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ABSTRACT Several motor imagery classification methods have been developed and achieve higher
accuracy. Machine learning (ML) based algorithms utilizing manually designed features often encounter
robustness issues, leading to diminished accuracy. While deep learning (DL) based algorithms exhibit
promising accuracy, their extensive computational requirements present challenges in implementing them
on portable devices, thereby restricting their practical applications. In this paper, we improve the ML-based
algorithm’s feature robustness problems by combining common spatial patterns with Riemannian tangent
space mapping, enhancing the algorithm’s feature quality. Furthermore, we introduce a method that utilizes
the distance between data points and the SVM hyperplane to compute category scores, thereby enhancing
classifier performance. Our experiment uses the BCI Competition IV 2A, BCI Competition III 3A, and a
self-recorded dataset for subject-specific experiments to validate the algorithm’s classification performance.
Experimental results show that the proposed algorithm achieves the best classification performance, with
an accuracy of 78.55%, 83.33%, and 57.44% for BCI Competition IV 2A, BCI Competition III 3A,
and the self-recorded dataset. Additionally, to assess the practicality of a real-time portable application,
we implemented the proposed algorithm on Raspberry Pi and Jetson Nano, measuring their computation time
and peak memory usage. The results demonstrate that our algorithm necessitates only 0.08 to 0.3 seconds of
computation time and employs a mere 15MB of memory.

INDEX TERMS Electroencephalograph,motor imagery, common spatial pattern, Riemannian tangent space,
filter banks, support vector machine.

I. INTRODUCTION
A Brain-Computer Interface (BCI) bridges the brain and
external devices by translating brain signals into correspond-
ing commands. BCI system can assist the rehabilitation
process of paralyzed patients and improve their self-care abil-
ity. Taking stroke patients as an example, stroke highly likely
results in varying degrees of limb impairment in patients
[1]. Commonly employed clinical rehabilitation methods
include physiotherapy (PT), occupational therapy (OT), robot
therapy, electrical stimulation, pharmacological therapy, and
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virtual reality-assisted motor imagery therapy [2]. However,
for patients with severe limb paralysis, physical rehabilitation
treatments (such as PT and OT) are difficult to perform [3].
In contrast, motor imagery does not require physical move-
ment and can facilitate brain neural network reorganization,
thereby promoting impaired brain function recovery [2], [4].

Currently, intelligent BCI systems provide real-time feed-
back based on physiological signals such as Positron Emis-
sion Tomography (PET), Functional Magnetic Resonance
Imaging (fMRI), Near-Infrared Spectroscopy (fNIRS), Mag-
netoencephalography (MEG), and Electroencephalography
(EEG). PET, fNIRS, and fMRI indirectly measure brain
activity with lower temporal resolution. Systems utilizing
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Electromyography (EMG) are bulkier and excessively costly,
making them impractical for real-world applications [2].
However, EEG-based systems offer high temporal resolution
and cost-effectiveness and are widely employed in BCI sys-
tems [5], [6], [7].

In EEG-based BCI systems, EEG motor imagery classifi-
cation algorithms can link the EEG signal and device com-
mand. ML-based motor imagery classification algorithms’
architecture can be divided into three parts: preprocessing,
feature extraction, and classification. Among these, feature
extraction plays a pivotal role in the algorithm. Commonly
utilized signal features encompass Fourier Transform, Event-
Related Synchronization (ERS), Power Spectral Density
(PSD), and Common Spatial Patterns (CSP). Nevertheless,
features based on the Fourier Transform tend to ignore EEG’s
temporal pattern [7]. Features based on ERS and PSD are
susceptible to electrode channels [6], [7]. CSP-based fea-
tures are highly dependent on operation frequency bands [8].
Consequently, manually engineered features also suffer from
robustness issues [6], [9].

In the pursuit of achieving more accurate classification
performance, DL-based algorithms have been explored. For
instance, Zhang et al. [6] employed graph embedding to
represent spatial nodes of EEG signals, followed by CNN
for extracting spatio-temporal features. Subsequently, clas-
sification was conducted through attention layers and dense
layers. Yang et al. [10] utilized Riemannian covariance
as a feature and multi-layer perceptron for classification.
However, algorithms based on deep learning often demand
higher computational resources, rendering them challenging
to implement on portable devices [2], [11], thus imposing
limitations on practical applications.

