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ABSTRACT According to ISO 26262 standard, functional validation of the developed Automotive Software
Systems (ASSs) is crucial to ensure the safety and reliability aspects. Hardware-in-the-loop (HIL) has
been introduced as a reliable, safe and flexible test platform to enable the validation process in real-time.
However, the traditional failure analysis process of HIL tests is time-consuming, extremely difficult and
requires considerable effort. Therefore, an intelligent solution that can overcome the above challenges is
required. Following a data-driven approach, the development of deep learning methods for fault detection
and classification has gradually become a hot topic. However, despite the fruitful results, most of the previous
studies were conducted for single faults without considering the simultaneous occurrence of multiple faults
and ignoring the noisy conditions. In this study, based on multi-label ensemble long short term memory
(LSTM) and random forest (RF) techniques, a novel method for simultaneous fault classification under
noisy conditions is developed. To improve the robustness of the model against noise, a GRU-based denoising
autoencoder (DAE) was implemented. Furthermore, to overcome the challenge of imbalanced data, a random
undersampling algorithm was employed. By doing so, the single and simultaneous sensor faults occurring
during HIL testing of ASSs can be efficiently and automatically detected and identified. To evaluate
the capabilities and robustness of the proposed method, a high-fidelity gasoline engine with a dynamic
vehicle system and driving environment was used as a case study. The analysis results demonstrate that the
proposed model can achieve a high degree of accuracy under noise with an average detection accuracy of
99.43%. Moreover, compared to the individual methods, the proposed ensemble learning architecture with
DAE provides more promising fault identification performance with improved accuracy and robustness.
Specifically, the test results show that the proposed model is superior to other state-of-the-art models in
identifying simultaneous faults with 91.2% F1-Score.

INDEX TERMS Automotive software systems, fault detection and diagnosis, deep learning, denoising
autoencoder, LSTM, random forest, real-time simulation, fault injection, hardware-in-the-loop (HIL).

I. INTRODUCTION

IN the automotive industry, as a means of reducing
the risk of vehicle accidents, considerable efforts have

been devoted to the development of advanced active safety
systems. Besides, Advanced Driver Assistance Systems
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(ADAS) have played a vital role not only in supporting
driving comfort but also in improving road safety, especially
in emergencies [1]. On the other hand, Verification and
Validation (V&V) of such systems with a high degree of
complexity and functional dependencies is a challenge [2].

As part of quality assurance, and to meet the development
requirements of the functional safety standard ISO 26262,
comprehensive testing activities should be performed to
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ensure safety and reliability characteristics [3]. To this end,
according to the V-model development approach, several
test phases are defined, which are known as X-in-the-loop
[4]. Some major ‘‘in-the-loop’’ methods of the V-Model
are Model-in-the-Loop (MIL), Software-in-the-Loop (SIL),
Processor-in-the-Loop (PIL), Hardware-in-the-Loop (HIL),
Vehicle-in-the-Loop (VIL) and real test drives [5], [6].
The deviation in the components’ behavior from the

normal state, which leads to the failure of an element,
is known as a fault [7]. In automotive systems, due to
the environmental and working conditions, the hardware
components, i.e., sensors and actuators, are invariably
prone to faults. Besides, ECUs, functional specifications,
gateways, networks, vehicle subsystems, power supply and
data acquisition systems are also potential points of faults in
a vehicle network [8]. In the literature, the types of sequential
data-related faults are termed data-centric and system-centric
faults [9]. Gain, offset/bias, noise, hard-over, spike, stuck-at,
packet loss, delay and drift faults are some examples of sensor
faults [10]. It should be noted that the fault occurrence can be
either permanent or transient, single or simultaneous faults
over a specific period.

To detect unexpected faults at the system level, digital
test drives with HIL simulation are introduced to serve as a
validation platform for the ECU performance. In this manner,
the limitations of real test drives on public roads in terms of
cost, time and risk can be overcome [11], [12]. The sequential
data recorded during the test execution represents the behav-
ior of the system under test. Conventionally, to detect the
unnoticed and minor faults that lead to undesired behaviors,
manual inspections of the recordings are performed based
on expert knowledge. Due to the heterogeneous compo-
nents in the complex system architecture of the vehicles,
however, vast amounts of multivariate time series data are
recorded. Consequently, conventional failure analysis of test
records becomes time-consuming, extremely difficult, and
requires considerable efforts [13], [14]. Therefore, an intel-
ligent solution that can overcome the above problems is
required.

Current state-of-the-art discriminates between four differ-
ent approaches for performing Fault Detection and Diag-
nosis (FDD) tasks on sequential data, namely model-based
methods [15], signal-based methods [16], knowledge-based
methods [17], and data-driven methods [18]. Although the
model-based approach is efficient and robust under dynamic
conditions, an accurate mathematical model is required,
which adds more complications as the complexity of the
system increases [19]. Besides the required effort, the demand
for expert knowledge with extensive human intervention is a
barrier to the development of knowledge-based methods [20].
Similarly, a deep understanding of the fault-free symptoms of
the system is required for the development of FDD based on
signal analysis methods [21].

In recent years, thanks to the introduction of advanced
smart sensors and data acquisition technologies, contributing

to the provision of large amounts of data, FDD-based
data-driven approach has been widely used in various fields.
The main steps to develop the target model are data acquisi-
tion, feature extraction, and feature learning. As a category
of data-driven approach, Machine Learning (ML) methods,
e.g., Support VectorMachine (SVM) and k-Nearest Neighbor
(KNN), have gained importance in recent years. However,
the difficulty of manually extracting representative features
of the faults is considered a drawback, especially in the
presence of a large amount of data. Therefore, Deep Learning
(DL)-based methods with automatic feature extraction have
been extensively explored and successfully used for various
applications. Moreover, the DL approach is capable of
automatically learning the extracted features and establishing
a nonlinear relationship between the fault symptoms and
the corresponding classes. Consequently, the development of
FDD model based on DL methods has gradually become
a hot topic. Based on neural network architecture, several
models have been proposed to perform FDD in the past
decade. Deep Belief Network (DBN), Restricted Boltzmann
Machine (RBM), Convolutional Neural Network (CNN),
Recurrent Neural Networks (RNNs) and Autoencoders (AE)
are commonly applied architectures [22], [23]. Notably,
FDD-based hybrid DLmethods have attractedmuch attention
from research teams due to their great successes compared to
stand-alone models [24]. Besides, several DL architectures
have been proposed for time series anomaly detection and
denoising the data [25], [26].

However, despite the fruitful results of the existing
researches, most of the studies have been conducted for a
single fault without considering the concurrent occurrence
of multiple faults [27], [28]. Besides, in real-world industrial
applications, non-typical dataset, i.e., imbalanced and noisy
data, is considered another complicating factor [29], [30].
To fill this gap in the literature, this study proposes a
novel method for simultaneous FDD, i.e., fault identification,
considering the aforementioned issues. In this study, the
applicability of the ensemble learning-based classifier for
FDD under imbalanced and noisy conditions was investi-
gated. The proposed model is able to automatically analyze
the test records from HIL, which improves the real-time
validation of ASSs during the V-cycle development process.
To the best of our knowledge, this is the first study to address
the problem of detecting and identifying the concurrent faults
that occur during the HIL test of ASSs considering the noisy
and imbalanced data. The contributions of this study can be
summarized as follows:

• A novel, effective, and robust ensemble learning-based
simultaneous Fault Detection and Identification (FDI)
method is proposed. Specifically, a multi-label ensemble
of LSTM and RF-based classifier is developed.

• To improve the performance and robustness of the
developed FDI model against different levels of noise,
a novel framework based onGRU-basedDAE developed
in the previous study [31] is adapted.
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• To overcome the challenge of FDI model development
in the presence of imbalanced datasets, the random
undersampling algorithm is applied. Consequently,
the classification accuracy of the minority classes is
improved.

• To capture a realistic system behaviour in the presence
of single and simultaneous sensor faults, real-time
Fault Injection (FI) based on HIL simulation and a
high-fidelity automotive system model is employed.

• The effectiveness of the proposed method was evaluated
using real-time automotive simulation data under vari-
ous noise levels, and the results were also compared to
stand-alone methods.

The rest of the article is structured as follows. Section II
provides an overview of the relevant literature. Section III
describes the main phases of the proposed method. The
dataset, implementation steps and the case study used are
presented in Section IV. The results of the experimental
evaluation are analyzed and discussed in Section V. Finally,
Section VI outlines the conclusion and the future work.

II. RELATED WORK
This section describes related work in the field of FDD,
focusing on the main contributions and drawbacks in the
automotive domain considering both single and concurrent
faults.

A. FAULT DETECTION AND DIAGNOSIS IN AUTOMOTIVE
DOMAIN
In the last decade, alongwith the advances in the development
of ASSs architectures, FDD strategies have attracted consid-
erable attention from researchers. Hence, various methods
for fault detection, isolation, identification and sensor state
prediction have been proposed in the automotive domain.

