
indexing. Once the index data has been generated, it then
creates the relation between the access policy index and

the encrypted ciphertext list. This indexing scheme is ben-
eficial for optimizing the ciphertext retrieval process when
there is a policy update case which requires the cipher-
text re-encryption. This function consists of the following
procedures.

(1) Stores CTRV , CTM on the cloud storage and gets the
location of CTRV , CTM .
(2) Calculates the indexing data of access policy T by

index = Hash(T), In our system, the access policy can
be defined as the string. For example: ‘‘(Doctor and Doc-
tor_Id=D001) or Patient_Id=HN111’’. Therefore the index
is generated by common Hash(String).
(3) Searches existing access policy using the index. If the

policy index exists, the proxy adds CTRV, and CTM location
on the EncCTList. Otherwise, the proxy adds a new index to
the access policy index table and creates a new EncCTList.
The access policy index data structure is presented in Table 2
as follows.

TABLE 2. Access policy index.

Then, the EncCTList is created in JSON format. The exam-
ple of EncCTList is presented as follows.
{
‘‘Index’’:’’ b89eaac7e’’,
‘‘Version’’: 1,
‘‘CTlist’’: [

{
CTRV : /store/ctrv1.enc
CTM : /store/ctm1.enc

},
{
CTRV : /store/ctrv2.enc
CTM : /store/ctm2.enc

}
]

}
In summary, our proposed Signcryption algorithm enables

the separation of duty of data encryption and signing func-
tion between data owner and the proxy. The DO only deals
with the data encryption using the symmetric encryption
while the signcryption operation having more expensive cost
is offloaded to the proxy. Finally, the proxy generates the
indices of final ciphertexts before they are stored in the cloud
storage.

• Phase 4: DeSigncryption
This phase is run by the proxy and the DU to design-
crypt message M . It consists of Proxy.Decrypt algorithm
and User.Decrypt algorithm run by the proxy and DU
respectively.

145922 VOLUME 11, 2023

P. Sanchol, S. Fugkeaw: Fully Outsourced ABSC Scheme Supporting Privacy-Preserving Policy Update

(1) Proxy.Decrypt(PK, RefKeyId,CTRV) → (RVC).
The proxy runs the algorithm by taking PK, RefKeyId, and

CTRV . It returns the RVC as the output. Then, the decryption
process is done through the following steps.
a. DU forwards the RefKeyId to the proxy.
b. The proxy retrieves CTRV and CTM from the cloud.
c. The proxy decrypts the encrypted SKDU with its private

key.
d . The proxy runs the below ABSC-designcryption

algorithm by taking as inputs SKDU and CTRV .

RVC = ABSC − Designcrypt(CTRV ,SKDU)

Then, the function outputs the RVC . Then, RVC and CTM are
forwarded to the user.

(2) User.Decrypt(RVC , CTM ,) → (M).
DU runs this function by taking as inputs theRVC andCTM

for computing the SymKey used to decrypt the ciphertext of
messageM . The detailed procedures are described below:

a. Extracts RV , H (M), and ID of KeyGFN from RVC and
uses ID of KeyGFN to select KeyGFN_id .

b. Applies RV into KeyGFN_id to compute the Symkey
through the following function.
Symkey = KeyGFN_id (RV)

c. Decrypts CTM to obtainM .
M = AESDecrypt(CTM , Symkey)

d . Calculates the hash value of the messageH (M) to verify
M as follows.
MessageCorrectly = H(M)DU== H(M)

The process of ABSC-Designcrypt function is done through
the following steps. First, the algorithm verifies the CTRV
that it has been correctly signed by the legitimate DO. The
function is defined as:

SS = ê
(
u−1, σ2

)
· ê
(

σ

1
U1
1 , hα·

∏
aϵS∪Dn+t−1−s

(γ+τ(a))
)

· ê
(
gα, h

)H(RVC)
= ê(gα, h)

where U1 =
∏

aϵS∪Dn+t−1−s/HSDO
γ+τ (a)

τ (a)
Second, for all aϵHSDU , the algorithm aggregates the data

user attributes as:

T2 = Aggreg

({
g
rDUid
γ+τ (a) , τ (a)

}
aϵHSDU

)
= g

rDU∏
aϵHSDU

(γ+τ (a))

Then, the algorithm uses the aggregated secret key T2 and
{hrγ

i
}i=0,...,m−2 from SKDU to computes:[

ê
(
C1, hrDUP(HSDO,S)(γ)

)
· ê(T2,C2)

] 1
U1

= e(g, h)(K ·α)·rEU

Next the algorithm deduces the deciphering key DK as:

DK = ê(g, h)α·k
· ê(g, h)α·H (RVC)

Finally, the algorithm recovers the RV by computing:

RVC = C3/K

In essence, our proposed Designcryption algorithm mini-
mizes the decryption burden on mobile users by shifting
the primary pairing operation of ABSC to the proxy, while
allowing the user to calculate the symmetric key and utilize it
for decrypting the ciphertext with significantly reduced cost.

• Phase 5: Policy Update
In this phase, the data owner executes the algorithm as fol-
lows:

PolicyUpdate(T , T ′, SKDO, PK) → (CTsRV_new).
A new access policy denoted as T’ is taken as input. The

policy update procedure consists of three steps:
a. DO sends the request to update the policy to the proxy.

The request contains the old access policy (T), a new
access policy (T ′), PK , and SKDO.

b. The proxy retrieves the encrypted CTRV and calcu-
lates the searching index by hashing the before-updated
policy (T) then using Hash(T) to search all encrypted
EncCTList from the access policy index data.

c. The proxy runs the Re-encryption function presented
below to re-encrypt all affected EncCTList and stores
the CTsRV_new onto the cloud storage then update access
policy index data.

To support the policy update of a high number of ciphertext,
we introduced the indexing search algorithm to efficiently get
the list of affected CTRV and parallel programming by gen-
erating multiple threads to parallelize re-encryption requests.
The algorithmic process is presented below.

