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ABSTRACT Localization of moving military vehicles plays a vital role for border security and safeguarding
high-security facilities. Commonly applied range-based localization techniques such as time of arrival, time
difference of arrival, angle of arrival, and received signal strength rely on known transmitters. However,
when seismic sensor networks are used for localization of moving targets, where moving targets can be
treated as unknown transmitters. In this work, we consider a scenario where only receivers are deployed to
perceive seismic signals transmitted by the moving military vehicles with unknown locations. Consequently,
conventional closed-form equations for distance-based trilateration are not applicable. To address this
challenge, we present a novel approach for accurate localization. Our method involves clustering closely
deployed sensor nodes to effectively fuse their information to estimate the positions of the moving military
vehicles. We leverage multiple-input convolutional neural networks, utilizing one input to represent the
short-time discrete Fourier transform of signals from each node, and another input to encode the relative
locations of sensors within clusters. Through extensive experimentation, we demonstrate that our proposed
method significantly reduces localization errors when compared to existing distributed regression methods.

INDEX TERMS Convolutional neural networks, long short-term memory, military vehicles, seismic waves,
vehicle detection, vehicle location estimation, wireless sensor networks.

I. INTRODUCTION
Detection, classification, and localization of moving ground
vehicles in battlefield or high-security facilities play a crucial
role in remote sensing tasks [1], [2]. While multimedia
surveillance devices, such as various types of cameras, have
been commonly used for these purposes [3], [4], there are now
more cost-effective alternatives available, such as acoustic,
seismic, and magnetic sensors [5]. These sensors offer
significant improvements in signal-to-noise ratio, accuracy,
and cost, making detection, classification, and localization
in wireless sensor networks utilizing these technologies have
been increasingly popular in recent times.

Seismic sensor networks are common in usage for early
earthquake warning [6], railway condition monitoring [7],
vehicle speed estimation [8]. Tracked and trackless mov-
ing ground vehicle discrimination in seismic sensor net-
works [9] is one of the most popular and improving studies.
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The third Sensor Information Technology (SensIT) Sit-
uational Experiment of the Defense Advanced Research
Projects Agency (DARPA) [9] generated one of the most
important datasets called SensIT situational EXperiment
(SITEX02) about military vehicles in seismic and acoustic
distributed sensor networks. SITEX02 dataset contains
seismic and acoustic signals from two types of armored
vehicles, which are fully tracked assault amphibious vehicle
(AAV) and fully wheeled dragon wagon (DW). The Defense
Advanced Research Projects Agency (DARPA) program
SensIT is based on the concept of detecting and identifying
targets at sensor field to support remote situation awareness
capabilities. This dataset is very popular in the literature for
classification and detection; but it also contains the ground
truth trajectory data recorded via GPS (Global Positioning
System) transmitters. Therefore, it is also a very good dataset
to benchmark localization algorithms.

Vehicle detection is usually the first step of location
estimation and one of the most popular methods is Constant
False Alarm Rate (CFAR) algorithm [10]. Duarte and Hu
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used k-Nearest Neighbors (kNN) [9] for event detection in
military environment. Kalra et al. investigated performance
of Smooth Pseudo Wigner-Ville Distribution (SPWVD)
[11] on detection of moving military vehicles. Bin et al.
compared Seismic Fractal Features with short/long time
average ratio (STA/LTA) and fractal dimension-based support
vector machine (FD-SVM) [12] for ground moving target
detection.

After detection step, there are different approaches for
vehicle localization [13]. Most popular range-based ones
are Angle of Arrival (AOA), Direction of Arrival (DOA),
Time Difference of Arrival (TDOA) and Received Signal
Strength Index (RSSI). Boettcher et al. proposed acoustic
TDOA algorithm [14] for localization with SITEX00 dataset.
Li et al. suggested an energy-based localization algorithm
for the same dataset [15]. Rahman et al. used Optimized
Maximum Likelihood for localization via acoustic modality
in SITEX02 dataset [16]. Le Borgne et al. investigated
centroid scheme and distributed regression for localization
in SITEX02 dataset [17]. Apart from SITEX02 dataset,
Gouda et al. [18] used Inertial Measurement Unit (IMU)
with Convolutional Neural Networks (CNN) to estimate
robot locations in evenly distributed sensor networks. Also,
Yuan et al. [19] proposed Passive Radio Frequency (PRF)
distribution for 3-D indoor target localization.