Focusing on internal combustion engines,
Jiménez et al. [32] proposed a scheme aimed at detecting
and isolating a faulty fuel injector. Using an FPGA, the
developed ANN-based FDD scheme has been validated in
real-time. The results exhibited a remarkable performance in
the classification tasks with an accuracy close to 100%. In the
same field and using a HIL platform for real-time simulation,
a machine learning-based system for fault detection and
fault-tolerant control was proposed in [33]. The conducted
comparative study of six multi-class ML models shows that
the Random Forest model outperforms the other models in
terms of fault identification in an air brake system with
an accuracy of 91.99%. FDD for Electric Vehicles (EVs)
based on DL techniques has been another hot topic in
the last year. For example, in [34], LSTM-based single
fault diagnosis was proposed for the induction motor of an
EV. Based on the simulation model of an EV system in
MATLAB/Simulink, the training dataset, including faults,
has been generated by injecting short-circuit and open-circuit
faults. The validation result of the proposed system using
an EV prototype demonstrates the superiority of LSTM
in terms of accuracy over other techniques. Meanwhile,

to address the problem of unknown fault classes and the
collection of representative training data, a data-driven fault
classification algorithm has been proposed in [35]. In the
mentioned work, a Weibull-calibrated OSVM classifier
combined with Bayesian filtering has been developed to
cover seven different single types of engine faults. As a
case study, a real internal combustion engine has been used
to demonstrate the classification performance of unknown
faults on sequential data. However, to generate the residual in
the proposed work, a high-precision mathematical model is
required, which in turn increases the cost and the complexity.
In the context of developing FDD for autonomous vehicles,
Biddle et al. have proved in [36] that the employment
of SVM from ML techniques can ensure high accuracy
in detection, isolation and identification with an efficient
computational burden for multiple faults in multi sensors.
To evaluate the proposed algorithm, the MATLAB/IPG
CarMaker co-simulation platform was used considering five
individual sensor faults, namely drift, hard-over, erratic,
spike and stuck fault. However, the real-time constraints
of the system behaviour in the presence of the faults
remained unaccounted for dataset generation. Furthermore,
the robustness of the developed model against sensor
noise was not analyzed, which opens the door for further
improvements.

The modification of conventional DL architecture shows
better fault detection performance in various fields [37]. For
example, to ensure the safety of a railway vehicle system,
a DL-based fault detection method was proposed in [38].
In the proposed work, the bidirectional LSTM-DAE network
was modified to overcome the challenge of the unavailability
of data sets under a faulty state, which is necessitated to
determine the added noise level. Although the performance
of the modified BiLSTM is superior over other models, i.e.,
autoregression model, LSTM and BiLSTM-DAE, the system
state under concurrent faults was not considered.

Despite of the rapid development of real-time testing
platforms, research on developing an intelligent system able
to detect, isolate and identify faults during the development
process is still in the early stages. For example, as an
improvement of the embedded system testing process,
Scharoba et al. [39] have proposed a proximity-based
anomaly detection system using ML techniques to automati-
cally evaluate the test runs and identify the faulty behaviour.
The method has been developed based on the historical test
records so that deviations from the normal behaviour of the
test object can be detected. In the aforementioned study,
a drive controller under development was used as a case study
to evaluate the proposed framework. Despite the obvious
superiority of the proposed anomaly detection method, the
identification of single and simultaneous faults has not been
considered in this work. Concerning the same area, the
problem of classifying sensor faults during the V-cycle devel-
opment process was researched by Abboush et al. [40]. They
proposed a novel DL architecture for identifying system-level
fault types using a combined CNN and LSTM network.
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The generation of a faulty dataset was achieved by injecting
the faults in real time using a HIL platform. To validate
the performance of the proposed model, a gasoline engine
with entire vehicle dynamic models has been employed. The
evaluation results exhibit high performance of the hybrid
DL techniques compared to the stand-alone methods with an
accuracy of 98.88% and 98.85%, respectively.

In line with the above observations from previous works,
the developed intelligent methods have covered various
systems in the automotive domain. However, despite the
proposed models’ high performance in terms of accuracy,
the diagnosis problem of the simultaneous faults occurrence
under noisy and imbalanced data conditions is not addressed.
Therefore, in our proposed work, we attempt to bridge this
gap in the literature by proposing a novel method capable
of detecting and classifying concurrent faults for real-time
testing of an ASS during the V-cycle development process.

B. DETECTION AND DIAGNOSIS OF CONCURRENT FAULTS
IN AUTOMOTIVE AND OTHER DOMAINS
The availability of the datasets containing the faulty
behaviour paved the way for using a data-driven approach
to address the issue of the simultaneous fault diagnosis. For
example in [41], Asgari et al. have proposed a hybrid FDD
framework focusing on the cooling systems in data centres
as a target application. In the proposed strategy, one-class
SVM and Nonlinear AutoRegressive Exogenous (NARX)
have been used for the detection phase, while two DL
techniques, i.e., 2D-CNN and LSTM, have been employed
for the diagnosis task. Seven different types of faults related
to pumps and fans along with their combinations have been
considered. Besides, the effect of adding noise to the training
dataset has been analysed with different standard deviations,
i.e., 0.1, 0.5, 2 and 3. Based on the F1-Score and accuracy
as evaluation metrics, the experiments show the robustness
and the ability of the proposed model, with 100% accuracy in
detection and diagnosis. However, the limitations of one-class
SVM in terms of runtime computation impose restrictions
on its application in real-time. In addition, the simulation
model of the target system has been used to simulate the
system behaviour under normal and faulty conditions without
considering the real-time constraints. Addressing the same
challenge, Li et al. [42] have shown in their proposed study
that multi-label classification based on DL techniques can
provide significant results for FDD of solid oxide fuel cell
(SOFC) systems. The significance of the work lies in the fact
that the simultaneous faults are not required, only faulty data
with individual faults. For feature extraction, PCA techniques
have been used. Furthermore, multi-class SVM techniques
have been employed for the classification of nine different
fault classes. However, despite the high performance of single
fault classification with F1-Score of 96.4%, the validation
results for concurrent faults are considered not satisfying
with F1-Score of 84.93%. Besides the high computational
time required for the classification, i.e., 26.1 seconds, the
dataset has been generated in a simulation environment

without accounting for real-time constraints. Therefore, the
applicability of the proposed model in real-time application
should be further investigated. In the automotive domain, one
of the first examples of addressing the diagnosis problem of
simultaneous-engine faults using a probabilistic committee
machine was presented in [43]. The proposed intelligent
FDD system exhibits good diagnostic performance with an
accuracy of 92% and 81.49% for single and simultaneous
faults, respectively. Considering a real 4-cylinder in-line
engine as a case study, three different signal patterns of
a real engine, including 15 types of faults, were used to
train and validate the model. In the same context, but
for a different application domain, fuzzy logic-based fault
detection and isolation of multiple and unknown faults for a
continuously-stirred tank heating system has been developed
in [44]. Besides, wavelet transform techniques have been
adopted to deal with the noisy data in the measurements.
By doing so, the robustness of the developed model against
noise during the diagnosis process of multiple faults has
been ensured with a high accuracy of 100%. However,
to develop such a system, expert knowledge with a deep
understanding of the domain and physical behaviour is
required, which is a challenge in complex software systems.
Similarly, considering the noisy seismic data, a residual deep
neural network coupled with the IIR Wiener filter denoising
method is proposed in [45]. The proposed method shows
high performance not only in denoising and reconstructing
the data, but also in detecting the abnormal signals in the
records. By doing so, less computational resources, effort and
time are required for the detection and denoising process.
However, other diagnosis tasks, i.e., fault identification and
localization, have not been covered. Finally, an architecture
for a health monitoring system considering multiple faults
and sensors in autonomous vehicles has been proposed
by Safavi et al. in [46]. To address the task of fault
detection, isolation and identification, DNNs with multiple
classes and 1D CNNs have been employed. Real sensor
measurements have been used to validate the performance
of the proposed methodology. In this study, four types
of sensor faults have been considered, namely drift, hard-
over, erratic and spike faults. Although the proposed system
presents a good performance with a detection accuracy of
99.84% and an identification accuracy between 73% and
100%, the robustness of the model with respect to the
noise has not been considered. Furthermore, a normal data
distribution with one standard deviation was statically used to
generate the faulty data. Table 1 outlines an overview of the
related works highlighting the key aspects of the proposed
work in comparison to other related works. Specifically,
the table presents the approach used in the related works,
the application domain, the dataset used for development, the
target faults to be identified and the evaluation of the work in
terms of performance and robustness.

To conclude, despite proposing novel FDD models with
remarkable achievements, detecting and identifying the
concurrent faults in the presence of imbalanced data and
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TABLE 1. Overview of the related work.

existing noise in the measurements has not been sufficiently
explored. Moreover, the coverage of the fault types and the
generation of the faulty data considering the real-time system
behaviour under faulty conditions should be accounted for.
The novelty of the proposed work is thus to fill the gap in
the literature by developing a robust DL-based single and
simultaneous FDI model that accounts for the noisy and
imbalanced data of HIL tests. Furthermore, a real-time FI
framework and a high-fidelity vehicle system were utilised
to collect representative datasets for developing the target
model.

III. METHODOLOGY
The proposed architecture aims at detecting and identifying
single and simultaneous faults in the sensors of ASSs
under noisy and imbalanced data conditions. The proposed
model is intended to be used during the development phase
of ASSs, i.e., real-time system validation using the HIL
platform. By doing so, the failure analysis process, during
the mentioned testing phase, can be improved. Consequently,
the FDI of sensor faults is achieved in an efficient manner,
reducing the time and effort during the analysis process.
The proposed FDI architecture consists of four main phases,
namely data acquisition, data preparation, data denoising and
feature learning, as shown in Figure 1.

A. DATA ACQUISITION
To ensure the reality of the captured system behaviour under
different conditions, a real-time HIL simulation platform

is employed. In this way, the interaction of the developed
Electronic Control Unit (ECU) with other system compo-
nents, e.g., other ECUs, real sensors and actuators, controlled
equipment and the in-vehicle network, is accurately captured
in real-time. Besides, many representative and relevant test
kilometers can be performed with low costs and high safety
compared to real test drives. Thanks to the logging system in
the HIL platform, the target system’s variables are recorded
as multivariate time series data during the virtual test drive.
In this study, the main elements of the HIL system are the HIL
simulator, the developed target ECU, real wheel and pedals,
CAN bus communication and the real-time FI framework.