Multiple thread re-encryption procedure
Input: SKDU , Old access policy (T), New access policy (T),
PK
Output: List of CTRV_new(CTsRV_new)
Def searchEncryptedCiphertext(T):

index = Hash(T)
EncCTList = Select EncCTList where accessPolicyIn-

dex = index
Return EncCTList

End Def
Def ReEncryption(SKDU , SKDO, T, T’, PK, results):

EncCTList = searchEncryptedCiphertext(T)
For CTRV in JSON(EncCTList–> CTlist):
RVC = ABSC_Designcrypt(SKDU , CTRV)
CTRV_new = ABSC_Signcrypt(PK, SKDO, RVC , T’)
results.add(CTRV_new)

End for
Return results

End Def
N = List of CTRV number
TN = Thread number
numPerThread = N/ TN
For tn in TN:

tn.execute(ReEncryption(SKDU , SKDO,
CTsRV [tn.num: tn.num + numPerThread], T’, PK, results))
End for
Return results

VOLUME 11, 2023 145923

P. Sanchol, S. Fugkeaw: Fully Outsourced ABSC Scheme Supporting Privacy-Preserving Policy Update

The above algorithm first takes as inputs SKDU , old access
policy T , new access policy T ′ and PK. Then it takes as input
the access policy T to run the searchEncryptedCiphertext
function for searching ciphertext list from the access policy
index table. Then, the algorithm will create multiple threads
to execute ReEncryption function to re-encrypt all affected
ciphertext by assigning multiple affected ciphertexts to be
executed by each thread.

Our proposed algorithm for re-encrypting ciphertexts,
utilizing parallel programming, aids in optimizing the re-
encryption cost, which happens to be the most substantial
expense. This is because, with every update, all affected
ciphertexts need to undergo re-encryption using the ABSC
method. For instance, if there are n ciphertexts affected by
a policy update T, the cost of re-encrypting each ciphertext
depends on the number of affected ciphertexts. Parallelizing
the re-encryption process for multiple ciphertexts, in contrast
to sequentially re-encrypting each affected ciphertext, signif-
icantly enhances the efficiency of policy updates. This results
in access control accurately representing the current state of
data sharing with optimized efficiency in terms of time.

V. SECURITY ANALYSIS
In this paper, our security system is analyzed in a game-
based model. As our scheme relies on CP-ABE and ABSC,
a comprehensive security proof can be found in the original
works of CP-ABE [23] and ABSC [24].

In cloud computing environment, we assume that data
owners are fully trusted. The users are assumed to be dis-
honest, i.e., they may collude to access outsourced data. It is
also assumed that the adversary can corrupt authorities only
statically, but key queries can be made adaptively. The attack
of the security can be done by an adversary requesting a key
from the attribute authority. We conduct a security analysis of
our proposed solution based on the proof of security models
with the theorems defined below.

A. MESSAGE CONFIDENTIALITY
Theorem 1: There is no probabilistic polynomial-time

adversary that can break the security of symmetric encryp-
tion / decryption algorithm and ABSC, with non-negligible
advantage.
Proof: Suppose a group of probabilistic polynomial-time

the adversary A has non-negligible advantage against our
proposed scheme. We show how to build an adversary A that
breaks ours scheme with non-negligible advantage.

Initialization: We consider the adversary A consisting
of a group of data users with non-negligible advantage
against our proposed scheme and that solves the augmented
multi-sequence of exponents computational Diffie-Hellman
aMSE-CDH problem [24], [25].

Setup: The adversary A gets the PK and KeyGFN from
the challenger C. The challenger C runs CreateAttributeAu-
thority and KeyGetFuncGenerator algorithms; The CreateAt-
tributeAuthority algorithm selects a triple bilinear group
G0,G1 and GT of prime order p, a collusion resistant hash

function H: {0,1}∗→ (Z / pZ)∗ and a specifies an encoding
function τ : U→ (Z / pZ)∗,where |U| =m andU is an attribute
universe, m is number of attribute. then selects generator g of
G0 and h of G1. Next choose a set D = {d1, d2, . . . , di−1},
where i <= m – 1. pairwise different elements of (Z / pZ)∗.
Then, it chooses two random α, γ ∈ (Z / pZ)∗. The public key
is computed as:

PK k = τ
{
G0,G1,GT , ê, {hαγ i

}{i=0,...,2m−1},D, τ,

u = gαγ , e
(
gα, h

)
,H
}
.

And KeyGFn computed as
randomValue = randomFunc()
KeyGFn = keyGetFuncGenerator(randomValu).

then C sends the PK and the KeyGFn to A.
Phase1: In this phase, A answers designcryption query.

Suppose the algorithm issues private key query for a set of
attributes S to adversary A, such that S cannot satisfy an
access structure T∗. To answer the query, A makes a private
key query for the set S to the challenger, which generates the
secret key and KeyGFN .

SK = ({g
r

γ+τ (a) }aϵS , {h
rγ i

}i=0,...,m−2, h
r−1
γ)

Then, it is forwarded to A.
Challenge:A submits two equal lengths of message M0

and M1 such that | M0| = |M1| (both the messages are of
equal length) and access policy T∗ on which A need to be
challenged to the challenger C . Thus, C select b: b∈ {0; 1}
and generate and signcrypt the RVb by set C

∗

3 = T ·

RV b ,choose a random value for encryption as K′
=

K/ ∝ and computes H (RV b). Then, C
∗

2 = hK′
·g(γ)

0 , C
∗

1 =

gK′
·γ ·f (γ)

0 and σ3 = hH (RV b)
0 .While Mb will be encrypted

by AES_Encryption(Mb, KeyGFN (RVb)),C forwards chal-
lenged ciphertext of random value and ciphertext of message
to A

CT RV b
∗

= (C1,C2,,C3,, σ1, σ2, σ3,P(DOid ,S) (γ) ,B)

