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ABSTRACT Utilizing Unmanned Aerial Vehicles (UAV) and instance segmentation for construction site
monitoring(such as construction machinery and operation surfaces) offers a significant leap in management
efficiency over traditional manual supervision methods. However, in UAV-based remote sensing images, the
subtle presence of construction machinery and the image features resemblances among various operational
surfaces make it difficult to segment instances. To address these challenges, this study proposed a novel
instance segmentation model based on the YOLOv8-seg model. Given the unique challenges, the proposed
model makes three improvements to the original YOLOv8-seg model. First, the paper incorporates the
FocalNext module, which extends the sense field of the convolutional kernel to capture contextual data and
integrates multilevel features, enhancing the perception of local details. Second, the paper incorporates the
Efficient Multiscale Attention (EMA) module, which refines image features by emphasizing spatial-channel
interactions and adeptly contrasts patterns across scales to detect nuances overlooked by conventional
models, aiding in distinguishing similar construction operation surfaces. Last, given the intricate nature of
construction site images, this paper incorporates the Context Aggregation module, which enhances pixel
analysis by intelligently modulating feature weights to highlight essential global contexts. The ablation
experiment demonstrates that the enhancements perform well on the YOLOv8-seg two variants model.
Comparative experimental results show that the improved model significantly outperforms existing instance
segmentation models regarding model performance, complexity, and inference speed. Overall, the improved
YOLOv8-seg model balances model performance and computational complexity to meet the needs of edge
device deployment in field monitoring.

INDEX TERMS Instance segmentation, YOLOv8, construction site.

I. INTRODUCTION
In the construction industry, the progress of construction
work surfaces and the working conditions of machinery
are two crucial factors. Specifically, construction progress
represents not only the real-time completion of the project
but also a direct reflection of the optimization of the
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project’s economy, time, and resources. Machinery’s work-
ing condition directly affects the construction efficiency and
quality. Any lag in progress or machinery failure may trig-
ger cost increases, project quality decline, and even safety
accidents. Effective supervision ensures that projects are
carried out according to the intended schedule and bud-
get while safeguarding the quality and safety of the work.
However, traditional monitoring relies heavily on manual
observation, recording, and reporting, which has multiple
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limitations. Firstly, manual recording may lead to omission
or bias of information, which is the key basis for project
decision-making. Second, frequent manual inspections are
labor-intensive and difficult to achieve real-time, continu-
ous monitoring. With the development of digitalization and
automation in the construction industry, there is an increasing
demand for more advanced, accurate, and efficient moni-
toring methods. Modern monitoring methods can capture
construction progress and machinery status information in
real-time and automatically, providing timely and accurate
data support for decision-makers, thus optimizing resource
allocation, improving construction efficiency, and guarantee-
ing project quality.

In recent years, the field of computer vision has seen signif-
icant advancements, notably in the development of instance
segmentation techniques. Unlike traditional image analysis
methods, instance segmentation offers a detailed recognition
of object instances down to the pixel level, boasting enhanced
resolution and accuracy. Several advanced algorithms based
on convolutional neural networks have emerged in recent
years, such as Mask R-CNN [1], PANet [2], PointRend [3],
and SOLO [4]. Among others, Mask R-CNN builds upon
Faster R-CNN [5] by adding the capability to predict seg-
mentation masks, while the RoIAlign module addresses
alignment discrepancies. PANet further amplifies the flow
of feature information, offering robust support for smaller
instances. PointRend treats the segmentation problem as a
rendering task, producing high-quality details around object
boundaries. In contrast, SOLO employs a direct predic-
tion approach, eliminating the need for RoI to present a
streamlined and efficient solution. The YOLO (You Only
Look Once) series, primarily known for its real-time object
detection capabilities, has also inspired methods incorpo-
rating instance segmentation features. YOLACT [6] is a
real-time instance segmentation method that builds upon the
YOLO framework. Instead of predicting raw masks for every
instance, it predicts a set of prototype masks for the whole
image and linear combination coefficients for each detected
instance. As an adaptation of the YOLOv5 model, YOLOv5-
seg [7] extends its architecture to handle pixel-wise mask
and bounding box predictions. Similarly, building on the
YOLOv7 object detection framework, YOLOv7-seg [8] is
devised to handle instance segmentation.