As a result of system execution under non-faulty condi-
tions, i.e., desired/standard behaviour, healthy data samples
can be acquired. To this end, the sensor and actuator
signals accessed via CAN bus are recorded. Owing to
the HIL simulator with high-fidelity automotive simulation
models, high-quality datasets can be collected considering
the real-time constraints. Besides, employing the real-time FI
framework proposed in a previous work [47], representative
faulty and healthy data are generated in real-time. For
this purpose, the target system is executed under faulty
conditions, i.e., in the case of random sensor/actuator fault
occurrence. Thanks to the aforementioned framework, the
faults can be injected programmatically via the CAN bus
without changing the original system architecture. Thus,
back-box execution of both ECU and plant in real-time is
ensured. Noteworthy, as a precondition of FI process, three
attributes should be specified, namely FI time, fault types and
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FIGURE 1. Proposed ensemble learning-based simultaneous FDI methodology.

fault locations. Based on the system architecture components,
the potential location of the occurrence of the faults can be
identified, e.g., sensor, actuator, network or controller [8].
Whereas various sequential data-related malfunctions, e.g.,
gain, offset, hard-over, stuck-at, delay, noise, packet loss, drift
and spike fault can be injected as fault types [48]. The faults
can be injected either permanently or temporarily, and may
occur individually or simultaneously as multiple faults over
a period. Therefore, the timing and duration of FI play a
critical role in the generated representative faulty data. For
example, transient faults produce imbalanced data with a
different ratio between faulty to healthy samples. Notably,
faulty data with simultaneous faults are generated by injecting
two different faults simultaneously into different locations.
Various factors potentially cause the occurrence of faults
within or between the system components. Some examples
of direct causes of faults are dirty or damaged sensors, aging,
corrosion, vibration, electromagnetic interference, improper
calibration, and weak batteries [49]. Notably, other factors,
such as bumpy roads and driving uncertainties, can also cause
anomalies without necessarily producing faults.

B. DATA PREPARATION
Once the representative dataset is acquired, the data is
pre-processed in the data preparation phase. By mitigating

the irrelevant data and correcting the missing samples at
this stage, the training process is improved by reducing the
computational cost and avoiding overfitting [50]. Basically,
the collected data is pre-processed through various steps, i.e.,
variable selection, data cleaning, data labeling, scaling and
normalization, balancing and data division.

Since the entire vehicle system is simulated with a
high-fidelity simulation model, a large number of system
variables can be captured. Therefore, it is essential to select
the variables that play a critical role in determining the state of
the system, i.e., healthy or faulty state. In this study, various
system-level sensor signals were selected to serve as input
for the targeted FDI model. Engine speed, engine torque,
vehicle speed, throttle position, engine temperature, intake
manifold pressure and rail pressure are the main variables
of the FDI model. In this way, the model can be trained
using relevant healthy and faulty features. Following that,
the dataset is filtered and cleaned so that data quality is
improved eliminating any negative factors during the data
generation process. Specifically, the cleaning process aims at
removing any outliers and compensating the missing samples
in the dataset. Since the FDI model is developed based on
a supervised learning approach, data labeling takes place
before the training process. During this step, the classes
are assigned to the corresponding data for classification
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purposes. However, in the case of simultaneous faults, two
classes should be considered at the same time in the labeling
process. Therefore, in this study, a multi-class, multi-label
approach [51] has been considered so that the potential
fault combinations can be covered. However, to avoid the
challenge of manual labeling, a data dictionary process has
been developed to automatically identify all possible fault
combinations. By doing so, a unique numeric label with a
specific index can be created for each possible fault type pair.
Noteworthy, in the ASSs, the sensors signals have different
ranges of values. Therefore, using Z-Score normalization
function, the variables’ amplitudes are normalized and scaled
uniformly to the range [0,1]. Mathematically, the scaling
process of the input values is presented in [52].
Another complicating factor for the training process is

imbalanced data, where the ratio between the faulty and
healthy samples is disproportionate. In this case, the trained
classifier might be biased toward the majority class, resulting
in a poor prediction performance [53]. To tackle this problem,
different approaches have been proposed in the literature, i.e.,
augmentation-based, feature learning-based and classifier
design-based approach [54]. In this study, the random
undersampling technique has been utilized to overcome
the imbalanced data challenge. The core idea behind this
technique is to remove randomly selected instances from the
majority class until the required class balance is reached [55].
Due to the availability of a sufficient number of healthy
samples in the HIL tests, the reduction of the dataset by
the mentioned balancing technique has no negative impact
on the training process. The motivation behind selecting the
technique among other balancing techniques, e.g., random
over-sampling and SMOTE, is that they may lead to
overfitting by not matching the original time series patterns.
Finally, the balanced data is split into a training, a validation
and a testing subset. Specifically, 80% of the data is used for
the training process, while the rest, 10% each, is used for the
validation and testing process.

C. DAE-BASED DATA DENOISING
In real-world applications, noisy data with uncertainty
patterns play a negative role in FDI process based on a
data-driven approach. Noteworthy, most of the developed
models are based on clean historical simulation data under
experimental laboratory conditions. Recently, Denoising
Autoencoder (DAE) has been introduced as a powerful
method to overcome the noisy data challenge [56]. DAE
model is constructed based on four different layers, i.e., input
layer, corrupted layer, hidden layers, and output layer. The
architecture of the hidden layer consists of twomainmodules,
namely encoder and decoder. To utilize the denoising
function of DAE, the original input data (I) should be
corrupted with a certain noise level, e.g., Gaussian noise. The
encoder aims to map the input data into a lower dimensional
representation, i.e., a latent code, in which the extracted
features (F) from the corrupted input data (C) are stored. The

reconstruction of the extracted features into the original data
space, on the other hand, is done by the decoder module,
known as reconstructed output (O). By doing so, a compact
representation of the input data can be used for various
tasks such as dimensionality reduction, data denoising or
generative modelling. Mathematically, Equation (1) and (2)
represent the encoder and decoder modules, respectively.

F = fenc(WC + b) (1)

O = fdec(W ′F + b′) (2)

where fenc, fdec denote an activation function of the encoder
and the decoder, respectively. W and W’ are the weight of
encoder and decoder, respectively. (b) and (b’) are the offset
vectors of the encoder and decoder, respectively.

The training approach of the DAE model is driven by
the idea of minimizing the reconstruction loss between the
input data (I) and the reconstructed output (O). As a result,
the encoder and decoder modules are trained to represent
and reconstruct the data effectively without noise. Hence,
the performance of the DAE can be measured based on the
reconstruction error, known as loss function, as can be shown
in Equation (3)

L(I ,O) = ||O− I ||2 (3)

Autoencoders can be designed based on various architectures,
e.g., DNN-based AE, CNN-based AE or LSTM-based AE.
According to the remarkable achievements of GRU-based
DAE compared to the other AE variants [57], in this study,
GRU-based DAE has been utilized to enhance the robustness
of the proposed FDI model against noise. Besides, the ability
to meet the requirements of real-time applications with low
resources and fast inference time were the motivation to
consider GRU cell. Thanks to the internal structure of GRU,
i.e., gate mechanisms, the information flow can be controlled,
resulting in less computational effort and training parameters
compared to the LSTM cell. The mathematical representation
of the GRU cell equations is presented in [57].

D. ENSEMBLE LEARNING-BASED FAULT DETECTION AND
IDENTIFICATION
Once the data is denoised using DAE, the correlation between
the features of time series data is leveraged in such a way
that the respective fault type is identified. The importance
of this phase lies in the fact that different fault features can
belong to two classes at the same time, which in turn, leads to
misclassification in case of the complex dependent patterns.
Therefore, to avoid the biased classification accuracy of the
individual classifier, ensemble learning [58] is used in the
proposed architecture. To this end, ensemble learning based
on LSTM and RF classifiers is used. In particular, the voter
mechanism is adopted to select the predicted output with high
probability from both classifiers. By doing so, the deviation
of the classification accuracy can be mitigated, and the fault
identification process can be improved.

LSTM has been proven to be good not only in constructing
long-term relationships in sequential data, but also in
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FIGURE 2. Internal structure of LSTM cell.

addressing the vanishing and exploding gradient problem
of RNN. Besides, LSTM has shown high performance
on large datasets for supervised classification problems
compared to other techniques, e.g., CNN, MLP and GRU
[59]. Furthermore, LSTM is considered a powerful technique
for processing complex nonlinear data in a higher dimen-
sional noisy space, providing high accuracy, reliability and
effectiveness for FDI [59]. Therefore, due to the application
scope and the data in our study, LSTM was selected for
the development of the FDI model. The core structure of
the model is the LSTM cell, which is constituted based on
three gates, namely input, forget and output gate, as shown in
Figure 2.
Besides the mentioned gates, a memory, known as

Cell state, is employed to allow LSTM network to retain
information over long sequences. The internal structure of the
cell enables the information flow to be precisely regulated.
Specifically, it determines how much new information to
discard, retain or reinforce. Subsequently, based on the gating
mechanism and memory cell, the tasks involving long-range
dependencies can be effectively addressed. Equation (4)
represents the output of the input gate. Whereas, the output
of the forget gate is determined based on Equation (5), where
ft ∈ 0, 1, i.e., 0 for removing the data and 1 for retaining it.
Two different activation functions are utilized to update the
hidden state, i.e., (σ ) and (tanh). The output of current state
Ct is determined by equation (7), where Ct−1 represents the
output of the previous state (memory unit).

it = σ (Wi.[ht−1, xt ] + bg) (4)

ft = σ (Wf .[ht−1, xt ] + bf ) (5)

dt = tanh(Wd [ht−1, xt ] + bd ) (6)

Ct = (ft × Ct−1) + (gt × dt ) (7)

notable, the gate’s value depends on the hidden state ht−1
and input xt . Finally, the output cell can be mathematically
represented by equation (9), where, the output gate is shown
in equation (8)

Ot = σ (WO.[ht−1, xt ] + bO) (8)

ht = Ot × tanh(Ct ) (9)

As the ensemble learning method involving multiple
decision trees, Random Forest (RF) is introduced as an

efficient technique for classification problems that avoid
the problem of overfitting [60]. Among the various ML
classifiers, RF outperforms other techniques, such as KNN
and SVM, in terms of performance and computation
time [61]. In addition to its resilience against overfitting,
it shows outstanding performance in processing a large set of
features [62]. Being simple, fast, robust and able to handle
missing data, the RF classifier has achieved remarkable
success in various applications [63], [64]. However, despite
the mentioned benefits, the main drawback of RF is the
inability to extract the features and capture the temporal
dependencies present in time series data. Therefore, in this
study, the representative features extracted by LSTM are
employed and fed to the RF, ensuring high predictive
performance. The core idea of RF is to aggregate the
predictions of all trees formed based on three types of nodes,
i.e., root, decision, and leaf node. The final decision is
made based on the majority voting mechanism among the
trees. Mathematically, the prediction output can be presented
according to equation (10).