CTMb = Encrypt(Mb,KeyGFN (RV b))

Phase 2. A does designcryption queries as in phase 1, with
a condition that none of the key satisfies access structure T∗

Guess. Finally, Aoutputs a guess b′
: b ∈ 0, 1}.If b′

= b,
Challenger C answer 1,meaning that T = e(g0, h

K·f (γ)
0) Oth-

erwise,Challenger C answer 0, meaning that T is a random
element. and A concludes game by outputting b′. the advan-
tage of adversary A against our scheme is

Pr
[
ExpaMSE−CDH

]
= |Pr

∣∣b′
= b

∣∣ real] − Pr|b′

= b|random]|

When the event real occurs, then A is playing a real attack
and therefore |Pr

∣∣b′
= b

∣∣ real]− 1
2]| = Pr

[
ExpConf

]
. During

the random event, the view of A is completely independent of
the bit b; in this case the probability Pr

[
b′

= b
]
= 1/2 Then,

Pr
[
ExpaMSE−CDH

]
≥

1
2
Pr
[
ExpConf

]
145924 VOLUME 11, 2023

P. Sanchol, S. Fugkeaw: Fully Outsourced ABSC Scheme Supporting Privacy-Preserving Policy Update

Hence, A has nonnegligible advantage against our scheme,
which completes the proof of the theorem.

B. CIPHERTEXT UNFORGEABILITY
In the security game, the adversary A attempts to forge a valid
signature by performing following steps. First, the adversary
A chooses a set of signcryption attributes for access policy T .
Subsequently, the adversary A requests the execution of the
User.KeyGen queries. Additionally, the adversary A requests
for the signcryption of a random value RV and a message M
under different signcryption attribute sets and access policy
by executing the Query Phase. Here, the adversary A aims
to gain insights into secret values from the User.KeyGen and
Proxy.signcrypt algorithms. Then, the adversary A attempts
to generate a valid signcryption with respect to the chal-
lenge access policy T . To achieve this, A must solve the
aMSE−CDH problem for proving that he has the required
attributes to satisfy the access policy T . Moreover, thanks
to the random values added to the generated signature, it is
important to note that the inclusion of random values in the
generated signature prevents A from acquiring information
about the secret values utilized in key generation and the
signcryption process. The subsequent discussion provides
evidence that our construction is resistant to forgery in the
face of chosen message attacks, as outlined in Theorem 2.
Theorem 2: The scheme is adaptive-message unforge-

able under chosen message attacks for a universe U
of m attributes, challenge signcryption attribute set S∗

and challenge access policy T∗, In this context, there
exists a solver for the aMSE-CDH problem, such that
Pr
[
ExpaMSE−CDH]

≥ Pr
[
Expunf = 1

]
aMSE-CDH problem

holds.
Proof:We consider the same setting for the setup phase as

detailed in the message confidentiality security game.
Query Phase: the adversary A can request the key extrac-

tion operations User.KeyGen and Proxy.Signcrypt multiple
times. For each KeyGen query i, the adversary A seeks the
extraction of a subset AA from the challenger C , as detailed
in the message confidentiality security game setup phase.

The adversary A can adaptively request a SignCrypt
query i, while considering the signcryption attribute set SDU ,
random value RVi and message Mi. the challenger C exe-
cutes User.Keygen to generate secret key SK and executes
Proxy.Signcrypt to signcrypt the RVi and Mi.Then, the SK is
forwarded to the adversary A.

Forgery Phase: during this phase, A outputs a signcrypted
random value CTRV ∗ and a signcrypted message CTM∗ , with
respect to the threshold challenge access policy T . For this
purpose, A can compute C1, C2, C3 and σ3, based on public
parameters PK and the selected random k and H (Mi). In the
end, A must calculate valid σ1 and σ2 to succeed in the
unforgeability security game. Consequently, A is required to
solve the aMSE-CDH problem to demonstrate possession of
the necessary attributes for satisfying access policy T . There-
fore, A shares the same advantage as the ExpConf message
confidentiality security game.

C. VERIFIABILITY
Theorem 3: Our scheme is verifiable if theDiffie–Hellman

(DL) assumption holds in prime order multiplicative cyclic
groups.
Proof: Let the adversary A who attacks our scheme with

nonnegligible advantage and the challenger C which can
solve the Diffie–Hellman (DL) problem in the prime order
multiplicative cyclic group system with nonnegligible advan-
tage. The detailed interaction is described as follows.

Setup. The challenger C runs CreateAttributeAuthority
and KeyGetFuncGenerator algorithms to generate master key
MK, KeyGFN . Then, C gives the PK and the KeyGFN . to the
adversary A.

Challenge: The adversary A makes secret key SK queries
corresponding to sets of attributes S1, S2, . . . , Sq. The chal-
lenger responds the adversary by executing the User.Key Gen
algorithm and response SK to A.

Output: The adversaryA provides access structure T∗ such
that the sets S1, S2, . . . , Sq satisfies the access structure T∗ to
the challenger C for signcrypting the messageM and random
valueRV. Consequently,A request the challengerC to execute
a designcryption phase to get RV and M . The correctness
analysis of the proposed access control scheme demonstrates
that any data user who possesses a set of attributes SDU
satisfying the access control policy T can successfully verify
and decrypt the signcrypted message associated with that
policy.