The practical implications of instance segmentation algo-
rithms are vast. In medicine, it offers the possibility to locate
and measure structures in the body precisely, thus optimizing
the diagnostic and therapeutic process; in agriculture, it can
provide more powerful data support for agricultural produc-
tion and pest control by analyzing farmland images in detail;
in automated driving and robotics, instance segmentation
provides higher accuracy for environment sensing and object
interaction. Likewise, numerous research studies have inte-
grated computer vision into construction site management to
enhance construction site operations [9], [10], [11], [12], [13].
Yu and Nishio [9] propose a computer vision-based instance

segmentation framework for multilevel bridge inspection,
focusing on structural component detection and segmenta-
tion. Xiao et al. [10] propose a vision-based method for
tracking workers in off-site construction by integrating deep
learning instance segmentation. The Mask R-CNN algorithm
is used for instance segmentation, and a matrix-based asso-
ciation approach is employed for tracking. Kang et al. [11]
propose a deep learning-based one-stage instance segmenta-
tion model for surveillance camera systems at construction
sites, considering weather conditions such as rain, snow,
and fog. Kumar et al. [12] propose a Mask R-CNN-based
approach for automatic multiclass instance segmentation of
concrete damage. Fang et al. [13] propose a sewer defect
detection framework for sewer floating capsule robots. The
framework includes instance segmentation, real-time local-
ization, and 3D reconstruction.

In recent years, the rapid development of unmanned aerial
vehicle (UAV) technology has brought about revolutionary
changes in various industries. UAV have emerged as cru-
cial inspection instruments, offering a more streamlined and
precise data gathering and analysis method. As a data acqui-
sition platform and measurement instrument, UAV systems
are becoming attractive for many surveying applications [14].
Unlike traditional methods, UAV-captured remote sensing
images provide unrestricted views, ensuring holistic obser-
vations from any perspective or location. Consequently, the
development of instance segmentation technology tailored
for UAVs broadens the horizons of their potential appli-
cations. Specifically, Xie et al. [15] propose a method for
tree crown extraction in high canopy-density forests using
UAV remote sensing images and instance segmentation mod-
els. Song [16] researched a vehicle instance segmentation
algorithm based on UAV aerial images for traffic monitoring
systems. Wang [17] focuses on the research of extracting
traffic signs from tilted UAV images using the Mask R-CNN
instance segmentation framework. The study develops a
method to address the challenges of perspective deformation,
large-scale variation, and occlusion in tilted UAV images.
Stewart et al. [18] propose a deep learning-based approach
using Mask R-CNN for quantitative Northern Leaf Blight
(NLB) quantitative phenotyping in UAV images. The study
demonstrates the potential of combiningUAV technology and
deep learning for high-throughput and accurate quantitative
measurement of plant diseases. Weyler et al. [19] propose
a vision-based approach for joint instance segmentation of
crop plants and leaves in agricultural fields and breeding plots
using UAV imagery. Liu and Chou [20] propose a Bayesian-
optimized deep-learning model for UAV images to identify
and segment deterioration patterns underneath bridge decks.

Monitoring construction progress and quality is essential
in current architectural construction management. However,
traditional manual inspection methods are inefficient and
may be constrained by various objective conditions. Thus,
this paper proposes an instance segmentation model based
on engineering images collected by UAV for construction
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machinery and operating surface instance segmentation. The
ability of UAV to frequently fly over the site allows for
capturing substantial real-time remote sensing images. This
allows construction managers to perform ongoing and imme-
diate site monitoring, considerably enhancing management
efficiency. Instance segmentation can provide high-precision
semantic and location analysis to support civil engineer-
ing managers in more efficient supervision and planning.
The instance segmentation model can be employed to edge
devices (UAV) to monitor safety and quality issues during
construction processes, promptly identifying and addressing
potential risks. By obtaining real-time information on con-
struction machinery and operation surfaces, such as objects’
shapes, categories, and positions, engineering managers can
better understand and evaluate on-site conditions, facilitat-
ing more informed decision-making. However, computer
vision-based construction scenario instance segmentation is
uniquely challenging. First, construction machinery typically
occupies only a tiny portion of the image in UAV-based
remote sensing images. The condition causes the charac-
teristics of small objects to be overshadowed by extensive
background information during image recognition and seg-
mentation, posing challenges for identifying small targets.
Moreover, there are often many operational surfaces with
similar properties in construction sites, such as concrete
surfaces and gravel floors, which may exhibit remarkably
similar visual characteristics in remote sensing images cap-
tured by UAV, increasing the difficulty of identification and
segmentation. Finally, real-time monitoring for the manage-
ment of construction sites is required, and the accumulation of
delays may lead to distortion and misjudgment of results. The
solution is to use edge computing, integrating deep learning
processing units on UAV and performing the computational
tasks near the data source, thus reducing data transmission
and processing latency. Deep learning algorithms are compu-
tationally complex, while lightweight models often perform
poorly. Thus, proposing a highly accurate algorithm that is
lightweight is crucial for the edge deployment of instance
segmentation algorithms.