This paper proposed the Discriminative Filter Bank
Tangent Space Mapping and Common Spatial Pattern
(DFBTSM-CSP) algorithm, which integrates Riemannian
tangent space and CSP for EEG feature extraction, employing
SVM as the classifier. During classification, we calculate
category scores based on the distance between data points and
the SVM hyperplane, followed by classification using these
category scores. The main contributions of this paper and key
advantages of the DFBTSM-CSP algorithm are summarized
as follows:

• We integrate CSP and Riemannian tangent space
for feature extraction. CSP algorithm using optimal
spatial filters maximizes inter-class variance, while
Riemannian-based feature projection of EEG spatial
covariance matrices onto the Riemannian tangent space
enhances discriminability and robustness. Experimental
results show that the proposed method achieves more
accuracy due to the feature providing a more compre-
hensive analysis of EEG spatial information.

• The proposed methods’ final classification decisions
are based on category scores computed using the dis-
tance between data points and the SVM hyperplane.
Experimental results demonstrate that utilizing cate-

gory scores for classification decisions outperforms
traditional SVM, yielding superior classification perfor-
mance.

• We implement frequency band selection using the
Fisher ratio, reducing the number of frequency bands
by approximately 20-40% and concurrently improving
algorithm accuracy by around 2%.

• We validate the feasibility of real-time wearable appli-
cations by implementing the algorithm on an embedded
system. The results reveal that the proposed algorithm
requires a peak memory usage of only 14.85MB and a
computation time of merely 0.2 seconds.

The remaining sections of this paper are as follows. Section II
provides details of the proposed method. Section III intro-
duces the dataset and the recording method. We present
the experimental results and discussions in Section IV.
In Section V, we summarize the contributions of this paper
and outline algorithm limitations.

II. METHODOLOGY
The proposed DFBTSM-CSP classification algorithm is
shown in Fig. 1. The algorithm architecture can be divided
into four parts, including preprocessing, filter bank and band
selection, feature extraction, and classification. In the pre-
processing phase, noise in the EEG signal is eliminated
while retaining frequency bands relevant to motor imagery
through the use of low-pass and band-pass filters. During the
frequency band selection phase, the EEG signal is decom-
posed into multiple sub-bands, and the most discriminative
frequency bands are chosen based on the training data for
feature extraction. This paper employs CSP and Riemannian
tangent space as signal features, followed by the computation
of category scores based on the distance between the features
and the SVM hyperplane to determine the classification out-
comes.

A. DATA PREPROCESSING
The frequency range of motor imagery EEG signals is
between 1 and 50Hz. Since the 60Hz power-line noise ampli-
tude is much larger than the EEG signal, the power-line
noise cannot be effectively removed with a band-pass filter.
Therefore, a band-stop filter of 55 to 65 Hz is used to remove
the 60Hz noise, and a band-pass filter of 1 to 50 Hz is used to
filter out the unrelative signal.

B. FILTER BANK AND BAND SELECTION
Themost discriminative frequency band of each subject is not
the same [12], [13], so it is crucial to select the suitable fre-
quency band. In this part, the EEG signal is split into different
frequency bands through multiple band-pass filters, and the
Fisher ratio band selection algorithm is used to select themost
discriminative band. In this paper, frequency band selection
was conducted using multiple narrowband and broadband
sub-bands within the 4 to 35 Hz frequency range. Nar-
rowband signals encompass more prominent motor imagery
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FIGURE 1. The proposed DFBTSM-CSP classification algorithm.

information and are less susceptible to noise interference,
while broadband signals include some apparent features that
can enhance motor imagery performance [14]. Employing
frequency band selection also facilitates the removal of less
discriminative frequency bands. The band-pass filter bands
of the filter banks used in this paper are respectively 4-10Hz,
7-13Hz, 11-17Hz, 15-21Hz, 18-24Hz, 21-27Hz, 24-31Hz,
27-34Hz, 31-37Hz, 4-14Hz, 13-23Hz, 22-32Hz, and 8-35Hz.

The Fisher ratio band selection algorithm [12], [15] ranks
the bands according to inter-class variance and intra-class
variance of the band power, and selects the most discrimi-
native band. Firstly, the power of specific frequency band in
each trial is calculated, which can be expressed as (1).

