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ABSTRACT Future network infrastructures need to safely and rapidly provide network services in complex
conditions that include many devices and multiple access lines, such as 5th-generation (5G) and 6th-
generation (6G) mobile systems supported by multiple carriers. Additionally, future telecommunications
networks will utilize network disaggregation techniques to take advantage of the highest quality technology
from various vendors to meet service requirements. Therefore, it is necessary to enhance the verification
of combinations of various network equipment and components that constitute network infrastructure. Our
motivation is to investigate the potential to enable the verification of network node performance digitally
to support future network infrastructures. This study concentrates on improving the accuracy of the metric
inference of black-boxed network nodes when only the network node configurations and traffic conditions
are available as external conditions. Our main contribution is as follows: We provide a novel method of
machine learning based on network nodemodeling to improve the accuracy of network nodemetric inference
for throughput, packet loss rate, and packet delay by recursively appending inferred other node metrics to
the training datasets in accordance with feature importance; we demonstrate the application of the proposed
method to 14 baseline machine learning algorithms for evaluating the accuracy of inferred network node
metrics; finally, we show improvement in utilization of network resources for accommodating traffic on
a fixed network with a traffic policer, whose parameters are set using the proposed method. Additionally,
we investigate the impact of appending inferred network node metrics to the training datasets, which is a key
feature of the proposed method, on computational time and the possibility of overfitting.

INDEX TERMS Recursive router metrics inference, network node modeling, network digital replica.

I. INTRODUCTION

FUTURE technologies will enable various devices and
things connected to the Internet and each other to

achieve data exchange and decision-making with automation,
prediction, and self-optimization [1]. In response to this,
the traffic on future networks will be generated by human
communication, connected intelligent machines and things
embedded with artificial intelligence. This has motivated
the development of the future network, which must handle
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traffic on unknown networks generated by various devices
and things as well as human beings.

This trend will also affect telecommunication networks.
Future network infrastructures need to safely and rapidly
provide network services in complex conditions that include
many devices and multiple access lines, such as 5th-
generation (5G) and 6th-generation (6G) mobile systems
supported by multiple carriers. For example, a flying ad hoc
network [2], [3] based on Internet of Things (IoT) devices
could be beneficial for controlling and inspecting rescue oper-
ations and disaster areas. Constructing a wireless ad hoc net-
work requires the supervision of numerous resource-limited
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IoT devices that are in motion and interacting with each
other. In most cases, the cost of verifying telecommunication
carrier requirements, such as network quality and reliability,
is higher when many different IoT devices are deployed as
part of a telecommunication carrier network. Consequently,
it is challenging to rapidly meet telecommunication carrier
requirements while providing these network services.

In addition, network disaggregation technology [4] is
proposed as a potential solution for future telecommunication
networks. Network disaggregation means separating a pre-
viously combined network node into network components.
With their proprietary software and hardware, current net-
work components need more flexibility and cost-efficiency
to satisfy telecommunication carrier requirements. Network
disaggregation techniques will enable telecommunication
carriers to avoid the restrictions of vendor lock-in and utilize
the most suitable technology from various providers to
meet service requirements. However, network disaggregation
technologies will result in a significantly higher number
of network components and thus require management and
assessment of vast combinations of numerous network com-
ponents. Consequently, the coming network infrastructure
must be verified to ensure network quality and reliability for a
wide range of devices and to select the most appropriate mix
of network components to support network disaggregation.

To achieve future network infrastructure, Digital Twin
(DT) technologies may be a key enabler for robust, reliable,
and high-performance digital infrastructure [5]. Due to the
remarkable improvements in the performance of central and
graphics processing units (CPUs and GPUs), the idea of DTs
is being utilized in various industries [6], [7]. A DT is a
virtual representation of a real-world entity that is constantly
updated with data and information gathered from its physical
counterpart, so that it can be used to predict its physical
counterpart’s future behavior. To create a DT, system data
such as device configurations and traffic data from the real
world needs to be collected in real-time to replicate the
state of the physical entity [5]. DTs for jet engines [6]
and a ground-steering system for an aircraft [7] have been
researched in the aerospace industry to predict future risks in
digital space.

Various techniques for applyingDTs to telecommunication
networks have been proposed [8], [9]. Telecommunication
carriers are exploring the potential of DTs to manage and
operate networks effectively [8]. Furthermore, many vendors
of telecommunication network equipment are attempting
to utilize DTs to create and sustain physical entities at
remote locations [9]. However, the conventional approaches
used in these studies need to consider the internal structure
and behavior of network nodes, including hardware logic
and implemented software processes. Emulating the internal
structure and behavior of network nodes to ensure the
performance of each network component for network disag-
gregation must be considered to meet carrier requirements.

To address this challenge, machine learning, especially
deep learning, will be a key enabler. Machine learning has

rapidly advanced with featuring cutting-edge algorithms and
has firmly established itself as a state-of-the-art technology in
diverse domains, including computer vision, natural language
processing, chemical engineering, and more. To name just
a few examples, researchers have proposed the following
techniques in each domain: deep learning techniques with
attention mechanisms for many visual tasks, including image
classification, object detection, video understanding, and
image generation [10]; deep reinforcement learning for
text generation, machine translation, and the development
of conversational systems [11]; and graph-based neural
networks for enhancing the efficiency of the drug discovery
process [12]. Despite the remarkable progress in applying
machine learning to these domains, the impact of machine
learning on the performance of network equipment is still
being explored.

Given the above background, our motivation is to enable
the verification of network node performance and the com-
bination of a large number of network components digitally
to support future network infrastructures. To accomplish this,
we introduce Network Digital Replica (NWDR), which is
a virtualized version of a physical network that enables
verification of network equipment performance, as well as
the combination of large numbers of network components in
digital space for conditions not yet encountered on physical
networks [13], [14]. Using machine learning-based network
node modeling for actual node metrics, the proposed NWDR
can generate optimal network configurations by creating
network node models. To the best of our knowledge, few or
no reports on router modeling apply regression prediction for
router performance based on training datasets using actual
router configurations and traffic data.

Our main contributions include:
• Anovel machine learning-based network nodemodeling
method to improve the accuracy of network node metric
inference for throughput, packet loss rate, and packet
delay by recursively appending the inferred other node
metrics to the training datasets in accordance with
feature importance.

• Demonstration of the application of the proposed
method to 14 baseline machine learning algorithms for
evaluating the accuracy of inferred network nodemetrics
using the coefficient of determination (R2).