Over the past few years, many researchers have favored the
YOLO series for its real-time object detection capabilities.
As the state-of-the-art algorithm of the YOLO series, The
YOLOv8-seg model has the following potential advantages
over mainstream instance segmentation models: 1. YOLO
series algorithms emphasize real-time target detection and
segmentation. The YOLOv8-seg inherits this feature and can
provide near real-time instance segmentation, making it ideal
for applications that require immediate feedback, such as
real-time surveillance at construction sites. 2. The YOLO
series serves as a single-stage detector, eliminating the need
for a complex two-stage process or area proposal mechanism.
This design makes the model simpler and more efficient
for actual deployment. 3. The YOLO series is known for
its simplicity of training, requiring fewer resources and less
time than some other deep learning models. This is espe-
cially beneficial for applications that require retraining on

specific construction site data. 4. As a state-of-the-art model,
YOLOv8-seg can incorporate the latest computer vision and
deep learning advances. This ensures it stays on the cutting
edge, outperforming older models in various scenarios. Based
on the advantages analyzed above, this study has selected
YOLOv8-seg as the primary segmentation model. Given the
unique challenges associated with instance targeting, we have
improved the YOLOv8-seg model to develop an instance
segmentation model specifically for construction sites. The
research improvement of the model can be summarised as
follows:

• The paper introduces the FocalNext module, specifically
designed to address the challenges of small object segmenta-
tion in remote sensing images. By broadening the receptive
field of the convolutional kernel, the module captures more
contextual information, which is crucial for distinguishing
small objects from their surroundings. Additionally, integrat-
ing multi-level image features ensures detailed recognition
of these objects. Together, these enhancements facilitate the
effective parallel processing of fine local details and the
broader scene, resulting in a marked improvement in small
object segmentation accuracy.

• The paper introduces the Efficient Multi-scale Attention
(EMA) module to distinguish visually similar construction
operation surfaces. The module refines image features by
emphasizing the interaction between spatial and channel
dimensions. By effectively comparing patterns at different
scales, it can identify subtle dependencies ignored by original
models.

• Considering the complexity of construction site imagery,
this paper introduces the Context Aggregation module. The
module refines pixel analysis by smartly adjusting feature
weights, emphasizing key global contexts while reducing
irrelevant information.

The remainder of this paper is organized as follows.
Section II presents details about the model improvements.
Section III describes the data used in this study, evalua-
tion metrics, and experimental environment configuration.
Section IV presents the analysis of the experimental results.
Section V is the conclusion of the paper. Finally, Section VI
presents the limitations and future work of this paper.

II. METHODS
A. FUNDAMENTALS OF THE YOLOv8-seg MODEL
YOLOv8, released by Ultralytics, outperforms its YOLO
antecedents in terms of speed and accuracy. Overall, the
backbone of the YOLOv8 model references the design con-
cept of YOLOv7 ELAN: the basic convolutional module
is the C2f module, which integrates two parallel gradient
flow branches, facilitating a more robust gradient information
flow. Additionally, YOLOv8 uses the Spatial Pyramid Pool-
ing Fusion (SPPF), a module to extract contextual informa-
tion from images at varying scales that significantly enhances
the model’s generalization capabilities. In YOLOv8’s neck
design, the model removed convolutional structures during
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FIGURE 1. The model structure of the YOLOv8-seg model.

the up-sampling phase and strategically replaced the C3mod-
ule with the C2f module. YOLOv8 provides a framework
for model training, enabling the performance of essential
tasks such as object detection, instance segmentation, image
classification, and pose estimation. Among them, the model
structure of the YOLOv8-seg model is shown in Fig. 1.

