
Received 7 November 2023, accepted 6 December 2023, date of publication 7 December 2023,
date of current version 13 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3340680

MicroCFI: Microarchitecture-Level Control-Flow
Restrictions for Spectre Mitigation
HYEREAN JANG AND YOUNGJOO SHIN
School of Cybersecurity, Korea University, Seoul 02841, South Korea

Corresponding author: Youngjoo Shin (syoungjoo@korea.ac.kr)

This research was supported by a National Research Foundation of Korea (NRF) grant, funded by the Korean government
(MSIT)(No.2023R1A2C2006862). This work was supported by an Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (RS-2023-00227165).

ABSTRACT Spectre attack exploits the vulnerability in speculative execution, an optimization technique
for modern superscalar processors. Among the attack variants, Spectre-BTB and Spectre-RSB are the
most threatening because they allow adversaries to execute arbitrary code in the transient execution
context. However, there are few mitigation techniques for these Spectre variants due to the high degree
of implementation difficulty. In this paper, we propose MicroCFI, a hardware/software co-design approach
to mitigate Spectre-BTB and Spectre-RSB. The main idea of MicroCFI is to enforce control-flow integrity
(CFI) in microarchitectural level of a program’s execution. Specifically, MicroCFI strictly limits possible
forward and backward indirect branch targets predicted by BTB and RSB by imposing CFI properties on
all potential targets. As indirect branches only have destinations to valid targets that satisfy these properties,
MicroCFI significantly reduces the chance of arbitrary code execution in Spectre attacks. We implemented
a prototype of MicroCFI using an LLVM compiler and performed an evaluation on MARSSx86, a simulator
for x86 microarchitectures. The security evaluation shows that MicroCFI reduces the number of available
Spectre gadgets by more than 90%, significantly increasing the complexity of the attack. The performance
evaluation using the SPEC CPU 2017 benchmarks shows that MicroCFI introduces negligible performance
overhead.

INDEX TERMS Spectre, control-flow integrity, microarchitectural attack.

I. INTRODUCTION
Modern processors employ various optimization techniques
such as out-of-order and speculative execution to maximize
instruction-level parallelism. Unfortunately, these optimiza-
tion techniques are prone to microarchitectural attacks [1],
[2], [3], [4], [5], [6], [7], [8]. Spectre [1] is one of the attacks
that exploit a vulnerability in speculative execution, allowing
attackers to leak secret from a victim across a protection-
domain boundary. The vulnerability arises from the fact that
althoughmisspeculation cause no changes in the architecture,
it can leave a trace in microarchitectural components such as
the cache. An attacker exploits this weakness by intentionally

The associate editor coordinating the review of this manuscript and

approving it for publication was Amjad Mehmood .

inducing misspeculation in a victim’s domain, thus encoding
confidential data to the cache. The attacker then uses a cache
covert channel [9], [10], [11] to decode the data. The Spectre
attack has several variants, including Spectre-PHT, Spectre-
BTB, and Spectre-RSB, which differ in the branch prediction
units they exploit [1], [12], [13], [14], [15], [16], [17].

Spectre-BTB and Spectre-RSB attacks differ from
Spectre-PHT in their use of indirect branches instead of
directional branch instructions. Since indirect branches have
no target restrictions, these attacks can result in speculative
arbitrary code execution, causing a more significant security
risk than Spectre-PHT. Despite this higher threat level, most
studies have mainly concentrated on Spectre-PHT [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27], with less
attention paid to mitigating Spectre-BTB and Spectre-RSB

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 138699

https://orcid.org/0000-0003-4100-9338
https://orcid.org/0000-0003-4831-7392
https://orcid.org/0000-0003-3941-4617


H. Jang, Y. Shin: MicroCFI: Microarchitecture-Level Control-Flow Restrictions for Spectre Mitigation

attacks. This is primarily due to the high complexity in
implementing mitigation techniques. Spectre-BTB (RSB)
attack uses multiple branch targets, making it more difficult
to block potential gadgets compared to Spectre-PHT attacks,
which only utilize direct conditional branches with two
branch targets.

Several security measures are available to prevent
Spectre-BTB and Spectre-RSB attacks. Retpoline [28] and
microcode patches by CPU vendors [29], [30] essentially
avoid or disable the use of vulnerable branch prediction units.
However, these methods significantly reduces processor
performance due to the disabled speculation. Even worse,
a vulnerability has been recently discovered in Retpoline
[31], which can be exploited by Spectre-BTB-like attacks.
Other security solutions [32], [33] aim to mitigate attacks
by creating or modifying the hardware structure, introducing
a high degree of hardware implementation complexity.
In conclusion, current solutions suffer from significant
performance issues and the prohibitive cost of hardware
modifications.

In this paper, we address the issues of previous solutions
and propose MicroCFI, a novel hardware/software co-design
approach to mitigate Spectre-BTB and Spectre-RSB. Our
method employs a CFI protection mechanism within a
microarchitectural context to prevent control-flow hijacking
during speculative execution. Specifically, MicroCFI pre-
vents attackers from finding available Spectre gadgets by
restricting a program’s control flow in the microarchitectural
execution context.

The concept of MicroCFI is based on the observation
of a normal program’s behavior. In the control flow of a
normal program, the target address of forward indirect control
transfer (e.g., jmp and call) will always be the entry point
of a basic block or function. Likewise, the target of backward
indirect control transfer (e.g., ret) is the next instruction of a
call instruction. We refer to the normal forward/backward
indirect control transfer target as a valid target (VT). Our
observation is that any valid speculative execution at indirect
branches transfers the program’s control to VTs. In other
words, transfer to non-VTs (i.e., targets other than VTs)
is not caused by valid speculation, but only by malicious
speculations.

In this light, MicroCFI constrains a program’s execution by
limiting branch targets that are predicted by BTB and RSB to
only VTs. Specifically, MicroCFI implements the restriction
by making all the VTs to be 2n-bytes aligned in the program’s
memory. Such VT’s property is ensured by applying n-bit
masking to the branch target before branching speculatively,
which requires the slight modification of branch prediction
process in the pipeline.

Since any code chunkswith base addresses that are not VTs
cannot be utilized as valid Spectre gadgets, MicroCFI sig-
nificantly reduces the likelihood of successful Spectre-BTB
and Spectre-RSB attacks. Nevertheless, the constraint on VTs
does not imply the removal of all possible Spectre gadgets.
To ensure that no successful attack can occur, we insert

fence instructions in all the remaining exploitable gadgets,
which comes at the expense of introducing some additional
overhead.

The amount of Spectre gadgets eliminated by MicroCFI is
determined by the alignment size (n), which is a configurable
parameter of MicroCFI. Our evaluation shows that 24-byte
alignment (i.e., n = 4) can reduce the available gadgets by
an order of magnitude, effectively mitigating the attack with
a reasonable performance overhead (discussed in detail in
Section V-B).
In order to implement MicroCFI, the processor’s instruc-

tion pipeline process needs to undergo a minor modification
that involves performing bit-masking operations on predicted
addresses in the instruction-fetching unit. This makes it
relatively easy to integrate MicroCFI with existing processor
architectures, with lower complexity compared to previous
hardware-based solutions [28], [29], [30].

We developed a prototype of MicroCFI usingMARSSx86,
a simulator for x86 microarchitecture, and an LLVM com-
piler. To evaluate the performance ofMicroCFI, wemeasured
its memory and execution overhead on the SPEC CPU
2017 benchmark suite [34]. We conducted experiments using
different alignment sizes, including 23, 24, and 25 bytes,
to analyze the performance according to the alignment size.
The results of these experiments showed that MicroCFI
introduces a reasonable performance overhead.