T = ModeT1(x),T2(x), . . . .,Ti(x) (10)

where the predicted output is represented by T , Mode is the
majority voting operation, and Ti(x) represents the prediction
of the i-th Decision Tree (DT) in the forest.

The construction of the RF tree depends on the bagging
technique, where multiple bootstrap samples are created from
the original training dataset increasing the stability and the
accuracy [65]. The training process is performed separately
for each individual tree, using a random subset of the data
and features with the same ratio. The training process is
completed once the predefined criterion is reached, e.g.,
maximum depth or minimum number of samples in a leaf
node.

Finally, the prediction results of the LSTM and the RF are
combined, and based on the majority-voting method [66], the
final classification decision with the highest count is made
using the collective decision. As a result, by benefiting from
both classifiers, the predictive performance and robustness
are improved with less sensitivity to overfitting. Besides,
model uncertainty can be addressed by considering the
prediction decision of each classifier.

IV. CASE STUDY AND EXPERIMENTAL IMPLEMENTATION
In this section, the details of the case study used, including
the system architecture, the platform setup and the imple-
mentation steps, are presented. Furthermore, the main phases
and steps of the development of the proposed FDI model are
described, i.e., data generation, data pre-processing, model
training and testing.

A. SYSTEM ARCHITECTURE OF THE CASE STUDY
According to the Automotive Safety Integrity Level (ASIL)
of ISO 26262 standard [3], the failures in the engine
management system are classified as C to D being considered
as very critical with high severity class. Therefore, the
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gasoline engine system has been selected as a case study
to demonstrate the applicability of the proposed method
and validate the performance of the developed DL-based
FDI model. Thus, to validate the target FDI model and
demonstrate its capability, two system models provided by
dSPACE have been utilized, i.e., ASM Gasoline Engine
and ASM Vehicle Dynamics with traffic [67]. Notably,
the mentioned models have been modified and integrated
together so that a digital test drive is enabled to ensure the
comprehensive characteristics of the engine system.

At the software level, the engine system has been modelled
and simulated in the MATLAB/Simulink environment with
high fidelity so that comprehensive characteristics of the
system behavior can be captured. More specifically, the
detailed subsystems of the engine with their components
and connections were considered in the model architecture.
The main subsystems of the engine system are air path
system, fuel system, piston engine system, exhaust system
and cooler system, as can be observed in Figure 3. Besides,
using Model-based Design (MBD) approach, the interaction
between the target systems with their environment has been
considered by modelling the powertrain, vehicle dynamics
systems as well as the driving environment. By doing
so, the main characteristics of the entire vehicle, e.g.,
longitudinal driving, vehicle resistances, transmission and
driver characteristics can be obtained. Finally, the control
algorithm, i.e., System Under Test (SUT), which is directly
connected to the controlled plant in a closed loop control, has
been designed as a behaviour model referred to as SoftECU.

At the hardware level, in our study, dSPACE MicroAuto-
Box II is used as Rapid Control Prototype (RCP) to emulate
the functionality of the real ECU and to execute the control
algorithms. The mentioned RCP (DS1401 Base Board)
has 900MHz processor, 6th Gen.Intel®CoreTM i7-6822EQ,
16 MB memory and 340 ms boot time for 3 MB application.
dSPACE SCALEXIO, in turn, is employed as a real-time
simulator to comprehensively and accurately simulate the
complex controlled system, i.e., the gasoline engine with
the vehicle dynamics. The sensors and the actuators’ signals
between the real-time simulator and the MicroAutoBox are
transmitted via a CAN bus, while the connection to the host
PC is established via an Ethernet. To enable the digital test
drive considering the user’s bahaviour, the real wheel and
pedal are connected to the HIL system. By doing so, the
driving scenarios can be performed either automatically by
the machine or by the user based on the defined requirements.
A virtual driving environment with dynamic traffic has
been designed and modelled using ModelDesk. Besides, a
3-D visualization of the environment has been enabled by
MotionDesk, as can be seen in Figure 4.
Before executing the model on the target machine, the

model’s parameters should be set. For this purpose, the
ModelDesk tool is used to specify both the internal and
the external system specifications according to the user’s
requirements. The core specifications of the selected case
study are listed in [47].

Thanks to the property of the MBD approach of generating
the code of complex embedded systems from the model, the
target application can be automatically deployed on the target
hardware. To be specific, the generated model code of the
control system and the plant are loaded into the ECU and the
HIL simulator, respectively. Once the application is available
for execution, the driving tests are configured based on the
user’s requirements. In this step, the driving scenarios and the
driving mode are defined. Besides, the CotrolDesk tool can
be used to perform online parameterization, instrumentation,
controller calibration and recording of the measurements.
Noteworthy, the SoftECU model and the real ECU of the
target case study allow the execution in two modes, i.e.,
simulation/offline mode and real-time/online mode.

B. REPRESENTATIVE DATASET GENERATION
As a golden run behaviour, the system is executed in the
real-time under fault-free conditions. By doing so, the healthy
dataset, including the sensors and actuators signals, can be
collected, representing the normal behaviour of the SUT.
Using the ControlDesk tool, ‘‘city’’ and ‘‘highway’’ scenarios
have been selected from the list of driving scenarios. The
test scenario used to collect the data under healthy and faulty
conditions is illustrated in Figure 5a and 5b as vehicle and
engine behaviour under fault-free conditions, respectively.

On the other hand, the faulty dataset has been generated by
injecting several types of faults, individually and simultane-
ously, into the sensor signal during the real-time execution
using a real-time FI framework. FI attributes have been
specified so that the representative and realistic permanent
and transient sensor faults during the driving cycle are
injected. Thus, the effect of critical faults causing the failure
at the system level in real-time is captured.

Aiming at injecting most of the sensor faults occurring in
the time series data, five fault types with their combinations
have been considered in this study. In concrete terms, the con-
sidered fault types are Gain, Stuck-at, Noise, Drift and Delay
faults. The occurred faults in the Accelerator Pedal Position
(APP) and the engine speed sensor (RPM) can have a serious
impact on the vehicle behaviour in terms of safety [68].
Therefore, APP and RPM sensors have been selected as
potential fault locations in the target system. As the objective
of our target FDI model is to cope with imbalanced data,
transient faults have been covered in this study.

To analyze and capture the system behaviour under simul-
taneous faults, the combination of the aforementioned faults
types have been injected into the target location mutually.
To be demonstrated, in each experiment, two different fault
types, e.g., Gain and Noise, have been injected into APP and
RPM sensor for a specific duration, respectively. Thus, the
single and simultaneous faults have been injected for a certain
duration and deactivated again after a short time. Based on
the selected driving scenario, the faults have been injected for
170-330 sec. In total, Besides the healthy class, 15 different
classes from 15 FI experiments as single and combination
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FIGURE 3. System architecture of the used case study.

FIGURE 4. HIL-based digital test drive platform.

FIGURE 5. Selected test drive scenario as a desired behaviour (golden run). (a) Vehicle system behavior under fault-free conditions. (b) Engine system
behavior under fault-free conditions.

faults have been collected. The illustration of the system
behaviour under simultaneous faults can be seen in Figure 6.
Specifically, the effect of injecting stuck-at and delay

faults simultaneously on the engine speed, engine torque,
engine temperature and vehicle speed is demonstrated in
Figure 6 a,b,c and d, respectively.
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FIGURE 6. The effect of transient simultaneous faults on the system behaviour. (a) Engine Speed behaviour under stuck-at and delay faults. (b) Engine
torque behaviour under stuck-at and delay faults. (c) Engine temperature behaviour under stuck-at and delay faults. (d) Vehicle Speed behaviour under
stuck-at and delay faults.

C. DATASET DESCRIPTION AND PREPOSSESSING
To facilitate the steps of data preprocessing, the recorded
data is saved in a CSV format. Beside the healthy data
samples, as a result of 15 experiments of FI, 16 CSVs
have been collected including faulty data. The sampling time
in all experiments is 0.001 sec. The total number of data
samples from the data collection phase is 44.800.000, with
2.800.000 samples for each experiment.

