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ABSTRACT As a typical power electronics interface device, the voltage source converter (VSC) usually uses
phase-locked loop (PLL) to synchronize with the grid and its transient synchronous dynamics is complicated.
Recently it is found that the PLL-VSC system can be described by a generalized swing equation which is
similar to the swing equation for the synchronous generator. Differently it has a state-dependent damping
term and the basin boundary of the stable operating point can show either a closed-loop or a fish-like pattern
under different parameters. To deal with these difficulties, a trajectory reversing method is proposed to
efficiently obtain the basin boundary of the post-fault stable operating point, and further the critical clearing
angle and the associated critical clearing time. In addition, for the transient stability enhancement, an adaptive
control strategy by varying equivalent PI controller parameters of PLL in terms of the system status is
proposed. It is found that it can efficiently and quickly damp transient disturbances. Therefore, these two
novel methods including the trajectory reversing method and the adaptive control method are expected to be
valuable for transient stability analysis and enhancement of the PLL-VSC system.

INDEX TERMS Voltage source converter, transient stability analysis, transient stability enhancement, state-
dependent damping, trajectory reversing method, adaptive control.

I. INTRODUCTION
Nowadays, with the fast development and integration of
various power electronic and renewable energies devices,
the modern power system are facing some fundamental
challenges [1], [2], [3], [4], [5]. For the power electronic
devices, the control strategies are usually diverse and the
control loops are complicated featured with a clear multi-
time-scale character [6]. The equivalent inertia for the power
electronic devices is believed as decreasing, compared to
that of synchronous generator (SG) in the traditional power
systems, and some methods such as virtual inertia and
frequency support were proposed to deal with this tough prob-
lem recently [7]. Due to the much complicated multi-scale
nonlinear dynamical behavior, this tendency also makes the
transient stability analysis, assessment, and enhancement of
the new-generation power system exceedingly difficult [6].
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As a typical power electronics interface device, the voltage
source converter (VSC) usually uses phase-locked loop (PLL)
to synchronize with the grid [8]. In a contrast to this grid-
following method, there is another category, i.e., the so-called
grid-forming method, such as power synchronization control,
droop, droop with low-pass filter, and virtual synchronization
generator (VSG) etc. In this paper, the PLL-based VSC
system is mainly studied. For the transient stability analysis,
several methods including the time-domain simulation,
phase portrait, equal area criterion (EAC), energy function,
bifurcation analysis, etc have been developed recently [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17]. Although the
time-domain simulation always shows the dynamic process
properly and it has been broadly used to verify the accuracy
of system modeling [9] and the efficiency of transient
stability enhancement strategies [10], it is time-consuming
and inconvenient. In [11], the phase portrait was used to
evaluate the transient stability on the two-dimensional state
space. The Taylor series was used to expand the nonlinear
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functions about the angle and time during the fault stage [12].
By ignoring the damping term completely, the classical EAC
can give qualitative results for some faults [13]. In [14],
an improved equal area criterion was proposed to improve
the accuracy by considering the nonlinear damping and study
how the parameters influence the transient stability. In [15]
and [16], the Lyapunov’s direct method was used to estimate
the region of attraction. However, this method is difficult to
be understood from the physical perspective. In [17], the sum-
of-squares programming technique was used to improve the
accuracy of the stability region by considering the indefinite
damping effect, but it was still conservative.

In addition, a (normalized) generalized swing equation
for the PLL-based VSC system was proposed by us [13],
showing a similarity to the swing equation for the SG
with a sole difference: the state-dependent damping term
[13], [18]. By the bifurcation analysis, it shows that there
are three different kinds of bifurcations including saddle-
node, Hopf, and homoclinic bifurcations. Within the different
parameter regions, the basin boundary of the stable operating
point can be either a closed-loop pattern (surrounded by
an unstable limit cycle) or a fish-like pattern. Therefore,
the state-dependent damping effect in the generalized swing
equation may bring an essential difficulty in the transient
stability analysis, as there still lacks an efficient analytical
method to deal with it.