• Improvement in network resource utilization for accom-
modating traffic on a fixed network on which a traffic
policer is implemented and whose parameters are set
based on the inferred network node metrics using the
proposed method.

In this paper, we extend the work in [14] by further
studying the application of the proposed method to other
machine learning algorithms. We extensively apply the
proposed method to 14 machine learning algorithms for
evaluating R2. The proposed method tends to increase
the computational time and may cause overfitting due to
adding recursively inferred node metrics to the training
datasets. Therefore, we present an extensive evaluation of
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computational time, learning curves, residual plots, and the
predicted R2 to identify the practicality of these values.
Also, we present extensive simulation results that show
improvement in the number of accommodated traffic flows
with a traffic policer, whose parameters are set based on the
inferred network node metrics by using the proposed method.

The rest of this paper is organized as follows. Related
works and the NWDR architecture to reproduce the internal
operation of the actual nodes digitally are outlined in
Sections II and III, respectively. The proposed network
node modeling to achieve highly accurate network node
metric inference, which is the primary role of the NWDR,
is described in Section IV. Section V contains an account
of the experimental and simulated outcomes. To evaluate the
effectiveness of applying the proposed method to machine
learning algorithms, we evaluate R2 and computational time
for 14 machine learning algorithms. Then, we show the
utilization of network resources to accommodate TCP flows
based on the inferred network node metrics by using the
proposed method. Section VI discusses the applicability and
limitations of the proposed method. Section VII describes
challenges and future directions. Finally, this paper is
concluded in Section VIII.

II. RELATED WORKS
Several techniques have been proposed to reproduce actual
nodes’ processes and behavior: mathematical models,
network simulators, network emulators, and data-driven
approaches. Mathematical models [15] are an invaluable
asset for network design and analysis. Unfortunately, these
models either do not accurately reflect the actual processing
in a network node or are so complicated that they have no
practical use. Consequently, a model that is both viable and
uncomplicated needs to be developed. Network simulators,
such as NS-3 [16] and QualNet [17], are computer programs
that can replicate the behavior of a network by computing
the effects between various network elements, which are
normally discrete event-driven. These are usually used for
computer simulations of network traffic. However, these
network simulators do not take into account the inner
architecture and functioning of network nodes, including the
hardware logic and software programs.

In contrast, a network emulator [18] is a device or program
that accurately emulates the behavior of a network, enabling
the performance of a real program to be tested under various
network conditions. However, network emulators typically
require the same hardware logic and software programs
as actual network nodes to replicate their processes and
behavior. Comparing these methods, the accuracy and cost of
a network emulator are generally higher than that of a network
simulator [18]. On the other hand, a data-driven approach
can be used to study the inner workings and behavior of a
network node. For example, a graph neural network [19],
which is a form of deep learning for graph data structures,
has been proposed as a potential networkmodeling technique.
A graph neural network can extract feature information from

graphs and make valuable predictions. In general, graph
neural network training results depend on the structure of
the underlying graph. However, for application to network
disaggregation, it is crucial to design the representation of
each node in a way that enables performance evaluation at
the network node or network component level to be easily
isolated and flexible recombination of each entity. Consid-
ering application to network disaggregation, the proposed
method consists of a twofold approach: node modeling to
evaluate the performance of individual network nodes and
network components using amachine learning algorithm, and
network simulation to mimic the external environment. The
proposed approach enables us to evaluate the performance of
the network node in the context of network disaggregation.

Our proposed network node modeling aims to improve the
accuracy of network node metric inference for throughput,
packet loss rate, and packet delay using a machine learning
algorithm. This is done by recursively appending inferred
other node metrics that correlate with the target node metric
to the training datasets according to feature importance.
Using feature importance, we select the inferred other node
metrics that have a high correlation with the target node
metric, as the metrics to be added to the training dataset.
On the other hand, ensemble learning [20] comes close to
this concept. Ensemble learning selects multiple different
machine learning algorithms and combines their predictions
to improve the overall prediction accuracy by leveraging
the strengths of different algorithms. However, the novelty
in this study is that instead of selecting different machine
learning algorithms, we select different performances of
inferred node metrics based on feature importance between
node metrics and consider the order in which they are
added to the training dataset. This approach is useful for
leveraging the performance data of network node metrics
that telecommunication carriers have collected through the
operation of carrier networks.

III. NETWORK DIGITAL REPLICA
A. CONCEPT
The concept of NWDR is illustrated in Fig. 1. An NWDR
performs a digital assessment of the effect of new network
configurations when devising and examining them without
accessing the physical entities. The points below are essential
to achieve the NWDR.
• 1) Gathering extensive quantities of data from physical
networks: All information on network configuration and
statistical data from various network equipment needs
to be gathered to construct the NWDR based on the
physical network’s data.

• 2) Preprocessing for sparse and large amounts of
data: To cut down expenses associated with network
monitoring or make network monitoring for the various
specifications of network equipment easier, the NWDR
needs to manage both sparse and dissimilar types of
data obtained from the physical network. To manage
these data properly, preprocessing techniques such as
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FIGURE 1. Concept of proposed network digital replica [14].

data sampling and data interpolation are implemented to
make it easier for the network node model.

• 3) Modeling the behavior of a network node and
assessing its performance under new external condi-
tions: The NWDR generates a network node model
based on the data collected from the physical net-
work using a machine learning algorithm. This model
reproduces the same internal operation and the same
function as the actual node in digital space to reduce
the cost of preparing the same hardware logic and
software programs of network equipment. Using this
node model, the NWDR infers the performance of
network nodes for different external conditions by
reproducing the inner workings of actual network
nodes.

• 4) Creating new network configurations and controlling
the physical entities: Based on the NWDR’s inferences
and evaluations of the effects of unknown external con-
ditions, optimal configurations for the current network
nodes are created. Then, the physical network can be
controlled with these optimal configurations.

By realizing these points, the NWDR can be created and
linked to the information from a physical network in
the digital domain, enabling it to digitally evaluate the
performance of new devices and network configurations
integrated into the physical network.

B. SCENARIOS USING NETWORK DIGITAL REPLICA
The NWDR will be created in consideration of both
technological advances and cost requirements. The expected
scenarios and examples are outlined below.
• (Scenario 1) NWDR for adjusting temporal enlarge-
ment and restructuring existing networks: The NWDR
enables the operators to predict potential changes in
network traffic, such as congestion and rerouting due
to failures, before the present physical network is
changed or updated. To appraise the effect of these
external factors, the NWDR examines the impact
of temporal bandwidth expansion and alterations of
network configurations beforehand.