We assessed the security of our approach by measuring
the reduction in the number of Spectre gadgets in various
applications, including OpenSSL, Nginx, and Apache HTTP
servers. Our experimental results show the reduction of more
than 90% in the number of Spectre gadgets in most of
these applications. We also evaluated the runtime overhead
associated with incorporating the fence instruction to
completely disable the remaining gadgets. Our experiments
demonstrate that the fence instruction introduces only
negligible overhead across all alignment sizes. This outcome
is attributed to MicroCFI’s significant reduction of gadgets,
thereby minimizing the necessity for inserting fence
instructions.

In summary, our main contributions are as follows:

• We propose MicroCFI, a novel Spectre-BTB and
Spectre-RSB mitigation technique. It follows a
CFI-based approach and significantly increases the
attack complexity by reducing the number of available
Spectre gadgets.

• We implement and evaluate a prototype of MicroCFI
using the SPEC CPU benchmark suite. Our results
demonstrate that MicroCFI can be implemented with
only a minor hardware modification and introduces a
reasonable performance overhead.

• Weperform a security analysis bymeasuring the number
of available gadgets with different alignment sizes. Our
results demonstrate that MicroCFI provides the best
tradeoff between security and performance when using
a 25-byte alignment.

138700 VOLUME 11, 2023



H. Jang, Y. Shin: MicroCFI: Microarchitecture-Level Control-Flow Restrictions for Spectre Mitigation

TABLE 1. Summary of defense techniques. For Spectre attack, ○ indicates that the technique mitigates the attack. For Functionality of speculation,
○ indicates that the technique preserves the functionality of speculative execution.

The remainder of this paper is organized as follows.
In Section II, we discuss existing defense techniques
for Spectre-BTB and Spectre-RSB in comparison with
MicroCFI. In Section III, we provide background knowledge
regarding Spectre attacks and the proposed mitigation tech-
nique. Section IV presents the details of the main approaches
to MicroCFI. Section V presents the implementation of
MicroCFI and its evaluation results, in terms of performance
and security. Finally, we conclude the study in Section VI.

II. RELATED WORK
The defense techniques for Spectre-RSB and Spectre-BTB
can be broadly classified into hardware- [32], [33] and
software-based techniques [28], [29], [30], [35]. In this
section, we describe the existing defense techniques based on
this classification. Table 1 provides a summary of the defense
techniques, including their basic methodology, the attacks
they attempt to mitigate, and the requirements for hardware
modification.

A. SOFTWARE-BASED PROTECTION
Google proposed Retpoline [28], a protection technique for
Spectre-BTB. The Retpoline transforms a jmp instruction
into a sequence of instructions that ends with a ret
instruction. In this manner, the Retpoline avoids using BTB
for branch prediction, and the attacker cannot produce
malicious speculative execution with BTB poisoning. Unlike
MicroCFI, Retpoline does not mitigate Spectre-RSB. More-
over, it causes significant performance degradation because it
fundamentally disables speculative execution using the BTB.

CPU vendors extended the x86-instruction set [29], [30]
by adding new instructions that control branch prediction
to prevent Spectre-BTB. The first is an indirect branch
restricted specification (IBRS), which puts the processor in
a special mode called IBRS. It prevents privileged branch
instructions from being affected by less-privileged ones. The
second is single-thread indirect branch prediction (STIBP),
which prohibits the sharing of branch predictors between

different threads on the same core. Finally, the indirect branch
predictor barrier (IBPB) flushes the BTB state so that any
code executed prior to the IBPB cannot affect the branch
predictions after the IBPB. These x86 extensions can be
activated via microcode updates and require support from an
operating system and BIOS. Like Retpolines, they provide
only defense against Spectre-BTB. Because they avoid or
restrict speculative execution, they introduce more than four
times the performance overhead [1].

Zhuojia et al. proposed Venkman [35], a software-based
Spectre-mitigation technique. The goal of Venkman is to
constrain all speculative executions at target addresses to
prevent attackers from poisoning BTB and RSB. To this
end, Venkman aligns the target addresses of all the jmp,
call, and ret instructions to ensure that only the aligned
addresses are stored in the BTB and RSB. Then, Venkman
forces indirect branch instructions to jump only to the start
address of the aligned code chunks, which is achieved by
instrumenting bit-masking operations prior to the branch
instructions.

MicroCFI is similar toVenkman in its basic idea, but differs
in the approach that implements the mitigation. Basically,
Venkman is a software-based approach that prohibits the
execution of unaligned binary to prevent BTB and RSB poi-
soning. That is, there are no micro-architectural restrictions
imposed on the addresses stored in BTB, RSB, or predicted
branch target addresses. Assuming the presence of a skilled
attacker who can bypass the alignment check or compromise
the operating system, they could potentially run a malicious
program that does not comply with the aligned binary format,
thereby corrupting BTB and RSB. Nonetheless, MicroCFI
can thwart such advanced attackers by placing stringent
restrictions on the projected addresses within the hardware.

B. HARDWARE-BASED PROTECTION
SpecCFI [32] attempts to mitigate Spectre-BTB and Spectre-
RSB using a CFI mechanism. SpecCFI applies an ID-based
CFI [36], [37], [38] to prevent Spectre-BTB. This technique

VOLUME 11, 2023 138701



H. Jang, Y. Shin: MicroCFI: Microarchitecture-Level Control-Flow Restrictions for Spectre Mitigation

assigns the same ID to both an indirect branch and its valid
targets in the CFG. This guarantees the integrity of the control
flow by checking whether the indirect branch has the same ID
before execution. SpecCFI requires hardware modification;
it adds additional storage to each BTB entry to maintain the
ID of the target address. Furthermore, it requires additional
support from hardware-assisted protection techniques such
as Intel CET or ARM BTI to embed IDs in indirect branch
instructions. To mitigate Spectre-RSB, SpecCFI also applies
a shadow call stack (SCS) that can detect tampering with the
return address. Therefore, a special register that stores a return
address is required through hardware modification.

ConTExT [33] proposed a new type of memory mapping
called non-transient mapping. Memory regions containing
confidential data were annotated with C/C++ directives by
a program developer. The memory region is then assigned
to a non-transient mapping. ConTExT prevents specula-
tive execution in the memory region with non-transient
mapping because the non-transient memory regions are
not accessible during transient execution. For ConTExT
to be effective, non-transient mapping must be guaranteed
not only for the confidential data itself, but also for any
data propagated from the secret. Therefore, to protect
the secret propagated to the register, ConTExT requires
hardwaremodification; it requires an additional bit to identify
whether all registers should be operated with non-transient
mapping.

These hardware-based protection techniques provide
effective and efficient protection against Spectre-RSB and
Spectre-BTB. However, they require additional internal
storage equipment, such as registers and tags, in the
microarchitectural hardware components. Employing such
internal storage is very expensive and causes huge hardware
complexity in microprocessors. On the other hand, MicroCFI
requires no storage but only a bit-masking unit in the instruc-
tion fetching hardware, which causes negligible complexity
compared to previous solutions.

III. BACKGROUND
A. SPECULATIVE EXECUTION
Modern processors utilize a speculative execution technique
to avoid pipeline stalls. This involves predicting and fetching
a branch target in advance, so that instructions at the target
address can be speculatively executed. Successful prediction
provides a considerable performance benefit. However, if the
prediction fails, the pipeline should be flushed, and all
architectural states affected by the speculative execution must
be reverted.

