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ABSTRACT Multi-agent reinforcement learning (MARL) for cooperative tasks has been extensively
researched over the past decade. The prevalent framework for MARL algorithms is centralized training and
decentralized execution. Q-learning is often employed as a centralized learner. However, it requires finding
the maximum value by comparing the Q-value of each joint action a’ in the next state s’ to update the
Q-value of the last visited state-action pair (s,a). When the joint action space is extensive, the maximization
operation involving comparisons becomes time-consuming and becomes the dominant computational burden
of the algorithm. To tackle this issue, we propose an algorithm to reduce the number of comparisons by
saving the joint actions with the top 2 Q-values (T2Q). Updating the top 2 Q-values involves seven cases,
and the T2Q algorithm can avoid traversing the Q-table to update the Q-value in five of these seven cases,
thus alleviating the computational burden. Theoretical analysis demonstrates that the upper bound of the
expected ratio of comparisons between T2Q and Q-learning decreases as the number of agents increases.
Simulation results from two-stage stochastic games are consistent with the theoretical analysis. Furthermore,
the effectiveness of the T2Q algorithm is validated through the distributed sensor network task and the target
transportation task. The T2Q algorithm successfully completes both tasks with a 100% success rate and
minimal computational overhead.

INDEX TERMS Multi-agent reinforcement learning, reinforcement learning, Q-learning, multi-agent
system.

I. INTRODUCTION
Reinforcement learning [1] a prevalent method for opti-
mization of a Markov Decision Process (MDP). It obtains
the optimal strategy by trial and error without the a priori
knowledge of the state transition function and the reward
function. In recent years, it has been applied to predicting
the battery capacity fade [2], remaining-useful-life (RUL)
maintenance [3] and optimization in the path planning and
management of unmanned ships [4].

A variety of complex large-scale problems can be modeled
as multi-agent systems (MASs). Multi-agent reinforcement
learning (MARL) [5], [6],has been applied to many problems
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that can be modeled as MASs, such as dynamic web service
composition [7], multi-intersection traffic signal control [8],
bike rebalancing [9] and path planning in autonomous
surface vehicles [10]. In the multi-agent setting, the agent
constantly changes its strategy during the training process,
which leads to the problem of non-stationarity. Centralized
training and decentralized execution (CTDE) has become
a prevalent framework to deal with non-stationarity, and
Q-learning is a classical reinforcement learning algorithm
with a convergence guarantee.

A. MOTIVATION
The efficiency of reinforcement learning algorithms is crucial
for real-world decision-making in scenarios like robot path
planning and traffic signal control. The computational load
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has always posed a challenge for reinforcement learning,
primarily stemming from two factors. First, the number of
samples used for learning is influenced by the exploration
strategy adopted by the agents. Second, given the samples
used for learning, the computational operations of the
algorithms themselves can be time-consuming. This paper
specifically addresses the second challenge.

With the availability of abundant computing resources,
the training speed of deep reinforcement learning (DRL)
has significantly improved. However, reinforcement learning,
whether in tabular form or in the context of deep learning,
still requires substantial time during the training phase.While
DRL algorithms can benefit from GPU acceleration, this is
not the case for tabular reinforcement learning algorithms.
Many tabular Q value-based reinforcement learning algo-
rithms utilize the Bellman equation to update the Q-value
function. The most time-intensive operation during this
enhancement is the computation of the maximum Q-value
within the joint action space. When the joint action space is
extensive, this operation can become a major computational
burden for the algorithm.

B. CONTRIBUTION
We propose an algorithm to reduce the times of comparing
by saving the joint actions with the top 2 Q-values (T2Q).
The updating of the top 2 Q-value includes seven cases. The
T2Q algorithm can avoid traversing the Q-table to update
the Q-value in five of the seven cases, thus reducing the
computational burden. Theoretical analysis reveals that the
upper bound of the ratio of expected execution times when
comparing T2Q to Q-learning decreases as the number of
agents increases. To validate these findings, the running times
of T2Q and Q-learning are evaluated in fictitious two-stage
stochastic games. The simulation results align with the
theoretical analysis, providing further support. Moreover, the
effectiveness of the T2Q algorithm is demonstrated through
two fully cooperative tasks, where the T2Q algorithm attains
a 100 The rest of this article is organized as follows.

C. ORGANIZATION
Section II reviewsthe related work. Section III introduces
stochastic games, Q-learning and notations used in this paper.
Section IV elaborates the T2Q algorithm and analyzes the
expected computation burden needed. Section V studies the
effectiveness of the T2Q algorithm empirically. Section VI
summarizes the conclusions.