As explained in the methodology section, once the data is
collected from the sensors, the pre-processing phase takes
place. This phase aims to clean and format the collected
data so that the target model can be trained efficiently.
The higher the quality of the data, the more efficient the
performance of the model resulting from the training. To this
end, several techniques were applied to our dataset. Firstly,
in addition to removing the outliers and duplicate samples in
the dataset, themissing values were also identified and treated
to clean the data. Next, the data is visualized and analyzed
using the Simulation Data Inspector from MATLAB so that
the data distribution, patterns and relationships between the
variables can be defined. Since the selection of features plays
a crucial role in the performance of the classification tasks by
the trained model, the most important system variables that
contribute to the performance of themodel were selected. The
main variables considered in this study are throttle position
[%], engine temperature [degC], mean effective engine torque

[Nm], engine speed [rpm], intake manifold pressure [Pa],
rail pressure [bar] and vehicle speed [Km/h], as shown in
Figure 7. Data labelling is the next step where the categorical
variables are coded into numerical representations. In this
study, a Label Power Set (LPS) based on a multi-label multi-
class strategy was used to perform the labeling process.
By doing so, all possible combinations of fault types can
be represented in pairs. In addition, the Z-Score function is
used to normalize and scale the values within the same range.
Imbalanced data is also handled by applying the random
subsampling technique. Finally, before splitting the data, the
data is standardized so that the numerical characteristics have
a standard deviation of 1 and a mean of 0. The collected
data has been distributed into three portions, i.e., training,
validation and testing part, 80% of the collected dataset has
been assigned for the training process, whereas, 20% has been
assigned for the validation and testing phase, respectively.
The detailed distribution of the collected dataset is illustrated
in Table 2. To train the DAE, a certain noise level is added to
the processed data in order to obtain the corrupted samples as
input for the encoder module.

D. TRAINING AND OPTIMISATION
The implementation steps of the proposed method have
been carried out using Google Colab, in which TensorFlow
framework [69] is used with the Python programming
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FIGURE 7. Collected dataset from real-time HIL simulation.

TABLE 2. Description of the generated dataset with the fault classes.

language. The DL model has been trained based on the
balanced training data which is fed from the preprocessing
phase. Following the pre-processing and balancing of the
data, model development is carried out in four phases,
namely model design, model training, model validation and
evaluation, as illustrated in Figure 8. In the model design
phase, the parameters and configurations of the network
architecture are identified. Besides, the initialization of
the model’s hyperparameters takes place. Specifically, the
number of layers, epoch, learning rate, batch size, noise level,
activation function and the optimizer are specified.

Noteworthy, in case of training DAE, in addition to
the mentioned hyperparameters, Gaussian noise levels are
determined. In our case the target model has been trained
based on four levels of noise, i.e., 3%, 6%, 8% and 10%,
added to the original dataset.

On the other hand, RF training requires determining the
number of decision trees, the maximum depth of each
decision tree and the random number generator. Besides,
the ‘‘out-of-bag (OOB)’’ error estimation and ‘‘warm start’’
features are enabled. Once the training process is initiated,
the loss function is calculated and the model performance
is tracked. Based on the propagated loss, the internal model
parameters are updated accordingly. Figure 9 illustrates
the training process curve of the DAE, LSTM and RF.
Noteworthy, the performance of the trained model highly
depends on the defined hyperparameters. Therefore, the
trained model is optimized by tuning the hyperparameters,
known as the model optimization process. To this end, using
validation data, the model’s performance is evaluated to
check whether or not the convergence has been achieved.

TABLE 3. Optimal hyperparameters of LSTM architecture.

Specifically, certain hyperparameters are tuned in such a way
that the model accuracy is improved based on the optimized
architecture. In our case, a grid search mechanism has been
employed so that different combinations of hyperparameters
tuning are performed. The core idea of the technique is
to establish a grid of hyperparameters’ values with the
potential combinations. Then, based on validation cross,
the model’s performance is analysed for each combination
enabling the selection of the optimal values that provide the
best performance. However, due to the model’s complexity,
the trade-off between the computational cost of the training
and the generalization issue should be considered during the
implementation. Detailed specifications of the selected opti-
mal hyperparameters of the proposed LSTM are presented in
Table 3.

V. RESULTS AND DISCUSSION
In this section, the experimental results of the proposedmodel
are discussed and analyzed. In particular, using a test dataset,
the effectiveness of the proposed FDI model is demonstrated
in terms of accuracy. Furthermore, the superiority of the
proposed architecture compared to stand-alone techniques
is presented. To evaluate the detection and identification
performance of the proposed model, three evaluation metrics
are used in this study, i.e., precision, recall and F1-Score [70].
On the other hand, Mean Square Error (MSE) [71] is used to
evaluate the performance and effectiveness of the GRU-based
DAE.

A. GRU-BASED DAE PERFORMANCE
To demonstrate the anti-noise capability of the proposed
model, it was evaluated under different Gaussian noise levels,
i.e., 3%, 6%, 8% and 10%. In Figure 10, the performance
of the developed model in reconstructing the original data
under different levels of noise can be clearly observed.
Specifically, at low noise levels, the developed model shows
high performance in terms of minor reconstruction error with
0.023 MSE, which gradually increases at higher levels. This
means that almost no information is lost in the denoising
and reconstructing process. It is worth noting that even at
the highest noise level of 10%, the denoising performance
of the model is still acceptable, with an MSE of 0.0618.
Compared to other structures of DAE, e.g., ANN-based DAE,
the superiority of the proposed model can be observed with
a low MSE. Besides the noise-free level, the reconstruction
error of the proposed model is significantly lower with
0.0234, 0.0421, 0.0504 and 0.0618 MSE, at noise levels 3%,
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FIGURE 8. Flowchart of model training and optimization.

FIGURE 9. Hyperparameter optimization results. (a) Training and validation accuracy of LSTM. (b) Training and validation Loss of LSTM.
(c) Training and validation Loss of GRU-DAE. (d) OBB Score of RF.

6%, 8% and 10%, respectively. Thus, the effectiveness of the
DAE structure can be proven by the validation results not
only in reconstructing the original data without loss, but also
in denoising the data with high performance. However, the
higher the level of the added noise, the higher the error in
reconstructing and denoising the original data.

B. DETECTION AND CLASSIFICATION RESULTS USING
ENSEMBLE LSTM-RF
The performance of developed ensemble classifiers with
optimized architectures has been evaluated using a testing
dataset in terms of precision, recall and F1-Score. Fault

identification performance of the model under various faults
classes, i.e., single and concurrent faults, is illustrated in
Figure 11.

In the case of single faults, i.e., gain, stuck-at and
noise, it can be emphasized that the achieved identification
performance of the proposed model is obviously high with a
score above 97% in all evaluation metrics. However, due to
the complexity of the pattern and corresponding features of
delay and drift faults, the classifiers’ performance decreases
to reach F1-score of 92.57% and 82.92%, respectively. The
poor sensitivity performance in the mentioned types with
recall values of 88.33% and 83.33% is caused by the high
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FIGURE 10. GRU-DAE performance under various level of noise.

rate of falsely identified faulty samples as negative instances.
Nevertheless, remarkable achievement can be observed by
detecting the faulty state of the system with a harmonic
average 99.43% F1-Score.

Based on the classification results of the concurrent
faults, the effectiveness of the ensemble learning can be
demonstrated with an over 92% accuracy as an average
of precision, recall and F1-Score. The highest accuracy
was recorded for the identification of the gain-noise and
gain-delay classes, with F1-Scores of 98.65% and 97.92%,
respectively. However, on the other hand, the performance
of the classifier drops slightly and settles at around 90%
F1-Score for the other classes. The worst accuracy value of
F4F5 is caused by the healthy samples being misclassified
as faulty behaviour, which is a so-called false alarm.
In summary, the applicability of the proposed model in
detecting and identifying composite faulty behaviour with
high reliability has been demonstrated. Even at low values of
the evaluation metrics, the performance of the model is still
satisfactory within an acceptable range.

As a graphical representation of the FDI performance for
each fault type, the ROC curve is used. This allows the
relationship between the rate of true positives (TPR) and
the rate of false positives (FPR) to be plotted. Figure 12a
and Figure 12b show to what extent the model is able
to distinguish between types of faults, individually and
simultaneously. For example, the ROC curve of the class 0
(gain fault) with ROC of 0.99 indicates that the gain fault can
be accurately identified by the model with a probability of
99%. On the other hand, the chance of the model to correctly
identify the concurrent faults, for example, F1F2, is 93%. The
better recognition performance arises from the ROC value
tending towards the upper left corner.

C. MODEL ROBUSTNESS AGAINST NOISE
To evaluate the FDI performance of the proposed model
against noise, test data with different noise levels is used.
Thanks to the proposed GRU-DAE as the primary step before
the FDI phase, the proposed classifier shows remarkable
performance under noisy conditions. From the evaluation
results in Figure 13, the high accuracy of the proposed FDI

model in terms of precision, recall and F1-score can be
noticed.

Specifically, themodel shows high accuracywith over 94%
F1-Score under the first two noise levels, i.e., 1%, 4%. This
robustness is achieved by applying DAE to reconstruct and
denoise the original data with a very low MSE. However,
increasing the noise level has a negative effect on the model
performance. Consequently, the scores of the evaluation
metrics decrease to about 91% at a noise level of 15%.
Nevertheless, the model’s ability to cope with the challenge
of noise is still satisfactory at high levels, i.e., 20% noise,
with an accuracy of 89% F1-Score. Thus, it can be concluded
that the robustness of the proposed FDI model to noise has
been improved by the denoising process using GRU-DAE.
Finally, it is worth mentioning that the applicability of the
proposed model has been investigated with two automotive
case studies, i.e., a gasoline engine system and a vehicle
dynamic system. Both case studies show high performance
of the model with low reconstruction error. Besides the
dataset1 obtained from automated test drives, the test dataset2
acquired from manual digital test drives has been used to
evaluate the proposed model. Specifically, it was shown
that the proposed model performed well in denoising and
reconstructing data with MSE of 0.0421 and 0.0955 based
on dataset1 and dataset2, respectively.