To improve prediction accuracy, processors typically use a
specialized hardware unit called a branch predictor. This unit
keeps a history of successfully executed branches and, based
on this history, predicts the next instruction address when the
fetch process begins.

Branch predictors can be classified according to the type
of branch instructions, as shown in Figure 1. Pattern-history
table (PHT) is used for conditional direct branch instructions,

FIGURE 1. Detail of fetch process including branch prediction.

which keeps track of the previous prediction outcomes
of directional branch instructions. Forward indirect branch
instructions like call and jmp use a branch target buffer
(BTB) for prediction, which stores the addresses of the
most recently executed branch instructions along with their
corresponding branch target addresses. For backward indirect
branch instructions like ret, a return stack buffer (RSB) is
used, which is a stack structure where the return address is
pushed when a call instruction is executed.

B. SPECTRE ATTACKS
Speculative execution has a fundamental design flaw that
allows for microarchitectural side-channel attacks. This vul-
nerability originates from the fact that although mispredicted
speculative execution reverts the affected architectural states
(e.g., registers and memory), microarchitectural states such
as cache remain unchanged. Hence, any data derived from
speculative execution remain in the cache, even if the
execution has been rolled back.

Spectre [1] is a microarchitectural attack that exploits these
vulnerabilities in speculative execution. This attack exploits
the observation that speculative execution may cause the
processor to execute unnecessary instructions. The control
over such speculatively executed instructions is achieved
through the deliberate manipulation of the branch predictor.
The attack proceeds in three steps. In the first step, the
attacker locates gadgets to use for the attack within the
victim program. The attacker can compose the payload by
chaining several gadgets like ROP attack. In the second step,
the attacker poisons the branch predictor, causing the victim
process to execute attacker-chosen gadgets mis-speculatively.
Finally, when these gadgets are speculatively executed and
load the victim’s confidential data into the cache, the attacker
leaks that data through cache covert-channel techniques such
as Flush+Reload.

As aforementioned, to make the victim execute the
attacker-chosen gadgets speculatively, the attacker must
poison a branch predictor, that is, train the branch predictor
to perform misspeculation.

Spectre has multiple variants and are classified according
to the branch predictors they attempt to poison. Table 2

138702 VOLUME 11, 2023



H. Jang, Y. Shin: MicroCFI: Microarchitecture-Level Control-Flow Restrictions for Spectre Mitigation

TABLE 2. Classification of spectre attacks.

presents the Spectre variants and the corresponding branch
predictors.

Spectre-PHT [1] targets the PHT to cause mispredictions
in conditional branch instructions, while Spectre-BTB [1]
targets the BTB to poison the predicted branch target of
the forward indirect branches. In addition, Spectre-RSB [12]
attempts to poison the target address of the return instruction
in the RSB.

C. CONTROL-FLOW INTEGRITY
In software attacks, attackers attempt to hijack the control
flow of a program by manipulating the memory or register
where the branch target addresses are stored. These attacks
cause abnormal control flow, which does not occur during
normal program execution.

Control-flow integrity (CFI)-based protection technique
[36], [39] was designed to mitigate control-flow hijacking
attacks in software. It establishes a policy for a valid indirect
control flow and forces any control flow transfers caused
by indirect branches to follow the policy. Simple but strong
CFI techniques use a control-flow graph (CFG). In general,
control-flow hijacking attacks cause an invalid control flow
over CFG. Therefore, these CFI techniques [36], [40], [41],
[42], [43], [44], [45], [46] can detect violations by checking
whether an indirect branchmoves to a valid target on the CFG
for every execution.

However, applying CFG-based CFI techniques to software
is not trivial, as it may increase the performance overhead
and complexity of software development owing to CFG
calculations. To overcome these limitations, lightweight
CFI-based [47], [48], [49], [50] techniques have been
proposed. Without the use of the CFG, the lightweight
techniques perform verification based on the characteristics
of normal indirect branches. As the lightweight CFI technique
introduces low overhead, it can be easily applied regardless
of the program complexity and has the advantage of being
able to supplement it by combining it with other protection
techniques.

IV. MicroCFI
A. THREAT MODEL
In this study, we consider attackers as follows. Firstly,
we assume that the attacker is able to locate their process
on the same physical core as the victim. The victim could
be running in a different protection domain than the attacker,

such as a different process or a privileged kernel. Secondly,
the attacker can poison the shared BTB or RSB using their
knowledge of the source code or binary of the victim’s
program. This leads the victim to speculatively execute the
attacker’s chosen gadgets.

We do not consider microarchitectural side-channel attacks
[1], [2], [3], [4] other than Spectre-BTB and Spectre-RSB.
That is, our attack model does not include attackers who
deliver Meltdown-type or Spectre-PHT attacks, as several
countermeasures have already been proposed [18], [19],
[20], [21], [22], [23], [24], [25], [51]. It is noteworthy that
MicroCFI is orthogonal to the existing countermeasures and
can be easily integrated with them.

B. MOTIVATION AND OVERVIEW
1) MOTIVATION
Our approach is mainly motivated by that Spectre attacks
lead to abnormal control flow in the speculative execution
of a victim’s program, which would never occur in normal
program execution. This is similar to software-level control
flow hijacking attacks, which can be effectively mitigated by
CFI technique. However, the existing CFI technique cannot
directly mitigate Spectre due to differences in the level at
which control flow violations occur.

We aim to achieve control-flow integrity not only in
software but also in microarchitecture. In particular, we focus
on lightweight coarse-grained CFI techniques to achieve the
goal. In general, existing coarse-grained CFI techniques [47],
[48], [49] are built with the insight that a normal program
execution has the following immutable properties of indirect
branches:

• Indirect call and jump instructions always branch to an
entry of a basic block or a function. In fact, function
entry can be considered as an entry of basic blocks
because functions are composed of basic blocks.

• Return instructions always jump to the instruction right
after a call instruction.

Based on the properties above, coarse-grained CFI techniques
impose restrictions on control-flow transfer driven by indirect
branches. In order to mitigate Spectre-BTB and Spectre-
RSB, these immutable properties must also be satisfied with
speculative executed indirect branches.

2) OVERVIEW
The basic idea of MicroCFI is to ensure the aforementioned
immutable properties for microarchitectural control-flow
transfers predicted using the BTB or RSB. In this paper,
we refer these branch targets that meet the immutable
properties to as valid targets (VT). MicroCFI employs two
methods to implement its control flow integrity mechanism:
(1) code alignment and (2) bit masking. The first method,
code alignment, re-arranges all VTs in the program so that
they are equipped with address-side characteristics, i.e., the
VTs have 2n-byte-aligned addresses in the memory. By doing
so, any speculative control flows must be directed to aligned

VOLUME 11, 2023 138703



H. Jang, Y. Shin: MicroCFI: Microarchitecture-Level Control-Flow Restrictions for Spectre Mitigation

FIGURE 2. Example of 24-byte code alignment.

VTs. The second method, bit masking, involves adding a
bit masking unit to a fetching hardware in the instruction
pipeline. This unit efficiently restricts any speculative indirect
branches to only target the aligned VT by performing n-bit
masking operations on the predicted branch target address.

The combination of these two techniques creates a robust
control flow integrity mechanism at the microarchitecture
level. Specifically, an attacker is restricted to choose valid
gadgets, i.e., gadgets of which the base addresses are aligned
VTs, which are a small fraction of all possible gadgets found
in the program. As a result, it becomes more challenging for
attackers to find available valid gadgets and greatly increases
attack complexity, effectively mitigating Spectre-BTB and
Spectre-RSB.