B. IMPROVED YOLOv8-seg MODEL
1) FOCALNEXT BLOCK
In remote sensing image analysis, accurately segmenting
small objects is challenging. The challenges primarily stem
from the targets’ small scale and the background’s com-
plexity. To address these issues, this paper introduces a
novel computer vision module, FocalNext block [21], which
combines the strengths of dilated depthwise convolutions
and skip connections to simultaneously process fine-grained
local information and coarse-grained global information,
thereby enhancing small object segmentation performance.
As depicted in Fig. 2A and Fig. 2B, the FocalNext block is
an augmented variant of the ConvNext block [22], endowed
with an additional dilated depth-wise convolution and two
skip connections:

• Dilated depthwise convolutions, a pivotal component of
the FocalNext block, expand the receptive field of the con-
volutional kernel, enhancing the model’s capacity to perceive

global information. Given that the small targets often have
a considerably small scale compared to their surrounding
environment, the segmentation model with a large enough
receptive field can effectively capture a broader range of
background information, thus increasing the understanding of
information about the environment around the small target.

•Given the considerable variations in the size and distribu-
tion of ground features, small targets may seem substantially
diminutive compared to their surroundings. Global and local
information complement each other and serve as a key strat-
egy in addressing the problems in remote sensing imagery.
Skip connections enable the model to fuse features from
varying imagery feature levels, enhancing the model’s ability
to utilize fine-grained local information for accurate small
target detection while leveraging coarse-grained global infor-
mation for superior context comprehension. Among them,
fine-grained local information refers to the microscopic and
specific information within an image, such as texture and
profile characteristics. Coarse-grained global information
reflects the macroscopic context of the image, encompassing
larger geographical scopes or the overall regional imagery.
Global information assists in understanding the positioning
and implications of fine-grained targets within a broader
environment. Simultaneously utilizing global and local infor-
mation allows for more effective identification of small
targets. Global information offers a comprehensive context,
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FIGURE 2. The first improvement to the YOLOv8-seg model. (A) ConvNext block,
(B) FocalNext block, (C) FocalNext block applied to the YOLOv8-seg model.

allowing the macroscopic understanding of the image, while
local information permits precise target identification at the
microscopic level.

As depicted in Fig. 2C, the C2f module in front of the
YOLOV8 segment head is replaced with the FocalNext block
module utilizing global and local information fusion.

2) EFFICIENT MULTI-SCALE ATTENTION (EMA)
The Efficient Multi-scale Attention (EMA) module [23] is a
novel attention mechanism that builds upon the traditional
Coordinate Attention (CA) module [24]. The EMA module
refines the representation feature of images by modeling the
interaction between channels and spatial dimensions. It does
so by efficiently computing the similarity between global and
local features, which allows it to capture both long-range and
short-range dependencies in the image. The EMA’s design
allows for a concise and efficient exploration of image fea-
tures at multiple scales, promoting a better understanding and

representation of the underlying structures in the image data.
As depicted in Fig. 3B, the main procedures of the EMA
Attention Mechanism module are as follows:

• Feature Grouping: The EMA module divides the input
feature map along the channel dimension, forming multiple
sub-features. The approach aids in learning and represent-
ing different semantic information. It enhances the model’s
expressive capacity by thoroughly considering the potential
channel correlations and differences.

• Parallel sub-networks: The EMA module employs three
parallel paths to extract attention-weight descriptors from the
grouped feature maps. Among these paths, two are located at
the 1×1 branches, while the third resides at the 3×3 branch.
Specifically, two 1D global average pooling operations are
utilized to encode the channels within the 1 × 1 branches
(horizontal and vertical directions), as shown in equation
(1) and equation (2). The two encoded features are then
concatenated and processed through a 1× 1 convolution that
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FIGURE 3. The second improvement to the YOLOv8-seg model. (A) CA module, (B) EMA module, (C) EMA module
applied to the YOLOv8-seg model.

does not reduce dimensionality. Finally, two-channel atten-
tion maps are derived by employing two non-linear Sigmoid
functions. For achieving different cross-channel interactive
features between the two parallel routes in the 1 × 1 branch,
the Parallel sub-networks aggregate the two channel-wise
attention maps inside each group via a simple multiplication.
As for the 3 × 3 convolution branch, EMA directly applies a
3 × 3 convolution operation on the grouped input feature to
enlarge the feature space, then conducts an average pooling
on the outcome to generate a second spatial attention map.

ZHC (H ) =
1
W

∑
0≤i≤W

xc(H , i) (1)

ZWC (H ) =
1
H

∑
0≤j≤H

xc(j,W ) (2)

where C means the numbers of the input channels, H andW
indicate the input features’ spatial dimensions, respectively,
and xc indicates the input features at the c-th channel.