For the nonlinear analysis of the PLL-VSC system,
bifurcations under different parameters and models were
studied [2], [19], [20]. However, the discrimination of
homoclinic bifurcation is usually difficult, and a simple
criteria of homoclinic bifurcation is needed. A method will
be given in the later chapter based on the trajectory reversing
method. And two kinds of stability regions can be observed
clearly, which proves that limit cycle exists in VSC.

On the other hand, for the transient stability enhancement
of the PLL-VSC systems, several control strategies have
already been proposed. Generally they can be classified
into two categories [18]. The first one is to modify the
active current or active power during the fault. For example,
the reactive current and active current were adjusted with
different levels of voltage sag [10]. The other one is to
modify the PLL parameters directly. For example, an increase
of proportional gain and a decrease of integral gain were
suggested [21]. In [22], a novel method was proposed to
ensure a positive damping coefficient during fault occurrence.
A gain of PI output in the PLL is added to the q-axis voltage
of PLL during the fault. For the parameter variation, some
adaptive control strategies can be used. For instance, a fuzzy
controller was used to replace the PI controller of the PLL
and make the transient response faster [23]. In [24], it was
suggested that the best controller parameters are calculated
online and recorded in a parameter table for different fault
types and different levels of voltage dip, and the controller
parameters are changed dynamically based on the parameter
table when a real fault happens. To the best knowledge of
the authors, as the VSC is highly controllable, there is still

much open space for developing new control strategy, which
should be not only easily understandable but also efficiently
applicable.

To deal with the above two key problems of transient
stability analysis and enhancement in the PLL-based VSC
system, the trajectory reversing method (TRM) is introduced,
which has been widely used to estimate the asymptotic
stability regions in the traditional power systems and general
dynamical systems as well [25], and the adaptive control
method, which was originally used in variable droop constant
control for VSC-MTDC [26] and the VSG-based VSC
system [27], respectively. The TRM can also be called as time
reversing method. Although the state-dependent damping
effect brings certain difficulties, these two methods are
of model independence and capable of overcoming these
difficulties easily. With the TRM, two different (closed-loop
or fish-like) patterns of basin of attraction can be easily
identified and further the critical clearing angle (CCA) and
the critical clearing time (CCT) for the cross-section of
during-fault trajectory and basin boundary can be directly
obtained. It is notable that in a very recent paper, the TRM
has been mentioned in the study of the fish-like pattern of
the similar system [28]. However, the closed-loop pattern
is not discussed in the paper. In this paper, the two kinds
of stability regions are discussed together, which means
homoclinic bifurcation happens when parameters change.
The corresponding criteria is proved useful. On the other
hand, for the adaptive control method, the PI parameters of
the PLL can be easily chosen under different system statuses,
based on a simple physical understanding. The adaptive PI
parameters based on the equivalent damping and inertia can
be used to improve transient satbility.

The rest part of this paper is structured as follows:
Section II introduces the trajectory reversing method based
on the system modeling of the generalized swing equation,
accompanying with the verification results and comparison
results with the EAC. Section III introduces the adaptive
PI parameters control strategy for the transient stability
enhancement. Finally, conclusions are given in Section IV.

II. TRANSIENT STABILITY ANALYSIS BASED ON
TRAJECTORY REVERSING METHOD
A. TRANSIENT MODEL FOR PLL-VSC
Fig.1 shows a single-VSC-infinite-bus model, namely,
a PLL-based VSC is connected to the grid. The PLL is
a synchronous loop based on the grid-following control.
If the VSC loses synchronization in the transient process, the
frequency of PLL would deviate from the working frequency
of the AC grid. Here ACC is used to denote the alternative
current control. PI controller is widely used in the ACC and
PLL because the input of PI controller will decay to zero
gradually when the system is stable, and the input can be
controlled well. In our previous work, the PI controller is used
in the VSC modeling [2]. For simplicity, the AC grid has
been replaced by an ideal infinite bus. Ug is the equivalent
voltage of the infinite bus, and Lf is the filter inductance.
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FIGURE 1. Schematic show of a VSC tied to AC grid with PLL and ACC.