C. CODE ALIGNMENT
MicroCFI transforms a program into one in which all VTs
in the program code are aligned by 2n bytes. Figure 2 shows
an example of a program transformation with 24-byte code
alignment. Figure 2(a) shows a program to be transformed;
it has four VTs at addresses 0 × 03, 0 × 18, 0 × 31, and
0 × 3d. Figure 2(b) shows the code of the transformed
program consisting of four code chunks at addresses 0 × 10,
0 × 30, 0 × 50, and 0 × 60, all of which are aligned with
24 bytes in the memory.

The code alignment inevitably creates empty spaces
between code chunks in the transformed program. In most
cases, we fill these gaps by just inserting NOP instructions
right after the last instruction of the code chunk. However,
in the case of the code chunk that ends with a call
instruction, we have to take further consideration. That is,
inserting NOPs right after call will result in persistent
misspeculations in the RSB, negatively impacting the perfor-
mance.

This is because the RSB behaves like a software stack.
Suppose that NOPs are appended immediately after the call
instruction, as shown in Figure 3(a). The execution of callq
will push the return address, i.e., the address of the next

instruction (0 × 59 in Figure 3(a)) to both the stack and
RSB. When the subsequent return instruction is fetched, the
processor will consult the RSB to predict the return address.
However, as MicroCFI applies bit-masking to the predicted
address (the detail is described in the next section), the RSB
will consequently present the aligned address (i.e., 0 × 50),
resulting in inconsistency with the return address stored in the
stack. This will lead to misspeculation. Therefore, we have to
address the code chunk ending with a call instruction in a
different manner.

To prevent misspeculation caused by the inconsistency
between the stack and RSB, we insert NOPs prior to the call
instead of padding right after the instruction, as shown in
Figure 3(b). Thismethodmovescallq to a location adjacent
to the desired next instruction located at the aligned address.
In this case, callq pushes the (aligned) return address to
both the stack and the RSB. Therefore, a return address in
the RSB will remain consistent with the stack even after bit
masking is applied, and misspeculation will never occur in
this case.

MicroCFI ensures that all VTs in the transformed program
are aligned with 2n bytes in memory. However, it should
be noted that the alignment of memory addresses to 2n

bytes does not guarantee that all 2n-byte-aligned addresses
are VTs. In fact, there may exist code chunks whose base
addresses are aligned but are not VTs, which creates a
potential avenue for attackers to construct valid gadgets using
these chunks. Even more concerning, there is a risk that
valid gadgets can be constructed using code chunks whose
base addresses are VTs. Therefore, the number of valid
gadgets that can be constructed in a transformed program
is a crucial factor in assessing the security of MicroCFI.
Our experiments with practical applications demonstrate that
MicroCFI significantly reduces the number of valid gadgets
through code alignment, and the specific details of this
analysis are presented in Section V-C.

D. BIT-MASKING ON PREDICTED ADDRESS
Code alignment is achieved by software-based program
transformation. However, relying solely on this approach
is inadequate for enforcing CFI and mitigating Spectre
attacks, as these attacks occur during speculative execution.
To restrict the branch targets of speculative execution to only
aligned VTs, the microarchitecture must include specialized
hardware functionality to guarantee that the BTB and RSB
provide aligned predicted branch target addresses.

To enforce MicroCFI, a simple hardware mechanism is
introduced at the instruction fetch stage. That is, we add a
bit-masking unit that performs n-bit masking on the predicted
branch target addresses provided by the BTB and RSB.
Figure 4 shows the modified fetch stage. When n-bit masking
is applied, only addresses aligned to 2n-byte boundaries are
fetched and utilized for speculative execution.

The bit-masking unit is an effective means of limiting
the attacker’s abilities without any negative impact on the
execution of a program. When a program is transformed

138704 VOLUME 11, 2023



H. Jang, Y. Shin: MicroCFI: Microarchitecture-Level Control-Flow Restrictions for Spectre Mitigation

FIGURE 3. Examples of two alignment schemes for call-preceded instructions.

with code-alignment, only aligned addresses are kept in
the BTB and RSB, as all indirect branch targets in the
program are aligned in memory. Consequently, bit masking
on the predicted address does not affect the branch prediction
performance in the transformed program. In contrast, bit
masking impedes the attacker’s abilities. To carry out
Spectre-BTB (or Spectre-RSB), the attacker must corrupt the
BTB (RSB) with their chosen target addresses. If the attacker
selects a non-aligned address as a target, the bit masking
will result in an aligned but incorrectly predicted address.
Therefore, the attack will fail, and the victim will potentially
execute arbitrary code instead of the desired gadget selected
by the attacker. Additionally, the executed code is treated
as a misprediction and is rolled back, so it has no effect on
program execution.

V. IMPLEMENTATION AND EVALUATION
We implement a prototype of MicroCFI to evaluate its
effectiveness in terms of the performance and security. In this
section, we present our implementation of MicroCFI in detail
and the evaluation results.

A. IMPLEMENTATION
MicroCFI has two requirements of modification in both
software and hardware. First, all VTs in a program must
be aligned to 2n bytes in memory. The code alignment can
be implemented with the aid of the LLVM compiler [52],
a reusable and modular compilation framework. In particular,
we extend the compiler to transform a program such
that all the VTs in the program are aligned. For this
purpose, we use alignment directives for assembly files
generated in a compilation process. The extended LLVM
compiler automatically inserts NOP bytes in the empty spaces
introduced by the code alignment. For the specific case
of a call instruction, as described in Section IV-C, the
compiler inserts NOPs in front of the call instruction to
avoid persistent misspeculation.

FIGURE 4. A pipeline that performs bit-masking on the predicted branch
target address.

The second requirement of MicroCFI is that branch target
addresses predicted via BTB or RSB has to be bit-masked
prior to speculative execution. Therefore, bit-masking must
be included in the branch prediction process, which occurs
in the fetch stage of an instruction pipeline. Unfortunately,
CPU vendors neither allow access to the internals of CPU
microarchitectures nor disclose any implementation details.
Therefore, we decide to implement MicroCFI based on
a processor simulator, instead of using real microproces-
sors. In particular, we use the MARSSx86 simulator [53],
which supports cycle-accurate full-system simulation of
an x86-64 architecture. MARSSx86 provides a simulation
environment with detailed pipeline models including branch
prediction based on PTLsim [54]. We implement MicroCFI
by modifying the branch prediction process implemented
in MARSSx86. The modified MARSSx86 performs a
bit-masking operation on the predicted target address by
referring to BTB and RSB.

There is a limitation to the current implementation of
our MicroCFI prototype. Because MicroCFI modifies CPU
internals to perform bit-masking on predicted addresses, all

VOLUME 11, 2023 138705



H. Jang, Y. Shin: MicroCFI: Microarchitecture-Level Control-Flow Restrictions for Spectre Mitigation

TABLE 3. CPU configuration for the MARSSx86 simulator.

programs running in the MicroCFI-protected system must
have their VTs aligned with 2n bytes to avoid misspecula-
tions. The programs include an operating system, such as
a Linux kernel, and C/C++ standard libraries (e.g., glibc
and libstdc++), which have built environments dedicated to
GCC toolchains [55]. As we use an LLVM compiler, the
current implementation of MicroCFI does not support the
transformation of these types of programs. We would like
to emphasize that this limitation is not due to the inherent
properties of MicroCFI, but due to implementation issues.

B. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the
MicroCFI through experiments. The experiments are con-
ducted using the MARSSx86 simulator [53] running on
Ubuntu 18.04 Linux. For the evaluation, MARSSx86 is
configured to simulate an Intel Skylake processor [56].
Details of the configuration are presented in Table 3.