It is well known that a sensor cluster with at least three
sensors is required to estimate target location accurately
in sensor network environment, also there are studies
that show clustering the nodes improves classification
performance too. Taheri et al. used time-varying autore-
gressive model (TVAR) with clustering nodes to improve
target identification performance [20]. Zwartjes et al.
is proposed QUantile Estimation after Supervised Training
(QUEST) [21] for adaptive learning to classify military
vehicles.

In this paper, we propose a novel approach to detect
and estimate target positions using closely deployed seis-
mic sensor nodes with reduced localization error. Instead
of conventional trilateration techniques, we leverage the
effectiveness of Convolutional Long-Short Term Memory
(ConvLSTM) [22] due to the limitations of seismic signal
energy compared to RSSI, as shown by Le Borgne et al. [17].
The use of seismic data from the SITEX02 dataset allows us
to train and validate our location estimation model. By clus-
tering and fusing closely deployed seismic sensor nodes
and utilizing narrow bandwidth features from the frequency
domain, we achieve low localization error, deviating from the
conventional approach of using all raw acoustic and seismic
data in the field, as demonstrated by Le Borgne et al. [17].
While terrain analysis could be valuable, the SITEX02
dataset, lacks terrain data. Therefore, the influence of terrain
on the reliability and effectiveness of seismic sensors is out
of scope for the study.

The rest of paper is organized as follows: in Section II, the
proposed method is given. Section III introduces the network
model. Performance criteria, test results and comparison with

previous works are given in Section IV. Lastly, the fifth
section gives a summary and concludes the work.

II. PROPOSED METHOD
Trilateration serves as a fundamental approach for range-based
localization and forms the basis of our method. Circular
trilateration, illustrated in Fig. 1, involves three sensors,
namely S1, S2, and S3, situated at distinct locations and r1,
r2 and r3 are the sensor-target distances. Various methods
such as AOA, TOA, TDOA, or RSSI are employed to estimate
the location of the target tar by processing the signals from
these sensor nodes [23].

FIGURE 1. Circular trilateration.

The relation between actual target position xtar =

[xtar, ytar]T and the sensor position xsi =
[
xsi , ysi

]T is given
in (1) (

xsi − xtar
)2

+
(
ysi − ytar

)2
= r2i (1)

Sensor locations xsi and ysi are known variables. If the
sensor-target distance ri is also known, the target’s position
can be determined using a linear equation system constructed
with (1) for i = 1, 2, 3 [13].
If ri is not known, another information that has linear

relationship with ri must be known; thus, the triliteration is
mostly used with RSSI of the mobile networks [24]. Using
this idea, Le Borgne et al. [17] used the energy of seismic
signals instead of RSSI and showed that trilateration with
seismic energy itself is not useful. Because there is no closed
form RSSI and distance functions for seismic signals and
signal pattern changes by velocity, acceleration, soil and
vehicle type. Therefore, they followed a different approach
and used all the sensor nodes in the SITEX02 by applying
distributed regression to raw data to achieve better results.

We replaced traditional methods with a ConvLSTM
layer [22] to leverage vehicle position changes over time
and their impact on seismic frequency domain features.
This approach integrates Convolutional and LSTM layers
into a unified framework, extending the feature space
into spatio-temporal dimensions. This integration improves
upon separate Convolutional and LSTM models, enhancing
the capabilities of data-driven methods. The model takes
frequency domain features of raw seismic signal and seismic
sensor locations as separate inputs, producing target locations
relative to the center of clustered sensor nodes as the output.
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The dataset SITEX02 has a good node deployment scheme
for target localization. Therefore, we will use it to explain
how to cluster and extract features to localize targets using
only three sensor nodes deployed in the field. We will first
explain the dataset and then discuss the details of the proposed
localization algorithm.

A. DATASET
The SITEX02 dataset [9] contains three different scenarios
for vehicle route. GPS recordings for these events are
available for validating the location estimations. Fig. 2 shows
node deployment scheme for SITEX02 dataset. There are
23 nodes having location information. There are 9 trials for
AAV, and there are 11 trials for DW. Nodes 6, 60 and 61 have
defective data and missing detection information [21]. Due
to budget constraints, we relied solely on the SITEX02
dataset for our study, preventing us from exploring practical
deployment challenges in seismic sensor networks.

FIGURE 2. Node deployment scheme for SITEX02 dataset.

Each node has acoustic, seismic and passive infrared
modalities. Data had been collected with sampling rate
fs = 4960 Hz for time blocks of Tb = 0.75 s. Each time
block has N = Tbfs = 3720 samples from each sensor
modality.

B. FEATURES
1) FREQUENCY DOMAIN
Let u[n] be the seismic signal with a duration of Tb seconds of
an event. We calculate its N -point discrete Fourier transform
(DFT) U [k] using equation (2).