We denote by COR and the quantity = ê
(
u−1, σ2

)
·

ê (gα, h)
H(RV)·

(
1−U1−

1
U1

)

· ê
(

σ
1
B1
1 , hα

∏
aϵS∪Dn+t−1−s(γ+τ (a))

)H(RV)·
(
1−U1−

1
U1

)
, where

U1 =
∏
aϵS∪Dn+t−1−s\As γ+τ (a)

τ (a)
The data user can verify that the data owner has correctly

signed the random value RV as:

COR = ê

g−αγ , h
r
DO−1

γ · h

(rDO+H(RV)∗P(HSDO,S)γ)∏
aϵS∪Dn+t−1−s/A

S(τ(a)+γ)


· ê(gh, h)

H(RV)·
(
1−U1−

1
U1

)

· ê

g (rDO+H(RV))∏
aϵDO (γ+τ (a))·

∏
aϵS∪D

n+t−1\HSτ (a)
DO ,

hα
∏
aϵS∪Dn+t−1−s(γ+τ (a))

)
= ê

(
gα, h

)
Next the data user aggregates his secret key to derive the
deciphering key K. Finally, the data user can retrieve the
random value RV as

RV =
C3

ê (g, h)α·(H(RV)+k) =
C3
K

Then, the data user computes H(RV) using the retrieved RV,
to verify that σ3 is equal hα·H (RV).

VOLUME 11, 2023 145925

P. Sanchol, S. Fugkeaw: Fully Outsourced ABSC Scheme Supporting Privacy-Preserving Policy Update

D. PRIVACY
Theorem 4: Our scheme achieves signer privacy.
Proof: The anonymity game begins when the challenger

C runs CreateAttributeAuthority and KeyGetFuncGenerator
algorithms to generate master key MK, KeyGFN ., then gives
the PK and the KeyGFN to the adversary A.
Subsequently, the adversary A chooses two attribute sets

AS1 and AS1 satisfying the threshold access policy T and
sends them to the challenger C . The challenger generates the
secret keys related to the sets of attributes AS1 and AS2 by
executing the User. Key Gen algorithm as follows:

SKE1 = ({g
r

γ+τ (a) }aϵS1, {h
rγ i

}i=0,...,m−2, h
r−1
γ)

SKE2 = ({g
r

γ+τ (a) }aϵS2, {h
rγ i

}i=0,...,m−2, h
r−1
γ)

Additionally, adversary A outputs a challenge message M
and random value RV and asks the challenger C to generate
the signcryption of RV using one of the secret keys SKE1
or SKE2. Consequently, the challenger selects a random bit
b: b∈ {0; 1}, and computes a signcryption SRVb by running
the algorithm Proxy.Signcrypt(PK, RVb, SKEb, T) → CTRVb.
The challenger’s ability to generate a valid signcryption on
the random value RV is crucial. To establish the scheme’s
privacy, the task is to demonstrate that signcrypted random
values created using SKE1 or SKE2 are identical. Using the
private key related to SKEb, the generated signcryption SRVb
= (C1, C2, C3, σ1, σ2, σ3). Then, the adversary A verifies the
signature, by computing:

S∗
RVb = ê

g−αγ , h
r
DO−1

γ · h

(rDO+H(RV)∗P(HSDO,S)γ)∏
aϵS∪Dn+t−1−s/A

S(τ(a)+γ)


· ê(gh, h)

H(RV)·
(
1−U1−

1
U1

)

· ê

g (rDO+H(RV))∏
aϵDO (γ+τ (a))·

∏
aϵS∪D

n+t−1\HSτ (a)
DO ,

hα
∏
aϵS∪Dn+t−1−s(γ+τ (a))

)
= ê

(
gα, h

)
Since |ASb ∩ S| = |AS1 ∩ S| = |AS2 ∩ S| = t , we can
prove that the signature generated using the set of attributes
AS1 (in other words, using the secret key SKE1) is similar
to the signature generated using the set of attributes AS2
(using the secret key SKE2). Hence, the challenger A cannot
know the set of attributes used to generate the signature.
Thus, our proposed attribute based signcryption scheme is
computationally private.

VI. EVALUATION
To evaluate our proposed scheme, we performed the com-
parative analysis by comparing the functional features and
the computation cost of our scheme and three related works
supporting outsourced cryptographic operations and the pol-
icy update in the CP-ABE based access control. In addition,
we did the experiments to demonstrate the performance of

major cryptographic operations of our scheme and related
works.

A. FUNCTIONALITY ANALYSIS
Table 3 presents a comparison of the functional features
between our proposed scheme and several related works,
including Li et al. scheme [20], Guan et al. scheme [21],
Belguith et al. scheme, and Yu et al. scheme [31]. The com-
parison is based on three key aspects: policy update method,
outsourced cryptographic operations, and the support of
MCC. Policy update method refers to how the ciphertext
is altered in response to a policy update. Generally, this
can be achieved through ciphertext updates, allowing either
the data owner or the cloud to perform the necessary com-
putations, or through proxy re-encryption, which delegates
all re-encryption tasks to the proxy. Both methods can be
implemented in any Access Control applications that use
Attribute-Based Encryption (ABE).

TABLE 3. Functionality comparison.

The outsourced cryptographic operations function gauges
the extent of outsourcing attribute-based encryption/
signcryption and decryption/designcryption. Complete out-
sourcing of both operations indicates a significant reduction
in computational load for both data owners and data users.
Lastly, the third function determines whether the proposed
cryptographic operations are suitable for execution in a
Mobile-Edge Cloud (MEC) environment.

As shown in TABLE 3., theworks supporting policy update
chosen to compare in this paper are based on both PRE and
CT update method. Our scheme, Guan et al. scheme [21],
and Belguith et al. scheme [22] support the policy update
in mobile or edge computing while Li et al.scheme [20] was
implemented in the general cloud setting. Out of the selected
works for comparison, only scheme [31] did not provide
support for policy update. Notably, only our scheme sup-
ports policy update method based on PRE technique, which
can reduce high-computation cost from the mobile/edge
cloud to the proxy. Considering the outsourced cryptographic
operations, scheme [20] did not support the outsourced
encryption/decryption. In this scheme, the data owner needs
to encrypt the data and sends the ciphertext to be stored in
the cloud storage. Also, scheme [20] and [21] did not support

145926 VOLUME 11, 2023

P. Sanchol, S. Fugkeaw: Fully Outsourced ABSC Scheme Supporting Privacy-Preserving Policy Update

signcryption/designcryption on mobile/edge cloud whereas
Belguith et al. scheme [22] support outsourced designcryp-
tion. Essentially, only Yu et al. scheme [31] and ours support
both outsourced signcryption and designcryption.