Zg=Rg+jωLg is the equivalent grid impedance, Ut is the
terminal voltage of the VSC. I refdq =idref +jiqref denotes the
d-axis and q-axis currents in the PLL reference frame. I is
the output current vector of the VSC. ω0 is the synchronous
angular frequency, and δpll and ωpll are the output angle and
frequency of the PLL, respectively.

As the bandwidth of the ACC is much higher than that
of the PLL, the current output can be believed as always
following the current references, which are set as constants in
the paper. Therefore, the VSC can be treated as a controlled
current source and its dynamics is determined by the PLL
solely. Under this simplification, the transient dynamics of
the PLL-VSC system can be expressed by the so-called
generalized swing equation, which is still a second-order
equation and similar to the classical swing equation of the
SG [13], [29]:

Meqδ̈ = Pm − Pe − Deq(δ)δ̇ (1)

where 

Pm = Xgidref + Rgiqref
Pe = Ug sin δ

Meq =
1
ki
(1 −

kpXgidref
ω0

)

Deq =
kp
ki
Ug cos δ −

Xgidref
ω0

(2)

Here δ = δpll − ω0t denotes the angular position
deviation between the PLL and the grid, ω = ωpll −

ω0 is the corresponding angular frequency deviation. kp
and ki are the PI parameters of the PLL. Pm and Pe
are the equivalent mechanical and electromagnetic powers,
respectively. Meq and Deq are the equivalent inertia and
damping, respectively. Both Meq and Deq are determined by
the controller parameters. Here the dominant difference with
the SG is that theDeq in (2) is state-dependent, i.e., it changes
with the angle deviation δ, whereas the damping of the SG
is always a positive constant. Clearly this state-dependent
nonlinear damping could bring an additional difficulty in the
transient stability problems of the PLL-VSC system.

TABLE 1. System parameters.

FIGURE 2. Comparison of the basin boundary (blue and pink curves)
obtained by the trajectory reversing method and the basin of attraction
(gray area) of the post-fault stable equilibrium point obtained by the
Monte Carlo method; ki = 1500. The dot A (D) denotes the unstable
(stable) equilibrium point of the post-fault state, the dot B the stable
equilibrium point of the pre-fault state, and the point C the cross-point of
the basin boundary and the during-fault forward trajectory.

The equilibrium points in (1) can be easily obtained:
δs = arcsin

Xgidref + Rgiqref
Ug

δu = π − δs = π − arcsin
Xgidref + Rgiqref

Ug

(3)

where δs (δu) denotes the stable (unstable) equilibrium point.
If the voltage is too small, the equilibrium point does not
exist. However, usually the equilibrium point exists for the
before-fault and clearing-fault states.

Ref. [13] proposed a normalized generalized swing
equation to simplify the system analysis. It has been found
that due to the homoclinic bifurcation, the asymptotic
stability regions can be either a fish-like or an elliptic pattern.
These two different types of basin have been calculated by
using the Monte Carlo method by exhaustively searching
all initial conditions. For each initial condition, the system
may asymptotically approach to the equilibrium point or
infinite after a long transient time. The initial conditions
going to the equilibrium point are kept and plotted. The
basins of attraction of the post-fault equilibrium point
are shown by gray areas in Fig.2 and Fig.3, respectively.
The only difference is the different values of ki, namely,
ki = 1500 in Fig.2 and ki = 10000 in Fig.3. The
other system parameters are the same, as shown in Tab.1.
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FIGURE 3. Similar to FIGURE 2, but for ki = 10000 instead.

The subscripts ‘‘pre’’, ‘‘during’’, and ‘‘post’’ are used to
denote the three fault stages in the transient process: pre-
fault, during-fault, and post-fault stages, respectively. The
parameters are selected just like our previous work [13], and
the units of them are p.u.

In addition, the dot A (D) is used to denote the unstable
(stable) equilibrium point of the post-fault state, the dot B the
stable equilibrium point of the pre-fault state, and the point
C the cross-point of the basin boundary and the during-fault
forward trajectory.