U [k] =

N−1∑
n=0

u[n]e−j
2πk
N n (2)

Tensor of frequency domain features has three dimensions:
First dimension is time index m, second one is sensor
number i and third one is frequency index k , where
0 ≤ K1 ≤ k ≤ K2 < N . m is sequential time block
index for giving temporal information about occurring event
to CNN, where 0 ≤ m < M . We can represent them in
three-dimensional tensor Um,i[k].

FIGURE 3. Tensor for frequency domain input.

Fig. 3 shows an example tensor structure for three sensor
nodes, two time blocks, and frequency domain features with
indices between 0 and 113. The reason for limiting the
frequency index is that most of the energy of the seismic
signal is between 0 and 150 Hz [25].

2) SENSOR LOCATION
We cluster sensor nodes suitable for triangulation. During this
phase, it is also important to form clusters at far regions to
represent different parts of the sensor deployment scheme.
We then calculate the normalized locations according to the
mean location of all sensors. Triangulated nodes can be seen
in Fig. 4. The four clusters contain the sensor nodes S1 =

{s5, s3, s4}, S2 = {s47, s46, s48}, S3 = {s58, s53, s52} and S4 =

{s59, s55, s41} and S = {Sj|j = 0, 1, 2, 3}.

FIGURE 4. Selected triangulated node clusters based on target courses.

We use the relative locations of the sensors instead of using
them directly to make it insensitive to geographic position of
the site. We calculate the relative locations by subtracting the
mean location of sensor cluster set as in equation (3).

x̃si =

[
x̃si
ỹsi

]
=

[
xsi
ysi

]
− µ(S)

x (3)

where µ
(S)
x is the center of the cluster set S and can be

calculated using (4).

µ(S)
x =

1∑
Sj∈S

∣∣Sj∣∣
∑
Sj∈S

∑
si∈Sj

[
xsi
ysi

]
(4)

Tensor of sensor location features has two dimensions:
First dimension is sensor number i and second one axis
index l, where l = 0 corresponds to the x-axis, and
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l = 1 to the y-axis.We can represent them in two-dimensional
tensor Vi,l .
Fig. 5 shows an example tensor structure for two coor-

dinates and three sensor nodes constructed from S1 =

{s5, s3, s4} in a cluster.

FIGURE 5. Tensor for sensor location input.

C. OUTPUT FORMAT
Training and inference of our algorithm depends on detection
of target in sensor cluster Sj, which we call activated. And we
use x̃si ∈ Sj as sensor location input Vi,l beside feature input
Um,i[k] for both training and inference steps.

We make ground truth target location xtar = [xtar, ytar]T

zero mean in training phase for generalization among sensor
clusters. Target location x̃tar relative to the center of activated
sensor cluster Sj can be calculated using (5).

x̃tar =

[
x̃tar
ỹtar

]
=

[
xtar
ytar

]
− µ

(Sj)
x (5)

whereµ
(Sj)
x is the center of the cluster Sj and can be calculated

using (6).

µ
(Sj)
x =

1∣∣Sj∣∣
∑
si∈Sj

[
xsi
ysi

]
(6)

During inference or test phase, output of algorithm x̃est =[
x̃est, ỹest

]T can be denormalized using (7) to calculate
estimated location in activated sensor cluster Sj.

xest =

[
xest
yest

]
=

[
x̃est
ỹest

]
+ µ

(Sj)
x (7)

III. NETWORK ARCHITECTURE
Our aim is to estimate the location of a target using
frequency domain features and sensor locations. To achieve
this, we leverage CNNs, enhancing their capabilities with
ConvLSTM [22]. ConvLSTM combines convolutional oper-
ations with LSTM cells, enabling efficient processing of
spatio-temporal data. Unlike traditional LSTM, which only
considers temporal dependencies, ConvLSTM simultane-
ously captures spatial and temporal dependencies. This
effectiveness makes it ideal for video analysis, action
recognition, and other spatio-temporal data applications,
where understanding both spatial and temporal dynamics is
crucial for accurate predictions and feature learning. In this
work, we use ConvLSTM to capture time-frequency features
of seismic signatures of moving vehicles in a sensor network
setting.

Fig. 6 illustrates our proposed mechanism, while Fig. 7
depicts the base model of our proposed method for detec-
tion and localization. SeismicFourier block uses frequency

FIGURE 6. Detection-localization model flow.