II. PREVIOUS WORK
We focus on fully cooperative MARL algorithms. In a fully
cooperative scenario, the objective is to obtain the maximum
expected cumulative return of all agents. The reviewed
MARL algorithms are classified into joint action learners
(JALs) and independent learners. A JAL needs to evaluate the
utility of joint actions, while an independent learner evaluate
the the utility of its own actions.

A JAL seeks the optimal joint action at each state. Team
Q-learning [11] assumes that each state corresponds to the
only optimal joint action to avoid coordination mechanisms.
Reference [12] requires each agent to build a model of
the other agent to promote coordination. OAL [13] is one
of the few JALs that have been proved to converge to
the optimal Nash equilibrium (NE), which corresponds to
the optimal joint strategy in cooperative stochastic games.
In PMR-EGA [14], the Q-value function of the joint action
is used to estimate the gradient information of joint strategy
[15]. It has been proved that PMR-EGA converges in repeated
games with two optimal joint action without common
component actions [16].

An indepedent learner does not require the observation
of the actions of the other agent. Reference [17] simply
extends Q-learning from a single-agent environment to a
multi-agent environment. However, this method does not
solve the nonstationary problem caused by the concurrent
learning. In [18], [19], and [20] the dynamics of IQL with
Boltzmann action selection and varepsilon$-greedy action
selection in double-agent double-action repeated games are
analyzed. FMQ [21] employs the maximum reward in history
and the frequency of obtaining the maximum reward to
achieve coordination. FMRQ [22] and EAQR [23]adopt the
frequencies used in FMQ and performs well in several
stochastic games. SOoN [24]optimizes the joint strategy by
estimating the farsighted frequency of the maximum reward.
FMQ is used for repeated games only, while FMRQ, EAQR,
and SOoN can be used for both repeated games and stochastic
games.

Multi-agent deep reinforcement learning (MADRL) [23]
is a hot research topic in recent years. CTDE is an important
idea to alleviate the problem of the exponential growth of
the joint action space with the increase of the number of
agents. MADDPG [24] uses decentralized critical networks
for each agent but still needs to choose joint actions during the
stage of concentralized learning. In COMA [25], the Q-value
function is estimated by a centralized critic network, and each
agent selects an action through a decentralized actor network.
However, when the number of agents increases, training
acritic with joint actions as input is difficult. Therefore,
a variety of Q-value function decomposing method arise.
QMIX [26] utilizes hybrid networks to implement the
individual-global-max (IGM) principle and considers the
impact of the global state. VDNs [27] trains the global
Q-network like DQN and the global Q-value function is
decomposed into the sum of each independent Q-network
QTRAN [28] trains a value netwok as the gap between the
global Q-value function and the sum of the local Q-value
functions. The efficiency of multi-agent algorithms is crucial
for addressing real-world problems.

The CME-AO algorithm [29] incorporates a novel par-
allel communication protocol to enhance the process of
multi-robot space exploration, while also reducing both
computational complexity and time. Meanwhile, the Antares
algorithm [30] leverages the characteristics of ant systems
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to create a decentralized and self-organized P2P information
system within computational grids, thereby enhancing the
effectiveness of both basic and range queries.

The T2Q algorithm proposed in this paper has the
following characteristics. First, compared with most of the
JALs and independent learners, the convergence of the T2Q
algorithm can be guaranteed because the Q-value updating
rule of this algorithm is the same as Q-learning. Second,
compared with Q-learning, the T2Q algorithm requires much
less computation burden when the number of agents is large.

III. PRELIMINARIES
A. NOTATIONS

TABLE 1. Notations.

B. STOCHASTIC GAMES
A stochastic game involves a tuple < S,A1, . . .An,T , r1, . . .
rn > where n is the number of agents, S represents the
set of the states, Ai denotes the action set of agent i,
A = A1 × A2, . . . ,×An is the joint action set, T : S×A×S →
[0, 1] is the state transition function that is the probability
distribution of transition to the next state, and the reward
function ri: S × A× S → R is the immediate reward obtained
by agent i. In fully cooperative tasks, the common reward
function r =

∑n
i=1 ri is used to maximize the expected

cumulative reward as follows:

Eπ
s0{R (s(t))} = Eπ

s0{

K∑
k=0

γ kr (s(t + k + 1)) (1)

where Eπ
s0{·} represents the expectation w.r.t. the Markov

chain {s(t)}t≥0 induced by the joint strategy profile π with
the initial state s(0) = s0, K is the length of duration of an
episode.According to the theory of dynamic programming
[31], [32], there is at least one optimal pure strategy in aMDP.

