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ABSTRACT The proportional integral derivative (PID) method is widely used in industrial control
applications. However, when applied to complex and dynamic train operation control systems, real-time
parameter adjustment becomes a formidable challenge. Moreover, the multifaceted nature of train operation
control, encompassing safety, parking precision, passenger comfort, and energy efficiency, exacerbates the
difficulty of parameter adjustment. To address this problem, this paper formulates train operation control as
a Markov decision process (MDP) and introduces an innovative adaptive control approach. This approach
features a hierarchical structure comprising an upper-level deep deterministic policy gradient (DDPG)
controller and a lower-level PID controller, leveraging the learning capability of the DDPG algorithm,
as well as the stability and interpretability of the PID method. The upper-level controller acquires train
status information and autonomously fine-tunes the PID parameters, while the lower-level controller accepts
these parameters and adjusts the percentage of traction or braking to achieve train operation control.
Furthermore, the reward function has been meticulously designed to reconcile the diverse objectives of train
operation. Extensive experiments conducted on a subway simulation platform substantiate the effectiveness

and adaptability of the proposed approach in various operational scenarios.

INDEX TERMS Subway train operation, reinforcement learning, adaptive control, reward function.

I. INTRODUCTION

Efficient subway train operation is paramount for ensuring
the high performance and reliability of urban transportation
systems. In the face of ever-increasing public transportation
demand, optimizing subway train system operations has
become imperative in the aim to enhance overall perfor-
mance [1].

The control of subway train operation mainly focuses
on two aspects [2]: reference speed optimization and speed
tracking control. Reference speed optimization entails the
pre-calculation of an ideal speed profile for the train journey
between stations. This profile is meticulously designed
to encompass critical operational objectives encompassing
safety, parking precision, passenger comfort, and energy
efficiency. This optimized speed profile acts as a pivotal
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reference, thereby harmonizing with the train’s operational
dynamics and guiding the formulation of an effective speed
control strategy. Speed tracking control, also known as
subway train operation control, aims to ensure that the
train operates as closely as possible to the reference speed
profile, thus resulting in desired operational outcomes. Fig. 1
shows the speed-position/time curve and the applied train
forces. During acceleration, the train experiences traction
forces that propel it forward. Meanwhile, during braking,
deceleration is achieved through braking force. Throughout
the entire operational process, the train encounters resistance.
Consequently, under the combined influence of these various
forces, the train endeavors to closely adhere to the prescribed
reference speed profile.

A highly efficient and reliable control system is essential
for achieving effective train operation between stations.
The most classical and commonly used method for train
speed control is the proportional-integral-derivative (PID)
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FIGURE 1. Speed-position/time curve and the applied train forces.
Subway trains A and B simulate the force distribution during the traction
and braking processes, respectively.

controller [3], [4], which is still applied in subway lines like
the Yizhuang Line and Changping Line of Beijing Subway.
The PID controller is widely used in the industry due to
its simplicity and good robustness. However, conventional
PID controller parameter tuning relies on manual experience
and repetitive on-site adjustments, thus leading to high costs
and difficulties in achieving dynamic adaptive parameter
adjustments [5]. Moreover, during train operation, various
internal and external factors, such as mechanical wear, normal
aging, and weather conditions changes, continuously affect
the train. The fixed-parameter PID controller inevitably
experiences performance degradation. Additionally, the PID
controller tends to frequently output speed adjustment com-
mands to minimize tracking errors, thus possibly resulting in
poor passenger comfort and an inability to balance multiple
objectives [6]. Therefore, an advanced control method is
needed to overcome these limitations and to enhance the
efficiency and effectiveness of subway train operations.

Researchers have explored different methods to improve
speed tracking performance. Fuzzy control is one of the
most commonly used train operation control methods [7].
Fuzzy control involves fuzzifying the inputs of a control
system, establishing a fuzzy rule base, and completing fuzzy
inference. For instance, Pu et al. [8] designed a fuzzy
PID controller to adaptively adjust PID gains, and they
considered multiple objectives, including punctuality, energy
consumption, parking accuracy, and comfort, to improve the
tracking performance of the nonlinear train system. Similarly,
for balancing multiple objectives, Zhu et al. [9] proposed
a multi-objective model for urban railway train automatic
operation, as well as designed a fuzzy controller to control
train operations.