D. CLASSIFICATION RESULTS COMPARED TO
STAND-ALONE ALGORITHMS
The superiority of the proposed ensemble learning is demon-
strated by comparing the classification results obtained by
our target model with those obtained by single methods.
Specifically, the performance of the LSTM-RF, LSTM and
RF models for each class, including single and concurrent
faults, are compared in terms of precision, recall and
F1-Score, as shown in Table 4,5 and 6, respectively. The com-
parison results in Table 4 indicate that the ensemble models
outperform the single models with an average precision of
93.57%. Whereas the average precision of LSTM and RF are
92.3% and 70.16% respectively. It is evident that the number
of false positives in the proposed method has been reduced
by considering the decisions of LSTM and RF. However,
in some classes such as delay fault, the LSTM shows a
better performance in identifying the class, which in turn
improves the identification performance of the F3F4 class.
The normalized confusion matrix is presented in Figure 14.
By the confusionmatrix, the identification performance of the
proposed model based on the testing dataset is demonstrated.
It can be noted that some data samples of the delay fault
were incorrectly identified as simultaneous stuck-at and delay
faults. A similarly poor prediction performance was achieved
with class F2F3. The reason for this lies in the similarity of the
signal characteristics of thementioned fault class. In addition,
a few samples of class F1F2 were misclassified by the model
as class F3F4. On the other hand, the highest identification
accuracy was found for the class F1F3, i.e., gain and noise
faults.
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FIGURE 11. Testing results of the proposed model for single and concurrent faults.

FIGURE 12. Fault identification performance in terms of AUC-ROC curve. (a) AUC-ROC curve of the proposed FDI model for single faults.
(b) AUC-ROC curve of the proposed FDI model for concurrents faults.

FIGURE 13. Fault identification performance of the proposed model
under various levels of noise.

Similarly, the sensitivity of the proposed model to
identifying all the faulty features correctly outperforms the
stand-alone methods. As shown in Table 5, the recall value
of the ensemble learning is above 95% in most classes.

TABLE 4. Precision score of the proposed FDI model compared to
individual methods (%).

Moreover, even for complex faulty patterns, e.g., F4, F1F4
and F2F3, the proposed model shows better performance
than LSTM and RF. The harmonic mean between recall and
precision concludes that most fault classes can be accurately
detected and identified by our proposed method, as shown in
Table 6. Besides the individual classes, the proposed model
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TABLE 5. Recall score of the proposed FDI model compared to individual
methods (%).

TABLE 6. F1-Score of the proposed FDI model compared to individual
methods (%).

FIGURE 14. Confusion matrix of the proposed model with normalization.

has achieved high performance in the case of F1F2, F1F3
and F2F4 with F1-Score of 90.49%, 98.65% and 92.92%,
respectively. On the other hand, the identification of the faulty
state of the system in the case of delay fault still needs
improvement. The reason for this drawback is the similarity
between the healthy and faulty features used to develop
the model. Conclusively, the performance of the individual
method-based classifiers is significantly worse than that of
our proposed model for the same training and testing data.
This is due to the inability of the traditional method to capture

TABLE 7. Comprehensive analysis of FDI performance with different
classifiers in terms of F1-Score (%).

TABLE 8. Comparison between the results of the proposed method and
other related works.

the complex relationship between fault classes, especially
in the presence of concurrent faults. In contrast, in our model,
the decision is made based on a voting algorithm that consider
the results of each model. Several other ML-based classifiers
were implemented and evaluated on the test dataset. To this
end, four classifiers were selected, i.e., SVM, DT, MLP and
1D-CNN. Table 7 shows the performance of the proposed
model compared to the conventional classifiers in terms of
F1-Score. The values shown in the table indicate the average
fault identification accuracy of mentioned models in the case
of individual and simultaneous faults. The aforementioned
methods were evaluated using a test dataset with healthy and
faulty data samples. Despite the good performance of DL
architecture-based classifiers, i.e., 1D-CNN and MLP, the
ensemble LSTM-RF classifier can provide superior perfor-
mance compared to other traditional classifiers. In table 8,
the performance of the proposed model in terms of accuracy
is compared with those obtained previously in other related
works. It can be concluded that the proposed method has
achieved a significant improvement in the performance of
simultaneous FDI compared to other methods. Moreover, due
to the model’s robustness against noise, the proposed method
can also be used for FDI problems in different systems from
other domains.

E. COMPUTATIONAL COMPLEXITY ANALYSIS
One of the main concerns in the development of DL models
is the computational cost, especially in the case of having
large amounts of data. Therefore, the required training and
inference time of our target models is evaluated considering
the specifications of the training platform, i.e., Google
Colab, as shown in Table 9. An acceptable training time
is required to develop a GRU-based DAE with an average
computation time of 4445 seconds. Similarly, the computing
time required for the testing process of data reconstruction
and denoising is very low at 0.339 sec. On the other hand,
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TABLE 9. Training and testing times of the proposed FDI model.

for the development of the proposed ensemble models,
the training time required is 5319.48 sec. While for the
testing of 10% of the total dataset, 4.85 sec is required.
It is clear that due to the ensemble process of decision-
making, a considerable amount of testing time is required.
The higher the number of classifiers for ensemble learning,
the higher the computation time required for training and
testing. However, considering that the features are extracted
automatically, the computational time is acceptable compared
to the traditional ML method, which requires additional time
for manual feature extraction. On the other hand, advances
in computational resources can address this drawback
and balance the trade-off between high performance and
development time. Moreover, considering other simple DL
architectures, e.g., GRU-based classifiers, paves the way for
further improvements with less computational time. Notably,
the problem of the computational cost of model development
due to the size of dataset can be solved by improving the
proposed method, so that the identification of compound
faults can be dependent on the data of the individual faults.

VI. CONCLUSION
To address the classification problem of the concurrent faults
during real-time validation of ASSs using HIL simulation,
an ensemble learning-based method is proposed in this arti-
cle. In particular, multi-label ensemble LSTM and Random
Forest models have been developed. Unlike the conventional
methods that focus on single faults, the aim of the study is
to detect and identify single and simultaneous sensor faults
at the system level, considering noisy and imbalanced data
conditions. GRU-based DAE is adopted in this study to
ensure the reliability and robustness of the proposed model
against noise. Besides, to cope with the challenge of FDI
model development in the presence of imbalanced data,
a random undersampling algorithm is employed. Notably,
real-time FI based on HIL simulation is utilized to analyze
the critical faults and to collect the representative dataset.
To validate the effectiveness and applicability of the proposed
method, a high-fidelity model of a gasoline engine system is
used as a case study, considering the entire vehicle dynamic
system with its environment. According to the average value
of the quantitative evaluation metrics, the single faults were
classified with 94.82% F1-Score, 93.52% recall and 96.23%
precision. Another promising finding was that the proposed
model can accurately identify the concurrent faults with
91.2% F1-Score, 92.62% recall and 90.26% precision. Using
the same dataset, the analysis results prove that the FDI
accuracy of the single and simultaneous faults is significantly
improved by our ensemblemodels compared to the traditional

single classifier. Thanks to the GRU-based DAE, the original
data can be effectively reconstructed and denoised with a
MSE of less than 0.05 at a noise level of 8%. This, in turn,
contributes to improving the performance of the proposed
model even in the presence of a high noise level, which
shows outstanding performance with 92.65% F1-Score at
10% noise level. Besides, the model shows high detection
performance with an average accuracy of 99.43%. All in
all, the employment of DAE with an ensemble prediction
model can provide a reliable and robust FDI for the real-time
validation process of ASSs during HIL tests compared to
individual methods. As a result, not only the safety and
reliability of the target systems can be enhanced, but also
the effort and time during the development process can be
reduced.

In the future, the proposed model can be improved in terms
of performance accuracy and computational time. Further-
more, the applicability of other simple DL architectures to
build the ensemble classifiers for other development phases
of ASSs can be investigated. Finally, the adaptability and
applicability of the proposed model to FDI problems of
systems from other industrial domains, e.g., railway and
aviation, can be further investigated.

REFERENCES
[1] J. Golias, G. Yannis, and C. Antoniou, ‘‘Classification of driver-assistance

systems according to their impact on road safety and traffic efficiency,’’
Transp. Rev., vol. 22, no. 2, pp. 179–196, Jan. 2002.

[2] A. Vogelsang, ‘‘Feature dependencies in automotive software systems:
Extent, awareness, and refactoring,’’ J. Syst. Softw., vol. 160, Feb. 2020,
Art. no. 110458.

[3] ISO 26262-10:2012-Road Vehicles—Functional Safety—Part 10: Guide-
line on ISO 26262. Accessed: Feb. 14, 2023. [Online]. Available:
https://www.iso.org/standard/54591.html

[4] G. Tibba, C. Malz, C. Stoermer, N. Nagarajan, L. Zhang, and
S. Chakraborty, ‘‘Testing automotive embedded systems under X-in-
the-loop setups,’’ in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), Nov. 2016, pp. 1–8.

[5] V. Garousi, M. Felderer, Ç. M. Karapıçak, and U. Yılmaz, ‘‘Testing
embedded software: A survey of the literature,’’ Inf. Softw. Technol.,
vol. 104, pp. 14–45, Dec. 2018.

[6] E. Bringmann and A. Kr, ‘‘Model-based testing of automotive systems,’’
in Proc. Int. Conf. Softw. Test., Verification, Validation, Apr. 2008,
pp. 485–493.

[7] R. Isermann and P. Ballé, ‘‘Trends in the application of model-based fault
detection and diagnosis of technical processes,’’Control Eng. Pract., vol. 5,
no. 5, pp. 709–719, May 1997.

[8] A. Theissler, ‘‘Detecting known and unknown faults in automotive systems
using ensemble-based anomaly detection,’’ Knowl.-Based Syst., vol. 123,
pp. 163–173, May 2017.