As it is well known that the transient stability should
be determined by whether the fault-clearing state is within
or out of the basin of the attraction of the post-fault
equilibrium point, the determination of the basin of attraction
is of great importance. Different with the classical fish-like
pattern in the swing equation, here not only the fish-like but
also the close-form patterns should be judged for different
parameters. In addition, for the close-form pattern, it is far
away from the post-fault equilibrium point. All these unusual
phenomena may pose a basic challenge for the transient
stability analysis.

B. ALGORITHM FOR TRAJECTORY REVERSING METHOD
To solve the above troubles, the TRM is used with the
associated algorithm developed. The basic idea is simple.
By replacing the timing (from t to−t) and setting the unstable
equilibrium point (UEP) of the post-fault state as the initial
condition, the (reversing) trajectory from the UEP can be
obtained, still by using the time-domain integration. With
this method, the two different types of basin of attraction
can be easily identified. Furthermore, the CCA and CCT
can be easily obtained based on the intersection between
the during-fault trajectory and the obtained basin boundary.
It is notable that in the final step of calculation, only a
small component of the basin boundary near the during-fault
trajectory is needed.

In the power systems, there are many different types of
faults. In this paper, without losing generality, only consider
the typical voltage sag fault of the infinite bus. Based on the

expressions in (2), clearly the voltage sag with the change
of Ug mainly changes Pe. Therefore, the voltage sag fault is
similar to the three-phase short circuit fault in the SG [13].
The UEP in the post-fault stage δupost = δcr in (2) is critical,
as the PLL-VSC will lose synchronization if δ exceeds δcr in
the transient process.

With the TRM, replace t by −t in (1) and obtain a new
dynamic equation immediately:

Meqδ̈ = Pm − Pe + Deq(δ)δ̇ (4)

showing the only difference of the sign of the Deq term. Then
start from (δcr ,0) and get the reverse trajectory by numerical
integration. In calculation, a slight perturbation is needed.
Their trajectories guided by arrows are shown in Fig. 2 for
the fish-like pattern and in Fig. 3 for the close-loop pattern.
In Fig. 2, it can see that with the different tiny perturbations
of initial conditions (e.g., a perturbation of 10−10 or −10−10

on ω, respectively), both the top boundary (blue curve) and
bottom boundary (pink curve) of the basin of attraction of the
fish-type pattern can bewell obtained.Whereas in Fig. 3, only
the asymptotic stable limit cycle (blue curve) can be obtained.
Clearly these basin boundaries obtained by the TRM (denoted
by the arrows) match with the basin of attraction obtained by
the Monte Carlo method (denoted by the green region) well.

After determining whether the final asymptotic behavior
is a limit cycle (periodic behavior) or not, the pattern of the
basin of attraction for either a close form or a fish-like one can
be judged. Further, the process of estimating the boundary of
the stability region is also slightly different. Firstly, to obtain
the CCA, the correct part of the reverse trajectory should be
chosen. When the reverse trajectory does not converge to a
cycle (like Fig. 2), the initial part of the reverse trajectory
will be used to obtain the cross-point with the forward during-
fault trajectory, starting from (δ0,0). Oppositely if the reverse
trajectory converges to a cycle (like Fig. 3), the final limit
cycle data should be used to get the cross-point. After the
cross-point is obtained for these two different patterns, the
corresponding CCA and CCT can be obtained immediately.
A flow chart for the detailed algorithm of the trajectory
reversing method is given in Fig. 4, to summarize the process
for determining the two types of stability region patterns and
calculating the CCA and CCT.

C. CCA/CCT CALCULATION RESULTS BASED ON
TRAJECTORY REVERSING METHOD
In Fig. 2, ki = 1500. And CCA=1.4325rad and
CCT=0.0950s by the TRM. To check these results, the
clearing time is set as 0.0950s and 0.0951s separately
and calculate their corresponding time-domain responses of
angle δ. The results are shown in Fig. 5, where clearly the
system is stable (unstable) when the clearing time is smaller
(larger) than the CCT in Fig. 5(a) [Fig. 5(b)]. They show
that with an extremely tiny variation of the clearing time, the
system dynamics can be completely different. They also show
that the result based on the TRM is accurate with a sufficiently
high precision.
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FIGURE 4. Flow chart of the algorithm of the trajectory reversing method.