The fuzzy control methods heavily rely on the formulation
of logical rules, which can be non-trivial [10]. Furthermore,
researchers have recently incorporated neural networks
through which to enhance train operation controllers.
Sun et al. [11] investigated an adaptive neural fuzzy sliding
mode controller to suppress the disturbance effects on the
train model parameters, thus demonstrating its effectiveness
in speed tracking control. Pu et al. [12] proposed an adaptive
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control method for subway trains, whereby the time-varying
parameters of train motion were considered and a train model
with dynamic parameters was established. They designed
a model-free adaptive control system by combining neural
networks and the PID algorithm to achieve adaptive control.
However, the neural network methods based on supervised
learning heavily rely on the quality and quantity of the
samples.

Some of the above methods treat most parameters of
the train system model as constants [13], [14], In actual
subway operations, the traction/braking force and resistance
of the train vary at different speeds. To overcome the
limitations of previous methods, we propose a hierarchical
adaptive control approach through which to optimize subway
train operation. This approach leverages deep reinforce-
ment learning technology to fine-tune PID parameters.
Reinforcement learning enables agents to learn through
interaction with the environment. It allows intelligent agents
to autonomously learn and improve their behavioral strategies
based on feedback and reward signals from the environment.
Deep reinforcement learning combines deep neural networks
with reinforcement learning algorithms to enable agents
to learn complex representations and features from high-
dimensional, unstructured input data, resulting in improved
generalization and robustness when facing unseen states [15].
Deep reinforcement learning has achieved success in adaptive
PID parameter tuning and found wide applications in various
domains [16]. For example, in wind turbine control [17], [18],
robot control [19], [20], [21], and unmanned aerial vehicle
attitude control [22], [23], deep reinforcement learning
has demonstrated its effectiveness. However, to the best
of our knowledge, this strategy has not been applied in
the field of train operation control. Thus, we explore
this direction by adopting deep reinforcement learning to
adaptively adjust PID parameters in train operation control,
thereby expecting to achieve similar successful results in this
domain.

As awhole, the proposed approach possesses a hierarchical
structure comprising an upper-level deep deterministic policy
gradient (DDPG) controller and a lower-level PID controller.
The reinforcement learning DDPG algorithm dynamically
adjusts PID parameters online, thus allowing for the learning
of optimal control strategies for different operating conditions
and effective management of the train’s complex continuous
state and action spaces. The integration of the DDPG
algorithm enables the online adjustment of PID parameters
through value function approximation, thus facilitating an
adaptive control based on continuously changing operational
requirements. In addition, in order to balance multiple
optimization objectives, the reward function is meticulously
designed.

By combining the learning capability of the DDPG
algorithm with the stability and interpretability of the PID
controller, stable and interpretable control signals can be
provided under complex and time-varying conditions, thus
achieving precise and efficient train operation.
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In summary, the main contributions of this paper are as

follows:

1) We propose an adaptive control approach through
which to optimize subway train operation, thus
addressing the limitations of other PID control strate-
gies.

2) We developed a hierarchical structure that combines
the learning capability of the DDPG algorithm with
the stability and interpretability of the PID controller,
thus enabling accurate tracking of the reference speed
profile while considering multiple objectives.

3) We conducted extensive numerical experiments on
a city subway simulation platform to evaluate the
effectiveness and superiority of the proposed approach.

The rest of this paper is organized as follows. Section II
provides a detailed analysis of the train dynamic model,
traction/braking force, and resistance, thus laying the theo-
retical foundation for the proposed approach. In Section III,
we elaborate on the adaptive control approach, including
the design of the upper-level controller, the lower-level
controller, and the reward function. Section IV describes the
simulation settings and presents the numerical experiment
results, thus demonstrating the adaptability of the proposed
approach. Finally, Section V summarizes this paper and
suggests potential future research directions.

Il. TRAIN MODEL ANALYSIS
A. TRAIN DYNAMIC MODEL
The single-particle train model is the most commonly used
model for solving train operation problems [24], [25]. In this
paper, we adopt the single-particle model to simulate the
train. According to Newton’s laws of motion, the train’s
dynamics can be expressed as

dx
a
dv_F—R @)

dt M

where x, t, and v represent the train’s position, time, and speed
during its operation, respectively. M represents the mass of
the train, and F and R represent the traction/braking force
and resistance of the train, respectively.

The proposed approach controls the train by sampling
at the time interval At, thus enabling an iterative calculation
of the train’s position and speed using (2) and (3).

{Ax:vAt—i— Ar? @)
{x:x—i—Ax
{Av=v+ At 3
{v=v+Av

B. TRACTION/BRAKING FORCE
The traction and braking forces of the train are provided
by the traction system and braking system, respectively.
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FIGURE 2. The traction and braking characteristic curves of the train.

The maximum traction/braking force that the train can
provide at a specific moment depends on the train’s speed
and is usually represented by the traction/braking force
characteristic curve [5], which is illustrated in Fig. 2.