C. Q-LEARNING
Q-learning [33]is a table-based reinforcement learning
algorithm that has been proven to converge to the optimal
strategy. The Q-value function is updated as follows:

Q(s, a)← (1− α)Q(s, a)+ α(r + γ max
a′

Q(s′, a′)− Q(s, a))

(2)

where α ∈ (0, 1) is the learning rate. During the learning
stage, some action exploration scheme such as ε -greedy [1]
are used to choose an action.

IV. THE T2Q ALGORITHM
A. FORMULATION OF THE ALGORITHM
The T2Q algorithm is applicable for solving fully cooperative
stochastic games where both the state space and action space
are discrete. In these scenarios, states, actions, and rewards
can be shared among all participating agents. This algorithm
is well-suited for situations with a constrained number of
discrete states and collective actions, making it effective even
when dealing with heterogeneous agents that possess varying
discrete action spaces.

T2Q adopts the CTDE paradigm in which the component
action is chosen by each agent, and the Q-value function of
the joint actions is learned in a centralized manner. In T2Q,
each agent observes the global state s and chooses its action
according to:

[a(s)]i

←

{
πi(s), with probability of ε

a random action other than πi(s), with probability of 1−ε
|Ai|−1

}
(3)

where ε ∈ ( 1
|Ai|

, 1) is the probability of selecting the compo-
nent action of the optimal joint action. As with Q-learning,
after each state transition (s, a, r , s′), the Q-value is updated
as follows:

Qt+1(s, a)

← Qt (s, a)+ α
[
r(s, a, s′)+ γQt (s′, a∗(s′))− Qt (s, a)

]
(4)

where s is the state at time step t , and s′ is state at time
step t+1. The pseudocode for the T2Q algorithm is shown
in algorithm 1, where line 4-6 is for decentralized execution,
and line 9-39 is for centralized training.

The updating of a∗t+1(s), a
∗∗

t+1(s),Q
∗∗

t+1(s) and Q
∗∗

t+1(s) can
be classified into 7 cases as shown in Fig. 1-7.Take case1,
case 3, and case 5 as examples to explain the updating rules.

Case 1: Agent i selects the action a = a∗t (s) in state s, and
Qt+1(s, a) < Q∗∗t (s) (Qt+1(s, a)) is obtained by (4).). This
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Algorithm 1 The T2Q Algorithm for Stochastic Games
1: Set t=0. Initialize strategy πi(s) randomly for each agent i for i = 1, 2, . . . ,n. Initialize Qt (s, a)← 0,

Q∗t (s)← 0,Q∗∗t (s)← 0, a∗t (s)← argmax
a

Qt (s, a),and a∗∗t (s)← argmax
a,a∗t (s)

Qt (s, a).

2: repeat

3: repeat for each episode

4: for each agent i, do

5: Select an action according to (3) under the current state s.

6: end for each agent

7: Observe the state of transition and the common immediate reward r .

8: UpdateQt+1(s, a) according to (4).

9: if a = a∗t (s) then

10: ifQt+1(s, a) < Q∗∗t (s) then

11: a∗t+1(s)← a∗∗t (s),Q∗t+1(s)← Q∗∗t (s)

12: a∗∗t+1(s)← argmax
a′′,a∗t+1(s)

Qt+1(s, a
′′),Q∗∗t+1(s)← Qt+1(s, a

∗∗
t+1(s))

13: else

14: a∗∗t+1(s)← a∗∗t (s),Q∗∗t+1(s)← Q∗∗t (s)

15: a∗t+1(s)← a∗t (s),Q
∗
t+1(s)← Q∗t (s)

16: end if

17: else if a = a∗∗t (s) then

18: ifQt+1(s, a) < Q∗t (s) then

19: a∗∗t+1(s)← argmax
a′′,a∗t (s)

Qt+1(s, a
′′),Q∗∗t+1(s)← Qt+1(s, a

∗∗
t+1(s))

20: a∗t+1(s)← a∗t (s),Q
∗
t+1(s)← Q∗t (s)

21: else

22: a∗∗t+1(s)← a∗t (s),Q
∗∗
t+1(s)← Q∗t (s)

23: a∗t+1(s)← a,Q∗t+1(s)← Qt+1(s, a)

24: end if

25: else

26: ifQt+1(s, a) > Q∗t (s) then

27: a∗∗t+1(s)← a∗t (s),Q
∗∗
t+1(s)← Q∗t (s)

28: a∗t+1(s)← a,Q∗t+1(s)← Qt+1(s, a)

29: else ifQt+1(s, a) > Q∗∗t (s) then

30: a∗∗t+1(s)← a,Q∗∗t+1(s)← Qt+1(s, a)

31: a∗t+1(s)← a∗t (s),Q
∗
t+1(s)← Q∗t (s)