FIGURE 5. Verification of the CCT under ki = 1500 by different clearing
times: (a) 0.0950s and (b) 0.0951s.

FIGURE 6. Verification of the CCT under ki = 10000 by different clearing
times: (a) 0.0257s and (b) 0.0258s.

Similarly, in Fig. 3 under ki = 10000, CCA=1.2166rad
and CCT=0.0257s from the TRM. The corresponding
time-domain results are shown in Fig. 6. The clearing time is
0.0257s in Fig. 6(a) and 0.0258s in Fig. 6(b). Again the results

are perfect. In addition, further study shows that with all other
parameters fixed, the critical parameter for the homoclinic
bifurcation is ki = 8407, which is relatively very large.

All these comparisons clearly demonstrate that the TRM
is efficient for the transient stability and assessment of the
PLL-based VSC under different system parameters and it is
workable for not only close-form but also fish-like patterns of
basin of attraction. Comparatively, the calculation of the CCA
is fast, compared with the Monte Carlo method. It is notable
that there is no any other method to deal with these two
different basins so far, to the best knowledge of the authors.

We admit that this method is relatively theoretical because
the equation of the system should be known first. The
trajectory is obtained based on the differential equation. Even
though the accuracy has been verified in Fig. 5 and Fig. 6, the
feasibility of this method should be further studied, if either
the ACC effect or multiple PLL-VSC systems are considered.

D. COMPARISON WITH THE EAC RESULT
As the EAC is a classical analytical method of transient
stability by neglecting the damping completely, it is inter-
esting to make a comparison, based on the TRM. Here the
CCA calculated by the TRM is denoted as CCATRM , and
the CCA calculated by the EAC is denoted as CCAEAC .
As the TRM is highly efficient, the system parameters can
be systematically studied. If CCAEAC < CCATRM , the
CCA calculated by the EAC is conservative, otherwise it
is radical. In the traditional power system, as the damping
is positive, the EAC is always conservative. However, here
as the damping is state-dependent, which can be positive or
negative, the CCAEAC may be either conservative or radical.
The state-dependent damping effect will be studied by the
comparison of CCATRM and CCAEAC .

The theoretic expression of CCAEAC for the voltage sag
fault is explicit [13]:

CCAEAC =
Pm(δ0 − δcr ) + Ugduring cos δ0 − Ugpost cos δcr

Ugduring − Ugpost
(5)

To characterize the deviation, η is defined as

η =
CCAEAC − CCATRM

CCATRM
(6)

The following parameters are fixed; kp = 50, ki = 2000,
Rg = 0pu, idref = 0.8pu, iqref = −0.2pu, Ugpre = 1pu.
The other parametersUgduring,Ugpost , and Xg will be studied.
In each case one parameter among them is set as a constant
with the other two parameters changeable. In calculating
CCATRM , both patterns of basin of attraction should be
possible, as the parameter variation is relatively large.

As the first case, the contour plot of η with the variation
of Ugduring and Ugpost is shown in Fig. 7; Xg = 0.5pu is
fixed. Clearly η may be positive or negative for different
parameters. The line for η = 0 is nearly a horizontal straight
line when Ugpost ≈ 0.6pu. Generally, as Ugpost increases,
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FIGURE 7. Contour plot of η with variation of Ugduring and Ugpost ;
Xg = 0.5.

FIGURE 8. Contour plot of η with variation of Ugduring and Xg;
Ugpost = 0.9.

η also increases. It shows that η is more likely to be influenced
by Ugpost , compared with Ugduring.
As the second case, the contour plot of η with the variation

ofUgduring and Xg is shown in Fig. 8.Ugpost = 0.9pu. Clearly
now the line for η = 0 is nearly a horizontal straight line again
at Xg ≈ 0.87pu. When Xg is relatively large, η decreases with
increase of Xg and it is nearly not affected by Ugduring. When
Xg is small, η increases asUgduring decreases.WhenXg is very
small, the shape of contour plot looks like a ridge.