TABLE 4. Computation cost comparisons.

B. COMPUTATION COST ANALYSIS
Table 4. gives the comparative analysis of the computational
overheads of our scheme and related works. Here, we give the
following notations used to represent the computation cost.

|AU |: Number of attributes that belongs to the data user.
|TA|: Number of leaf nodes in the access control policy.
G0: Exponentiation and XOR operation in group G0.
G1: Exponentiation and XOR operation in group G1.
GT : Exponentiation and XOR operation in group GT .
Ge: Pairing operation in group G0.
Gm: Multiplication operation in group G0.
GH : Hash operation ofM
Zp : The group {0, 1, . . . , p-1} multiplication modulo p.
XOR: XOR operation in 256bits data.
EKeyGFn: The size of element in KeyGFN .

AES: AES encryption/decryption operation.
ERV : The size of random value RV is 256bit.
U: The attribute universe
K: The size of the attribute universe U
Table 4 illustrates the comparison of CP-ABE encryp-

tion in each scheme, which is influenced by the number of
attributes involved in the access policy, resulting in expo-
nentiation operations on G0 and therefore the encryption
cost is subject to the size of access policy. Our proposed

scheme reduces encryption costs by using outsourced sign-
cryption and encrypting only the symmetric or transformation
key, resulting in computational efficiency. In scheme [20],
and [22], the data owner needs to fully apply CP-ABE
or ABSC operation since they did not support outsourced
encryption. To effectively handle CP-ABE or ABSC for
data encryption, the data owner must perform pairing and
exponentiation operations, which can be resource-intensive
and impractical to execute on constraint devices. In con-
trast, scheme [21], [31], and our proposed scheme utilize
ABSC/CP-ABE to encrypt the symmetric key or transfor-
mation key, which generally have smaller size than the
message. Importantly, only Yu et al. system [31] and our
proposed method support both outsourced signcryption and
designcryption while Belguith et al. scheme [22] supports
partial outsourced designcryption. Particularly, in our design,
we delegate symmetric encryption, hashing, and XOR oper-
ations exclusively to data owners, in contrast to scheme [21],
[22], [31], which requires both the data owner and the data
user to handle exponentiation operations on G0 and GT .
This distinction highlights the computational efficiency and
improved security of our approach.

Regarding the policy update cost, our proposed scheme and
Belguith et al. [22] strategies eliminate data owner involve-
ment in policy updates. However, scheme [22] requires the
proxy to perform the ciphertext update through ABSC opera-
tion.Meanwile Li et al. scheme [20] and Guan’s schemes [21]
require both the data owner and the proxy to update the key
and ciphertext. Thus, their policy update cost is subject to full
CP-ABE operation.

C. EXPERIMENTAL ANALYSIS
For the experimental analysis, we performed a comparison
of the signcryption and designcryption times of our scheme,
[22] and [31]. For the policy update, we conducted the exper-
iments to compare the policy update time between ours,
schemes [20], [21], and [22].
To set up the experiments, we utilized Open SSL as the

core PKI service to generate key pairs for users and the
proxy within our system. Additionally, we employed the core
CP-ABE toolkit and Java Pairing-Based Cryptography [29]
to simulate the cryptographic operations of schemes [20],
[21], [22], and [31]. The tests were conducted on CP-ABE
container running on Google Cloud platform, 1 vCPU and
2048MB of RAM. For the mobile device, we used Sam-
sung Galaxy A12 Octa-core device with 4 × 2.35 GHz
CPU and 4 GB of RAM, running on Android 11.0 (Red
Velvet Cake) installed with Java Pairing-Based Cryptogra-
phy and CP-ABE toolkit. In our experiment, we used the
CP-ABE container to execute all the encryption/signcryption
operation of our scheme and related works while the decryp-
tion/designcryption performance was done on a mobile
device Samsung Galaxy A12.

Our performance evaluation was designed to compare the
major cost of ABSC operations and policy update of our

VOLUME 11, 2023 145927

P. Sanchol, S. Fugkeaw: Fully Outsourced ABSC Scheme Supporting Privacy-Preserving Policy Update

scheme and related works. To this end, we first conducted
the experiments to measure the signcryption and design-
cryption performance. Then, experiment for measuring the
performance of policy update is provided. Regarding the
experiment setting. we varied the file size within the range
of 10 KB to 320 KB, using an access policy consisting of
10 attributes and a user’s secret key containing 5 attributes.
In addition to assessing performance by varying file size,
we also conducted evaluations by varying the number of
attributes contained in the access policy. We employed a
40-KB file with 5 attributes contained in the user’s secret
key, while the number of attributes in the policy ranged
from 10 to 80. To measure the cost of policy updates,
we increased the number of ciphertexts that required re-
encryption, considering a range of 500 to 16,000 files. The
extent to which encrypted files needed to be re-encrypted
depended on the number of files affected after the policy
update. Each experiment was repeated 20 times, and the aver-
age response time was calculated for display in the graphs.

Figures 3a and 3b exhibit the signcryption and designcryp-
tion performance of our scheme and related works based on
the varying file size respectively. Figures 4a and 4b illus-
trate how performance varies with changes in the number
of attributes in the access policy. Figure 5 illustrates the
policy update time when updating policies by measuring the
time taken for re-encryption when the number of ciphertexts
increases. In Figure 6, we compared the policy update time of
our proposed scheme when the proxy utilized our proposed
indexing technique and without the index.

FIGURE 3. Signcryption time with varying file size.

As can be seen from Figure 3 and Figure 4, the graphs
show that our scheme took least cost of both signcryption and
designcryption with varying file size and number of attributes
in the policy.