We run the SPEC CPU 2017 benchmark on the simulator
to measure the performance overhead of MicroCFI. In partic-
ular, we choose 14 benchmark programs among them, which
are written in C/C++ language, and measure the runtime
and memory overhead while running these benchmarks.
To evaluate the performance of MicroCFI with respect to
the alignment size, experiments are conducted by varying the
alignment from 24 to 26 bytes.

1) RUNTIME OVERHEAD
We perform an experiment to evaluate the runtime overhead.
The overall runtime overhead, ROT , is represented by the
following equation:

ROT = ROM + ROA + α. (1)

ROM represents the runtime overhead directly caused by
a bit-masking operation, which is the essential operation of
MicroCFI to enforce indirect branches to jump to aligned
VTs. To evaluate theROM , wemeasure the average number of
executed instructions per clock cycle for each benchmark fol-
lowing a common approach to simulation-based performance
evaluation [32], [57]. MARSSx86 provides an instruction per
cycle (IPC) metric for this purpose.

FIGURE 5. Normalized IPC of SPEC benchmarks.

ROA in Equation (1) indicates the runtime overhead
directly induced by the code alignment. As the code align-
ment introduces dummy NOP instructions between aligned
code chunks, additional execution overhead is inevitable,
which may affect IPC because of more misses in an L1-I
cache and increased instruction stream. Hence, to evaluate
ROA, we use a metric that measures the increase in execution
time of the benchmark. We perform this experiment in a real
host environment due to the extremely low execution speed
of the simulator.

In addition, there may be unknown but negligible factors
that also affect the runtime overhead (α), which we did not
consider in our evaluation. Therefore, we focus on ROA and
ROM to estimate the overall runtime overhead of MicroCFI.

a: OVERHEAD DUE TO BIT-MASKING
First, we measure the runtime overhead ROM induced by the
bit-masking operation. For accurate measurements, we use
the IPC metric offered by the MARSSx86 simulator while
running the SPEC benchmarks.

The experimental results are presented in Figure 5,
which shows the measured IPC values for all benchmarks.
These IPCs are obtained from the execution of the first
billion user-mode instructions after launching the benchmark
program. The IPC in the graph is normalized; it is the ratio
of the measured IPC of the MicroCFI-enabled program to
that of the same program without MicroCFI. Hence, a value
greater than 1 implies better execution performance when
MicroCFI is applied; otherwise, it indicates a lower execution
performance. We observe that the normalized IPCs values are
close to one for all MicroCFI-enabled benchmark programs.
The results indicate that the bit-masking operation results in
a negligible overhead during program execution.

For more precise analysis, we count the number of
bit-masking operations performed during the execution of
each benchmark. Table 4 presents the average number
of executed masking operations for 10,000 user mode
instructions for each benchmark. Although the number varies

138706 VOLUME 11, 2023



H. Jang, Y. Shin: MicroCFI: Microarchitecture-Level Control-Flow Restrictions for Spectre Mitigation

FIGURE 6. Runtime overhead with code alignment.

TABLE 4. The number of maskings per 10,000 instructions in SPEC CPU
2017 benchmarks.

significantly ranging from 0.2 to 362.4 in all benchmark
programs, we observe that there is no correlation between the
number of bit-masking operations and the normalized IPC.
From these results, we conclude that the runtime overhead
caused by the bit-masking operation is negligible.

b: OVERHEAD DUE TO CODE ALIGNMENT
To obtain an accurate measurement of the overhead ROA,
we conduct an experiment where only code alignment is
employed in MicroCFI, and bit-masking operations are
excluded. As these operations aim to restrict malicious tran-
sient control flows, running experiments without bit-masking
has no impact on the execution behavior of benign SPEC
benchmark programs.

To evaluate the runtime overhead, we calculate the
geometric mean of the execution times from 150 runs for each
benchmark. The experimental results are depicted in Figure 6,
where the overhead ROA is presented as the percentage ratio
of the execution time of a benchmark with MicroCFI to
that of the same benchmark without MicroCFI. For 23-byte
alignment, the average overhead is 0.37%, while it is 0.20%
for 24 bytes and 0.76% for 25 bytes.

The results reveal that for 23-byte alignment, the best case
is recorded at -0.34% for the 511.povray benchmark, while
the worst case is 1.48% for 526.blender. For 24 bytes, the
best case is -0.66% for 525.x264, while the worst case is
1.35% for 523.xalancebmk. For 25 bytes, the best case is
-0.47% for the 557.lbm, while the worst case is 2.78% for
the 531.deepsjeng, which is the same as for 24 bytes.

Most of the benchmarks show negligible overhead for
all alignment sizes, but interestingly, the overhead does
not always increase proportionally with the alignment size.
In some benchmarks, such as 508.namd, 511.povray,
519.lbm, 525.x264, 538.imagick, 541.leela, and 557.xz,
the overhead is negative, indicating that these benchmarks
perform better when MicroCFI is applied. We postulate that
code alignment leads to unexpected performance improve-
ment. The arrangement of code inherently influences cache
andmemory locality. Thus, alterations in code layout induced
by code alignment can increase the cache hit rate for
instructions, which we estimate is the underlying reason for
performance enhancements observed in some benchmark.

Typically, when the NOP instruction is executed, it takes a
certain amount of time. As the alignment size grows, more
NOP instructions are added, resulting in greater overhead.
Surprisingly, our findings contradict this pattern. We believe
that this is due to the influence of code alignment on the cache
state during program execution. The aligned code in the cache
may affect the cache hit/miss rate, eventually affecting the
program’s performance.

2) MEMORY OVERHEAD
We measure the memory overhead of MicroCFI using the
SPEC benchmarks. The overhead is obviously caused by the
code alignment, as it actually increases the program size.
Figure 7 shows an increase in the text sections of the SPEC
benchmark programs. From the experiment, we observe that

VOLUME 11, 2023 138707



H. Jang, Y. Shin: MicroCFI: Microarchitecture-Level Control-Flow Restrictions for Spectre Mitigation

FIGURE 7. Memory overhead with code alignment.

TABLE 5. Number of alignments in SPEC CPU 2017 benchmarks.

the program size increases on average by 5.4%, 9.7%, and
27.3% for 23, 24, and 25-byte alignments, respectively. The
memory overhead increases as the alignment size increases.
This is because the larger the alignment size, the more NOP
the instructions inserted into the program.

Table 5 presents the average number of alignments
per 1 KB of the text section of each benchmark program. The
table shows that the number of alignments is proportional to
the memory overhead, as presented in Figure 7. For example,
the 519.lbm benchmark, which has the smallest alignments,
has the lowest memory overhead for all alignment sizes.
Similarly, the 538.imagick benchmark that recorded the
highest memory overhead for all alignment sizes also had the
highest average number of alignments.

The correlation between the number of alignments and
memory overhead is evident as the number of inserted NOP
instructions increases according to the number of alignments
in the program. Consequently, it can be observed that the
memory overhead ofMicroCFI depends on the alignment size
and number of alignments.

Choosing smaller byte alignment can decrease this over-
head, but it might simultaneously increase the pool of
available gadgets. Alternatively, memory overhead can be

reduced by selecting forward or backward-edge to protect,
like most CFIs are classified into two categories: forward-
edge CFI and backward-edge CFI. Protecting only one edge
reduces the amount of code that requires alignment, which
alleviates memory overhead. Nevertheless, this selective
protection exposes a potential vulnerability at the unprotected
edge, compromising overall security. Thus, MicroCFI has a
trade-off between memory overhead and security.