Pt,f =
1
N

N∑
n=1

xt,f (n)2 (1)

where Pt,f is the power of the f-th frequency band of the t-th
test, N is the total number of sampling points, xt,f (n) is the
signal of the t-th sampling point of the f-th frequency band.

Then one calculates the average power of each frequency
band and the average power of the specific frequency band of
each category, as shown in (2) and (3) respectively.

mf =

∑M
t=1 Pt,f
T

(2)

mf ,c =

∑Mc
tc=1 Ptc,f
Tc

(3)

It is noticed that mf in (2) is the average power of the f-
th frequency band, t is the number of trials, M is the total
number of trials. In (3), mf ,c is the average power of the f-th
frequency band of class C, tc is the trial of class C , Mc is the
total number of trials of class C , Ptc,f is the power of the f-th
frequency band of the trials of class C.

Accordingly, the intra-class variation and inter-class vari-
ation values under specific frequency band are calculated,

as shown in (4) and (5) respectively.

SW ,f =

∑D

c=1

∑Mc

tc=1

(
Ptc,f − mf ,c

)2 (4)

SB,f =

∑D

c=1
Mc

(
mf − mf ,c

)2 (5)

Note that SW ,f in (4) is the intra-class variation value of the
f-th frequency band, D is the total number of classes, C is
the class. And SB,f is the inter-class variation value of the
f-th frequency band. Therefore, the Fisher ratio FR,f can be
obtained to evaluate the importance of the frequency band.
The calculation of FR,f is given as.

FR,f =
SB,f

SW ,f
(6)

where FR,f is the FR value of the f-th frequency band. The
higher the FR value, the more discriminative the frequency
band is. Therefore, the importance of each frequency band
can be ranked according to the FR value.

C. FEATURE EXTRACTION
1) TANGENT SPACE MAPPING OF RIEMANNIAN MANIFOLDS
Compared with Euclidean space, Riemannian space canmore
accurately describe the correlation between high-dimensional
EEG signals. This property may achieve good results in the
classification of motor imagery signals [16], [17].

Firstly, the sample covariance matrix is calculated as

Pt =
1

N − 1
XtXTt (7)

where Pt ∈ RN×N is the sample covariance matrix of the t-th
test, N is the total number of sampling points, superscript T
is the sign of transpose matrix, Xt is the EEG signal of the tth
test.

Then calculate the Euclidean mean by Eq. (8) as the initial
value of the Riemann mean.

PE =
1
M

∑M

t=1
Pt (8)
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where PE is the Euclidean mean value and M is the total
number of tests. Note that because the calculation of the
Riemannian mean PR is not an analytical solution, it needs
to be approximated by iterative method.

We can project the point Pi from Reimann to tangent space
by performing the Riemann Log map operation through Eq.
(9). And perform the Riemann Exp map operation through
Eq. (10) to project the point Si from the tangent space to the
Riemann space.

LogP(Pi) = P
1
2 Log(P−

1
2PiP−

1
2 )P−

1
2 (9)

ExpP(Si) = P
1
2Exp(P−

1
2 SiP−

1
2 )P−

1
2 (10)

The Riemann mean algorithm [16] performs the Riemann
Log map operation on all training data and calculates the
average value of the tangent space S, and then performs the
Riemann Exp map operation on S to obtain the Riemann
mean value PR, and iterates until the change in PR is less than
the tolerance ε. The Riemann mean algorithm is summarized
in Fig. 2.

FIGURE 2. Pseudocode of Riemann mean algorithm.

After obtaining the Riemannian mean, the Riemannian
manifold can map to the tangent space by Eq. (9). Thus, the
Euclidean space vector [18] is extracted from the tangent
space Ts,t as a feature, and the extraction method can be
expressed as

vt = upper
(
Ts,t

)
= upper

(
LogPR (Pt)

)
(11)

where vt is the Euclidean space vector extracted from tan-
gent space Ts,t , upper (·) means the upper triangular part of
the matrix, and the off-diagonal elements are multiplied by
the weight

√
2. Note that the upper triangular elements are

converted into a one-dimensional vector.
The extracted vt vector is used to select the better fea-

tures usingMutual Information based Best Individual Feature
(MIBIF) [19], [20].