• Cross-spatial learning: The EMA module employs a
cross-spatial information aggregationmethod across different

spatial dimensions to achieve more enriched feature aggrega-
tion. For two spatial attention maps generated by encoding
global spatial information within the outputs of the 1× 1 and
3 × 3 branches, a 2D global adaptive average pooling is first
performed on the feature map and reshaped appropriately
(as shown in equation (3)), followed by normalization of the
result using a softmax function. Finally, the results from both
branches undergo element-wise multiplication, producing the
first and second spatial attention maps, which retain the full
spatial location information.

Zc =
1

H ×W

H∑
j

W∑
i

xc(i, j) (3)

where C means the numbers of the input channels, H andW
indicate the input features’ spatial dimensions, respectively,
and xc indicates the input features at the c-th channel.

• Attention mechanisms: After obtaining the spatial atten-
tion maps from each branch, the EMA module employs
a non-linear Sigmoid function to generate attention weight
values. These values capture pairwise relationships at the
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FIGURE 4. The third improvement to the YOLOv8-seg model. (A) Context aggregation block, (B) Improved C2f module, (C) Improved
SPPF modu.

pixel level and highlight the pervasive influence of the global
context across all pixels. Subsequently, these spatial attention
weights are utilized to construct the ultimate feature map.

Computer vision models encounter significant challenges
with remote sensing data. The datasets typically include
numerous high-resolution images, with small subjects like
construction machinery occupying minimal space in the
visual field. Detecting these small targets requires robust
models capable of discerning their subtle features and
separating them from the background and other objects.
Moreover, the scale of the same type of construction operat-
ing surfaces can appear differently in images due to variations
in drone flight altitude and angle. Often these construction
operating surfaces display a complex contextual environment
requiring a model with advanced capabilities for feature
representation and context comprehension. Thus, the feature
extraction capability of the model backbone needs improve-
ment. This study adds an EMA attention mechanism module
following the model backbone of YOLOv8-seg (Fig. 3C).
Specifically, the EMA attention mechanism module effec-
tively merges global and local information through global
average pooling and dot product operations, allowing the
model to capture the global layout and shape information of
the construction operating surfaces and understand detailed
local features and texture information (such as the details
of operating equipment or variations in work progress). Fur-
thermore, the EMA module initially divides the input into
multiple sub-features, each with a good distribution of spatial
semantic features. The parallel 1 × 1 and 3 × 3 convolu-
tions inside the EMA module enable a more comprehensive
capture of the spatial context information of objects. The
property aids the model in gaining a deep understanding

of complex scenes containing small targets, enhancing the
accuracy of small target recognition.

3) CONTEXT AGGREGATION BLOCK
The construction site is a complex and dynamic environ-
ment where construction machinery, workers, construction
materials, and construction operating surfaces coexist. Given
the overlap between construction machinery and operating
surfaces, coupled with the intricate nature of the construction
environment, distinguishing between these elements presents
a significant challenge for accurate object segmentation.
Additionally, in remote-sensing image analysis, it has been
observed that objects (construction machinery) frequently
only take up a small fraction of the total image area, resulting
in expansive portions of background information. Traditional
convolutional module designs do not adequately distinguish
between object and background information, possibly leading
to the unnecessary inclusion of excessive non-informative
background features. To address the above issue, this paper
proposes enhancing the basic modules of YOLOv8 (C2f and
SPPF) by incorporating the Context aggregation block [22]
to assess each pixel’s informativeness for an image, and the
improved modules are presented in Fig. 4B and Fig. 4C.
In the Context aggregation block structure, as depicted in
Fig. 4A, two branches are committed to getting attention
and feature maps, respectively. The third branch is devoted
to getting the context maps. Then attention map and fea-
ture map branches are fused through a matrix multiplication
operation. The matrix multiplication operation adaptively
weights the input features, thus retaining significant global
information while reducing non-pertinent content. Finally,
the output result from the matrix multiplication operation is
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FIGURE 5. The Introduction of the dataset. (A) The process of dataset collection, (B) The dataset annotation
categories.

summed element-by-element with the context maps to get
the context refinement maps. Specifically, in the Context
aggregation block, pixel-wise spatial context is aggregated
by:

Qji = Pji + aji ·
Ni∑
j=1

[
exp(wkP

j
i)∑Ni

m=1 exp(wkP
m
i )