The proposed technique imposes memory cost to enhance
program security. However, the cost of memory has been
declining for a long time, and this memory cost is becoming
more tolerable than the runtime cost. Hence, MicroCFI has
an acceptable memory overhead in practical applications.

C. SECURITY EVALUATION
The security goal of MicroCFI is to make it extremely
challenging for attackers to deliver Spectre attacks by
reducing the number of available Spectre gadgets. Therefore,
the security of MicroCFI can be evaluated by the number of
reduced Spectre gadgets as a result of applyingMicroCFI to a
target program. From this perspective, we measure the extent
to which the number of available Spectre gadgets is reduced
by MicroCFI.

To count the number of Spectre gadgets, we utilize
SpecFication [58], a tool designed to identify Spectre gadgets
in a program’s binary. In MicroCFI-protected programs, only
valid gadgets whose base addresses are aligned to 2n bytes
in memory can be used to construct Spectre gadgets. The
number of valid gadgets in the programs varies according
to the alignment size n. Hence, we measure the number of
valid gadgets for the program with 23, 24, and 25-byte code
alignments.

Spectre attacks can utilize ROP techniques that chain
multiple gadgets together to create an end-to-end exploit.
SpecFication supports identifying small-sized gadgets that

138708 VOLUME 11, 2023



H. Jang, Y. Shin: MicroCFI: Microarchitecture-Level Control-Flow Restrictions for Spectre Mitigation

TABLE 6. Number of valid gadgets.

can be chained together. The tool classifies gadgets based on
their functions as either Shifting, Loading from, or Loading
to. By chaining gadgets from different categories, a functional
payload for the Spectre attack can be constructed.

To evaluate security of MicroCFI, we slightly modify
the tool so that it looks only for valid gadgets. For our
experiment, we use some popular open-source software, such
as OpenSSL(v1.1.1d) library, Nginx(v1.22), and Apache
HTTP server(v2.4.53), as target programs. In particular,
we use two shared libraries, libcrypto1.1.so and
libssl.so in OpenSSL, and two modules, mod_ssl,
and mod_proxy in the Apache HTTP server to measure
the number of valid gadgets. We perform the experiment
on Ubuntu 18.04 Linux, which is the same as the previous
experiment, and the target program is compiled with the
LLVM 3.4 compiler modified for MicroCFI.

Table 6 shows the number of valid gadgets found in
the MicroCFI-protected binaries and the corresponding
percentage of gadgets in the original program. Based on our
analysis, we find that the count of valid gadgets decreases

by more than 80% in all programs with 23-byte alignment
and by over 90% in most programs with 24-byte alignment.
Additionally, the findings suggest that the reduction in
the number of gadgets increases with the increase in the
alignment size.

In the case of mod_ssl, the smallest decrease in the
number of valid gadgets occurs with 23- and 24-byte
alignments. However, we would like to emphasize that there
are no longer shifting gadgets in the transformed mod_ssl
binary. As the shifting gadget is essential for constructing
Spectre gadgets [58], it is extremely challenging or infeasible
for an attacker to deliver a successful Spectre attack without
using the shifting gadget.

Although MicroCFI can significantly decrease the amount
of valid gadgets in a program, it does not completely
eliminate the possibility of the existence of valid gadgets.
To evaluate the risk of potential vulnerabilities, we manually
inspect the remaining valid gadgets, specifically focusing
on shifting gadgets that are crucial for an attack. Our
analysis reveals that, on average, 42% of the remaining
shifting gadgets are false positives, meaning that they are not
genuinely valid gadgets. In particular, when using 25-byte
alignment, all programs except Nginx have no valid gadgets
remaining, while Nginx only has one confirmed valid gadget.
With 24-byte alignment, Nginx and libcrypto1.1.so
has 2 and 10 valid gadgets, respectively. Finally, on the
23-byte alignment condition, we have confirmed 7 valid
gadgets in Nginx, 10 in libcrypto1.1.so, and 1 in
libssl.so. Consequently, the number of valid gadgets
available to attackers is lower than what is displayed in
Table 6. It’s worth mentioning that the figures presented in
Table 6 represent the total number of valid gadgets across all
registers. Thus, if attackers have limited access to registers,
the number of valid gadgets they can use is further restricted,
making it more challenging to construct a Spectre gadget
chain.

In the unlikely scenario that attackers can still create an
attack using the remaining valid gadgets, we can thwart
such attacks by incorporating the fence instruction into the
remaining gadgets. It is unnecessary to insert the fence
instruction into every gadget; inserting it into even one gadget
category, such as shifting, can substantially hinder the con-
struction of a gadget chain. This method may introduce some
overhead, but it provides more comprehensive protection.
Furthermore, unlike other existing techniques [28], [29],
[30], this approach incurs minimal overhead since it restricts
speculative execution solely for the remaining valid gadgets.
We performed experiments with Nginx and its benchmarking
tool [59] to evaluate the impact of the fence instruction. The
results of the experiments revealed that the fence command
had a negligible effect across all alignment configurations.

VI. CONCLUSION
In this paper, we proposed MicroCFI, a novel hard-
ware/software co-design solution to counter Spectre-BTB
and Spectre-RSB attacks. The proposed technique enforces

VOLUME 11, 2023 138709



H. Jang, Y. Shin: MicroCFI: Microarchitecture-Level Control-Flow Restrictions for Spectre Mitigation

strict control on the speculative control flow by implementing
a CFI mechanism within the microarchitectural context. This
is achieved by utilizing a code alignment and bit-masking
technique, where forward/backward indirect branch targets
are transformed into VT that are aligned to memory addresses
of 2n bytes. In an instruction fetch stage, a bit-masking unit
applies bit-masking operations to predicted target addresses
from BTB and RSB, ensuring they are always aligned to
VTs. This restriction significantly reduces the number of
available Spectre gadgets for attackers, making successful
attacks much more difficult.

The security evaluation conducted on real-world appli-
cations like OpenSSL, Nginx, and Apache HTTP server
revealed that MicroCFI with 24-byte alignment reduces the
number of available gadgets by over 90%, making it a
highly effective solution to mitigate Spectre attacks. The
experiments with SPEC CPU 2017 benchmarks showed that
MicroCFI provides reasonable performance overhead with
minimal hardware modification while offering protection
against Spectre-BTB and Spectre-RSB attacks.

In future work, we will improve MicroCFI compatibility.
MicroCFI forces all indirect branches to speculatively
execute aligned addresses at the hardware level, requiring the
rebuilding of all programs run on the processor—an aspect
that may be perceived as a limitation. This constraint is also
intrinsic to the CFI mechanism. Consequently, our focus will
involve studying ways to improve MicroCFI compatibility to
address these limitations.

REFERENCES
[1] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,

M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, ‘‘Spectre
attacks: Exploiting speculative execution,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), May 2019, pp. 1–19.

[2] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
‘‘Meltdown: Reading kernel memory from user space,’’ in Proc. 27th
USENIX Secur. Symp. (USENIX Security). Berkeley, CA, USA: USENIX
Association, 2018, pp. 973–990.

[3] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher,
and D. Gruss, ‘‘ZombieLoad: Cross-privilege-boundary data sampling,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2019,
pp. 753–768.

[4] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, ‘‘RIDL: Rogue in-flight data load,’’
in Proc. IEEE Symp. Secur. Privacy (SP), May 2019, pp. 88–105.