From Fig. 2, it can be observed that the maximum traction
and braking forces remain constant at lower speeds. However,
as the speed approaches the critical value, these forces start to
decrease. The maximum traction and braking forces at time ¢
can be expressed as

[ Fimax(t) = fimax(vr) )

Fomax(®) = fomax(v¢)

where Fimax () and Fpmax (f) represent the maximum traction
and braking forces at time f, respectively. fimax(v;) and
Sfomax(v¢) are functions describing the variation of the train’s
maximum traction and braking forces with respect to speed
v, at time 1.

The train control system determines the percentage of
traction or braking force output [12], which is denoted as u.
Therefore, the traction/braking force F'(¢) can be expressed as

F(1) = u(t)Finax(t)

u(®)Fimax(®) u() >0
=10 u(t) =0 @)
u(t)Fomax(t)  u(t) <0

where Fyax(¢) is the maximum traction/braking force at time
t, and u(¢) is the percentage of the maximum traction/braking
force at time . When u(z) > 0, the traction system applies
traction force; when u(#) < 0, the braking system applies
braking force; and when u(¢) = 0, both the traction force and
braking force are zero.

C. RESISTANCE

Resistance is an important factor that cannot be ignored
when controlling a train. There are many influencing factors
during a train’s operation, thus making it difficult to precisely
solve the resistance. Empirical formulas obtained through
numerous experiments are typically used for calculation.
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In this paper, we use the Davis equation to represent the
resistance [26], which is formulated as

R(v) = Dy + Dyv + D3V? (6)

where D1, Dy, and D3 are empirical coefficients, each of
which is greater than or equal to zero. The specific values of
these coefficients may vary depending on the different trains
and track conditions.

From (6), it can be seen that the resistance increases with
increasing speed. To evaluate the adaptability of our proposed
approach, various combinations of these coefficients were
considered.

Ill. HIERARCHICAL ADAPTIVE CONTROL APPROACH

A. PROBLEM DEFINITION

Subway train control is a complex task that can be effectively
addressed by formulating it as an optimal control problem.
The main objective is to determine the optimal strategy for
adjusting traction and braking forces throughout the entire
journey between stations. By carefully adjusting these forces,
the train can achieve efficient and safe operation while
maximizing performance.

Train control is composed of a series of control commands
for the train, and its output depends solely on the current input
state of the train, i.e., it is independent of historical states.
Therefore, the optimal control of subway train operation can
be formulated as a Markov decision process (MDP), which
is a fundamental framework used to model decision-making
problems involving sequential interactions. An MDP is
typically composed of a state space S, an action space A,
a state transition function P, a reward function R, and a
discount factor y, which are represented as a quintuple <
S, APR,y >.

The state space S encompasses all possible states s within
the environment. In order to comprehensively encapsulate the
environment’s state and ensure seamless coordination with
the lower-level controller, this paper chooses the tracking
speed v;, the percentage of traction/braking u,, the difference
speed v, between the reference speed and tracking speed, and
the distance d; between the reference position and tracking
position to form the state at time ¢, which is defined as

st = [ve, ur, ¥y, (}t] @)

The action space A refers to the set of all possible actions
a. In this paper, it consists of the PID parameters (1), k;(t)
and kg4(t), as shown in (8), which will be discussed in
Section III-D.

ar = [kp(1), ki(1), ka(1)] ®)

The state transition function P is a conditional probability
density function that is denoted as p(s;+1]s¢, a;). It represents
the probability of the state transitioning to s, if the current
state s; and action a; are observed. The state transition
function is automatically completed by the train dynamic
model.

VOLUME 11, 2023

Reward R is a numerical value returned by the environ-
ment to the agent after executing an action. The reward
function design is discussed in Section III-E.

The reward discount factor y € [0, 1] is used to reduce
the weight value with increasing time steps. The goal of
reinforcement learning is to find an optimal policy 7* that
maximizes the cumulative reward R;, which can be expressed
as

T
Ri=> y"'r ©)
i=t
where r; is the reward at time i.

B. APPROACH OVERVIEW

In this section, we provide a comprehensive overview of the
proposed approach for optimizing subway train operations.
The approach adopts a hierarchical control structure, whereby
the advantages of DDPG and PID controllers are combined to
improve train operation efficiency and performance, as shown
in Fig. 3. The upper-level controller is responsible for
adjusting the parameters of the lower-level controller based
on environmental state information. The DDPG algorithm
effectively addresses the problem of continuous action
space in reinforcement learning by combining deterministic
policy and the Actor-Critic architecture, thereby reducing
exploration complexity and enabling efficient value function
estimation. This provides an effective solution for rein-
forcement learning problems that involve continuous action
spaces, such as PID parameter tuning. The lower-level
controller dynamically adjusts the percentage of the traction
and braking forces applied to the train, thereby allowing it to
operate according to the desired control strategy. It is worth
noting that the reward function was meticulously designed to
balance multiple optimization objectives.