• (Scenario 2) NWDR for effective maintenance and
operations for existing networks: AnNWDRcan be used

FIGURE 2. Architecture of the proposed network digital replica [14]. The
NWDR connects the physical network to a network application to
evaluate the network performance for unknown external network
conditions in the digital space to evaluate whether network requirements
will be achieved. To accomplish this, the NWDR consists of
simulator-based network modeling and actual function-based node
modeling. The simulator-based network modeling simulates the traffic
from user devices as unknown external network conditions, and the
actual function-based node modeling reproduces the inner workings and
functioning of the target node using a machine learning algorithm for
unknown external network conditions.

as a virtual environment that enables the network to
be managed and operated without directly interacting
with physical entities. This can help reduce operating
costs by digitally testing various network equipment
configurations.

• (Scenario 3) NWDR for the assessment of new network
concepts: Using the NWDR to create a model for
a new network system and protocol enables rapid
validation of configurations of network equipment
that do not exist on a current network. This is
especially helpful when rolling out mobile and ad
hoc networks comprised of numerous IoT devices
with limited computing capacity. The NWDR can then
identify the best choice and location of these IoT
devices, as well as manage the routing of the ad hoc
network.
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FIGURE 3. Flowchart of the proposed method.

C. ARCHITECTURE OF NETWORK DIGITAL REPLICA
The architecture of NWDR is illustrated in Fig. 2. The
NWDR, which connects the physical network to a network
application, digitally assesses the impact of new network
configurations on the physical network before they are
implemented on actual network nodes. It then supplies the
network application with the inferred network metrics and
controls the physical entities in accordance with the optimal
configurations based on the inferred network metrics. Hence,
the NWDR needs to reproduce the behavior of the actual
network node when exposed to different external network
conditions. To accomplish this, the NWDR creates network
node models considering external factors such as traffic
conditions on the physical network. The NWDR then uses
the generated network node model to emulate the internal
operation of physical network equipment under conditions
not yet encountered on physical networks. Subsequently, the
NWDR can evaluate the performance of the network node,
including the throughput of the traffic and packet loss rate,
despite unpredictable external conditions. Finally, the results
of the NWDR inference are used to calculate the optimal
network configurations and control network resources in the
physical networks.

The primary focus of this paper is a fixed network
scenario. In particular, we examine router modeling, which is
a critical element of the fixed network, to digitally determine
the best router configurations for traffic with unknown
external conditions. The scenario assumed in this evalu-

ation corresponds to ‘‘Restructuring Existing Networks’’
in Section III-B (Scenario 1). This scenario is related to
network design and enables efficient network design by
digitally assessing in advance whether the existing network
design will meet service requirements by predicting potential
changes in network traffic. For example, the NWDR supports
expansion of network bandwidth based on current and near-
future network conditions. Before updating or changing the
configuration of a physical network, the NWDR evaluates
the performance of network nodes while searching for
appropriate network configurations in the digital domain,
such as the allocated number of virtual CPUs on a server
and the channel bandwidth between each node, for unknown
external network conditions, and adjusts the physical network
in accordance with the results of the node metrics predictions.

In the future, with the emergence of more dynamic traffic,
such as 5G/6G, efficient network design will become even
more important on carrier networks. In this context, we first
propose a node modeling method for fixed networks that
serve as the basis for carrier networks based on existing traffic
conditions.

IV. NETWORK NODE MODELING IN NETWORK DIGITAL
REPLICA
TheNWDRemulates the behavior of physical network equip-
ment based on a network node model. This model combines
simulator-based network modeling and actual function-based
node modeling based on hardware and software components
(Fig. 2). This combination can digitally emulate the traffic
conditions in the target area before implementing the actual
equipment, thus enabling the performance of the target net-
work equipment to be efficiently evaluated. Environmental
factors, including user device specifications and network
configurations, are considered when simulating the traffic
from user devices in the simulator-based network modeling.
On the other hand, actual function-based node modeling
reproduces the inner workings and functioning of the target
node. However, replicating the functions of physical nodes
digitally necessitates the preparation of appropriate hardware
logic and software programs, resulting in longer development
time and a greater outlay to attain the function-based node
model. Therefore, we propose a method of network node
modeling to infer the performance of network nodes using the
machine learning technique. This approach is advantageous
to model the network node when the same hardware logic
and software program of the actual network node cannot be
created in the digital space.

A. PROPOSED ALGORITHM OF NETWORK NODE
MODELING
We propose a method of machine learning-based network
node modeling for the inference of the network node
metrics, such as packet loss rate (Ploss), packet delay (Pdelay),
and packet throughput (Pth) with a balance between cost-
effectiveness and accuracy [14]. This study concentrates on
improving the accuracy of metric inference of black-boxed
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network nodes when only the network node configurations
and traffic conditions are available as external conditions.
To tackle this, we propose a machine learning-based node
modeling method to increase the accuracy of network node
metric inference. This is done by recursively appending
the inferred other node metrics into the training datasets
in line with feature importance. Fig. 3 describes the
proposed method using the flowchart. In this flowchart, the
proposed method aims to infer the target router metric (e.g.,
throughput) by incorporating inferred other router metrics
(e.g., packet delay and packet loss) based on their respective
feature importance. The main steps are as follows:
• 1) Obtain training datasets containing router configura-
tions, input traffic, and measured router metrics.

• 2) Set the target router metric (e.g., throughput) from
the measured router metrics and calculate feature
importance for the training dataset, considering other
router metrics (e.g., packet delay and packet loss).

• 3) Select the router metric with the highest feature
importance that is not included in the training dataset.

• 4) Perform inference for the selected router metric (e.g.,
packet delay) and input the inferred values into the
predictor for the target metric (throughput).

• 5) Evaluate whether the inference accuracy of the target
metric (throughput) improves before and after adding
the inferred other router metric (packet delay) to the
training dataset. If the accuracy improves, continue
by selecting the next router metric with high feature
importance and repeat steps 3) to 5).

• 6) If the accuracy does not improve, fix the training
model that achieved the highest accuracy (end).

This process iteratively incorporates router metrics with
high feature importance into the training dataset to improve
the accuracy of inferring the target router metric. If accuracy
improves, this process continues. Otherwise, it stops with
the best-performing training datasets so far. The proposed
method applies the same baseline machine learning algorithm
to each router metric. Therefore, the observed differences
in the inference accuracy for the target metric are attributed
to the specific selection of additional router metrics to the
training datasets.