· wvP
j
i] (4)

where Pi and Qi denote the input and output feature maps of
level i in the feature pyramid, each containing Ni pixels; j, m
∈ (1) indicate the indices of each pixel; wk and wv are linear
transform matrices for projecting the feature and context
maps (use 1 × 1 convolutions to perform the mapping); ai
is a re-weighting matrix with the same shape as Pi and Qi to
balance the extent of aggregating global spatial context for
each pixel, which can also be generated as simple as a linear
transform from Pi with softmax normalization, as depicted by
equation (5):

aji =
exp(waP

j
i)∑Ni

n=1 exp(waP
n
i )

(5)

where j, n ∈ (1) indicate the indices of each pixel; wa is
linear transform matrices for projecting the attention maps
(use 1 × 1 convolutions to perform the mapping).
Overall, the Context aggregation block operates under a

clear principle: if a pixel’s features are informative enough,
there is no need to aggregate features from other spatial
locations. The approach skillfully balances the integration of
critical global contexts with the preservation of unique local
features, thereby improving the model’s ability to distinguish
features in a broad context while maintaining detailed local
variation.

III. EXPERIMENTAL INTRODUCTION
A. EXPERIMENTAL DATASET
The study primarily focuses on automatically identifying
and monitoring the construction site from a bird’s-eye view
using an improved YOLOv8-seg algorithm. To accomplish
this, we used a drone to collect photographic data from four
pit construction project sites and annotate them. The drone
utilized for this study was the DJI Phantom 4 Pro. This UAV
can achieve top flight speeds of 20 m/s and has a maximum

VOLUME 11, 2023 139089



R. Bai et al.: Automated Construction Site Monitoring

flight duration of around 30 minutes, with a GPS positioning
accuracy of vertical ±0.1 m and horizontal ±0.3 m. The
onboard camera of the DJI Phantom 4 Pro offers a resolu-
tion of 20 megapixels and is equipped with a 1-inch CMOS
sensor. Before launching the flight mission, we conducted a
comprehensive survey of the construction site to determine
the construction operation surface and machinery’s position,
height, and operational range. We set the drone’s flight alti-
tude to 20 meters above the tallest point of the tower crane,
allowing for comprehensive coverage and inspection of the
entire area. During the actual flight, the drone flew from one
end of the construction site, flew in a straight line across
to the other end, then turned around and returned along a
slightly deviated parallel line. As depicted in Fig. 5A, the
approach ensures continuous and systematic coverage of the
construction area.

Fig. 5B illustrates the captured image samples and their
corresponding annotations. Construction sites often do not
adhere to a strictly sequential progression of phases because
of project scheduling and resource management. Conse-
quently, it is common for several construction stages to
be underway simultaneously, leading to scenarios where
multiple phases are active simultaneously. As a result, the
annotations in the images encompass various construction
elements. Finally, the number of different instance categories
in the training, testing, and validation sets are summarized
in Table 1.

TABLE 1. The number of different instance categories in the training,
testing, and validation sets.

B. EVALUATION METRIC
Assessing the performance of instance segmentation algo-
rithms needs the utilization of robust error evaluation metrics:
Intersection over Union (IoU) refers to the metric that calcu-
lates the ratio of the area of intersection to the area of union
between the predicted segmentation and ground truth labels;
Precision is a statistical metric representing the proportion of
positive identifications in a dataset that was indeed correct.;
Recall, also known as sensitivity, represents the proportion
of actual positives that were identified correctly; The mean
Average Precision (mAP) considers precision and recall over
varying IoU thresholds, which is particularly well-suited to

instance segmentation tasks as it provides a nuanced view
of model performance. The formula used to calculate this is
provided below:

precision =
TP

(TP+ FP)
(6)

recall =
TP

(TP+ FN )
(7)

AP =

∫ 1

0
p(R)dR (8)

mAP =

∑
m AP
m

(9)

Frames Per Second (FPS) is a critical performance metric
in object detection algorithms, quantifying the number of
image frames the algorithm can process per second. FPS is
calculated by taking the reciprocal of the time taken to process
one frame (in seconds), that is:

FPS =
1
T

(10)

C. EXPERIMENTAL CONFIGURATION
The experimental framework for this investigation was con-
structed on an Ubuntu 18.04 operating system, with Python
3.8.13 as the programming language. The computational
libraries used were CUDA-11.4 and cuDNN-8.2.2, paired
with PyTorch 1.10.2 for machine learning tasks. The hard-
ware utilized an RTX-3090 GPU equipped with 8GB of
memory. The processing unit was an Intel(R) Core(TM)
i7-6500M CPU, operating at a clock speed of 3.20GHz.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
YOLOv8-seg offers five differently sized pre-trained models:
n, s, m, l, and x. Specifically, YOLOv8n-seg is the smallest
model, offering the fastest speed. In contrast, YOLOv8x-seg
is the most accurate model, yet it operates at a slower speed.
Considering the requirement of edge device deployment
for the model parameter, the subsequent research specifi-
cally aimed at YOLOv8n-seg and YOLOv8s-seg (as shown
in Table 2).