[9] K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano, S. Nair, S. Zahedi,
E. Kohler, G. Pottie, M. Hansen, and M. Srivastava, ‘‘Sensor network data
fault types,’’ ACM Trans. Sensor Netw., vol. 5, no. 3, pp. 1–29, May 2009.

[10] U. Saeed, S. U. Jan, Y.-D. Lee, and I. Koo, ‘‘Fault diagnosis based on
extremely randomized trees in wireless sensor networks,’’ Rel. Eng. Syst.
Saf., vol. 205, Jan. 2021, Art. no. 107284.

[11] G. Sievers, C. Seiger, M. Peperhowe, H. Krumm, S. Graf, and
H. Hanselmann, ‘‘Driving simulation technologies for sensor simulation
in SIL and HIL environments,’’ in Proc. DSC, 2018, pp. 127–130.

[12] J. Zhou, R. Schmied, A. Sandalek, H. Kokal, and L. del Re, ‘‘A framework
for virtual testing of ADAS,’’ SAE Int. J. Passenger Cars - Electron. Electr.
Syst., vol. 9, no. 1, pp. 66–73, Apr. 2016.

[13] A. Theissler, ‘‘Detecting anomalies in multivariate time series from
automotive systems,’’ Ph.D. thesis, School Eng. Des., Brunel Univ.,
London, U.K., 2013.

140038 VOLUME 11, 2023



M. Abboush et al.: Intelligent Identification of Simultaneous Faults of ASSs Under Noisy and Imbalanced Data

[14] C. V. Jordan, F. Hauer, P. Foth, and A. Pretschner, ‘‘Time-series-
based clustering for failure analysis in hardware-in-the-loop setups: An
automotive case study,’’ in Proc. IEEE Int. Symp. Softw. Rel. Eng.
Workshops (ISSREW), Oct. 2020, pp. 67–72.

[15] R. Isermann, ‘‘Model-based fault-detection and diagnosis–status and
applications,’’ Annu. Rev. Control, vol. 29, no. 1, pp. 71–85, Jan. 2005.

[16] Z. Gao, C. Cecati, and S. X. Ding, ‘‘A survey of fault diagnosis and
fault-tolerant techniques—Part I: Fault diagnosis with model-based and
signal-based approaches,’’ IEEE Trans. Ind. Electron., vol. 62, no. 6,
pp. 3757–3767, Jun. 2015.

[17] W. Li, H. Li, S. Gu, and T. Chen, ‘‘Process fault diagnosis with model- and
knowledge-based approaches: Advances and opportunities,’’ Control Eng.
Pract., vol. 105, Dec. 2020, Art. no. 104637.

[18] P. Jieyang, A. Kimmig, W. Dongkun, Z. Niu, F. Zhi, W. Jiahai, X. Liu,
and J. Ovtcharova, ‘‘A systematic review of data-driven approaches to
fault diagnosis and early warning,’’ J. Intell. Manuf., vol. 34, no. 8,
pp. 3277–3304, Dec. 2023.

[19] D. Gonzalez-Jimenez, J. del-Olmo, J. Poza, F. Garramiola, and
P. Madina, ‘‘Data-driven fault diagnosis for electric drives: A review,’’
Sensors, vol. 21, no. 12, p. 4024, Jun. 2021.

[20] D. L. Nuñez and M. Borsato, ‘‘An ontology-based model for prognostics
and health management of machines,’’ J. Ind. Inf. Integr., vol. 6, pp. 33–46,
Jun. 2017.

[21] X. Dai and Z. Gao, ‘‘From model, signal to knowledge: A data-driven
perspective of fault detection and diagnosis,’’ IEEE Trans. Ind. Informat.,
vol. 9, no. 4, pp. 2226–2238, Nov. 2013.

[22] F. Zhang, N. Saeed, and P. Sadeghian, ‘‘Deep learning in fault detection
and diagnosis of building HVAC systems: A systematic review with meta
analysis,’’ Energy AI, vol. 12, Apr. 2023, Art. no. 100235.

[23] S. Qiu, X. Cui, Z. Ping, N. Shan, Z. Li, X. Bao, and X. Xu, ‘‘Deep learning
techniques in intelligent fault diagnosis and prognosis for industrial
systems: A review,’’ Sensors, vol. 23, no. 3, p. 1305, Jan. 2023.

[24] Y. Shen and K. Khorasani, ‘‘Hybrid multi-mode machine learning-based
fault diagnosis strategies with application to aircraft gas turbine engines,’’
Neural Netw., vol. 130, pp. 126–142, Oct. 2020.

[25] M. I. Radaideh, C. Pappas, J. Walden, D. Lu, L. Vidyaratne, T. Britton,
K. Rajput, M. Schram, and S. Cousineau, ‘‘Time series anomaly detection
in power electronics signals with recurrent and ConvLSTM autoencoders,’’
Digit. Signal Process., vol. 130, Oct. 2022, Art. no. 103704.

[26] N. Iqbal, ‘‘DeepSeg: Deep segmental denoising neural network for
seismic data,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 7,
pp. 3397–3404, Jul. 2023.

[27] S. A. A. Taqvi, H. Zabiri, L. D. Tufa, F. Uddin, S. A. Fatima, and
A. S. Maulud, ‘‘A review on data-driven learning approaches for fault
detection and diagnosis in chemical processes,’’ ChemBioEng Rev., vol. 8,
no. 3, pp. 239–259, 2021.

[28] J. Chen, L. Zhang, Y. Li, Y. Shi, X. Gao, and Y. Hu, ‘‘A review of
computing-based automated fault detection and diagnosis of heating,
ventilation and air conditioning systems,’’ Renew. Sustain. Energy Rev.,
vol. 161, Jun. 2022, Art. no. 112395.

[29] P. Peng, W. Zhang, Y. Zhang, H. Wang, and H. Zhang, ‘‘Non-revisiting
genetic cost-sensitive sparse autoencoder for imbalanced fault diagnosis,’’
Appl. Soft Comput., vol. 114, Jan. 2022, Art. no. 108138.

[30] X. Liu, Q. Zhou, J. Zhao, H. Shen, and X. Xiong, ‘‘Fault diagnosis
of rotating machinery under noisy environment conditions based on a
1-D convolutional autoencoder and 1-D convolutional neural network,’’
Sensors, vol. 19, no. 4, p. 972, Feb. 2019.

[31] M. Abboush, C. Knieke, and A. Rausch, ‘‘GRU-based denoising
autoencoder for detection and clustering of unknown single and concurrent
faults during system integration testing of automotive software systems,’’
Sensors, vol. 23, no. 14, p. 6606, Jul. 2023.

[32] A. Namigtle-Jiménez, R. F. Escobar-Jiménez, J. F. Gómez-Aguilar,
C. D. García-Beltrán, and A. C. Téllez-Anguiano, ‘‘Online ANN-based
fault diagnosis implementation using an FPGA: Application in the EFI
system of a vehicle,’’ ISA Trans., vol. 100, pp. 358–372, May 2020.

[33] R. Raveendran, K. B. Devika, and S. C. Subramanian, ‘‘Brake fault
identification and fault-tolerant directional stability control of heavy road
vehicles,’’ IEEE Access, vol. 8, pp. 169229–169246, 2020.

[34] H.Kaplan, K. Tehrani, andM. Jamshidi, ‘‘A fault diagnosis design based on
deep learning approach for electric vehicle applications,’’Energies, vol. 14,
no. 20, p. 6599, Oct. 2021.

[35] D. Jung, ‘‘Data-driven open-set fault classification of residual data using
Bayesian filtering,’’ IEEE Trans. Control Syst. Technol., vol. 28, no. 5,
pp. 2045–2052, Sep. 2020.

[36] L. Biddle and S. Fallah, ‘‘A novel fault detection, identification and
prediction approach for autonomous vehicle controllers using SVM,’’
Automot. Innov., vol. 4, no. 3, pp. 301–314, Aug. 2021.

[37] Y. Chen, M. Rao, K. Feng, and G. Niu, ‘‘Modified varying index
coefficient autoregression model for representation of the nonstationary
vibration from a planetary gearbox,’’ IEEE Trans. Instrum. Meas., vol. 72,
pp. 1–12, 2023.

[38] Y. Chen, G. Niu, Y. Li, and Y. Li, ‘‘A modified bidirectional
long short-term memory neural network for rail vehicle suspension
fault detection,’’ Vehicle Syst. Dyn., vol. 61, no. 12, pp. 3136–3160,
Dec. 2023.

[39] S. Scharoba, K.-U. Basener, J. Bielefeldt, H.-W. Wiesbrock, and
M. Hübner, ‘‘Towards machine learning support for embedded system
tests,’’ inProc. 24th Euromicro Conf. Digit. Syst. Design (DSD), Sep. 2021,
pp. 166–173.

[40] M. Abboush, D. Bamal, C. Knieke, and A. Rausch, ‘‘Intelligent fault
detection and classification based on hybrid deep learning methods
for hardware-in-the-loop test of automotive software systems,’’ Sensors,
vol. 22, no. 11, p. 4066, May 2022.

[41] S. Asgari, R. Gupta, I. K. Puri, and R. Zheng, ‘‘A data-driven approach
to simultaneous fault detection and diagnosis in data centers,’’ Appl. Soft
Comput., vol. 110, Oct. 2021, Art. no. 107638.

[42] S. Li, H. Cao, and Y. Yang, ‘‘Data-driven simultaneous fault diagnosis
for solid oxide fuel cell system using multi-label pattern identification,’’
J. Power Sour., vol. 378, pp. 646–659, Feb. 2018.

[43] P. K.Wong, J. Zhong, Z. Yang, and C. M. Vong, ‘‘Sparse Bayesian extreme
learning committee machine for engine simultaneous fault diagnosis,’’
Neurocomputing, vol. 174, pp. 331–343, Jan. 2016.