In addition to the flowchart, we present the detailed
algorithm for the proposed method (Algorithm 1). Training
datasets of router metrics; Ploss, Pdelay, and Pth are obtained
from a router. To measure these metrics, a traffic generator
is deployed while changing the router configurations and
levels of incoming traffic. Afterward, machine learning is
utilized to create inference models for these metrics. This
node modeling is applied to the datasets that include router
configurations R, input traffic T , and the measured router
metrics M . Then, the proposed method utilizes machine
learning on the training datasets (R, T , and M ) to infer
the router metrics. The proposed algorithm recursively
appends the inferred other router metrics to training datasets
to increase the accuracy of router metric inference. The
proposed algorithm utilizes the feature importance for each

Algorithm 1 Predictor of Router Metrics
Input:M = {mi|i=1,...,I }: I dimensional datasets of the
actual router metrics, R = {rj|j=1,...,J }: J dimensional
datasets of router configurations, T : Input traffic, L:
Base machine learning algorithm
Variables: FI(mi) = {fi(mi)

1 ,fi(mi)
2 , . . .}: Ranked feature

importance for mi, A: Inferred router metrics to use as
training datasets
Output: P(mi) = {P(r, t,m)|r ∈ R, t ∈ T ,m ∈ M \ mi}:
Predictor for router metrics mi

1 Measurement of the router metricsM for router
configurations R and input traffic T

2 A← ∅, R2temp← 0
3 for each model of router metrics mi in M do
4 P(mi)← L(Rtrain,Ttrain,mi ∪ Atrain) /* Train a

predictive model */
5 FI(mi)← FI(P(mi)) /* Calculate feature

importance for mi */
6 m̂i = P(mi)(Rtest,Ttest,Atest) /* Predict

router metric mi */
7 R2 = R2(m̂i,mi) /* Calculate R2 of mi */
8 if R2temp > R2 then
9 exit for
10 end
11 R2temp = R2

12 k = argmax
k∈I

fi(mi)
k /* Select the biggest

fi(mi) */

13 FI(mi)← FI(mi) \ fi(mi)
k /* Exclude selected

router metrics from FI */
14 A← A ∪ m̂k /* Append the inferred

other router metrics to training
datasets */

end

router metric model to see how relevant each router metric is
to other ones. In this study, permutation feature importance
[21] is used to calculate the feature importance. Permutation
feature importance assesses the importance of individual
features in a model by measuring the decrease in accuracy
when the values of a single feature are randomly shuffled,
disrupting the original relationships. If the model’s error
remains unchanged with shuffling, the model perceives that
feature as less important for prediction.

Then, the inferred router metric with the highest feature
importance is chosen as the training dataset. Then, the
accuracy of each router metric inference is evaluated while
the selected metric is incrementally appended to the training
datasets. This calculation is repeated as long as the accuracy
of router metric inference is improved by evaluating R2 that
represents the correlation between themeasured router metric
and the inferred one. R2 is described as follows: R2 = 1 −∑

(yi − ŷ)2/
∑

(yi − ȳ)2, where ŷ and ȳ are the inferred value
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TABLE 1. Experimental conditions.

and mean measured value of router metrics y, respectively
[22]. Therefore, R2 = 1 indicates that the model perfectly fits
the datasets. Once the accuracy reaches its peak, the training
datasets with the inferred router metric are decided.

The proposed method is a supervised learning approach.
Supervised learning is a machine learning method that
learns relations from input to output based on labeled
data constructed with determined input-output pairs. The
proposed method is based on regression models to predict
router metrics using router configurations and input traffic
conditions as input datasets and measured router metrics
such as throughput, packet loss rate, and packet delays
as labeled data. The reasons why supervised learning was
selected for the proposed method are as follows: To date,
telecommunication carriers have kept performance data for
each network equipment configuration through the operation
of their carrier networks. This study aims to leverage
these labeled performance data to model the network node.
As a first step, we tried to determine if it is possible to
digitally infer the performance of existing routers on a fixed
network using the models trained on acquired labeled data.
Furthermore, we aimed to enhance the accuracy of router
metric inference by appending inferred other router metrics
to the training datasets in addition to the labeled metrics data.

V. EVALUATION AND RESULTS
Here, we evaluated the accuracy of router metric infer-
ence by using the proposed method. We also evaluated
the computational time of the proposed method because
the proposed method tends to increase the computational
time due to the characteristic of appending recursively
inferred router metrics to the training datasets. Therefore,
we evaluated the computational time to train the model
(Ttrain) and the one to infer the router metrics (Tinfer)
whether these times are practical. Then, learning curves,
residual plots, and predicted R2 for each metric model
were calculated to clarify whether the model using the
proposed method is overfitting. The predicted R2 serves as
a measure to evaluate the predictive performance of the
regression model [23]. Its importance lies in identifying
potential overfitting problems within the model. A notable
dissimilarity between the R2 and the predicted R2 indicates
the presence of overfitting in the model. The predicted R2

is calculated within observations not included in the model

calculation. Specifically, the process involves (1) excluding
a data point from the dataset, (2) calculating the regression
equation, (3) calculating how well the model estimates the
removed observation, and (4) repeating this for each data
point. Finally, the predicted R2 is expressed as follows:
R2pred = 1 −

∑
(yi − ŷ(i))2/

∑
(yi − ȳ)2, where ŷ(i) and ȳ

are the inferred value in which data point i is not included
and mean measured value of router metrics y, respectively
[23]. In general, overfitting happens when the model is too
complex relative to the amount and noisiness of the training
datasets. By increasing the number of features, which are
the inferred router metrics, including the errors of inference,
overfitting may occur due to the model being too complex for
the training datasets. Finally, we evaluated the utilization of
network resources for accommodating TCP flows based on
the inferred router metrics by using the proposed method.