In our proposed scheme, the data undergoes an initial
encryption process using symmetric encryption, and the
random value used to derive the symmetric key is then
encrypted using the ABSC (Attribute-Based Signcryption)
method. In contrast, in scheme [22], CP-ABE and ABSC
are employed for data encryption and decryption, respec-
tively. When evaluating the cost of designcryption at the
user’s end, our scheme involves only key transformation
computations and XOR operations, incurring no additional

FIGURE 4. Designcryption time with varying no. of attributes.

FIGURE 5. Policy update time.

FIGURE 6. Comparison of policy update cost between using indexing and
without indexing.

ABSC-related costs. However, in schemes [22] and [31],
there’s a need for partial CP-ABE or ABSC computations
at the mobile user’s end to perform the designcryption of
the data. This results in additional computational overhead
for the user, making our scheme more efficient in com-
parison. In addition to the signcryption and desirncryption
cost, we also provide the evaluation of the policy update

145928 VOLUME 11, 2023

P. Sanchol, S. Fugkeaw: Fully Outsourced ABSC Scheme Supporting Privacy-Preserving Policy Update

performance of our proposed scheme and related works. The
process time for policy updates is non-trivial in any attribute-
based access control system as it represents a substantial
portion of the overall cost involved in updating all affected
ciphertexts according to the current state of the access control
policy. The importance of policy update performance lies
in its ability to gauge the efficiency of access control in a
dynamic data sharing environment.

From Figure 5, the graphs clearly demonstrate that our
proposed scheme exhibits the least cost for policy update
operations. This significant advantage can be attributed to the
use of the proxy re-encryption technique, where the proxy
only needs to perform re-encryption on the CTRV (ciphertext
of the random value) which has amuch smaller size compared
to the original message. Furthermore, our proposed indexing
search algorithm enhances the retrieval of affected ciphertexts
during policy updates. This indexing search capability further
contributes to the overall efficiency of the policy update
process.

Figure 6 shows the comparison of the policy update pro-
cessing time taken by the proxy with our proposed index
searching algorithm and without index searching algorithm.
With our proposed strategy, the major costs of re-encryption
are CP-ABE designcryption and re-signcryption cost on
the proxy side. Clearly, the proxy was offloaded with all
policy updating operations including searching operation
for list of policy update and designcrypting the cipher-
texts and re-signcrypts the ciphertext of the random value
while the data owner only prepares policy update infor-
mation. The performance depicted in the graphs demon-
strates that our proposed technique is highly practical
and well-suited for evolvable access control in a MCC
environment.

VII. CONCLUSION AND FUTURE WORK
We have introduced a mobile-cloud-based access control
system that supports outsourced signcryption, designcryp-
tion, and policy updates. Our approach utilizes the proxy
outsourcing model to handle the resource-intensive CP-ABE
signcryption and designcryption tasks. Our scheme delivers a
dual benefit of full outsourcing functionality, alleviating the
responsibilities of both data owners and data users, while also
achieving superior computational efficiency when compared
to existing solutions. Additionally, our outsourced policy
update model efficiently manages the costs associated with
ciphertext re-encryption at the data owner’s end, streamlin-
ing processes and enhancing overall efficiency. We’ve also
introduced a ciphertext indexing method that facilitates the
rapid retrieval of affected ciphertexts requiring re-encryption
in the event of a policy update. Furthermore, we’ve substan-
tiated the security of our proposed model within the given
security model. As part of our future research, we intend to
explore lightweight batch auditing and searchable encryption
techniques optimized for use in the mobile-cloud computing
domain.

REFERENCES
[1] M. Green, S. Hohenberger, and B. Waters, ‘‘Outsourcing the decryption of

ABE ciphertexts,’’ in Proc. 20th USENIX Conf. Secur., 2011, p. 34.
[2] T. Elgamal, ‘‘A public key cryptosystem and a signature scheme based

on discrete logarithms,’’ IEEE Trans. Inf. Theory, vol. IT-31, no. 4,
pp. 469–472, Jul. 1985.

[3] M. Asim, M. Petkovic, and T. Ignatenko, ‘‘Attribute-based encryption with
encryption and decryption outsourcing,’’ in Proc. 12th Austral. Inf. Secur.
Manage. Conf. ECU Security Research Institute, 2014, pp. 21–28.

[4] S. Fugkeaw, ‘‘A fine-grained and lightweight data access control model for
mobile cloud computing,’’ IEEE Access, vol. 9, pp. 836–848, 2021.

[5] R. Li, C. Shen, H. He, X. Gu, Z. Xu, and C.-Z. Xu, ‘‘A lightweight secure
data sharing scheme for mobile cloud computing,’’ IEEE Trans. Cloud
Comput., vol. 6, no. 2, pp. 344–357, Apr. 2018.

[6] S. Wang, H. Wang, J. Li, H. Wang, J. Chaudhry, M. Alazab, and H. Song,
‘‘A fast CP-ABE system for cyber-physical security and privacy in mobile
healthcare network,’’ IEEETrans. Ind. Appl., vol. 56, no. 4, pp. 4467–4477,
Jul. 2020.

[7] S. Fugkeaw and H. Sato, ‘‘Improved lightweight proxy re-encryption for
flexible and scalable mobile revocation management in cloud computing,’’
in Proc. IEEE 9th Int. Conf. Cloud Comput. (CLOUD), Jun./Jul. 2016,
pp. 894–899.

[8] Z. Zhou and D. Huang, ‘‘Efficient and secure data storage operations for
mobile cloud computing,’’ in Proc. 8th Int. Conf. Netw. Service Manag.,
Oct. 2012, pp. 37–45.

[9] Z. Li, W. Li, Z. Jin, H. Zhang, and Q.Wen, ‘‘An efficient ABE scheme with
verifiable outsourced encryption and decryption,’’ IEEE Access, vol. 7,
pp. 29023–29037, 2019.