C. UPPER-LEVEL CONTROLLER DESIGN

The upper-level controller design in the proposed approach
utilizes reinforcement learning techniques to learn the
optimal control strategy for subway train operation. Rein-
forcement learning involves the interaction between an agent
and its environment, with the agent making decisions based
on feedback in the forms of states and rewards.

The DDPG is a deep reinforcement learning algorithm
developed by Lillicrap et.al [27], and it is composed of two
key components (where 6* and 6€ are the parameters): an
Actor (online) network w(s|60*) and a Critic (online) network
0O(s, al69).

The Actor network is shown in Fig. 4, and it consists
of an input layer, two hidden layers, and an output layer.
To enhance non-linear expression capacity, ReLU [28] is
used as the activation function for the intermediate layers,
and Tanh [29] is used for the output layer. It takes the state
information as input and outputs the PID parameters. Note
that, due to the use of the Tanh function, the output x,,; range
is limited to [—1, 1], and it is scaled to a reasonable range
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FIGURE 3. Structure of the proposed approach.
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ky(t) = (ka(1) ) d

2

where k;,]p, klu P and k;p denote the upper limit of the allowable
PID parameter values.

The Critic network is similar to the Actor network,
as shown in Fig. 5. The difference lies in the input, which
consists of a joining of the state and action. The output layer
has no activation function, and it only outputs a real value,
which is represented by the Q-value g(t).

The Actor network is updated by calculating the policy
gradient, as shown in (11).

1
Voul ~ Z VOG5, a | 09) s=s,.amp(s) Vor i | 6],
(11)
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FIGURE 5. Critic network structure.

The parameters in the Critic network are updated by
minimizing the value of the loss function L, which is
expressed as

L= %le(yz — 0 (5@ 169))? (12)

where y; is the estimate of the state-action value, and it is
defined as

yo=r+vQ (st (s 107) 169) - (13)

where 64" and 62 are the parameters of the target networks.

In the DDPG algorithm, the incorporation of target
networks constitutes a pivotal technique that is aimed at
enhancing the stability and convergence of the training
process. The Actor/Critic target network is a delayed copy
of the Actor/Critic online network. During training, the
target networks are updated periodically using a soft update
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approach, as shown in (14).

(14)

0" < oM + (1 — 1)o"
02 « 102 + (1 — 1)p?

where 7 is the update rate of the target networks.

To enhance the learning process, the DDPG algorithm
incorporates an experience replay buffer. This buffer stores
past experiences, thereby enabling efficient training by
reducing data correlation and preventing policy oscillation.
During training, small batches of experiences are sampled
from the replay buffer, and the DDPG network parameters
are updated based on the calculated loss and policy gradient.
This iterative process improves the control strategy over
time, thereby enabling the upper-level controller to adapt to
different operating conditions and to optimize the subway
train’s performance.

D. LOWER-LEVEL CONTROLLER DESIGN

The lower-level controller plays a crucial role in adjusting
the percentage of the traction/braking force based on the
parameters received from the upper-level controller.

The PID controller employs three types of items: propor-
tional (P), integral (I), and derivative (D). The proportional
item incorporates a suitable proportion of the error (difference
between the desired value and the controlled object’s output)
into the control output. The integral item monitors the
changing error variable over time and corrects the output by
reducing the offset of the error variable. The derivative item
control mode monitors the rate of change in the error variable,
thus modifying the output in the presence of abnormal
variations. By adjusting the parameters of the three items, the
desired performance is obtained from the process.

The incremental PID is widely used in industrial appli-
cations as it overcomes the drawback of accumulating
significant cumulative errors in the positional PID [19].
Therefore, the incremental PID control law is employed to
design the lower-level controller, as shown in (15).

u(t) = u(t — 1) + Au(t)

_ kp(@)le(t) — e(t — 1)] + ki(1)e(t)
Ault) = (+kd(t)[e(t) — 2e(t — 1) +elt — 2)]) (15)
e(t) = v (t) — v(1)

where ¢ represents the discrete sampling time, and the
coefficients k,(t), ki(¢), and k4(t) correspond to the propor-
tional, integral, and derivative parameters of the incremental
PID controller at time ¢, respectively. Au(t) represents the
increment value at time ¢, and the output value Z(¢) at time
t is obtained by adding Au(¢) to the previous control output
u(t — 1). The terms e(?), e(t — 1), and e(t — 2) represent the
system error at times ¢,  — 1, and ¢t — 2, respectively, i.e., the
difference between the reference speed v, and the tracking
speed v.