32: else

33: a∗∗t+1(s)← a∗∗t (s),Q∗∗t+1(s)← Q∗∗t (s)

34: a∗t+1(s)← a∗t (s),Q
∗
t+1(s)← Q∗t (s)

35: end if

36: end if

37: for each agent i, do

38: πi(s)← [a∗t+1(s)]i

39: end for each agent

40: s← s′

41: t ← t + 1

42: until the episode is over

43: until the predefined number of episodes have been played

44: return πi(s) for each agent.

means that Q∗t+1(s) < Q∗∗t (s) in time step t+1. Therefore,
a∗∗t (s) becomes the optimal joint action and Q∗∗t (s) becomes
the largest Q-value in state s in time step t+1. Thus the opera-
tion Q∗t+1(s)← Q∗∗t (s) and a∗t+1(s)← a∗∗t (s) is performed in
Fig. 1. Then the joint action with the second largest Q-value
a∗∗t+1(s) and its Q-value Q∗∗t+1(s) in state s need to be updated
by traversing the Q-table conditioned on state s, namely,
performing the operation of a∗∗t+1(s)← argmax

a′′,a∗t+1(s)
Qt+1(s, a′′)

and Q∗∗t+1(s)← Qt+1(s, a∗∗t+1(s)).

FIGURE 1. When a = a∗

t (s) and Qt+1(s, a) < Q∗∗

t (s).

FIGURE 2. When a = a∗

t (s) and Qt+1(s, a) ≥ Q∗∗

t (s).

FIGURE 3. When a = a∗∗

t (s) and Qt+1(s, a) < Q∗

t (s).

FIGURE 4. When a = a∗∗

t (s) and Qt+1(s, a) ≥ Q∗

t (s).

Case 3: Agent i selects the action a = a∗∗t (s) in state
s and Qt+1(s, a) < Q∗t (s) (Qt+1(s, a) is obtained by (4).).
This means that Q∗t+1(s) < Q∗t (s) in time step t+1. There-
fore, a∗t (s) is still the optimal joint action and Q∗t (s) is
still the largest Q-value in state s in time step t+1.
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FIGURE 5. When a = at (s) and Qt+1(s, a) > Q∗

t (s).

FIGURE 6. When a = at (s) and Q∗∗

t (s) < Qt+1(s, a) ≤ Q∗

t (s).

FIGURE 7. When a = at (s) and Qt+1(s, a) ≤ Q∗∗

t (s).

Thus the operation Q∗t+1(s)← Q∗t (s) and a∗t+1(s)← a∗t (s)
is performed in Fig. 3. In the meanwhile, the joint
action with the second largest Q-value a∗∗t+1(s) and its
Q-value Q∗∗t+1(s) in state s needs to be updated by
traversing the Q-table conditioned on state s, Namely,
perform the operation of a∗∗t+1(s)← argmax

a′′,a∗t+1(s)
Qt+1(s, a′′) and

Q∗∗t+1(s)← Qt+1(s, a∗∗t+1(s)).
Case 5: Agent i selects the action a = at (s) in state s

and Qt+1(s, a) > Q∗t (s) (Qt+1(s, a) is obtained by (4).). This
means that Q∗t+1(s) > Q∗t (s) in time step t+1. Therefore,
a = at (s) becomes the optimal joint action and Qt+1(s, a)
becomes the largest Q-value in state s in time step t+1.
Thus the operation Q∗t+1(s)← Qt+1(s, a) and a∗t+1(s)← a is
performed in Fig. 5. In the meanwhile, the joint action with
the second largest Q-value a∗∗t+1(s) and its Q-value Q∗∗t+1(s)
in state s becomes a∗t (s) and the maximum Q-value Q∗t (s)

respectively. Thus the operation of Q∗∗t+1(s)← Q∗t (s) and
a∗∗t+1(s)← a∗t (s) needs to be performed.

FIGURE 8. The updating of the Q-value function and the critical variables
in T2Q in case 5.

Fig. 8 presents the detailed updating process of the Q-value
function and the critical variables(a∗t+1(s), a

∗∗

t+1(s), Q
∗∗

t+1(s),
and Q∗∗t+1(s)) in the T2Q algorithm. By reserving the value
of these variables, we can avoid traversing the Q-table to
update the specified Q-value of some state in case 2, case 4,
case 5, case 6, and case 7. The selected joint action is a2, and
the common immediate reward from state s1 to state s2 is 1.
It can be seen that the updated Q-values obtained by T2Q and
Q-learning are identical in case 5. It is easy to verify the
identity in the other cases.