FIGURE 7. Overall network model for detection and localization.

domain features. We started with M = 3 temporal length
ConvLSTM with (3, 3) shape 32 filters and continued with
(1, 3) shape 64 filters similar to Darknet-19 [26]. We used
(1, 3) shape average pooling layers after each convolution
layer. This configuration was selected because it is the
smallest yet highest performance we achieved by our trials.

Activation functions except ConvLSTM are Leaky Rec-
tified Linear Units (LReLU) [27] given in (8), where z is a
variable from network. We set α = 0.001.

fα (z) =

{
αz, z < 0
z, z ≥ 0,

f′α (z) =

{
α, z < 0
1, z ≥ 0

(8)

The base model defined so far is used for target detection
and localization models, except the output layers. Detection
model has cross-entropy in (9) as loss function, which is
suitable for Softmax activation [28] in (10). We use loss
function as LCE

(
fSM(z), z̃

)
for the output layer.

LCE
(
z, z̃

)
= −z̃T log(z) (9)

fSM(z) =
ez∑
z∈z e

z (10)

In localization model, the choice of the loss function is
crucial. While classification-based options are limited and
not applicable, various regression loss functions are available,
such as Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), Mean Squared
Logarithmic Error (MSLE), Cosine Similarity, Log-cosh, and
Huber [29]. Among these, we select the Huber loss function
due to its adaptability against outliers, setting it apart from
the others. The Huber loss Lδ is defined in (11), where z is
a variable from network, z̃ is desired value and δ serves as a
parameter to handle outliers. Since we use linear activation
for output layer, our loss for the output layer is Lδ

(
z, z̃

)
.

Lδ

(
z, z̃

)
=

∑
z∈z
z̃∈z̃


1
2

(z− z̃)2 , |z− z̃| ≤ δ

δ

(
|z− z̃| −

1
2
δ

)
, |z− z̃| > δ

(11)
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IV. RESULTS
We used the seismic data of SITEX02 dataset, which consists
of signals from AAV and DW vehicle types. AAV4, DW4,
AAV5, DW5, AAV6 and DW6 trials are used for testing and
rest for training. This means splitting the dataset which has
11700 samples to 70% training 30% testing portions.

We employed the Keras deep learning library [30].
The model training settings were configured as follows:
We utilized the Adam optimizer [31] with a cyclical learning
rate schedule [32], ranging from 1 × 10−5 to 1 × 10−2 with
no decay and a step size of 100 for the detection model. For
the localization model, we employed the Stochastic Gradient
Descent optimizer [33] with a cyclical learning rate schedule
ranging from 1 × 10−4 to 1 × 10−1 with a decay function
of 0.9lr , where lr represents the learning rate, applied
after each cycle, along with a 50-step size. The detection
model underwent 50 epochs, while the localization model
underwent 200 epochs. The batch size for the detectionmodel
was set at 1000 training samples, and for the localization
model, it was 20 training samples after the detection phase.
We shuffled data, trained network ten times and gave the
average results.

We investigated the effects of detection method and sensor
configuration on performance in Table 1. Detection type
Original is detected target information from [9] which is
based on Constant False Alarm Rate (CFAR). Detection type
Distance Based is the model we trained to estimate xtar.
As shown in Fig. 6, our model ignores all measurements
that have dtar > ddet in (12). We inspired from the work of
Duarte et al [34] which is used ddet = 50m for distance-based
decision fusion. We also investigated the effect of the number
of sensor nodes in clusters. The results show that having
more sensor nodes in clusters reduces localization error.
Another conclusion we can draw from Table 1 is that during
the training, ignoring the sensors far from the target has a
significant impact on decreasing estimation error.

dtar = d2
(
xtar, µ

(Sj)
x

)
(12)

TABLE 1. Results in different sensor configurations.

We investigated whether to impose a maximum distance
between target and sensor nodes ddet during training to see
its impact on performance in Table 2. We chose F1 score,
given in (13) as detection performance indicator because data
is imbalanced. Equation (13) is built on true positive (TP),
false positive (FP) and false negative (FN) counts. The results

TABLE 2. Results in different detection distances.

show that 50 m is one of the best values for ddet and verify the
work of Duarte et.al. [34].

F1det =
2TP

2TP + FP + FN
(13)

Temporal length, denoted asM , is an important parameter
that requires consideration. In Fig. 8, we present results for
different temporal lengths. Based on this analysis, we found
thatM = 3 yields the optimum performance, representing the
sweet spot. The average inter-sensor distances are 29.95 m
for S1, 43.68 m for S2, 27.36 m for S3, and 44.52 m for
S4 (as shown in Fig. 4). Additionally, the average velocities
of AAV and DW for each trial can be found in Table 3.
Considering an average velocity of 7.09 m/Tb, selecting M
values greater than 5 would result in the vehicle traveling
more than 30 m, which exceeds the minimum inter-sensor
distances. As a consequence, Fig. 8 illustrates a declining
performance trend in such scenarios. If the speed of target
increases, the parameterM should be reduced accordingly to
maintain the localization performance.