[10] Q. Li, Y. Tian, Y. Zhang, L. Shen, and J. Guo, ‘‘Efficient privacy-preserving
access control of mobile multimedia data in cloud computing,’’ IEEE
Access, vol. 7, pp. 131534–131542, 2019.

[11] S. Zhang, W. Li, Q. Wen, H. Zhang, and Z. Jin, ‘‘A flexible KP-ABE suit
for mobile user realizing decryption outsourcing and attribute revocation,’’
Wireless Pers. Commun., vol. 114, no. 4, pp. 2783–2800, Oct. 2020.

[12] Y. Kawai, ‘‘Outsourcing the re-encryption key generation: Flexible
ciphertext-policy attribute-based proxy re-encryption,’’ in Proc. Int. Conf.
Inf. Secur. Pract. Exper., vol. 9065. Cham, Switzerland, Springer, 2015,
pp. 301–315.

[13] G. Yu, X. Zha, X. Wang, W. Ni, K. Yu, P. Yu, J. A. Zhang, R. P. Liu, and
Y. J. Guo, ‘‘Enabling attribute revocation for fine-grained access control
in blockchain-IoT systems,’’ IEEE Trans. Eng. Manag., vol. 67, no. 4,
pp. 1213–1230, Nov. 2020.

[14] Y. Chen, J. Li, C. Liu, J. Han, Y. Zhang, and P. Yi, ‘‘Effi-
cient attribute based server-aided verification signature,’’ IEEE Trans.
Services Comput., vol. 15, no. 6, pp. 3224–3232, Nov. 2022, doi:
10.1109/TSC.2021.3096420.

[15] K. Yang, X. Jia, K. Ren, R. Xie, and L. Huang, ‘‘Enabling efficient access
control with dynamic policy updating for big data in the cloud,’’ in Proc.
IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2014, pp. 2013–2021.

[16] L. Touati and Y. Challal, ‘‘Instantaneous proxy-based key update for CP-
ABE,’’ in Proc. IEEE 41st Conf. Local Comput. Netw. (LCN), Dubai,
United Arab Emirates, Nov. 2016, pp. 591–594.

[17] S. Fugkeaw and H. Sato, ‘‘Scalable and secure access control policy
update for outsourced big data,’’ Future Gener. Comput. Syst., vol. 79,
pp. 364–373, Feb. 2018.

[18] S. Fugkeaw, ‘‘A lightweight policy update scheme for outsourced personal
health records sharing,’’ IEEE Access, vol. 9, pp. 54862–54871, 2021.

[19] K. Yang, X. Jia, and K. Ren, ‘‘Secure and verifiable policy update out-
sourcing for big data access control in the cloud,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 26, no. 12, pp. 3461–3470, Dec. 2015.

[20] J. Li, S. Wang, Y. Li, H. Wang, H. Wang, H. Wang, J. Chen, and Z. You,
‘‘An efficient attribute-based encryption schemewith policy update and file
update in cloud computing,’’ IEEE Trans. Ind. Informat., vol. 15, no. 12,
pp. 6500–6509, Dec. 2019, doi: 10.1109/TII.2019.2931156.

[21] Y. Guan, S. Guo, P. Li, and Y. Yang, ‘‘Secure and verifiable data access
control scheme with policy update and computation outsourcing for edge
computing,’’ inProc. IEEE 26th Int. Conf. Parallel Distrib. Syst. (ICPADS),
Dec. 2020, pp. 398–405, doi: 10.1109/ICPADS51040.2020.00060.

[22] S. Belguith, N. Kaaniche, M. Hammoudeh, and T. Dargahi, ‘‘PROUD:
Verifiable privacy-preserving outsourced attribute based SignCryption
supporting access policy update for cloud assisted IoT applications,’’
Future Gener. Comput. Syst., vol. 111, pp. 899–918, Oct. 2020.

VOLUME 11, 2023 145929

http://dx.doi.org/10.1109/TSC.2021.3096420
http://dx.doi.org/10.1109/TII.2019.2931156
http://dx.doi.org/10.1109/ICPADS51040.2020.00060

P. Sanchol, S. Fugkeaw: Fully Outsourced ABSC Scheme Supporting Privacy-Preserving Policy Update

[23] J. Bethencourt, A. Sahai, and B.Waters, ‘‘Ciphertext-policy attribute-based
encryption,’’ in Proc. IEEE Symp. Secur. Privacy, Oakland, CA, USA,
May 2007, pp. 321–334.

[24] M. Gagné, S. Narayan, and R. Safavi-Naini, ‘‘Threshold attribute-
based signcryption,’’ in Proc. Int. Conf. Secur. Cryptogr. Netw., 2010,
pp. 154–171.

[25] S. Belguith, N. Kaaniche, M. Laurent, A. Jemai, and R. Attia, ‘‘Constant-
size threshold attribute based signcryption for cloud applications, in Proc.
14th Int. Conf. Secur. Cryptogr. (SECRYPT), vol. 6, 2017, pp. 212–225.

[26] C. Wang and J. Huang, ‘‘Attribute-based signcryption with ciphertext-
policy and claim-predicate mechanism,’’ in Proc. 7th Int. Conf. Comput.
Intell. Secur., Hainan, China, Dec. 2011, pp. 905–909.

[27] Y. Han, W. Lu, and X. Yang, ‘‘Attribute-based signcryption scheme with
non-monotonic access structure,’’ in Proc. 5th Int. Conf. Intell. Netw.
Collaborative Syst., Xi’an, China, Sep. 2013, pp. 796–802.

[28] J. Liu, X. Huang, and J. K. Liu, ‘‘Secure sharing of personal health
records in cloud computing: Ciphertext-policy attribute-based signcryp-
tion,’’ Future Gener. Comput. Syst., vol. 52, pp. 67–76, Nov. 2015.