B. ANALYSIS OF THE ALGORITHM
Compared with Q-learning, the main advantage of T2Q is
that it reduces computation burden in the updating process of
the Q-value function. The most time-consuming part of the
T2Q algorithm is the comparing operation in the operation
a∗∗t+1(s)← argmax

a′′,a∗t+1(s)
Qt+1(s, a′′). Thus the expected times of

comparing for T2Q is our concern.
Let n denote the number of agents, m denote the number

of joint actions, ε denote the probability of selecting the
action πi(s), N denote the times of comparing in one
update of a∗t+1(s), a

∗∗

t+1(s), Q
∗∗

t+1(s) and Q∗∗t+1(s) (line 9-36
in Algorithm 1). Each agent uses the equivalent value of
ε > max

i
1/|Ai|. The expected times of comparing can be

obtained by

E[N ]

= E[N |a = a∗t (s),Qt+1
(
s, a∗t (s)

)
< Q∗∗t (s)] (5-a)

× p(a = a∗t (s),Qt+1
(
s, a∗t (s)

)
< Q∗∗t (s))

+ E[N |a = a∗∗t (s),Qt+1
(
s, a∗∗t (s)

)
< Q∗t (s)]

× p(a = a∗∗t (s),Qt+1
(
s, a∗∗t (s)

)
< Q∗t (s))

= E[N |a = a∗t (s),Qt+1
(
s, a∗t (s)

)
< Q∗∗t (s)]

× p(a = a∗t (s))p(Qt+1
(
s, a∗t (s)

)
< Q∗∗t (s))

+ E[N |a = a∗∗t (s),Qt+1
(
s, a∗∗t (s)

)
< Q∗t (s)]

× p(a = a∗∗t (s))p(Qt+1
(
s, a∗∗t (s)

)
< Q∗t (s))

≤ (m− 1) εnp1 + (m− 1) εn−1(
1− ε

|Ak | − 1
)p2 (5-b)

≤ (m− 1) εn + (m− 1) εn−1(
1− ε

|Ak | − 1
) (5-c)
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= (m− 1) εn
(
1+

1− ε

ε

1
|Ak | − 1

)
≤ 2 (m− 1) εn (5-d)

(5)

Equation 5-(a) holds because the operation a∗∗t+1(s) ←
argmax
a,a∗t+1(s)

Qt+1(s, a) occurs in case 1 and case 3 only. Let

p1 = p(Qt+1
(
s, a∗t (s)

)
< Q∗∗t (s)) and p2 = p(Qt+1

(
s, a∗∗t (s)

)
< Q∗t (s)). Then we have inequation 5-(b), because
p(a = a∗∗t ) ≤ εn−1( 1−ε

|Ak |−1
) where |Ak | = min

i
|Ai|. Inequa-

tion 5-(c) holds because p1 ≤ 1 and p2 ≤ 1. Inequation 5-(d)
holds because from ε > max

i
1/|Ai| and |Ak | = min

i
|Ai|,

we have 1−ε
ε

1
|Ak |−1

< 1.
In practice, ε will be increased from a small positive value

to a value close to 1, allowing agents to explore more in
the early learning stage and utilize more in the later learning
stage. Consider the value of ε grows linearly as follows:

εl = εini +
(εend − εini)

nepisode
l (6)

where l is the elapsed number of episodes and nepisode
is the total number of episodes, εini is the initial value
of ε, and εend is the terminal value of ε. Let Nl denote
the times of comparing in one update of a∗t+1(s), a

∗∗

t+1(s),
Q∗∗t+1(s) and Q

∗∗

t+1(s) in the l-th episode. According to (5),
the expected average times of comparing for one update in
nepisode episodes satisfy

E[
1

nepisode

nepisode∑
l=1

Nl] =
1

nepisode

nepisode∑
l=1

E[Nl]

≤
1

nepisode

nepisode∑
l=1

2(m− 1)εnl . (7)

When nepisode is large, the upper bound in (7) can be
approximated by∫ εend

εini

2(m− 1)εndε

= 2(m− 1)
εn+1

n+ 1
|
εend
εini

=
2(m− 1)
n+ 1

(εn+1end − εn+1
ini

)

≤
2(m− 1)
n+ 1

(8)

Q-learning performs m times of comparing for one update
of Q-value function. Thus we have that m/

2(m−1)
n+1 =

n+1
2

m
m−1

≈
n+1
2 (when the number of joint actions m is large), which

means that the computation needed by Q-learning is at least
n+1
2 times than that of T2Q.