Fig. 4 shows the experimental environment. The proposed
method applies machine learning to the performance mea-
surements for four kinds of software routers: Cisco Cloud
Services Router 1000V [24], Juniper vMX Virtual Router
[25], Vector Packet Processor [26], and Kamuee router [27]
using an x86-based server; two Xeon E5-2697 18-cores
2.30 GHz CPUs, and 192 GB RAM with 8 SFP+ ports.
First, we measured the performance of these routers in
the packet forwarding process in a laboratory environment
to acquire training datasets under the conditions shown in
Table 1. These conditions are set up to evaluate how much
the relationship between the router configurations and traffic
conditions affects an increase in packet processing delay
and packet losses due to queue overflow. The Keysight
Ixia platform with 8 SFP+ ports generates the traffic in
the experiments. In total, 930 samples were acquired from
these routers. In this experiment, we measured Ploss (per
second), Pdelay (maximum per second), and Pth (bits per
second) for each T and R. We then used the measured
router metrics to create a predictor of router metrics. The
datasets were composed of R (number of physical ports,
number of flow entries, number of allocated CPU cores,
and size of memory allocation) and T (Ethernet frame size,
average rate of input traffic, and number of traffic flows).
The datasets were split into 70% training and 30% testing,
respectively. In this experiment, we evaluated the 14 baseline
machine learning algorithms in Table 2. These fundamental
algorithms of machine learning are tree-based models [28],
[29], [30], boosting-based models [31], [32], [33], linear
regression-based models [34], [35], [36], [37], [38], a multi-
layer perceptron neural network (NN) [39], and an extreme
learningmachine (ELM)-basedmodel [40]. Table 2 lists these
14 base algorithms together with their corresponding abbre-
viations. We employed PyCaret [41] to carry out 12 learning
algorithms: tree-based models, boosting-based models, and
linear regression-based models [28], [29], [30], [31], [32],
[33], [34], [35], [36], [37], [38]: testing and optimizing a
range of models and exploring feature importance. PyCaret,
an auto machine learning technique, streamlines the process
of model selection and hyper-parameter tuning, providing the
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FIGURE 4. Experimental environment. The left side of the figure represents the laboratory environment where we obtained training datasets from actual
routers. The right side shows the predictor of router metrics, which infers the router performance for the data obtained from actual routers. The proposed
method incorporates the inferred router metrics with high feature importance into the training dataset to improve the accuracy of inferring the target
router metric.

TABLE 2. Base Algorithms.

benefit of time efficiency and producing a list of models with
various metrics. On the other hand, 10 fully connected layers
with 100 hidden nodes and a ReLU activation per layer were
used for the NN model. For the ELM-based model, we used
an online sequential extreme learning machine (OSELM)
[40] as a primitive online learning method. For the OSELM,
the number of hidden nodes was set to 100, and the sigmoid
activation function was chosen. The evaluation with the
OSELM was conducted for 20 trials since the OSELM had
been initialed with random weights. Then, we evaluated the
feature importance for each router metrics model and R2 to
decide which inferred router metrics to append to the training
datasets. To increase the accuracy of router metric inference,
we recursively appended the inferred other router metric to
the training datasets in line with the feature importance. Each
model was trained for 1000 epochs on a Nvidia Tesla P100
card with 16 GB of memory.

A. EVALUATION OF FEATURE IMPORTANCE FOR EACH
ROUTER METRIC MODEL
Fig. 5 indicates feature importance with the top 5 features for
(a) Ploss model, (b) Pth model, and (c) Pdelay model. Including
other router metrics in each feature importance implies that
the accuracy of each router metric inference can be increased
by incorporating these inferred router metrics into the training
datasets. With respect to the Ploss model, Pdelay was the most

FIGURE 5. Feature importance for each model.

influential factor in the inference of Ploss, followed by Pth
and the number of allocated CPU cores in this condition.
This suggested that when the input traffic rate surpasses the
processing speed to forward the packets to the outputs, the
finite packet buffer of the router leads to packet loss and an
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TABLE 3. Results of R2, Ttrain, and Tinfer for Ploss model.

TABLE 4. Results of R2, Ttrain, and Tinfer for Pth model.

TABLE 5. Results of R2, Ttrain, and Tinfer for Pdelay model.

increase in queuing delay. In contrast, the most significant
factor for Pdelay was the amount of memory allocation, as this
was the primary element to store and process the incoming
packets in the virtual routers. To account for this, the proposed
method can increase the accuracy of router metrics inference
by appending the inferred other router metric with the most
substantial effect on the training datasets in descending
order.

TABLE 6. Results of R2 for each router metric on each training dataset.

B. EVALUATION OF THE ACCURACY OF ROUTER METRICS
INFERENCE AND COMPUTATIONAL TIME
To evaluate the effectiveness of applying the proposed
method to machine learning algorithms, we evaluated R2

for the 14 machine learning algorithms. Tables 3, 4, and 5
show the results of R2, Ttrain, and Tinfer for the Ploss, Pth,
and Pdelay models, respectively. The training datasets for
the proposed method had the inferred other router metric,
which was the highest feature importance for each model;
i.e., the training datasets for Ploss, Pth, and Pdelay models
had the inferred Pdelay, Pdelay, and Ploss, respectively. Overall,
it can be seen that R2 is improved by applying the proposed
method to each algorithm. The improvement in R2 for Ploss
was 9.1% - 61.7%, that for Pth was 6.5% - 16.6%, and
that for Pdelay was 1.8% - 95.2%. Even compared with
the largest R2 in the conventional method for each router
metric, the improvement in R2 with the proposed method
for Ploss with dt [28] was 9.1%, that for Pth with rf [30]
was 6.5%, and that for Pdelay with gbr [32] was 6.2%. Both
OSELM and NN models with the proposed method achieved
a comparable improvement in the accuracy of inferred
router metric compared to other machine learning algorithms.
However, they were not the best baseline algorithms in terms
of accuracy. The improvement in R2 using the proposed
method for Ploss, Pth, and Pdelay with NN and with OSELM
were 12.0%, 11.4%, 6.6%, 11.9%, 15.3%, and 10.3%,
respectively.

On the other hand, the proposed method tends to increase
computational time, Ttrain and Tinfer due to the characteristic
of appending recursively inferred router metrics to the train-
ing datasets. This increase in computational time depends on
the number of times that the inferred other router metrics
are repeatedly input to the training datasets. For example,
the inferred Pth with the largest R2 in the proposed method
uses inferred Pdelay, so the process of making the inferred
model is repeated twice. In the results, Ttrain took nearly
twice as long as the application of the vanilla algorithm,
as shown in Tables 3, 4, and 5. Nevertheless, Ttrain for the
proposedmethod took only a fewminutes at most. Especially,
Ttrain and Tinfer with OSELM using the proposed method
are the fastest among these 14 machine learning algorithms:
0.72 and 0.01 seconds, respectively. This is because the
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OSELM does not require iterative parameter optimization,
unlike traditional machine learning algorithms such as the
NN model, which require iterative training. This approach
directly calculates the output weights using a random matrix,
which leads to significantly reduced computational time.
Regarding the lgbm, which had good overall performance
for R2, Ttrain with the proposed method was less than almost
30 seconds. This increase of several tens of seconds of Ttrain
is not a problem because these models are created in advance
before being applied to the actual environment. Rather, the
impact factor for the application to an actual environment is
Tinfer, which affects processing delay to change the network
configurations when models are applied to an actual environ-
ment. In this experiment, Tinfer was 0.4 seconds or less. On the
assumed fixed network, this value is not a big problem for
calculating and setting network configurations to the physical
network.