For the third case, the contour plot of ηwith the variation of
Ugpost and Xg is shown in Fig. 9. Ugduring = 0.1pu. Here the
contour plot is nearly a series of parallel slant straight lines
in the upper-left part of the figure. As Ugpost increases and
Xg decreases, η increases from negative to positive. In the
lower-right part, a ridge shape also occurs.

From the above figures, the EACmay cause an error which
is not ignorable, and the dependence of η on the system
parameters are diversified. When η is small and near zero,
the contours look like several parallel straight lines. When η

is large, a ridge shape may occur. In addition, η is more likely

FIGURE 9. Contour plot of η with variation of Ugpost and Xg;
Ugduring = 0.1.

FIGURE 10. Schematic show for the transient process in the swing
equation by using a mechanical equivalence. On state 0, the mass is on
the pre-fault stable state o. In contrast, the post-fault stable state is o′ .
From states 1 to 2, it is accelerating; from states 2 to 3, it is decelerating;
from states 3 to 4, it is accelerating again; and from states 4 to 1, it is
decelerating. The adaptive control strategy is established by changing the
(equivalent) inertia and (equivalent) damping on the basis of the system
status.

to be influenced by Ugpost and Xg, and relatively weaker by
Ugduring. Generally, under a larger Ugpost , a smaller Xg, and
a smaller Ugduring, η increases, meaning that the CCAEAC is
more likely to be radical.

III. TRANSIENT STABILITY ENHANCEMENT BASED ON
ADAPTIVE CONTROL
A. THEORETICAL BASIS OF THE ADAPTIVE CONTROL
It is well known that the SG dynamics is determined by the
swing equation with its intrinsic property including inertia
(denoted by M) and damping (denoted by D), which are
always positive and unchanged in the transient process. The
VSG control imitates the SG dynamics showing the same
dynamical equation, but as the VSG is fully controllable,
basically its inertia M and damping D can be freely chosen.
Therefore, in the transient process, the system parameters
including M and D can be adaptively changed. The same idea
has been reported recently [27].
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To understand the adaptive control better, the transient
stability process of the swing equation is explaind by
using a mechanical equivalence of a mass-spring system in
Fig. 10 [30].

On state 0, the mass is on the pre-fault stable state o
denoted by a dashed horizontal line, due to the balance of
the gravity force and the elastic force from the mechanical
spring. When a large-signal disturbance happens suddenly,
the gravity force becomes larger than the new elastic force.
A thin spring is used to show a smaller elastic coefficient.
Therefore, the motion of the mass is accelerating downward.
In contrast, using o′ and the dashed horizontal line to denote
the post-fault stable state. Clearly from states 1 to 2, it is
accelerating. However, from states 2 to 3, it is decelerating,
although its speed direction is still downward. After that, from
states 3 to 4, it is accelerating again, and from states 4 to 1, it is
decelerating. For both states 3-4 and 4-1, the speed direction
becomes upward. Based on these observations, the adaptive
control strategy can be designed.

As in the transient process of the VSG, D is always posi-
tive, the value of D should be increased to make disturbance
damp faster. However, for the change of value of M, in the
accelerating stage, such as from states 1 to 2 and from states
3 to 4, M should increase to hinder its acceleration. On the
other hand, in the decelerating stage, such as from states
2 to 3 and from states 4 to 1, M should decrease to make
its decelerating process faster. Therefore, the change of M
should be determined by not only the speed (ω) but also the
acceleration (dω/dt). Here ω = ωvsg−ω0. To combine these
two factors, d |ω|/dt is used to uniquely determine the change
of M. Hence list the adaptive inertia and damping coefficient
control strategy in Tab. 2, where the fourth column is based
on the combined conditions of ω and dω/dt on the second
and third columns in Tab. 2, respectively.

TABLE 2. Adaptive control strategy in VSG.