TABLE 2. Comparison of different scale YOLOv8-seg models.

A. ABLATION EXPERIMENTION
In this section, an ablation study was conducted to sys-
tematically evaluate the contributions of each enhancement
strategy to the overall performance of the YOLOv8-seg
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FIGURE 6. Analysis of ablation experiments on segmentation accuracy. (A) Model accuracy - parameter, (B) Validation accuracy changes during
training.

FIGURE 7. Analysis of ablation experiments on detection accuracy. (A) Model accuracy - parameter, (B) Validation accuracy changes during
training.

model. To ensure a fair and equitable comparison across
all experiments, we maintained a consistent experimental
environment: image input size was set at 1200×1000 pixels,
training epochs were set at 100, SGD was utilized for opti-
mization, and the batch size was fixed at 20, the experimental
parameters are listed inTable 3. The reasons for choosing the
specific values of the hyperparameters are as follows. Image
input size: the parameter is obtained based on the average
size of the images in our dataset. Training epoch: we observe
that the model’s performance on the validation set stabilizes

TABLE 3. Experimental parameters.

after about 100 epochs. The continued increase in the num-
ber of epochs does not significantly improve performance.
Optimizer: SGD optimizer exhibits greater robustness in the
choice of learning rate compared to other optimizers such as
Adam or RMSprop. It utilizes only a small batch of samples
at a time to gradually adjust and update the model weights,
increasing the robustness of the model during the learning
process. Batch size: the parameter is chosen based on the
memory size of our computer and training time considera-
tions. A batch size of 30 allows us to fully utilize our hardware
resources while keeping the training time within acceptable
limits.

Table 4 summarizes Yolov8-seg models with differ-
ent improvement strategies: Focal block, EMA, and Con-
text aggravation. Each experiment in the table indicates
which improvement strategies were implemented. Experi-
ment 1 served as the baseline (origin YOLOv8), where no
improvement strategy was applied, providing a reference for
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TABLE 4. Ablation experiments.

FIGURE 8. Comparison of accuracy and parameter from different instance segmentation models. (A) Seg, (B) Box.

FIGURE 9. Comparison of accuracy and FPS from different instance segmentation models. (A) Seg, (B) Box.

evaluating the subsequent experiments. With four indepen-
dent experiments, we could understand the impact of these
strategies on model performance collectively applied.

As depicted in Fig. 6 and Fig. 7, it can be observed
that segmentation and detection accuracy show an increasing
trend with the gradual increase of the improvement strategies,
while the model parameters get reduced compared to the

original model. The trend demonstrates the advantages of
FocalNext block, EMA, and Context aggregation strategies in
enhancing the model performance. It is worth noting that the
n and s scale YOLOv8-seg model can observe a similar trend,
demonstrating the generalizability and scalability of these
strategies. Table 5 summarizes the effect of the combination
of these strategies on the model performance of the n and s
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TABLE 5. Ablation experiments.

FIGURE 10. The Visualization results of the original YOLOv8n-seg and improved YOLOv8n-seg model in construction
site scenes. (A) Original model, (B) Improved mode.

scale models, including the segmentation and detection aver-
age precision (mAP50) and the number of model parameters.

Overall, themodifications improved themodel’s performance
and reduced its parameter count, making it an ideal solution
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TABLE 6. Comparative experiment.

for instances of segmentation where high-precision and com-
putationally efficient models are required.