In the following evaluation, we applied the pro-
posed method to the lgbm, which had the most evenly
improved accuracy for each router metric and practical
Ttrain, by applying the proposed method with these
14 algorithms.

Table 6 shows the results of R2 for the inferred router
metrics on the training datasets when recursively appending
the inferred other router metrics. We found that R2 of
Ploss was increased by 14.2%, rising from 0.84 to 0.96,
by appending the inferred Pdelay, which is the top-ranked
feature importance to the training datasets. Similarly, the R2

of Pth was increased by 16.6%, rising from 0.84 to 0.98, and
that of Pdelay was increased by 14.6%, rising from 0.75 to
0.88. Despite applying the inferred router metrics to the
training datasets, not all metrics showed an improvement
in accuracy. The R2 values for row (2) of Ploss and row
(2) of Pth in Table 6 plateaued, indicating that the inferred
router metrics appended to the training datasets contain the
inference errors that affect the accuracy of the other router
metric inference. Particularly, this is known as the regression
tree, which is the building block of many tree-based ensemble
methods; the lgbm used for this evaluation also uses tree-
based learning algorithms, that depend on both the quality
and quantity of the training datasets [42]. In this scenario, the
increase in R2 resulting from the expansion of the training
datasets with the inferred router metric is comparable to the
decrease in R2 caused by the errors of the inferred router
metric. Therefore, it is essential to balance the improvement
in the inferred router metric with the expansion of the training
datasets and the deterioration due to errors in the inferred
router metric.

As outlined in Algorithm 1, the inferred router metrics are
repeatedly added based on their feature importance. However,
it is necessary to stop adding these inferred router metrics
to the training dataset in accordance with the calculated R2.
The maximum R2 values for the inferred Pth, the inferred
Ploss, and the inferred Pdelay were reached with one, one, and
two inferred other metrics appended to the training datasets,
respectively.

TABLE 7. Results of R2
pred in comparison to R2.

C. EVALUATION OF LEARNING CURVE AND VALIDATION
CURVE FOR EACH MODEL
Fig. 6 shows the learning curve of each model using
the conventional method (vanilla lgbm) and the proposed
method. We used a 10-fold cross-validation to obtain and
construct the learning curve. The red line represents the
training score, while the green line represents the cross-
validation score. The conventional model shows a high
bias, as both the training and validation scores converge
to a low value. In addition, a noticeable gap between
the training and validation scores indicates a high vari-
ance. On the other hand, the proposed method offers a
relatively better bias-variance trade-off compared to the
model using the conventional method. We find that adding
inferred other router metrics to the training datasets does
not result in worse overfitting compared to the model
using the conventional method (vanilla lgbm) on the given
dataset.

D. CORRELATION BETWEEN MEASURED AND INFERRED
ROUTER METRICS
Fig. 7 shows the correlation between measured and inferred
router metrics: (a), (b) the inferred Ploss; (c), (d) the inferred
Pth; and (e), (f) the inferred Pdelay ((a), (c), (e): with vanilla
lgbm (conventional method), (b), (d), (f): with the proposed
method) on the training datasets with; (a), (c), (e) T and
R; (b), (d) T , R, and the inferred Pdelay; and (f) T , R, the
inferred Pth, and the inferred Ploss, respectively. As you
can see, Fig. 7 shows that the inferred router metrics on
the training datasets with the inferred other router metrics
had a higher correlation than those on the training datasets
without the inferred other router metrics. However, each
inferred router metric still had some errors. In particular, the
proposed method did not significantly improve the accuracy
of the inferred Pdelay caused by fluctuations such as packet
jitter, which includes unpredictable factors. However, the
proposedmethod improved the accuracy of the inferred router
metrics by selecting and appending the inferred other router
metrics to the training datasets according to their feature
importance.

E. EVALUATION OF RESIDUAL PLOTS AND PREDICTED R2

FOR EACH MODEL
To evaluate the adequacy of the regression model using
the proposed method, we evaluated the residual plot and
R2pred. A residual plot shows the difference between the
predicted and actual values. Fig. 8 shows the residual plot
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FIGURE 6. Learning curve for each model.

with distribution for inferring the router metrics with vanilla
lgbm (conventional method) and the proposed method.
Although there are a few incorrect inferences, the residual
plots with the proposed method show that most of the
fitted data are closely scattered around the zero residual
line, confirming the better capability of the prediction
model compared to the conventional method. Conversely,
the residual plots with the conventional method show
systematic patterns, suggesting the presence of underlying
factors that influence the dependent variable but are not
adequately accounted for in the model with the conventional
method.

Table 7 shows results of R2pred in comparison to R2.
We found that the R2pred with the conventional method (vanilla
lgbm) for Ploss was 0.74, that for Pth was 0.78, and that
for Pdelay was 0.65. On the other hand, the R2pred with the
proposed method for Ploss was 0.92, that for Pth was 0.96,
and that for Pdelay was 0.80. Although the R2pred is lower than
the individual R2, the R2pred value using the proposed method
is still closer to the R2 value compared to the conventional
method. This indicates that the proposed method does not
result in worse overfitting, and its predictive ability is better
compared to the conventional method.