C. THE T2Q ALGORITHM FOR STOCHASTIC GAMES
The performance of the T2Q algorithm is verified by
experiments in fictitious two-stage stochastic games in which
each agent has the same number of actions. Each stage i has

only one state si, namely, the state transition is fixed. The
reward function is defined as follows:

r(s, a) =
m

index(a)+ 1
+ B (9)

where index (a) ∈ {x|x ∈ Z+, 0 ≤ x ≤ m− 1} is the index
of the executed joint action a, B is a random number that
follows the uniform distribution on [-10,10], and m is the
number of joint actions. The aim is to maximize the common
cumulative reward. To validate the convergence of the T2Q
algorithm, the immediate reward without B is also recorded to
evaluate the cumulative reward without B. The optimal joint
action is to select the action with index 0 at both the stages,
and the maximal cumulative reward without B is 2m. The
number of agents is nagent = 2, 3, 4, 5, 6, 7 and the number
of each agent’s actions varies from 2 to 5. The performance
indices include the success rate and the execution time. The
result is an average of 50 runs, each of which includes
500,000 learning episodes and 1 evaluation episode. A run
is successful if the optimal undiscounted cumulative reward
without B – 2m is obtained in the evaluation episode. The
execution time is the running time for one complete run.
Both T2Q and Q-learning use the parameters γ = 0.9, α =

0.2, and ε following (6) with εini = 0.35 and εend = 1.0. The
simulation is conducted on a PC with Windows 10 and I7-
7700HQ CPU with 2.80GHz.

Table 2 shows that T2Q obtains a 100% success rate in
all cases, which indicates it converges to the optimal joint
strategy. Table 3 records the average execution time of one
run with 500,000 learning episodes and 1 evaluation episode.
The ratio of the execution time of Q-learning to T2Q is used
to approximate the ratio of the computation of Q-learning
to T2Q. When the number of the joint actions is small,
the comparing operation does not dominate the required
computation. In this situation, the advantage of T2Q is not
obvious. When the number of agents is 6 and 7 and the
number of each agent’s action is 4 and 5, the execution time
of T2Q decreases evidently and the ratio of the execution
time of Q-learning to T2Q is larger than (n+ 1)/2, which is
consistent with our analysis in section IV-B.The experiment
indicates that the upper bound (n+ 1)/2 is much larger than
the supremum of the ratio.

TABLE 2. Success rate of the T2Q algorithm in two-stage stochastic
games (runs = 50).

V. EMPIRICAL STUDIES FOR COOPERATIVE TASKS
We investigate the of the T2Q algorithm’s effectiveness in
cooperative tasks through the distributed sensor network
(DSN) task and the target transportation task. The difference
between them is that the DSN task has a larger joint action

VOLUME 11, 2023 139289



D. Liao et al.: Efficient Centralized Multi-Agent Reinforcement Learner for Cooperative Tasks

TABLE 3. Average execution time of T2Q | Q-learning (runs = 50,unit:
second).

space and the target transportation task has a larger state
space. The T2Q algorithm is in comparison with Q-learning
and three prevalent MARL algorithms – MADDPG, QMIX
and QTRAN Plus [34]. To accommodate discrete action
space, we use the Gumbel-Softmax reparametrization trick
[35] for the MADDPG algorithm.

A. TASK 1: DISTRIBUTED SENSOR NETWORK
The objective of the DSN task [36] is to coordinate eight
sensors (agents) to catch two targets within the minimum
time step and obtain the maximum cumulative reward.
Fig. 9 shows that eight sensors are distributed around a grid
composed of three cells, in which two targets move randomly.
In each step, each target randomly chooses one of three
actions – move left, move right, or stay still. The targets
take actions sequentially. If a target tries to move into a cell
occupied by another target or move out of the grid, the target
cannot move and stays still. The location and the energy of
the targets constitute the state space of the DSN task, which
contains 36 states. All state variables can be sensed by each
of the eight sensors.

FIGURE 9. Task 1: distributed sensor network.

At each time step, the sensors always take actions before
the targets. Each sensor can choose one of the three actions:
focus on the left cell, focus on the right cell, or not focus.
The amount of joint actions is 38 = 6561. At the beginning
of an episode, the energy value of each target is three. When
two sensors focus on a target simultaneously, the target’s
energy decreases by one with a probability of 30% or remains
unchanged with a probability of 70%. If a target is focused
by three or more sensors, its energy value is reduced by one.
If the target’s energy goes to 0, it is captured. If both targets
are captured or 10 time steps have elapsed, an episode is over.