To ensure that the final output u(¢) of the PID controller
stays within the desired range, we utilized the clip function.
This function restricts the value of wu(¢) to the range
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o(t)[e(t) —e(t 1) u(t—1)

FIGURE 6. Design and integration of the lower-level controller.

ka(t)[e(t) — 2e(t — 1) + e(t ~ 2)

of —1 to 1, which is expressed as
u(t) = clip(ii(t), —1, 1) (16)

As described above, The lower-level controller in the
proposed approach employs the incremental PID as the
PID controller, as well as applies constraints on the output
to accurately adjust the percentage of the traction/braking
force based on the received control signals. This enables the
subway train to respond effectively to continuously changing
conditions and helps to accurately track the reference speed
curve. Fig. 6 provides an overview of the design and
integration of the lower-level controller in the proposed
approach.

E. REWARD FUNCTION DESIGN

The design of the reward function is crucial for incentivizing
desired behaviors and penalizing undesirable ones. In this
paper, the reward function is defined as a weighted combi-
nation of individual reward components that correspond to
each control objective. The overall reward is represented as
R, as shown in (17).

R= WIRSafety + W2RTracking + W3RParking
+ W4Rcomfort + W5REfficiency (17

where w;(i = 1,2, 3,4, 5) determine the relative importance
of each reward component.
The individual reward components are defined as follows.
1) Safety Reward (Rsafety): This component encourages
the train to operate below the speed limit to ensure
safety. It imposes a penalty for exceeding the speed
limit, which is represented by a large negative constant
value. It is worth noting that, in each simulation, the
current iteration is terminated if the speed exceeds the
speed limit.

—C V> Viimit

RSafety = [ 0 else (18)

where C is a large number.

2) Tracking Reward (Rtracking): This component measures
the deviation of the train speed and position from the
reference values. It aims to provide a positive reward
for accurate tracking.

1

R o + 19
Tracking 1+ v, — v 1+ |pr —pl (19)

where v, and v represent the reference speed and
tracking speed, respectively, and p, and p represent the
reference position and tracking position, respectively.
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3) Parking Reward (Rparking): This component evaluates
the accuracy of parking at the target position. It pro-
vides a reward for precise stops within the required
tolerance, and it penalizes large position errors. Typical
requirements dictate that the error in the parking
position should be within £0.3 m. It is worth noting
that this reward only takes effect when the simulation
time reaches the pre-planned time. Otherwise, its value
is 0. Furthermore, when the simulation time reaches the
pre-planned time and its speed is not 0, the iteration is
terminated and considered a failure.

1
- |Page —pl < 0.3
Rparking = I + |ptarget — P e
—|Ptarget — DI else

(20)

4) Comfort Reward (Rcomfort): Passenger comfort is
closely related to the rate of acceleration change
called jerk. A lower jerk value indicates higher
comfort. Incorporating this component helps achieve
smooth acceleration and deceleration, thus enhancing
passenger comfort.

1

R = — 21
Comfort 1+ |jerk| ( )

5) Efficiency Reward (Refficiency): This component
encourages energy-efficient operation by penalizing
energy-consuming behavior, and it is the time integral
of the product of train speed v(¢) and traction force F'(¢).

—/ v(t) x F(t)ydt F(t) >0
At

0 else

REfficiency =

(22)

Through the integration of multiple rewards, the proposed
approach can learn to make decisions that balance multiple
objectives, as well as optimize the operation of the subway
train accordingly.

F. ALGORITHM STATEMENT

In this section, we present the algorithm of the entire process,
as shown in Algorithm 1. The proposed approach first
initializes the parameters of the DDPG. It then iterates in
a loop that interacts with the environment. During each
iteration, the current state of the subway train is obtained,
and an appropriate action is chosen based on the current
policy determined by the DDPG controller. This action
parameterizes the PID controller, which, in turn, determines
the traction/braking percentage of the train based on the
current state. The environment executes the train dynamics
based on this traction/braking ratio, and it then observes
the resulting next state, reward, and termination signal.
These transition experiences are stored in a replay buffer
for experience replay. Then, the network parameters are
updated using batch sampling from the replay buffer, thereby
calculating the loss and policy gradient.
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Algorithm 1 Hierarchical Adaptive Control Algorithm