F. EVALUATION FOR THE UTILIZATION OF NETWORK
RESOURCES
We evaluated the effect of the proposedmethod for improving
the accuracy of router metric inference in network design.
In particular, we evaluated how much errors in the inference
of Pdelay affect each traffic flow on a fixed network designed
byNWDR. The evaluation index was the throughput of traffic
flows under network configurations calculated by the inferred
router metrics. We assume that a network service using TCP
is added to existing traffic flows on the network, which has
a traffic policer to guarantee the required quality of service
for each flow. Network equipment can be effectively utilized
if the number of traffic flows increases under the conditions
of the same network resources. Here, we simulated a simple
network scenario using the OPNET [43] simulator to evaluate
TCP throughput on a traffic policer whose parameters are set
based on inferred router metrics calculated by the proposed
method. Fig. 9 shows the simulation setup. We consider
the accommodation of TCP CUBIC flows [44] as it is the
most widely used congestion control algorithm and is the
default in Linux. This scenario has a router with a traffic
policer to guarantee the required quality of service for each
TCP flow. We used a bufferless token bucket [45], which is
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FIGURE 7. Correlation between measured and inferred router metrics.

a commonly used implementation. A token bucket policer
has a regulator that checks for enough tokens in the bucket,
which is filled at a throttle rate. When a packet arrives, the
controller evaluates the capacity of the bucket. If the number
of tokens exceeds or equals the packet length, the token
bucket policer delivers the packet and subtracts tokens from
the bucket. On the other hand, if the number of tokens is
less than the packet length, the packet is discarded. If the
parameters, especially the bucket size, are not tuned, TCP
throughput will decrease [45]. In this evaluation, we use the
bucket size B described in (1) [45], where D is the round-
trip time (RTT) and R is the throttling rate. This bucket
size is tuned to accommodate TCP CUBIC. To calculate D,
we estimate RTT using the inferred Pdelay calculated by the
proposed method. Therefore, the larger inferred error for the

processing delay may affect TCP throughput. In other words,
if the accuracy of the inferred Pdelay is poor, it can result in
an unnecessarily large bucket size being prepared, leading to
wastage of network bandwidth.

B =
0.072
D

(RD)
4
3 (1)

Here, we define the accommodated TCP throughput ratio
(RFlow) defined as TP/TC , where TP and TC are the TCP
throughput using the router metrics inferred by the proposed
method and that of the conventional method, respectively.
When RFlow is greater than 1, the proposed method can
improve the TCP throughput compared with the conventional
method. The simulation network is a typical single bottleneck
dumbbell topology with 40 senders and one receiver. For each
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FIGURE 8. Residuals versus inferred router metrics.

FIGURE 9. Simulation setup to evaluate accommodated TCP flow with a
traffic policer, whose parameters are set based on the inferred router
metric; Pdelay using the proposed method.

sender, there was a TCP flow that ended at the receiver. The
links on the sender side were set as the fixed delays ranging
from 0.1 to 25 ms. In other words, the RTT of each TCP flow
was calculated based on the sum of this fixed delay and the

FIGURE 10. Accommodated TCP throughput ratio (RFlow).

inferred Pdelay on a router. Other parameters were as follows:
throttling rate for the TCP flow, 10 Mbps, and Maximum
Segment Size, 1460 bytes.

Fig. 10 shows RFlow. Overall, RFlow was greater than 1 for
every RTT. This means the TCP throughput can be increased
compared with the conventional method. In particular, the
smaller the RTT is, the larger the inferred error of Pdelay
for the RTT. In this experimental condition, RFlow at
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maximum became 2.15 when RTT was about 1 ms. This
means that the proposed method can accommodate twice
as many TCP flows as the conventional method under the
conditions of the same network resources. This is because
the conventional method has a relatively larger inferred error
of Pdelay for the smaller RTT. Therefore, an appropriate
bucket size was not set to the token bucket policer. As a
result, packets are dropped more than necessary with the
smaller RTT, and TCP throughput decreased. On the other
hand, the proposed method can set the appropriate bucket
size by using the improved inferred Pdelay at a router and
improve TCP throughput. Therefore, the proposed method
could reduce the network bandwidth required to absorb
the errors of the inferred router metrics. Considering the
above results, the proposed method can effectively design
network resources by improving the accuracy of router metric
inference.

VI. DISCUSSION
Improving the accuracy of network node metric infer-
ence will support the implementation of optimal network
configurations in increasingly complex network systems,
such as 5G/6G supported by multiple carriers and network
disaggregation technologies. Before changing or updating the
configuration of a physical network, the NWDR evaluates
the network performance for unknown external network
conditions in digital space to evaluate whether network
requirements will be met. Therefore, understanding the
impact of node metric inference on network configuration is
a critical step in developing appropriate network extensions.
In this study, we proposed a machine learning-based network
node modeling, which selects and appends the inferred other
router metrics to the training datasets recursively according to
feature importance, which increases the accuracy of the router
metric inferences of Ploss, Pth, and Pdelay.

A. REVIEW OF THE PROPOSED METHOD VIA
EXPERIMENTAL RESULTS
Here, we review the proposed method through experimental
results. The proposed method has the characteristic of
appending inferred router metrics to the training datasets
recursively. Under the evaluation conditions of this study,
the addition of one or two inferred other router metrics was
sufficient to improve the accuracy of the inferred router
metrics for throughput, packet loss rate, and packet delay by
up to 9.1% compared to the largest R2 in the conventional
method, as shown in Section V-B. On the other hand,
the side effects of appending recursively inferred router
metrics to the training datasets with the proposed method
resulted in increased computational time and the possibility
of overfitting. We found that the increased computational
time to infer the router metrics was about 0.4 seconds or
less, as shown in Section V-B. This computational time was
not a major problem for computing and setting network
configurations to the physical network in the assumed fixed
network. Moreover, the overfitting is not getting worse than

the vanilla lgbm model, as shown in Section V-C and V-E.
We found that this improvement in the accuracy of the
inferred router metric led to increased efficiency in network
design, and made it possible to effectively allocate network
resources in an assumed fixed network where a traffic policer
is implemented, and calculate bucket size based on the
inferred packet delay. The proposed method reduces the
network bandwidth to absorb inferred router metrics errors by
up to 50% compared to the conventional method, as discussed
in Section V-F.

B. SELECTION OF FEATURE IMPORTANCE
Here, we explain the selection of feature importance, which
is essential in the proposed method. The more available
features, the better the chances of constructing an accurate
network node model if the intricate relationships between the
router metric model and the features are clear. Therefore,
appending the inferred other router metrics to the training
datasets is crucial to enrich the training datasets. If the
training dataset is insufficient, the router metrics model
cannot learn correctly due to the overfitting problem.
In addition, if a model is too complicated, such as having
too many features in a small sample size, overfitting can
also occur. Therefore, attaching more features than necessary
can cause overfitting. Thus, the inferred router metrics must
be carefully appended to the training datasets. In this study,
we used feature importance [21] for each router metrics
model to decide which inferred router metrics to append
to the training datasets. Then, we recursively appended the
inferred other router metrics to the training datasets according
to feature importance while evaluating the accuracy of the
router metric inference.