As the adaptive control strategy in VSG has been proposed
effective, now extend this simple strategy to the PLL-VSC
system. After clearly examining the equivalent damping term
Deq in (2), one can find that comparatively its second constant
part is small and thus only its first part (cos δ) is kept. Namely,
Deq(δ) ≈ (kpUg cos δ)/ki. Under this assumption, kp/ki
and cos δ are combined to determine the damping efficient
Deq. When cos δ > 0,the damping is positive, which can
enhance the transient stability, kp/ki should increse under this
condition in order to make better use of positive damping.
When cos δ < 0,the damping is negative, which harms the
transient stability, kp/ki should decrese to reduce the effect of
negative damping. Therefore, the control strategy for kp/ki on
the fourth column in Tab. 3 for different δ is given.

TABLE 3. Adaptive PI parameter control strategy in PLL-VSC.

FIGURE 11. Improved adaptive PI parameter control strategy in PLL-VSC.

In addition, still relying on the generalized swing equation
in (2),Meq ≈ 1/ki. According to Tab. 2, when ω dω

dt > 0,Meq

should increase (ki decrease), when ω dω
dt < 0, Meq should

decrease (ki increase). Thus, the control strategy for ki on the
fifth column in Tab. 3 is given.

The whole control strategy for the PLL-VSC has been
summarized in Tab. 3, which is obtained from the VSG
adaptive control strategy. The determining conditions for how
to change the control parameters ki and ki under the four
different conditions of d |ω|/dt and cos δ are explicit. Clearly
it is easy to use. Below let us design the control strategy more
explicitly.

B. SPECIFIC DESIGN PROCESS OF ADAPTIVE CONTROL IN
PLL-VSC
From Tab. 3, the PI parameter of PLL should be changeable
in the transient process. When ω dω

dt > 0, ki decreases, so a
kind of equation of ki can be given as

ki = ki0(1 −
2
π
arctan(λ1ω

dω

dt
)) (7)

where ki0 denotes the initial integral parameter, and λ1
denotes the coefficient selected to multiply with ω dω

dt ,
which can be set relatively large. The value of tangent
function is restricted within (−π

2 ,
π
2 ). The coefficient 2

π

can restrict (1 −
2
π
arctan(λ1ω

dω
dt )) within (0,2), so ki is

always positive, which makes Meq always positive. When
λ1ω

dω
dt > 0, arctan(λ1ω

dω
dt )>0, ki>ki0. When λ1ω

dω
dt <

0, arctan(λ1ω
dω
dt )<0, ki<ki0. So the equation (7) can be

designed according to Tab. 3.
And the kp/ki should change with cos δ, similarly, kp/ki

can be defined as:
kp
ki

=
kp0
ki0

(1 + λ2 cos δ) (8)

where kp0 denotes the initial proportional parameter, and λ2
denotes the coefficient that multiplied to cos δ. λ2 should be
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FIGURE 12. Comparison of the behaviors of transient stability without
control (red dotted line) and with control (blue line) by clearing the fault
0.05s later after it occurs: (a) In the state space. (b) Waveform of δ in the
time domain. Clearly with the control, the system performance in the
transient increases.

smaller than 1.0 so that the kp > 0. When cos δ > 0, kpki >
kp0
ki0

. When cos δ < 0, kpki <
kp0
ki0

. The equation corresponds to
Tab. 3. The equivalent damping and inertia can be changed.

Then from (7) and (8), kp is obtained as:

kp = kp0(1 −
2
π
arctan(λ1ω

dω

dt
))(1 + λ2 cos δ) (9)

So the conditions of the system can be measured and the
extra loops can be used to change the equivalent PI parameters
of the PLL-VSC. The schematic of the improved adaptive
control strategy is shown in Fig. 11. Different from the
existing adaptive PI parameter methods in [30], the adaptive
control strategy in this paper is designed from the perspective
of equivalent inertia and damping, and the equivalent PI
parameters can change as the state in the transient process.

However, the PI parameters should be constricted by
considering the small-signal stability. On the basis of linear
system theory, the following small-signal stability conditions

FIGURE 13. Comparison of kp and
kp
ki

without control (red dotted line)

and with control (blue line) (a) kp. (b)
kp
ki

.

are given [31]:

kp <
1

idref Lg
(10)

and

ki <
Ug cos δ0

idref Lg
kp (11)

where Lg =
Xg
ω0

denotes the corresponding inductance of Xg.
So the PI parameters should be subject to these control
constraints.