B. COMPARE WITH OTHER MODELS
In this section, the paper establishes a comparative study
between the enhanced YOLOv8n-segmodel and other promi-
nent instances segmentation models such as YOLOv5-seg,
YOLOv7-seg, Mask R-CNN, SOLOv2, Yolact, and Point
rend. The comparative experimental results in Table 6
show that the improved YOLOv8-seg model proposed in
this paper has significant advantages over other algorithms
regarding instance segmentation mAP50 metrics and model
parameters. Regarding the mAP50(Seg) metric, the improved
YOLOv8-seg model outperforms all other algorithms in n
and s scales. Most prominently, the mAP50 of YOLOv8s-
seg reaches 0.910, 2.6% higher than the best comparison
algorithm, Point rend. This result indicates that the proposed
improved strategy significantly improves the segmentation
accuracy of the model. The improved YOLOv8-seg model
also shows superiority in the number of model parameters.
The model parameters have decreased, significantly smaller
than those of other models with the same accuracy (as
depicted in Fig. 8). In particular, on the s-scale, YOLOv8s-
seg has a parameter count of 11.69M, which reduces the
model parameters by more than half compared to Point
rend (59.94M parameters) and Mask R-CNN (Resnet101)
(63.16M parameters), which are similar to mAP50. This
means that the improved model significantly reduces the
computational complexity and model size while maintain-
ing high accuracy, further improving the model’s efficiency.
In addition, compared with the previous YOLOv5-seg model

and YOLOv7-seg model, the improved YOLOv8-seg model
shows a significant improvement in mAP50 with a rela-
tively small increase in the model parameters, proving the
effectiveness of the improved strategy. The superiority is
attributed to the proposed improvement strategies, such as the
FocalNext block, EMA, and Context aggregation block. The
improvement strategies simultaneously enhance the model’s
performance and control the increasement of model complex-
ity to a certain extent, making the model more feasible and
applicable in practical applications.

For the speed of model inference, the improved YOLOv8-
seg model offers an ideal equilibrium between model perfor-
mance and speed of inference compared with other models.
The speed of the improved model is faster than those of
other models with the same accuracy (as depicted in Fig. 9).
In particular, YOLOv8n-seg achieved anmAP value of 0.866,
a competitive accuracy value while maintaining a decent
FPS value. Although our improved model slows down in
speed compared to the original YOLOv8-seg model and the
YOLOv5-seg model, its accuracy is significantly improved.
We believe that a good model is about pursuing fast detec-
tion speed or high accuracy and finding an optimal balance
between the two. Our improved YOLOv8-seg model strives
to achieve better results in both aspects.

C. VISUALIZATION RESULT AND ANALYSIS
An image was selected from the test dataset for a compara-
tive analysis of segmentation results. Fig. 10 shows it after
segmentation using the original YOLOv8n-seg and modi-
fied YOLOv8n-seg algorithms to intuitively demonstrate the
enhanced algorithm’s superior performance.
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V. CONCLUSION
The main objective of this paper was to improve instance seg-
mentation algorithms for construction site operating surfaces
and machinery. The research involving drone photography
data collection, data annotation, ablation experiment analysis,
and comparative experiment was undertaken.

The research introduced several enhancements to the
YOLOv8-seg model, including the FocalNext block, Effi-
cient Multi-scale Attention (EMA), and Context aggregation
block strategies. Ablation experiments demonstrated that
the gradual Application of these enhancement strategies
improves the mAP value while finally reducing the number of
parameters of the model compared with the original model.
Comparative experiments with other prominent instance seg-
mentation models showed the superiority of the improved
YOLOv8-seg model. The performance of the improved
model surpassed other algorithms with fewer model parame-
ters and faster inference speed. Overall, this study thoroughly
explores the improvement of the instance segmentation algo-
rithms YOLOv8-seg in analyzing construction site data and
how the improved instance segmentation algorithms could
provide algorithmic solutions for construction sitemonitoring
automation.

VI. LIMITATIONS AND FUTURE WORK
Despite the progress made in our research, some limitations
and challenges still need to be further explored.

1. Current instance segmentation models are trained based
on a limited number of labeled categories. This limits the
model’s ability to recognize and process a broader range of
building element categories.

2. The dataset in this study focused on light-rich contexts,
which may have led to poor model performance for environ-
ments with low or varying light conditions.

3. Although the model has shown certain recognition
capabilities in the conducted experiments, its robustness in
complex and challenging construction scenarios still needs
further validation. For example, construction sites with mul-
tiple overlapping activities, dense crowds of workers, or large
amounts of machinery may pose unique challenges.

Given the limitations described above, future work will
focus primarily on the following directions:

1. Research and implement lighting enhancement tech-
niques or preprocessing strategies to enhance image quality in
low-light conditions and boost instance segmentation model
adaptability to these scenarios.

2. To make the model more widely applicable, we will
consider expanding the training dataset to incorporate more
construction element categories in the future, thus enhancing
the model’s recognition capability.

3. In the future, this research will explore adaptive learning
mechanisms to make the model more adaptive and robust
in the face of highly dynamic, complex, and challenging
environments such as construction sites, thereby improving
overall efficiency and safety.
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