The reward function of the DSN task is defined as follows.
If a target is captured by three sensors, each sensor involved in
the capture obtains a reward of 10. If four sensors participate
in the capture, only the sensors with the top three indices
will be rewarded. Any sensor that performs a focusing action

gets an additional immediate reward of -1. The action of not
focusing always produces an immediate reward of 0. If two
sensors participate in the capture, each sensor can get an
additional immediate reward of 6. In the best case, if each
target is always focused by two sensors, the sensors can get
a common cumulative reward of 52 in 3 steps. However, this
situation does not always occur. The optimal joint strategy is
to focus on one target for every three sensors. The maximum
expected cumulative reward for the DSN task is 42, and the
minimum expected number of steps to complete the task is 3.
The condition for success is to obtain a cumulative reward of
42 in an evaluation episode.

The experiments are conducted for 50 runs and each run
contains nepisode learning episodes and 50,000 evaluation
episodes. The T2Q algorithm uses the parameters γ = 0.9,
α = 0.2, and ε following (6) with εini = 0.35 and εend = 1.0.

The success rate, the average cumulative reward, and the
average number of steps are presented in Table 4, Table 5,
and Table 6 respectively. Table 4 shows that T2Q, QMIX,
QTRAN Plus and Q-learning obtain a success rate of 100%
with nepisode = 500,000, which is consistent with the result in
Table 5 and Table 6. QTRAN Plus has the highest learning
speed because of its generalization ability and the small
state space with mere 36 elements. Q-learning has similar
performance with T2Q in terms of cumulative reward and
steps because they use the equivalent Q-value updating rule.
Given more time, MADDPG probably converges to the
optimal joint strategy. MADDPG learns slower than QMIX
and QTRAN Plus because it has more parameters to be
trained. QTRAN Plus, QMIX and MADDPG are MADRL
algorithms, thereby requiring much more time for training.
The worst case is shown in Table 7 and Table 8. All algorithm
shows stable performance for the DSN task with all values of
nepisode.
Table 9 shows the ratio of the execution time used for

updating strategy of Q-learning to T2Q, which is used
to approximate the ratio of the computation burden of
Q-learning to T2Q. Let tQ−learning/tT2Q denote this ratio
where tQ−learning is the execution time of updating Q-value
according to (2), and tT2Q is the execution time of the code
from line 9 to line 39 in Algorithm 1. According to the
analysis in Section IV, Q-learning requires at least (8 +
1)/2 = 4.5 times computation compared with T2Q. For
task 1, the minimum of tQ−learning/tT2Q is 55, which is much
larger than the lower bound 4.5.

TABLE 4. Success rate for task 1.
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TABLE 5. Average cumulative reward and standard deviation for task 1.

TABLE 6. Average steps and standard deviation for task 1.

TABLE 7. Minimal cumulative reward for task 1.

TABLE 8. Maximal steps for task 1.

TABLE 9. The ratio of the execution time used for updating strategy of
Q-learning to T2Q for task 1.

The joint strategy obtained by T2Q with nepisode =
500000 learning episodes is illustrated in Fig. 10. The action
of focusing is represented by an arrow pointing to the target,
and the energy bar above each target is for displaying the
energy value. It shows that every three sensors focus on the
same target at the same time, which is the optimal joint
strategy.

B. TASK 2: TARGET TRANSPORTATION
The target transportation task [37] is illustrated in Fig. 11. In a
7× 6 grid world, there are two agents represented by circles.

FIGURE 10. The optimal joint strategy of task 1 obtained by T2Q (using
500,000 episodes for training).

The black solid rectangle represents the target. The slanted
shaded cells represent obstacles. The home is a 3 × 1 area.
The objective of the task is coordinating two agents to grab
the target and transport the target to the 3×1 home area in the
shortest time step.

The global state is defined as: s = {x1, y1, x2, y2, g1, g2}T

where xi ∈ {1, 2, . . . , 7} and yi ∈ {1, 2, . . . , 6} denote the
coordinates of agent i, and gi = {FREE,

GRAB_LEFT ,GRAB_RIGHT } denotes the grabbing infor-
mation. Each agent has five actions – left, right, up, down,
and still.

The movement rules of the target transportation task are
defined as follows. First, both the agents move at the same
time. If an agent moves to the obstacle or collides with
another agent, it fails to move and stands still. Second,
an agent grabs the target if it is in the right cell or the left
cell of the target. Once an agent grabs the target, it cannot
move unless the other agent grabs the target as well and they
move in the same direction. Third, in the white area, the target
moves successfully with a 100% chance if both the agents
move in the same direction and no collision occurs. In the
gray shaded area, the chance of moving successfully drops
to 50%.

FIGURE 11. Task 2: target transportation.

The reward function is defined as follows: if an agent grabs
the target, it receives an immediate reward of 1. If the target
reaches the home area, each agent receives an immediate
reward of 100. If the target moves in the gray shaded area,
each agent receives an immediate reward of 0, if it fails
to move in the gray shaded area, each agent receives an
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TABLE 10. Success rate for task 2.