Suppose there is a set of labels Y , and a set of feature
vectors F , each of which contains d features, where d =

Ch(Ch+1)
2 ,F = {f1, f2, . . . fd }, we need to find out the better

k features from the d features by the score of mutual infor-
mation. The mutual information formula is

I (fi;Y ) = H (fi) − H (fi |Y ) (12)

where I (fi;Y ) is the mutual information between fi and Y ,
i = 1, 2, . . . d , H (fi) is the entropy of fi, and H (fi |Y ) is
the conditional entropy of fi given Y . H (fi) and H (fi |Y ) are
respectively given as (13) and (14).

H (fi) = −

∑
fi∈F

p (fi) log2p (fi) (13)

H (fi |Y ) = −

∑
y∈Y

∑
fi∈F

p(y,fi)log2p(fi|y) (14)

where p (·) is the probability function. Through (12) to (14),
one gets d number of the mutual message scores. Then k
features with higher scores are chosen as the selected features

2) COMMON SPATIAL PATTERNS
Common Spatial Patterns [21] is a way to maximize the
difference in the variation of two categories time-domain
signals. From multiple electrode channels, it can find a set
of optimal spatial filter. The inner product of the spatial filter
and time domain signals can make the variation of numeri-
cal difference between the different categories to maximize,
and the variation of numerical differences between the same
category to minimize.

Firstly, the normalized covariance matrices of time domain
signals of the two categories are calculated as.

E1 =
X1 · XT1

trace(X1 · XT1 )
,E2 =

X2 · XT2
trace

(
X2 · XT2

) (15)

where E1 and E2 are respectively the normalized covariance
matrices of category 1 and category 2; X1 and X2 are respec-
tively the time domain signals of category 1 and category
2; and trace is the trace of the calculation matrix. Then, the
covariance matrix of the mixed space is given as

E = E1 + E2 (16)

where E is the covariance matrix of the mixed space. E1
and E2 are the average normalized covariance matrices of
category 1 and category 2, respectively. The eigenvalue
decomposition of the covariance matrix in the mixed space is
done with the eigen-diagonal matrix arranged in descending
order, as shown in (17).

E = UλUT (17)

where U is the eigenvector matrix of matrix E and λ is the
eigen diagonal matrix. Then, the whitening matrix can be
obtained as.

P =

√

λ
−1

· UT (18)

where P is the whitening matrix. Then perform a whitening
transformation between E1 and E2 as (19).

S1 = P · E1 · PT , S2 = P · E2 · PT (19)
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where S1 and S2 are respectively the average normalized
covariance matrix of category 1 and category 2. The eigen-
value decompositions of S1 and S2 respectively have the eigen
diagonal matrix of S1 arranged in descending order, and that
matrix of S2 arranged in ascending order, as shown in (20).

S1 = B1 · λ1 · BT1 , S2 = B2 · λ2 · BT2 (20)

It is noticed that B1 = B2, so the eigenvector matrix of S1 is
the same as S2, and the sum of eigen diagonal matrices λ1 and
λ2 is the identity matrix as

λ1 + λ2 = I (21)

Since the sum of the eigenvalues of the two categories is
always one, the eigenvector corresponding to the maximum
eigenvalue of S1 will also correspond to the minimum eigen-
value of S2, and vice versa. Therefore, a spatial filter can be
obtained to maximize the difference of variation values of
different categories and minimize the difference of variation
values of the same category.

The spatial filter is given as

W = BT1 P (22)

The spatial projection matrix W is the desired spatial filter.
Then one has the inner product of the spatial filter W with
the original brain signal X as

Z = W · X (23)

where Z is the spatially filtered signal. Thus, the first and
last m column vectors of Z are used to calculate the variation
values of the column vectors.

Accordingly, 2m features can be obtained as

fp = log

(
var

(
Zp
)∑2m

q=1 var
(
Zq
)) , p = 1, 2 . . . , 2m (24)

where fp is the feature obtained by taking out the p−th column
vector, and var(·) is the variation value.

D. CLASSIFICATION
In the feature extraction, we use a one-versus-one support
vector machine [22] to train multiple binary classifiers to
vote for the multi-classification task. We respectively per-
form SVM on the features from Reimann TSM and CSP.
Then calculate the category scores through Eq. (25) and (26).
Finally, the result with a higher category score is used as
the classification result. The classification process of SVM
distance analysis is shown in Fig. 3.