1: Initialize actor (online) network u(s|0*) and critic
(online) network O(s, a|02)

2: Initialize target network u’ and Q" with weights 6% <«
0102 « 99

3: Initialize the replay buffer Rbf for experience replay

4: for epsiode = 1to M do

done < False
5:  Receive the initial current state s of the subway train

t <0
6:  while not done do
7: Select action a; according to the current policy and
exploration noise
8: Calculate the percentage of traction/braking force u
according to s; and a;
9: Execute u and observe next state s;41, reward r; and
termination signal done
10: Store transition (s;, a;, 17, S;4+1) into replay buffer
Rbf
11: Sample a random minibatch transitions 7} from Rbf
12: Calculate the policy gradient Vg.J and loss L based
on the T
13: Update actor online network parameters using (11)
14: Update critic online network parameters using (12)
15: Update target networks using (14)
16: St < Sl
17: t<—t+1
18:  end while
19: end for

The integration of DDPG and PID controllers achieves
adaptability and flexibility in the control process. The DDPG
controller learns from experience and provides guidance to
the PID controller, thus enabling it to adjust its parameters
based on different environmental conditions. This adaptive
interaction between controllers and the environment con-
tributes to the continuous improvement and optimization of
subway train operations.

IV. NUMERICAL EXPERIMENTS

In this section, we establish a train operation simulation
environment to conduct experiments to validate the effective-
ness of the proposed approach and compare its performance
with other popular control methods. Additionally, various
reference speeds and resistance parameters are adopted to
explore the adaptability of the proposed approach.

A. SIMULATION SETUP
We simulated a subway line with a total length of 1280 m and
a speed limit of 80 km/h. The total weight of the train was set
to 300 tons. The parameters of the Davis equation were set as
Dy =0.6841, Dy = 0.0229, and D3 = 0.000345.

The characteristics of the traction and braking forces
varying with speed were modeled using (23) and (24),
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FIGURE 7. Speed tracking error curves.

respectively.
345.19 0<v <40
Fr(v) = 714.0427 — 6.8018v
(—0.1069v2 + 0.0012v3) 40 < v =80
(23)
3422 0<v=<49
Fyv) = § (25612853 — 87.9215
(+1.1091v2 - 0.0049v3) 9 <v=80
(24)

where Fr(v) and Fj,(v) represent the train’s traction force and
braking force, respectively (in units of kN, where v denotes
the train’s running speed in km/h).

For comparison, we considered three other control meth-
ods: the PID controller, F-PID controller [8], [9], and NN-PID
controller [12]. The F-PID controller uses fuzzy logic and
rules to optimize the PID parameters in real time. The
NN-PID controller is an adaptive controller that combines
neural networks with the PID algorithm for train operation
control. In the NN-PID controller, PID parameters are
controlled by a neural network, and the squared error between
the reference speed and the tracking speed is used as a loss
function for supervised training.

During the experiments, we assigned a weight of w; =
0.2 to each reward component, and the constant C in Rgafety
was defined as 100. Additionally, the upper limits for the
PID parameters were set as k;,lp = 5, k;p = 1.5, and
kiLl P = 1.5. The initial PID parameters were specified as
kp = 3.4, ki = 0.3, and k; = 0.2 with a sampling interval of
0.2 seconds.

B. MAIN EXPERIMENTS

In this section, we present the experiments conducted to
evaluate the performance and effectiveness of the pro-
posed approach. These experiments compare the proposed
approach, named the DDPG-PID controller, with other
control methods in subway train operation, namely the
PID controller, F-PID controller, and NN-PID controller,
Fig. 7 and 8 show the speed tracking error and position
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FIGURE 8. Position tracking error curves.
TABLE 1. Statistics of the tracking performance.
Speed tracking (m/s) Position tracking (m) Other indicator
Total error  Max. error _ Total error _ Max. error _ Parking error _ Energy (kWh) _ Jerk (m/s%)
PID 24.29 0.31 48.96 0.97 0.17 17.55 0.93
F-PID 6.95 0.28 17.49 0.56 0.02 17.40 0.49
NN-PID 6.32 0.27 16.78 0.47 0.00 17.16 0.65
DDPG-PID 351 0.17 10.32 0.34 0.00 17.04 0.39

tracking error, respectively. Table 1 provides additional
statistics of the tracking performance.