[5] M. Schwarz, M. Schwarzl, M. Lipp, and D. Gruss, ‘‘NetSpectre: Read
arbitrary memory over network,’’ in Proc. Eur. Symp. Res. Comput. Secur.
(ESORICS). Cham, Switzerland: Springer, 2019, pp. 279–299.

[6] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, ‘‘SMoTherSpectre: Exploiting
speculative execution through port contention,’’ in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., Nov. 2019, pp. 785–800.

[7] D. Weber, A. Ibrahim, H. Nemati, M. Schwarz, and C. Rossow, ‘‘Osiris:
Automated discovery of microarchitectural side channels,’’ in Proc. 30th
USENIX Secur. Symp. (USENIX Security). Berkeley, CA, USA: USENIX
Association, 2021, pp. 1415–1432.

[8] H. Ponce-de-Leon and J. Kinder, ‘‘Cats vs. Spectre: An axiomatic approach
to modeling speculative execution attacks,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), May 2022, pp. 235–248.

[9] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, ‘‘Flush+flush:
A fast and stealthy cache attack,’’ in Detection of Intrusions and
Malware, and Vulnerability Assessment. Cham, Switzerland: Springer,
2016, pp. 279–299.

[10] E. Tromer, D. A. Osvik, and A. Shamir, ‘‘Efficient cache attacks on AES,
and countermeasures,’’ J. Cryptol., vol. 23, no. 1, pp. 37–71, Jan. 2010.

[11] Y. Yarom and K. Falkner, ‘‘FLUSH+RELOAD: A high resolution, low
noise, L3 cache side-channel attack,’’ in Proc. 23rd USENIX Secur. Symp.
(USENIX Security). Berkeley, CA, USA: USENIX Association, 2014,
pp. 719–732.

[12] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
‘‘Spectre returns! Speculation attacks using the return stack buffer,’’ in
Proc. 12th USENIX Workshop Offensive Technol. (WOOT). Berkeley, CA,
USA: USENIX Association, 2018, pp. 1–12.

[13] B. A. Shivakumar, J. Barnes, G. Barthe, S. Cauligi, C. Chuengsatiansup,
D. Genkin, S. O’Connell, P. Schwabe, R. Q. Sim, and Y. Yarom, ‘‘Spectre
declassified: Reading from the right place at the wrong time,’’ in Proc.
IEEE Symp. Secur. Privacy (SP), May 2023, pp. 1753–1770.

[14] J. Ravichandran, W. T. Na, J. Lang, and M. Yan, ‘‘PACMAN: Attacking
ARM pointer authentication with speculative execution,’’ in Proc. 49th
Annu. Int. Symp. Comput. Archit., New York, NY, USA: Association for
Computing Machinery, Jun. 2022, pp. 685–698.

[15] E. Barberis, P. Frigo, M. Muench, H. Bos, and C. Giuffrida, ‘‘Branch
history injection: On the effectiveness of hardware mitigations against
cross-privilege Spectre-v2 attacks,’’ in Proc. 31st USENIX Secur. Symp.
(USENIX Security). Berkeley, CA, USA: USENIX Association, 2022,
pp. 971–988.

[16] Y. Tobah, A. Kwong, I. Kang, D. Genkin, and K. G. Shin, ‘‘SpecHammer:
Combining Spectre and Rowhammer for new speculative attacks,’’ in Proc.
IEEE Symp. Secur. Privacy (SP), May 2022, pp. 681–698.

[17] A.-T. Le, T.-T. Hoang, B.-A. Dao, A. Tsukamoto, K. Suzaki, and
C.-K. Pham, ‘‘A cross-process Spectre attack via cache on RISC-V
processor with trusted execution environment,’’ Comput. Electr. Eng.,
vol. 105, Jan. 2023, Art. no. 108546.

[18] G.Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra, and A. Roychoudhury,
‘‘oo7: Low-overhead defense against Spectre attacks via program analy-
sis,’’ IEEE Trans. Softw. Eng., vol. 47, no. 11, pp. 2504–2519, Nov. 2021.

[19] S. Guo, Y. Chen, P. Li, Y. Cheng, H. Wang, M. Wu, and Z. Zuo,
‘‘SPECUSYM: Speculative symbolic execution for cache timing leak
detection,’’ in Proc. IEEE/ACM 42nd Int. Conf. Softw. Eng. (ICSE),
Oct. 2020, pp. 1235–1247.

[20] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez,
‘‘Spectector: Principled detection of speculative information flows,’’ in
Proc. IEEE Symp. Secur. Privacy (SP), May 2020, pp. 1–19.

[21] R. Mcilroy, J. Sevcik, T. Tebbi, B. L. Titzer, and T. Verwaest, ‘‘Spectre
is here to stay: An analysis of side-channels and speculative execution,’’
2019, arXiv:1902.05178.

[22] O. Oleksenko, B. Trach, M. Silberstein, and C. Fetzer, ‘‘SpecFuzz:
Bringing Spectre-type vulnerabilities to the surface,’’ in Proc. 29th
USENIX Secur. Symp. (USENIX Security). Berkeley, CA, USA: USENIX
Association, 2020, pp. 1481–1498.

[23] G.Wang, S. Chattopadhyay, A. K. Biswas, T.Mitra, andA. Roychoudhury,
‘‘KLEESpectre: Detecting information leakage through speculative cache
attacks via symbolic execution,’’ ACM Trans. Softw. Eng. Methodol.,
vol. 29, no. 3, pp. 1–31, Jul. 2020.

[24] C. Disselkoen, R. Jagadeesan, A. Jeffrey, and J. Riely, ‘‘The code that never
ran: Modeling attacks on speculative evaluation,’’ in Proc. IEEE Symp.
Secur. Privacy (SP), May 2019, pp. 1238–1255.

[25] M. Wu and C. Wang, ‘‘Abstract interpretation under speculative exe-
cution,’’ in Proc. 40th ACM SIGPLAN Conf. Program. Lang. Design
Implement. New York, NY, USA: Association for Computing Machinery,
Jun. 2019, pp. 802–815.

[26] B. A. Shivakumar, G. Barthe, B. Gregoire, V. Laporte, T. Oliveira, S. Priya,
P. Schwabe, and L. Tabary-Maujean, ‘‘Typing high-speed cryptography
against Spectre v1,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2023,
pp. 1592–1609.

[27] S. Cauligi, C. Disselkoen, D. Moghimi, G. Barthe, and D. Stefan, ‘‘SoK:
Practical foundations for software Spectre defenses,’’ in Proc. IEEE Symp.
Secur. Privacy (SP), May 2022, pp. 666–680.

[28] Intel. (2018). Retpoline: A Branch Target Injection Mitigation. [Online].
Available: https://www.intel.com/content/dam/develop/external/us/en/
documents/retpoline-a-branch-target-injection-mitigation.pdf

[29] AMD. (2022). Software Techniques for Managing Speculation on
AMD Processors. [Online]. Available: https://www.amd.com/system/files/
documents/software-techniques-for-managing-speculation.pdf

138710 VOLUME 11, 2023



H. Jang, Y. Shin: MicroCFI: Microarchitecture-Level Control-Flow Restrictions for Spectre Mitigation

[30] Intel. (2018). Speculative Execution Side Channel Mitigations. [Online].
Available: https://www.intel.com/content/dam/develop/external/us/en/
documents/336996-speculative-execution-side-channel-mitigations.pdf

[31] J. Wikner and K. Razavi, ‘‘RETBLEED: Arbitrary speculative code
execution with return instructions,’’ in Proc. 31st USENIX Secur. Symp.
(USENIX Security). Berkeley, CA, USA: USENIX Association, 2022,
pp. 3825–3842.