TABLE 11. Average cumulative reward and standard deviation for task 2.

TABLE 12. Average steps and standard deviation for task 2.

immediate reward of −4. In the other cases, each agent
receives an immediate reward of −1.

The experiment is conducted for 50 runs. Each run contains
nepisode learning episodes and 5000 evaluation episodes.
In each evaluation episode, each agent uses the learned
strategy. The minimum expected number of steps to complete
the task is 12 and the maximum expected cumulative reward
is 182. If the task is completed within 12 steps, an evaluation
episode is successful.

The parameters of this experiment are set as follow:
α = 0.2, γ = 0.9, and ε following (6) with εini = 0.4 and
εend = 0.8.
Table 10, Table 11, Table 12 shows the success rate, the

average cumulative reward, and the average number of steps.
T2Q and Q-learning exhibit the same performance because
they perform the equivalent Q-value update rule. QTRAN
Plus, QMIX and MADDPG learn slower because the target
transportation task has much more states than the DSN task.
The worst case is shown in Table 13 and Table 14. QMIX
and MADDPG fail to complete the task within 120 steps in
the worst case because they have not been fully trained within
50000 learning episodes.

Table 15 shows the ratio of the execution time used
for updating strategy of Q-learning to T2Q. According to
the analysis in Section IV, Q-learning requires at least

TABLE 13. Minimal cumulative reward for task 2.

TABLE 14. Maximal steps for task 2.

TABLE 15. The ratio of the execution time used for updating strategy of
Q-learning to T2Q for task 2.

(2+ 1)/2 = 1.5 times computation compared with T2Q. For
task 2, the minimum of the ratio is 1.283 which is obtained
when L = 30000, which approaches but is lower than the
lower bound 1.5. This result is still consistent with the
theoretical analysis because the lower bound is obtained in
the sense of mathematical expectation.

Fig. 12 shows the joint strategy obtained by the T2Q
algorithm after nepisode = 50000 learning episodes. The
arrows denote the actions of the agents. This task is completed
in 12 steps, which is the minimum expected number of steps
for this task. From step 0 to step 3, agent 1 moves to the
channel first. From steps 4 to 6, agent 1 goes through the
channel to grab the target from the right side of the target, and
agent 2 goes through the channel into the gray area. In step 7,
agent 2 grabs the target from the left side of the target. The
two agents decide to transport the target from the white area
into the home area. From step 8 to 12, both agents move in
the same direction until the target is transported into the home
area. In the best case, the agents will obtain the maximum
cumulative reward if they transport the target through the gray
area. However, the best case does not always occur. In fact,
if they enter the gray area at step 8, they will not be able to
achieve the maximum expected cumulative reward. The path
of the agents shown in Fig. 12 again verifies the effectiveness
of the T2Q algorithm.

The results from both Task 1 and Task 2 indicate that
the ratio of execution time between Q-learning and T2Q
increases as the number of agents rises from 2 to 8. This
implies that T2Q exhibits a more significant advantage over
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Q-learning in terms of execution time when a greater number
of agents are involved.

FIGURE 12. The optimal joint strategy of task 2 obtained by T2Q (using
50,000 episodes for training).

VI. CONCLUSION
In this paper, a CTDE based MARL algorithm - T2Q is
proposed with the aim of reducing the computation burden
during centralized training. The computation for one update
of Q-value is analyzed quantitatively.

Theoretical analysis reveals that when the number of the
joint action is large, the computation of T2Q is no more
than 2

n+1 of that of Q-learning, where n is the number of
joint actions. This theoretical result is verified by two-stage
stochastic games. T2Q converges to the optimal joint strategy
in all of the stochastic games for testing and the execution
time matches the theoretical prediction.

The optimization capability and computational efficiency
are further validated through two fully cooperative tasks
involving eight agents and two agents, respectively. T2Q
is compared against Q-learning, QMIX, MADDPG, and
QTRAN Plus. In both tasks, T2Q achieves a 100% success
rate with the least computational burden. Simulation results
also demonstrate that the ratio of execution time between
Q-learning and T2Q aligns with the theoretical findings.

It’s worth noting that the computational reduction approach
employed in T2Q is applicable only when Q-values are
stored in a tabular format, which imposes limitations on
its broader applicability. In the future, we plan to address
more complex tasks by combining the approach presented in
this paper with deep learning techniques. The combination
of gradient methods with heuristic approaches may offer
a viable solution for obtaining the maximum Q-value in
scenarios where the state space and the action space are
continuous. Our next objective is to explore the feasibility of
reducing computational overhead in such scenarios.
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