C. VERIFICATION OF ADAPTIVE CONTROL METHOD
In the test, the system parameters for the PLL-VSC are
chosen: Rg = 0pu, Xg = 0.7pu, idref = 0.8pu, iqref =

−0.2pu, Ugpre = 1pu, Ugduring = 0.3pu, Ugpost = 0.9pu,
kp0 = 50, ki0 = 1500, λ1 = 1000, λ2 = 0.9. Note that
under these conditions, the basin of attraction is a typical
fish-like pattern, as in Fig.2. In the absence of control, the
two parameters kp and ki do not change. With the control, the
adaptive PI parameter control strategy is conducted by using
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FIGURE 14. Comparison of equivalent inertia and damping without
control (red dotted line) and with control (blue line) (a) Meq. (b) Deq.

the equivalent parameters in (7) and (9), which are guided
according to the adaptive control strategy in Tab. 3.
Now compare the results without and with the adaptive PI

parameter control strategy. First check the control strategy
under the same clearing time after the during-fault process.
When t = 0.5s, the fault occurs, clear the fault at t = 0.55s,
showing the results in Fig. 12(a) for the state-space plot
and Fig. 12(b) for the time-series plot. In this simulation,
Ugpost = 0.9pu is smaller than Ugpre = 1pu, the angle
δ doesn’t converge to the its pre-fault value. If Ugpost is
equal to Ugpre, the δ of the stable point will not change.
The PLL-VSC is both stable, but the range of variation on
the phase portrait becomes smaller after using the control,
as shown in Fig. 12(a). Similarly the angle variation in the
time domain in Fig. 12(b) also decreases after the control.
All these show that the control method really improves the
transient performance.

Next check the change of equivalent inertia and damping,
the kp and kp

ki
are shown in Fig. 13, after using the adaptive

control strategy. Now the kp and kp
ki

change in transient
process. Similarly, the Meq and Deq are compared in Fig. 14,
Meq can change adaptively, and the Deq become larger

after using the adaptive control strategy, which enhances the
transient stability of PLL-VSC. The CCA and CCT can be
determined by the time domain simulation. The CCA has
changed from 1.9865rad to 2.2672rad and the CCT from
0.0510s to 0.1924s. Both CCA and CCT increase after using
the control, demonstrating that the adaptive PI parameter
control strategy can enhance the transient stability.

IV. CONCLUSION
In conclusion, faced with the key challenges in the
transient stability analysis of the PLL-VSC systems: the
state-dependent nonlinear damping effect and two different
types of basin of attraction for different system parameters
[13], [18], we have developed a trajectory reversing method
for the transient stability analysis and an adaptive control
method for the transient stability enhancement. Our study
finds that the trajectory reversing method is efficient and
straightforward. The boundary of the stability region can be
estimated more conveniently and systematically, compared
with theMonte Carlomethod and the time-domain simulation
method. Compared with other methods, such as Lyapunov’s
direct method, energy function, and hyperplane method
which highly rely on the local dynamical information of the
controlling (or relevant) unstable equilibrium point, the TRM
can discriminate two different types of basin of attraction
well, where the closed-loop pattern is usually far away from
the unstable equilibrium point. In this respect, the TRM is
unique to solve the problem of two different types of basin of
attraction by considering the state-dependent damping term.
To the best knowledge of the authors, there is no any other
method capable to deal with this problem. In addition, with
this method, the EAC result which completely ignores the
damping term can be easily compared.

For the second key contribution of this paper, directly
from the physical understanding of the (generalized) swing
equation for the vibration damping of mechanical systems in
the transient process, an adaptive control strategy by varying
the controller parameters (or equivalently the equivalent
damping and inertia) on the basis of the system status is
developed. Our study finds that this method is also efficient
and straightforward. Only the information of signs of ω,
dω/dt and cos δ are needed. It can attenuate the system
disturbances quickly.

Therefore, we think that these two methods, although
simple, can be valuable for the transient stability analysis
and enhancement of the PLL-VSC systems. In the future,
the trajectory reversing method and the adaptive PI controller
should be examined in higher-order model.
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