FIGURE 8. LSTM temporal length performance for ddet = 50 m.

TABLE 3. Vehicle velocity estimations from GPS data.

The proposed method achieved the best performance with
a localization error of 9.70 m and a standard deviation of
5.91 m. This represents a significant improvement compared
to the centroid scheme and distributed regression methods
proposed by Le Borgne et al. [17] (see Table 4). In addition,
the Symbolic Dynamic Filtering algorithm proposed by
Sindhu et al. [35] is intended for tracking, but it tracks a
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TABLE 4. Methods in literature from localization aspect.

particular vehicle that has passed the given sensor node,
not the position. Specifically, the average tracking rate is
reported as 82.4%,making it challenging to makemeaningful
comparisons with our algorithm. Another research is using
Classification and Localization using Estimated Dynamics
and Multimodal data (CLEDM) by Lee et al. [36], but
they used another dataset from US Army Research Labora-
tory [37], which is not publicly available.

FIGURE 9. AAV4 target location estimation.

FIGURE 10. DW4 target location estimation.

We visualized the estimated paths for two different
vehicles, AAV, and DW, along three distinct paths in
Fig. 9, 10, 11, 12, 13 and 14. The figures indicate that AAV5,
DW5 and DW6 exhibit bias in position estimations, but their
trajectories are accurately represented. These observations
are further supported by the statistical results presented in
Table 5. In general, themodel performs better for AAV, except
for a faulty result for DW5. However, it is worth noting
that the trajectory for DW5 aligns correctly with the path
in Fig. 12.

TABLE 5. Trial statistics.

FIGURE 11. AAV5 target location estimation.

FIGURE 12. DW5 target location estimation.

The localization errors presented assume that GPS mea-
surements of the dataset are accurate. However, for this
dataset, the accuracy of GPS measurements is around
10 meters [38] and some sensor nodes have performance
issues [21]. In addition to these: AAV vehicles have 3.28 m
width and 8.15 m length [39], and DW vehicles have 3.32 m
width and 7.72m length [40]. AAV andDWdimensions show
that vibration source has an average of 3.3 m width and 7.5 m
length. Considering these drawbacks, the performance of the
proposed algorithm is good for this dataset.

Another aspect of performance evaluation pertains to
model inferencing. Both the detection and regression models
employ a 32-bit floating-point data type, encompassing
48 mega Multiply-Accumulate operations (MMACs), with
a size of 700 kB, and a memory consumption of 3.5 MB.
These results in a runtime of 4.2 ms on a single-core AMD
Ryzen 7 7745HX. Consequently, model inferencing requires
8.4 ms for each TbM = 2.25 s block, making our model
suitable for real-time applications. The average vehicle speed
is 9.45 m/s, equivalent to 34 km/h, and the model operates
every 2.25 seconds, allowing us to capture movements with
a maximum location change of 19 m within the 50 m capture
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FIGURE 13. AAV6 target location estimation.

FIGURE 14. DW6 target location estimation.

range. Furthermore, feature extraction involves N log2 N =

49152 Multiply-Accumulate operations (MACs), taking a
mere 52 µs on the AMD Ryzen 7 7745HX, which is
negligible when compared to the model inferencing time.
In contrast to the resource-intensive You Only Look Once
version 3 (YOLOv3) [41], a well-knownmodel deployable on
mobile devices [42], our proposed approach is significantly
less complex, requiring only about 33,000 MMACs. As a
result, our approach is well-suited for running even on mobile
devices.

V. CONCLUSION
We propose an alternative technique to trilateration and
employ sensor locations along with spatio-temporal seismic
frequency features as inputs to ConvLSTM for detecting and
estimating military vehicle locations in a distributed seismic
sensor network setting. Our investigations reveal that the
number of sensor nodes in clusters significantly impacts
performance, as does the detection distance. Compared to
the regression method with the original detection scheme,
our algorithm achieves an increase of 30% in localization
accuracy. Moreover, using a 50 m detection range leads to
more than 50% decrease in both µloc and σloc.

Furthermore, our findings demonstrate that utilizing only
the spatio-temporal features from seismic sensors clustered
into three independent groups reduces the localization error
by more than 50%, in contrast to the approach involving all
the acoustic and seismic sensors with raw temporal data in
the network.
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