Lx =
1

∥w∥
|w · f + b| (25)

score =

∑
SVMx (f )∈C

Lx
Mx

(26)

where w is the normal vector of the hyperplane, f is the input
feature vector, b is the offset of the hyperplane relative to
the origin, Lx is the distance between the test point and the
hyperplane, Mx is the average distance between the training
points and the hyperplane, and C is the predict category.

FIGURE 3. The process flow of SVM distance analysis classification.

III. DATASET
This paper conducts experiments using two publicly available
datasets (BCI Competition IV 2A and III 3A) along with a
self-recorded dataset to validate the algorithm’s performance
through subject-specific experiments. The training and test-
ing data of the datasets employed in this study were recorded
from subjects on different days. In BCI Competition IV 2A
dataset [23], there are 9 subjects containing four categories of
motor imagery (left hand, right hand, feet and tongue). Each
category contains 72 training sets and 72 testing sets, so there
are 288 trials in the training set and the testing set The EEG
signal was sampled at 250Hz and had 22 electrode channels.

BCI Competition III 3A dataset [24] has 3 subjects and
contains four categories of motor imaginary, (left hand, right
hand, feet and tongue). The first subject (K3B) contains 90
trials in each category and a total of 360 trials, among which
180 trials are used as training set and the remaining 180 trials
as testing set. As for the second subject (K6B) and third
subject (L1B), each category contained 60 trials, a total of
240 trials, of which 120 trials were used as the training set
and the remaining 120 trials as the test set. The brain signal
was sampled at 250Hz with 60 electrode channels. Due to
the excessive number of electrode channels, which greatly
increases the computational burden, this study only uses elec-
trode channels in the motor and somatosensory areas of the
cerebral cortex, including electrode channels from 17 to 45,
as shown in Fig. 4.

The self-recorded motor imaginary brain signal dataset
includes five right-handed men, aged 23 or 24, who sat
in a moderately high armchair, rested their hands on their
legs when not moving, and did not blink during imaginary
exercise. The data set consists of four categories, namely left
hand, right hand, both hands or right foot and no action, which
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FIGURE 4. BCI competition III 3a EEG electrodes.

are recorded in four periods on the same day. The first two
periods are used as the training set and the last two periods
are used as the test set. There are 40-80 trials in the training
set and 40-80 trials in the test set. The sampling frequency
of brain signal is 1000Hz, and there are 8 electrode channels.
The electrode channel positions are shown in Fig. 5.

FIGURE 5. Self-recorded EEG electrodes.

The trial recording process is shown in Fig. 6. At the begin-
ning of the test (t=0s), the screen goes blank; at 3 seconds,
there are text and picture occur (t=3s); at 5 seconds, there are
hints for motor imagery (t=5∼9s); at 9 seconds, the screen
goes blank (t=9s). Then rest and wait for the next trial to
begin.

FIGURE 6. Self-recorded EEG recording process.

IV. RESULT
This paper implements the algorithm using Python, and the
experimental workflow is illustrated in Fig. 7. In assessing the
algorithm’s resource usage, we train the proposed model on a

personal computer (PC) and subsequently deploy the model
on embedded systems (JetsonNano or Raspberry Pi) to evalu-
ate computational time andmemory usage. A subject-specific
approach is employed to evaluate the algorithm’s classifi-
cation performance. In order to prevent the data leakage
problem, training and testing data are recorded on different
days, which is similar to the experimental procedures of prior
studies [5], [25], [26], [27].

FIGURE 7. Experimental flow chart.

A. PERFORMANCE COMPARISON WITH PREVIOUS
ALGORITHM
We compared the proposed method with CSP [21], FBCSP
[19], TSM [17], FBTSM [18], FBTSM-MLP [10], FBCSP-
PLV [28], CTFSP [29], and BECSP [30]. To further validate
the efficacy of our proposed approaches, we included Pro-
posed Method 1 and Proposed Method 2 in the comparison.
Proposed Method 1 omits the FR frequency selection in
DFBTSM-CSP and directly employs SVM for classification.
Proposed Method 2 removes the FR frequency selection in
DFBTSM-CSP.