C. LIMITATIONS OF THE PROPOSED METHOD
The proposed method can support the inference of router
metrics for interpolation, but the inference for extrapolation
is required as a further study. In particular, it is known that
methods based on NN are not good at extrapolation [46].
Also, the proposed method requires further study for applica-
tion to network nodes with environmental changes, such as a
non-terrestrial network (NTN). In this paper, we conducted a
network simulation assuming how the inference errors of the
proposed method affect each traffic flow on a piece of current
fixed network equipment: a packet router implementing a
traffic policer. The proposed method has some effectiveness
in conventional fixed network design. However, application
to an NTN, such as satellite communications or high-altitude
platform systems, will be required to achieve cost-effective
and high-capacity connectivity in future 6G networks [47].
An NTN is generally exposed to environmental changes,
such as weather conditions, which cause variations in link
quality. This is different from a conventional fixed network.
Therefore, network node modeling algorithms need to be
robust in changing environments such as those of NTNs and
be able to update network configurations immediately.

VOLUME 11, 2023 138651



K. Hattori et al.: Recursive Router Metrics Prediction Using Machine Learning

VII. CHALLENGES AND FUTURE DIRECTIONS
There are still considerable research topics that require
additional exploration and unresolved issues that need to be
addressed. Here, we outline topics that may be useful for
future investigation in this study. These topics are grouped
into three areas.
• 1) Network adaptation in changing external environ-
ments: Future 6G networks will require NTN appli-
cations for efficient and high-capacity connectivity.
However, the link quality of NTNs can vary due to
external factors such as weather conditions. Therefore,
developing network node modeling algorithms that can
adapt to changes in the external environment is a
critical task for the future. One possible method to
achieve this is to use algorithms related to ELM [48]
that can learn in real time. The ELM is a machine
learning algorithm known for its fast training speed and
low computational complexity. It has the potential to
enable accurate inference of network node performance
and rapid evaluation of network requirements through
instantaneous retraining. The algorithms associated with
ELM can facilitate rapid adaptation to changing network
conditions. Another approach is to use a physics-based
approach to capture the multiplexing characteristics
of network traffic. For example, based on the idea
of integrating physical laws and data-driven models
[49], this approach also has the potential to improve
data-driven models by using governing equations that
represent the multiplexing of packet traffic. These
approaches could improve the performance of network
nodes on networks with changing external environments
such as NTNs.
In addition, the proposed method relies on mod-
els trained through supervised learning on labeled
datasets from existing network environments, which
may limit its applicability in dynamically chang-
ing environments such as NTNs. In particular, the
generalizability of the created model is crucial in
NTN use cases, where unobserved scenarios arise
from changes in the external environment that are
not present in the training dataset. To address this
challenge, a reinforcement learning method has been
proposed to enable unmanned aerial vehicles (UAVs)
to operate autonomously and adapt intelligently to
rapidly changing conditions [50]. Therefore, when
dealing with environments such as NTNs that undergo
frequent changes and face challenges in obtaining
labeled data, it is crucial to incorporate reinforcement
learning by designing rewards that can adapt to unknown
environments.

• 2) Adaptation to field data: Field data, such as that
collected from commercial carrier networks, often con-
tains various types of noise. In addition, collecting large
amounts of data for different environmental patterns
to train the network node model can be difficult and
expensive. Therefore, the key to success is to use clean

data obtained in laboratory or simulation environments.
To achieve this, techniques such as transfer learning
[51], [52] are considered highly effective. Transfer learn-
ing is a powerful machine learning technique that uses
knowledge from one domain to another to improve the
performance of a learning algorithm. Previous studies
have successfully applied transfer learning to models
for inferring network traffic [51] and detecting network
intrusions [52]. Using transfer learning techniques based
on simulated environments makes it possible to improve
the accuracy of network node metric inference even for
field data that may contain noise and other uncertainties.

• 3) Modeling of performance at the node components
for network disaggregation: Network disaggregation
techniques [4] enable the combination of modular
hardware and modular software from different vendors,
providing the flexibility to meet service requirements
when configuring network equipment. In the case
of routers, for example, it is possible to combine
line cards and switch cards from different vendors.
However, the challenge remains to model each module
and digitally evaluate performance at the component
level.

Since the proposed method is based on a model learned
from a dataset acquired from existing network equipment,
it is expected to have limitations when dealing with new
network equipment models that exhibit different behaviors.
Therefore, it becomes crucial to leverage reinforcement
learning when modeling new network equipment without
labeled data. This approach may enable network equipment
modeling even without labeled data. In addition, there is a
possibility of applying the concept of ensemble learning [20]
to different network node metrics, where different algorithms
can leverage distinct network node metric characteristics and
the relationship of a given dataset to improve the accuracy of
network node metric inference.

VIII. CONCLUSION
We proposed machine learning-based network node mod-
eling for a network digital replica (NWDR). The NWDR
generates optimal network configurations for unknown
external conditions by creating network node models in
digital space. This study focuses on improving the accuracy
of inference for the metrics of black-boxed network nodes
when only the network node configurations and traffic
conditions are available as external conditions. To address
this issue, we propose a machine learning-based network
node modeling method to increase the accuracy of network
node metric inference. This is done by recursively appending
the inferred other metrics into the training datasets according
to feature importance. The proposed method could improve
the coefficient of determination (R2) for inferred router
metrics, throughput, packet loss rate, and packet delay by
up to 9.1% compared to the largest R2 in the conventional
method. We also evaluated the impact of adding inferred
router metrics to the training datasets, a feature of the
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proposed method, on the increase in computational time and
the possibility of overfitting. For the assumed fixed network,
we find that the increase in computational time for inferring
router metrics is less than about 0.4 seconds, which is not a
significant problem for calculating and setting the network
configuration to the physical network, and the overfitting is
not getting worse compared to the model using vanilla lgbm.
Moreover, we evaluated the effect of the proposed method for
improving the accuracy of router metric inference on network
design. We assumed a fixed network to accommodate TCP
flows with a token bucket policer to guarantee the required
quality of service, and whose bucket size is controlled
by the NWDR. We found that the proposed method can
reduce the network bandwidth for the absorption of the errors
of the inferred router metrics by up to half compared with the
conventional method.

Limitations of the proposed method include reliance on
supervised learning models trained on labeled datasets for
fixed network environments, incomplete consideration of
various types of noise in the dataset, and reliance on data
acquired from existing network equipment. Thus, future
research can provide valuable insights and further develop
this area of study by exploring adaptation to networks with
changing external environments, adaptation to field data,
and modeling the performance of new node components for
network disaggregation.
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