[29] PBC (Pairing-Based Cryptography) Library. Accessed: Jun. 30, 2021.
[Online]. Available: https://crypto.stanford.edu/pbc/

[30] F. Deng, Y. Wang, L. Peng, H. Xiong, J. Geng, and Z. Qin, ‘‘Ciphertext-
policy attribute-based signcryption with verifiable outsourced design-
cryption for sharing personal health records,’’ IEEE Access, vol. 6,
pp. 39473–39486, 2018, doi: 10.1109/ACCESS.2018.2843778.

[31] J. Yu, S. Liu, S. Wang, Y. Xiao, and B. Yan, ‘‘LH-ABSC: A lightweight
hybrid attribute-based signcryption scheme for cloud-fog-assisted IoT,’’
IEEE Internet Things J., vol. 7, no. 9, pp. 7949–7966, Sep. 2020, doi:
10.1109/JIOT.2020.2992288.

[32] P. Sanchol, S. Fugkeaw, and H. Sato, ‘‘Amobile cloud-based access control
with efficiently outsourced decryption,’’ in Proc. 10th IEEE Int. Conf.
Mobile Cloud Comput., Services, Eng. (MobileCloud), San Francisco, CA,
USA, Aug. 2022, pp. 1–8, doi: 10.1109/MobileCloud55333.2022.00008.

[33] E. Ahene, J. Walker, R.-M.-O. M. Gyening, G. Abdul-Salaam, and
J. B. Hayfron-Acquah, ‘‘Heterogeneous signcryption with proxy re-
encryption and its application in EHR systems,’’ Telecommun. Syst.,
vol. 80, no. 1, pp. 59–75, May 2022, doi: 10.1007/s11235-022-00886-2.

[34] Q. Huang, Z. Zhang, and Y. Yang, ‘‘Privacy-preserving media sharing
with scalable access control and secure deduplication in mobile cloud
computing,’’ IEEE Trans. Mobile Comput., vol. 20, no. 5, pp. 1951–1964,
May 2021.

[35] S. Qi, W. Wei, J. Wang, S. Sun, L. Rutkowski, T. Huang, J. Kacprzyk, and
Y. Qi, ‘‘Secure data deduplication with dynamic access control for mobile
cloud storage,’’ IEEE Trans. Mobile Comput., early access, pp. 1–18, 2023,
doi: 10.1109/TMC.2023.3263901.

[36] S. Banerjee, S. Roy, V. Odelu, A. K. Das, S. Chattopadhyay,
J. J. P. C. Rodrigues, and Y. Park, ‘‘Multi-authority CP-ABE-based user
access control scheme with constant-size key and ciphertext for IoT
deployment,’’ J. Inf. Secur. Appl., vol. 53, Aug. 2020, Art. no. 102503, doi:
10.1016/j.jisa.2020.102503.

[37] X. Li, T. Liu, C. Chen, Q. Cheng, X. Zhang, and N. Kumar, ‘‘A lightweight
and verifiable access control scheme with constant size ciphertext in
edge-computing-assisted IoT,’’ IEEE Internet Things J., vol. 9, no. 19,
pp. 19227–19237, Oct. 2022, doi: 10.1109/JIOT.2022.3165576.

[38] J. Li, Y. Wang, Y. Zhang, and J. Han, ‘‘Full verifiability for outsourced
decryption in attribute based encryption,’’ IEEE Trans. Services Comput.,
vol. 13, no. 3, pp. 478–487, May 2020, doi: 10.1109/TSC.2017.2710190.

[39] J. Li, Y. Chen, J. Han, C. Liu, Y. Zhang, and H. Wang, ‘‘Decen-
tralized attribute-based server-aid signature in the Internet of Things,’’
IEEE Internet Things J., vol. 9, no. 6, pp. 4573–4583, Mar. 2022, doi:
10.1109/JIOT.2021.3104585.

PATTAVEE SANCHOL received the bachelor’s
degree in computer engineering from Kasetsart
University, Thailand, and the master’s degree in
engineering and technology from the Sirindhorn
International Institute of Technology, Thammasat
University, Thailand, in 2022. His research inter-
ests include cyber security, access control, cloud
computing security, programming languages, and
networking.

SOMCHART FUGKEAW (Member, IEEE)
received the bachelor’s degree in management
information systems from Thammasat University,
Bangkok, Thailand, the master’s degree in com-
puter science from Mahidol University, Thailand,
and the Ph.D. degree in electrical engineering
and information systems from The University of
Tokyo, Japan, in 2017. He is currently an Assis-
tant Professor with the Sirindhorn International
Institute of Technology, Thammasat University.

His research interests include information security, access control, cloud
computing security, big data analysis, and high-performance computing.
He has served as a Reviewer for several international journals, such as IEEE
ACCESS, the IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY,
the IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, the IEEE
TRANSACTIONS ON CLOUD COMPUTING, the IEEE TRANSACTIONS ON BIG DATA,
the IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, the IEEE
TRANSACTIONS ONNETWORKAND SERVICEMANAGEMENT, the IEEE TRANSACTIONS

ON PARALLEL AND DISTRIBUTED SYSTEMS, Computer & Security, the IEEE
SYSTEMS JOURNAL, and ACM Transactions on Multimedia Computing, Com-
munications, and Applications.

145930 VOLUME 11, 2023

http://dx.doi.org/10.1109/ACCESS.2018.2843778
http://dx.doi.org/10.1109/JIOT.2020.2992288
http://dx.doi.org/10.1109/MobileCloud55333.2022.00008
http://dx.doi.org/10.1007/s11235-022-00886-2
http://dx.doi.org/10.1109/TMC.2023.3263901
http://dx.doi.org/10.1016/j.jisa.2020.102503
http://dx.doi.org/10.1109/JIOT.2022.3165576
http://dx.doi.org/10.1109/TSC.2017.2710190
http://dx.doi.org/10.1109/JIOT.2021.3104585