As shown in Table 1, the results indicate that the method
proposed exhibits superior performance, with accuracies
of 78.55%, 83.33%, and 57.44% on the BCI Competition
IV 2A dataset, BCI Competition III 3A dataset, and the
self-recorded dataset, respectively. Proposed Method 1 out-
performs other methods, indicating that the proposed fea-
ture is more discriminative. Comparison between Proposed
Method 1 and Proposed Method 2 shows that employ-
ing SVM distance-based category score computation yields
better classification performance. Furthermore, contrasting
Proposed Method 2 with DFBTSM-CSP reveals that remov-
ing non-discriminative data through frequency band selection
reduces feature dimension and training noise, resulting in
improved classification performance.

B. EFFECT ANALYSIS OF FREQUENCY BAND SELECTION
Table 2 and Table 3 make a comparison of proposed method 2
(without band selection) and DFBTSM-CSP (with band
selection), and show the effectiveness of the band selec-
tion. Table 2 shows the number of frequency bands used is
reduced by 19.16% on the BCI competition IV 2a dataset,
42.61% on the BCI competition IV 3a dataset, and 20% on
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TABLE 1. Comparison of motor imagery classification algorithm performance.

TABLE 2. Number of bands comparison of the proposed method 2 and
the DFBTSM-CSP.

TABLE 3. Classification accuracy comparison of the proposed method
2 and the DFBTSM-CSP.

the self-recorded dataset. Table 3 shows the classification
accuracy increase by 2.25% on the BCI competition IV 2a
dataset, 1.92% on the BCI competition IV 3a dataset, and
1.93% on the self-recorded dataset.

Summarizing the results of Table 2 and Table 3, the
proposed DFBTSM-CSP architecture uses fewer computing
resources and achieves better classification performance.

C. EFFECT OF SELECTING BAND IN EMBEDDED SYSTEM
The proposed DFBTSM-CSP architecture also has excel-
lent performance in real-time classification. For brain signal
measurement with 8 electrode channels, 1000Hz sampling
frequency, sampling point of 3 bytes and the time duration
of 4 seconds, the classification time and memory peak are
0.016∼0.026 seconds and 13.83MB respectively on a PC
with i5-9500 CPU and DDR4 2666MHz 16GB RAM.

The same experiment on Jetson Nano 2GB has classifi-
cation time and memory peak as 0.077∼0.122 seconds and
14.854MB respectively. Moreover, the classification time
and memory peak respectively are 0.2∼0.307 seconds and
14.851MBpeakmemory onRaspberry Pi 3B+. These experi-
mental results show that the proposed classification algorithm
implemented in real-time applications is feasible.

V. CONCLUSION
This paper integrates CSP and Riemannian tangent space
as features and proposes the use of SVM distance analysis
for classification. Through subject-specific experiments, this
study validates the proposed DFBTSM-CSP algorithm on the
BCI Competition IV 2A dataset, BCI Competition III 3A
dataset, and a self-recorded dataset, achieving the highest
accuracies of 78.55%, 83.33%, and 57.44%, respectively.
To further investigate the impact of different components
on algorithm performance, we compare Proposed Method 1
(without SVM distance analysis and band selection) and Pro-
posed Method 2 (without band selection). The experimental
results of Proposed Method 1 demonstrate that the features
introduced in this paper are more discriminative compared
to other methods. The results of Proposed Method 2 show
that both SVMdistance analysis and frequency band selection
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enhance the classifier’s performance. Further comparison
between Proposed Method 2 and DFBTSM-CSP reveals that
frequency band selection leads to a 1-2% improvement in
accuracy and reduces the use of frequency bands by 20-40%,
making the algorithmmore feasible for portable devices. This
paper also implements the algorithm on embedded systems
(Raspberry Pi and Jetson Nano) to verify practicality for
portable applications. The results indicate that the computa-
tional time of the algorithm is only 0.08 to 0.3 seconds, and
it utilizes approximately 15MB of memory.

While this paper focuses on implementing a multi-class
motor imagery classification algorithm on portable devices,
it does not consider cross-subject application scenarios.
In the future, we hope to address the issue of reduced
algorithm classification performance due to variations in sig-
nal characteristics among different subjects by integrating
domain-adaptive algorithms [31].

Furthermore, this paper does not explicitly address cru-
cial artifacts like eye-blinking noise. Currently, the algorithm
relies on frequency band selection and uses multiple features
to enhance robustness [12], [14], [15], [28], [32]. In future
works, there is an aspiration to integrate the algorithm
with pertinent techniques [33], [34], [35] This collaborative
approach is anticipated to provide a more comprehensive
solution to mitigate the effects of intentional disturbances.
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