From Fig. 7, it can be observed that in terms of speed
tracking around 18s (although all methods have speeds below
the reference speed), the DDPG-PID controller produced
a smaller error compared to the other methods. At around
23s, while all methods exhibited overshoot, the DDPG-PID
controller demonstrated the least overshoot. It was also
evident that inaccurate speed tracking often occurs during
acceleration and deceleration periods, while the tracking
performance was found to be excellent during stable oper-
ation. Fig.8 reveals that the pattern of position tracking
errors was similar to that of speed tracking errors. At around
20s, all methods exhibited varying degrees of position
tracking errors. However, the DDPG-PID controller proposed
in this paper consistently maintains optimal qualitative
performance, with errors consistently below 0.4m.

By combining the statistical data in Table 1, it is evident
that the DDPG-PID controller outperforms other control
methods in terms of tracking accuracy. Compared to the PID,
F-PID, and NN-PID controllers, the DDPG-PID controller
significantly reduced both the total error and maximum
error in speed tracking. Specifically, when compared to the
state-of-the-art NN-PID, the DDPG-PID reduces the total
and maximum speed tracking error by 44.5% and 37%,
respectively, and the total and maximum distance tracking
error by 38.5% and 27.7%, respectively. Furthermore, from
Table 1, it can be noted that, except for PID, all other methods
almost perfectly achieved precise parking. The jerk indicator,
which is calculated as the maximum acceleration rate over the
time span of 2s during the entire tracking process, reflected
that the DDPG-PID controller can provide superior passenger
comfort compared to other methods.

The above experimental results
DDPG-PID controller outperforms

indicate that the
other comparative
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TABLE 2. Resistance coefficients of the different scenarios.

Scenario D1 Do D3
1 Abase bpase Chase
2 1.5Xapase  1.5Xbpase  1.5XCpase
3 0.5Xapase  0.5Xbpase  0.5XCpase

methods. The potential reasons leading to this phenomenon
could be attributed to the fact that the PID controller relies
on fixed control parameters that are manually tuned for
specific systems, thus lacking adaptability and learning
capabilities, thereby leading to subpar tracking performance.
The F-PID controller introduces some degree of adaptability
by employing fuzzy rules to adjust PID parameters based on
predefined conditions. Although it presents a certain degree
of adaptability compared to the conventional PID controller,
it still relies on rule-based methods, thus potentially failing to
fully capture the complex dynamics of subway train systems.
The NN-PID controller combines neural networks with
the PID algorithm to adjust control parameters. However,
it relies on supervised training, thereby using the squared
error between reference speed and tracking speed as the loss
function. This approach may not effectively balance multiple
control objectives, thus leading to suboptimal performance.

In contrast, the DDPG-PID controller boasts an adaptive
nature that is achieved through the fusion of reinforcement
learning and the PID control mechanism. This innovative
approach enables the controller to learn from previous
experiences, and it helps it to optimize the control strategy via
the signals received from the subway train, thus facilitating
precise adjustments to the traction/braking force distribu-
tion. Furthermore, this controller operates independently of
predefined rules or training datasets, thereby allowing it to
adeptly capture the complex dynamics of train operations and
deliver a significant enhancement to the adaptability of the
underlying PID control mechanism.

C. EXPERIMENTS ON DIFFERENT RESISTANCE
PARAMETERS

In this section, we investigate the performance of the
DDPG-PID controller under different resistance conditions.
Resistance is a critical factor that affects subway train opera-
tion and control. By exploring the controller’s performance
under different resistance scenarios without retraining the
model, we can assess its adaptability under varying resistance
conditions.

To simulate different resistance conditions, we adjusted
the coefficients (D1, D, and D3) in the Davis equation.
The baseline resistance parameters (Scenario 1) were set
as D1 = apase = 0.6841, Dy = bpyse = 0.0229,
and D3 = cpyee = 0.000345. Two additional resistance
scenarios, denoted as Scenario 2 and Scenario 3, were created
based on the baseline parameters. The adjusted resistance
coefficients are shown in Table 2. The speed tracking curves
under different resistance scenarios are shown in Fig. 9. The
statistical data are presented in Table 3.
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FIGURE 9. Speed tracking curves under different resistance scenarios.

TABLE 3. Statistics of the different resistance scenarios.

Speed track (m/s) Position track (m) Other indicator
Total error _ Max. error _Total error _ Max. error _ Parking error _ Energy (kWh) _ Jerk (m/s®)
Scenario [ 351 0.17 10.32 0.34 0.00 17.04 0.39
Scenario 2 9.48 0.32 25.80 0.94 0.00 19.07 0.40
Scenario 3 6.57 0.25 1341 0.65 0.01 14.98 0.39

In Scenario 1, representing the baseline resistance param-
eters, the DDPG-PID controller achieves excellent speed and
position tracking accuracy, as indicated by the low total and
maximum tracking errors. This is because the model was
trained using Scenario 1’s parameters, and was then tested
in Scenarios 1, 2, and 3.