[44] A. R. Ramos, C. D. Acosta, P. J. R. Torres, E. I. S. Mercado, G. B. Baez,
L. A. Rifón, and O. Llanes-Santiago, ‘‘An approach to multiple fault
diagnosis using fuzzy logic,’’ J. Intell. Manuf., vol. 30, no. 1, pp. 429–439,
Jan. 2019.

[45] A. Othman, N. Iqbal, S. M. Hanafy, and U. B. Waheed, ‘‘Automated event
detection and denoising method for passive seismic data using residual
deep convolutional neural networks,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 60, pp. 1–11, 2022.

[46] S. Safavi, M. A. Safavi, H. Hamid, and S. Fallah, ‘‘Multi-sensor fault
detection, identification, isolation and health forecasting for autonomous
vehicles,’’ Sensors, vol. 21, no. 7, p. 2547, 2021.

[47] M. Abboush, D. Bamal, C. Knieke, and A. Rausch, ‘‘Hardware-in-the-
loop-based real-time fault injection framework for dynamic behavior
analysis of automotive software systems,’’ Sensors, vol. 22, no. 4, p. 1360,
Feb. 2022.

[48] T. Muhammed and R. A. Shaikh, ‘‘An analysis of fault detection strategies
in wireless sensor networks,’’ J. Netw. Comput. Appl., vol. 78, pp. 267–287,
Jan. 2017.

[49] J. A. Crossman, H. Guo, Y. L. Murphey, and J. Cardillo, ‘‘Automotive
signal fault diagnostics—Part I: Signal fault analysis, signal segmentation,
feature extraction and quasi-optimal feature selection,’’ IEEE Trans. Veh.
Technol., vol. 52, no. 4, pp. 1063–1075, Jul. 2003.

[50] B. Xue, M. Zhang, W. N. Browne, and X. Yao, ‘‘A survey on evolutionary
computation approaches to feature selection,’’ IEEE Trans. Evol. Comput.,
vol. 20, no. 4, pp. 606–626, Aug. 2016.

[51] C.-M. Vong, P.-K. Wong, and W.-F. Ip, ‘‘A new framework of
simultaneous-fault diagnosis using pairwise probabilistic multi-label
classification for time-dependent patterns,’’ IEEE Trans. Ind. Electron.,
vol. 60, no. 8, pp. 3372–3385, Aug. 2013.

[52] S. Gopal Krishna Patro and K. Kumar Sahu, ‘‘Normalization: A
preprocessing stage,’’ 2015, arXiv:1503.06462.

[53] P. Bedi, N. Gupta, and V. Jindal, ‘‘I-SiamIDS: An improved siam-
IDS for handling class imbalance in network-based intrusion detection
systems,’’ Int. J. Speech Technol., vol. 51, no. 2, pp. 1133–1151,
Feb. 2021.

[54] T. Zhang, J. Chen, F. Li, K. Zhang, H. Lv, S. He, and E. Xu, ‘‘Intelligent
fault diagnosis of machines with small & imbalanced data: A state-of-the-
art review and possible extensions,’’ ISA Trans., vol. 119, pp. 152–171,
Jan. 2022.

[55] T. Hasanin and T. Khoshgoftaar, ‘‘The effects of random undersampling
with simulated class imbalance for big data,’’ in Proc. IEEE Int. Conf. Inf.
Reuse Integr. (IRI), Jul. 2018, pp. 70–79.

[56] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, ‘‘Extracting and
composing robust features with denoising autoencoders,’’ in Proc. 25th Int.
Conf. Mach. Learn. (ICML), 2008, pp. 1096–1103.

VOLUME 11, 2023 140039



M. Abboush et al.: Intelligent Identification of Simultaneous Faults of ASSs Under Noisy and Imbalanced Data

[57] J. Cowton, I. Kyriazakis, T. Plötz, and J. Bacardit, ‘‘A combined deep
learning GRU-autoencoder for the early detection of respiratory disease
in pigs using multiple environmental sensors,’’ Sensors, vol. 18, no. 8,
p. 2521, Aug. 2018.

[58] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, ‘‘A survey on ensemble
learning,’’ Frontiers Comput. Sci., vol. 14, no. 2, pp. 241–258, 2020.

[59] A. Shenfield and M. Howarth, ‘‘A novel deep learning model for the
detection and identification of rolling element-bearing faults,’’ Sensors,
vol. 20, no. 18, p. 5112, Sep. 2020.

[60] P. Kar, S. Banerjee, K. C. Mondal, G. Mahapatra, and S. Chattopadhyay,
‘‘A hybrid intrusion detection system for hierarchical filtration of
anomalies,’’ in Information and Communication Technology for Intelligent
Systems: Proceedings of ICTIS 2018, vol. 1. Singapore: Springer, 2019,
pp. 417–426.

[61] A. Liaw and M. Wiener, ‘‘Classification and regression by randomforest,’’
R News, vol. 2, no. 3, pp. 18–22, Dec. 2002.

[62] M. Belgiu and L. Drăguţ, ‘‘Random forest in remote sensing: A review of
applications and future directions,’’ ISPRS J. Photogramm. Remote Sens.,
vol. 114, pp. 24–31, Apr. 2016.

[63] S. Ma, M. Chen, J. Wu, Y. Wang, B. Jia, and Y. Jiang, ‘‘Intelligent fault
diagnosis of HVCBwith feature space optimization-based random forest,’’
Sensors, vol. 18, no. 4, p. 1221, Apr. 2018.

[64] M. A. Marins, B. D. Barros, I. H. Santos, D. C. Barrionuevo,
R. E. V. Vargas, T. de M. Prego, A. A. de Lima, M. L. R. de Campos,
E. A. B. da Silva, and S. L. Netto, ‘‘Fault detection and classification in oil
wells and production/service lines using random forest,’’ J. Petroleum Sci.
Eng., vol. 197, Feb. 2021, Art. no. 107879.

[65] D. Zhang, L. Qian, B. Mao, C. Huang, B. Huang, and Y. Si, ‘‘A data-
driven design for fault detection of wind turbines using random forests and
XGboost,’’ IEEE Access, vol. 6, pp. 21020–21031, 2018.

[66] D. Ruta and B. Gabrys, ‘‘Classifier selection for majority voting,’’ Inf.
Fusion, vol. 6, no. 1, pp. 63–81, Mar. 2005.

[67] Automotive Simulation Models (ASM). Accessed: Feb. 22, 2023. [Online].
Available: https://www.dspace.com

[68] P. Koopman, ‘‘A case study of Toyota unintended acceleration and software
safety,’’ Pittsburgh, PA, USA, Sep. 2014, pp. 3–6.

[69] tf.keras.utils.normalize | TensorFlowCore v2.7.0. Accessed: Feb. 22, 2023.
[Online]. Available: https://www.tensorflow.org

[70] D. M. W. Powers, ‘‘Evaluation: From precision, recall and
F-measure to ROC, informedness, markedness and correlation,’’ 2020,
arXiv:2010.16061.

[71] H. Shao, H. Jiang, H. Zhao, and F. Wang, ‘‘A novel deep autoencoder
feature learning method for rotating machinery fault diagnosis,’’ Mech.
Syst. Signal Process., vol. 95, pp. 187–204, Oct. 2017.

[72] Y. Wu, W. Jin, Y. Li, and D. Wang, ‘‘A novel method for simultaneous-
fault diagnosis based on between-class learning,’’ Measurement, vol. 172,
Feb. 2021, Art. no. 108839.

[73] X. Ma, Y. Hu, M. Wang, F. Li, and Y. Wang, ‘‘Degradation state partition
and compound fault diagnosis of rolling bearing based on personalized
multilabel learning,’’ IEEE Trans. Instrum. Meas., vol. 70, pp. 1–11, 2021.

[74] Z. Zhang, S. Li, Y. Xiao, and Y. Yang, ‘‘Intelligent simultaneous fault
diagnosis for solid oxide fuel cell system based on deep learning,’’ Appl.
Energy, vols. 233–234, pp. 930–942, Jan. 2019.

MOHAMMAD ABBOUSH received the M.Sc.
degree in mechatronic engineering from Siegen
University, Siegen, Germany, in 2018. Since 2019,
he has been a Research Associate with the Institute
for Software and System Engineering, Clausthal
University of Technology, Clausthal-Zellerfeld,
Germany, where he is currently pursuing the Ph.D.
degree. His current research interests include the
verification and validation of automotive software
systems, real-time hardware-in-the-loop (HIL)

simulation, intelligent fault detection and diagnosis, fault injection test,
reliability and safety analysis, and machine learning. His work focuses on
the development of intelligent failure analysis methods based on machine
learning approach for real-time validation of automotive software systems.

CHRISTOPH KNIEKE received the degree
in computer science from TU Braunschweig,
Germany, the Diploma degree in computer
science, in 2004, the Ph.D. degree, in 2011, and
the Habilitation degree, in 2019. During this time,
he was already a Research Assistant. Furthermore,
he was a Lecturer with the TU Clausthal. In par-
ticular, he is interested in model-based systems
engineering (MBSE), domain-specific modeling
languages, software product line engineering, and

architecture evolution. Within these fields, he was also the Leader of several
research and development projects.

ANDREAS RAUSCH received the Ph.D. degree
from the University of Munich, in 2001, under
Prof. Dr. Manfred Broy. He is currently the
Director of the Institute for Software and Systems
Engineering, TUClausthal, where hewas theHead
of the Chair for Software Systems Engineering,
from 2007 to 2018. Until 2007, he was the Head of
the Chair for Software Architecture, University of
Kaiserslautern. His research interests include the
field of software engineering focuses on software

architecture, model-based software engineering, and process models, with
more than 140 publications worldwide. He is involved in the management
of and participation in a number of international, European, and national
research projects.

140040 VOLUME 11, 2023