[32] E. M. Koruyeh, S. H. A. Shirazi, K. N. Khasawneh, C. Song, and
N. Abu-Ghazaleh, ‘‘SpecCFI: Mitigating Spectre attacks using CFI
informed speculation,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2020, pp. 39–53.

[33] M. Schwarz, R. Schilling, F. Kargl, M. Lipp, C. Canella, and D. Gruss,
‘‘ConTExT: Leakage-free transient execution,’’ 2019, arXiv:1905.09100.

[34] SPEC. (2017). SPEC CPU 2017. [Online]. Available: https://www.spec.
org/cpu2017

[35] Z. Shen, J. Zhou, D. Ojha, and J. Criswell, ‘‘Restricting control flow during
speculative execution with venkman,’’ 2019, arXiv:1903.10651.

[36] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, ‘‘Control-flow
integrity,’’ in Proc. 12th ACM Conf. Comput. Commun. Secur. New York,
NY,USA:Association for ComputingMachinery, Nov. 2005, pp. 340–353.

[37] M. T. Yourst, ‘‘PTLsim: A cycle accurate full system x86–64 microarchi-
tectural simulator,’’ in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw.,
Apr. 2007, pp. 23–34.

[38] B. Niu and G. Tan, ‘‘Modular control-flow integrity,’’ in Proc. 35th ACM
SIGPLAN Conf. Program. Lang. Design Implement. New York, NY, USA:
Association for Computing Machinery, Jun. 2014, pp. 577–587.

[39] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, ‘‘Control-flow integrity
principles, implementations, and applications,’’ ACM Trans. Inf. Syst.
Secur., vol. 13, no. 1, pp. 1–40, Oct. 2009.

[40] X. Ge, N. Talele, M. Payer, and T. Jaeger, ‘‘Fine-grained control-flow
integrity for kernel software,’’ in Proc. IEEE Eur. Symp. Secur. Privacy
(EuroS&P), Mar. 2016, pp. 179–194.

[41] V. van der Veen, D. Andriesse, E. Göktas, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida, ‘‘Practical context-sensitive CFI,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur. New York, NY,
USA: Association for Computing Machinery, 2015, pp. 927–940.

[42] B. Niu and G. Tan, ‘‘Per-input control-flow integrity,’’ in Proc. 22nd ACM
SIGSACConf. Comput. Commun. Secur.NewYork, NY, USA: Association
for Computing Machinery, Oct. 2015, pp. 927–940.

[43] H. Jang, M. C. Park, and D. H. Lee, ‘‘IBV-CFI: Efficient fine-grained
control-flow integrity preserving CFG precision,’’ Comput. Secur., vol. 94,
Jul. 2020, Art. no. 101828.

[44] D. Bounov, R. G. Kıcı, and S. Lerner, ‘‘Protecting C++ dynamic
dispatch through VTable interleaving,’’ in Proc. Netw. Distrib. Syst. Secur.
Symp., 2016, pp. 1–15.

[45] C. She, L. Chen, and G. Shi, ‘‘TFCFI: Transparent forward fine-grained
control-flow integrity protection,’’ in Proc. IEEE Int. Conf. Trust, Secur.
Privacy Comput. Commun. (TrustCom), Dec. 2022, pp. 407–414.

[46] M. C. Park and D. H. Lee, ‘‘BGCFI: Efficient verification in fine-grained
control-flow integrity based on bipartite graph,’’ IEEE Access, vol. 11,
pp. 4291–4305, 2023.

[47] J. Criswell, N. Dautenhahn, and V. Adve, ‘‘KCoFI: Complete control-flow
integrity for commodity operating system kernels,’’ in Proc. IEEE Symp.
Secur. Privacy, May 2014, pp. 292–307.

[48] B. Niu and G. Tan, ‘‘Monitor integrity protection with space efficiency
and separate compilation,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur. (CCS). New York, NY, USA: Association for Computing
Machinery, 2013, pp. 199–210.

[49] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris, T. Kim,
and W. Lee, ‘‘Enforcing unique code target property for control-flow
integrity,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.
New York, NY, USA: Association for Computing Machinery, Oct. 2018,
pp. 1470–1486.

[50] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, ‘‘Eenforcing forward-edge control-flow integrity
in GCC & LLVM,’’ in Proc. 23rd USENIX Secur. Symp. (USENIX
Security). Berkeley, CA, USA: USENIX Association, 2014, pp. 941–955.

[51] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and S. Mangard,
‘‘KASLR is dead: Long live KASLR,’’ in Engineering Secure Software
and Systems. Cham, Switzerland: Springer, 2017, pp. 161–176.

[52] C. Lattner and V. Adve, ‘‘LLVM: A compilation framework for lifelong
program analysis & transformation,’’ in Proc. Int. Symp. Code Gener.
Optim. (CGO), Mar. 2004, pp. 75–86.

[53] A. Patela, F. Afram, and K. Ghose, ‘‘Marss-x86: A QEMU-based micro-
architectural and systems simulator for x86multicore processors,’’ in Proc.
1st Int. QEMU Users’ Forum, 2011, pp. 29–30.

[54] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song,
and W. Zou, ‘‘Practical control flow integrity and randomization for
binary executables,’’ in Proc. IEEE Symp. Secur. Privacy, May 2013,
pp. 559–573.

[55] R. Love, Linux Kernel Development, 3rd ed. Reading,MA, USA: Addison-
Wesley, 2003.

[56] Intel. (2012). Intel64 and IA-32 Architectures Optimization Refer-
ence Manual. [Online]. Available: https://www.intel.com/content/dam/
doc/manual/64-ia-32-architectures-optimization-manual.pdf

[57] S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, ‘‘Proteus: A flexible
and fast software supported hardware logging approach for NVM,’’ in
Proc. 50th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
Oct. 2017, pp. 178–190.

[58] A. Bhattacharyya, A. Sánchez, E. M. Koruyeh, N. Abu-Ghazaleh, C. Song,
and M. Payer, ‘‘SpecROP: Speculative exploitation of ROP chains,’’ in
Proc. 23rd Int. Symp. Res. Attacks, Intrusions Defenses (RAID). Berkeley,
CA, USA: USENIX Association, 2020, pp. 1–16.

[59] Apache. (2012). Apache HTTP Server Benchmarking Tool. [Online].
Available: https://httpd.apache.org/docs/2.4/en/programs/ab.html

HYEREAN JANG received the B.S. degree in
mathematics from ChungnamNational University,
Daejeon, South Korea, in 2017, and the M.S.
degree in cybersecurity from Korea University,
Seoul, in 2020, where she is currently pursuing the
Ph.D. degree in cybersecurity. Her research inter-
ests include software security, system security, and
CPU micro-architectural security.

YOUNGJOO SHIN received the B.S. degree in
computer science and engineering from Korea
University, Seoul, South Korea, in 2006, and the
M.S. and Ph.D. degrees in computer science from
KAIST, Daejeon, South Korea, in 2008 and 2014,
respectively. From 2008 to 2017, he was with the
National Security Research Institute (NSR), Dae-
jeon, as a Senior Researcher. From 2017 to 2020,
he was with Kwangwoon University, Seoul, as an
Assistant Professor. From 2020 to 2021, he was

with Korea University as an Assistant Professor, where he is currently an
Associate Professor with the School of Cybersecurity. His research interests
include system and network security, CPU micro-architectural security,
cloud computing security, and vulnerability analysis on embedded systems.

VOLUME 11, 2023 138711