In Scenarios 2 and 3, where resistance parameters are
respectively increased by 50% and decreased by 50%, the
DDPG-PID controller exhibited slightly higher speed and
position tracking errors compared to Scenario 1. This is
because the model was not trained under these resistance
parameters. Despite the higher tracking errors, the controller
achieved precise parking in almost all cases. From the above
table, it can be observed that Scenario 2 saw the highest
energy consumption, which can be attributed to the increased
resistance. Thus, it required the controller to exert more effort
in maintaining the desired speed and position. Regarding the
jerk indicator, there was little difference among the scenarios,
thus indicating that all three scenarios ensured passenger
comfort.

The above experimental results demonstrated that the
DDPG-PID controller dynamically adjusts the control actions
in the face of different resistance conditions, and this
is performed without the need for retraining the model,
thus significantly reducing tuning costs. This reflects the
DDPG-PID controller’s good adaptability in subway train
operation control, thereby further establishing its potential for
practical applications in subway train control.

D. EXPERIMENTS ON DIFFERENT REFERENCE SPEEDS

In this section, we investigate the performance of the
DDPG-PID controller under different reference speed scenar-
ios. By examining the control performance under different
reference speeds, we can assess the controller’s ability to
handle varying operational requirements and can accurately
track the desired speed profile.
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TABLE 4. Statistics of the different reference speed scenarios.

Speed track (m/s) Position track (m) Other indicator
Average crror__Max. error__ Average crror__Max. error__Parking error__ Energy (kW) _Jerk (m/s°)

Scenario 1 0.01 0.17 0.02 034 0.00 17.04 0.39
Scenario 4 0.05 0.60 034 292 0.07 19.36 0.50
Scenario 5 0.01 0.05 0.00 0.01 0.02 15.22 0.44
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FIGURE 10. Speed tracking curves under different reference speed
scenarios.

To evaluate the controller’s performance, we constructed
two additional reference speed profiles, reference-fast (Sce-
nario 4) and reference-slow (Scenario 5). These profiles
were based on the original reference speed profile (Sce-
nario 1) used in previous experiments. These new speed
profiles involved increasing or decreasing the running time,
respectively. Fig. 10 displays the tracking curve of different
scenarios. The statistics are summarized in Table 4. As shown
in Fig. 10, we plotted the speed position curves due to the
different total times for the different reference speed profiles.
Similarly, as shown in Table 4, we replaced the total error
with the average error.

In Scenario 4, where the reference speed increases
compared to Scenario 1, the DDPG-PID controller exhibits
slightly higher tracking errors. The increased speed intro-
duced a more challenging control task, thus resulting in larger
deviations in speed and position tracking. Correspondingly,
the energy consumption increased. Compared to other
scenarios, although Scenario 4 exhibited a relatively high
error, it remained within an acceptable range. In Scenario
5, which had a decreased reference speed, the DDPG-PID
controller demonstrated excellent accuracy in speed and posi-
tion tracking. The reduced speed allowed for the controller
to make precise adjustments, thus leading to significantly
reduced tracking errors compared to other scenarios.

The experimental results demonstrate that the DDPG-PID
controller can generate control parameters without retraining
the model under different reference speed profiles. This
allows for accurate speed tracking and reduces the resource
waste that is caused by retraining the model or by adjusting
the parameters when changing the reference speed profile due
to the re-formulation of travel plans. These results highlight
the adaptability of the DDPG-PID controller in accurately
tracking the desired speed profile, as well as its superior
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performance, minimal deviation, and efficient control, which
all contribute to the optimization of subway train operation.

V. CONCLUSION
In this paper, an adaptive control approach for optimizing
subway train operation is proposed. The proposed approach
utilizes a hierarchical structure consisting of an upper
DDPG controller and a lower PID controller, which work
together to improve the efficiency and performance of
train operations. By conducting comparative experiments
with other control methods, the superiority of the proposed
approach is demonstrated. Moreover, the adaptability of the
proposed approach is established through the manipulation of
varying resistance parameters and desired speed profiles.
However, it is worth noting that our proposed approach
relies on a reference speed profile, which, to some extent,
limits the flexibility of train operation. In future work,
we intend to focus on developing techniques for achieving
the online control of trains without the need for predefined
speed profiles. Furthermore, another area of future research
is the coordination of multiple trains during operation.
While our approach has demonstrated promising results
in optimizing individual train operation, exploring other
methods to coordinate the movements and interactions of
multiple trains will be a crucial area of interest.
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