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ABSTRACT In this paper, a multivariate cooperative internal mode control method based on RBF neural
network (RBF-NN) inverse system is proposed to suppress the chaotic behavior in the power system. Firstly,
a seven-dimensional model of the controlled power system including energy storage (ES) and static var
compensator (SVC) is constructed, and the chaotic dynamics of the system is analyzed by local bifurcation
diagram, attractor phase diagram and timing diagram, and the merging crisis and coexistence of chaotic
attractors are found in the power system under the action of the low-frequency power disturbance. Secondly,
considering the parameter uncertainties of the power system, an RBF-NN inverse system model of the
controlled power system is established based on inverse system theory and neural network theory to realize
its pseudo-linearization, and a multivariable cooperative internal mode controller is designed to suppress
the chaotic behavior in the power system by combining the ES and the SVC. Finally, the effectiveness and
robustness of the proposed chaos suppression control strategy are verified by simulation.

INDEX TERMS Chaos, chaos suppression, internal mode control, power system, RBF neural network.

I. INTRODUCTION

CHAOTIC behavior is a complex dynamical phe-
nomenon unique to nonlinear systems, manifested as

broadband pseudo-random oscillations, which is widespread
in nature and human society [1], [2]. As a typical complex
systemwithmultivariable andmultiparameter characteristics,
the high degree of nonlinearity and uncertainty brings a
rich dynamic behavior to the power system, which is
highly susceptible to chaotic oscillations when the unit
or load changes its parameters or is subjected to external
disturbances, leading to voltage instability or even collapse,
and therefore, chaotic oscillations potentially threaten the
safe and stable operation of the power system [3], [4], [5],
[6], [7].

In recent years, with the increasing complexity of power
system structure and electrical equipment application, the
analysis and suppression of chaos oscillation in the power
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system has gradually become a research hotspot in the power
industry. Zhou et al. [8] established a second-order power
system model with Lewschitz dynamic damping model, and
pointed out that the chaos band of the system is affected by the
varying damping parameters. Reference [9] investigated the
chaos behavior in the three-dimensional model of the power
system, and found that the system with reduced damping
coefficient experienced a variety of chaos oscillation modes.
Reference [10] found that the amplitude and frequency of
the electromagnetic power disturbance or load disturbance
can affect the sudden chaos oscillation in the fourth-order
power systemmodel considering the excitation limiting links.
In addition, Li et al. [11] conducted a chaos analysis on
the six-dimensional model of the three-bus power system,
which showed that due to the increase of load, the critical
chaos oscillation tends to occur when the system is closer
to the stable operation limit. Meanwhile, Ai et al. [12]
generated chaotic oscillations in a six-dimensional model
of the power system by mechanical input power and model
order, and proposed a state transition algorithm based on
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the lens imaging learning strategy to estimate the parameters
of the chaotic model of the power system and reproduce
its chaotic behaviour. Reference [13] analyzed the chaos
of the seven-dimensional power system model by the input
mechanical power, and showed that there is a strong
correlation between the power parameters and the chaos
behavior. In addition, Ni et al. [14] proposed a fast fixed-time
non-singular terminal slidingmode control method to achieve
the chaos control goal in a fixed time. Then, Cao et al. [15]
proposed a method of dynamic surface sliding mode control,
which reduces the design steps of dynamic surface controllers
and the complexity of stability analysis, and effectively sup-
press the chaotic oscillations in power system. Reference [16]
optimized the sliding mode control by the hyperbolic tangent
function, and the chaos control performance was significantly
improved. Besides, ABA Al-Hussein et al. [17] proposed
an adaptive cooperative control strategy to realize the chaos
suppression of power system with multiple control inputs
based on multi-equipment. Furthermore, Wang et al. [18]
combined finite time theory and function projection to design
a chaos controller to synchronize the power system chaos
model with the ideal model in a limited time, which indirectly
realized the power system chaos control. Reference [19]
proposed a sliding mode control method with the reaching
law of the relay function, which can quickly suppress the
chaos oscillation of the power system while significantly
reducing the chatter. In summary, sliding mode control
has relatively better chaos suppression performance, but
in practical engineering, sliding mode control inevitably
has chattering phenomenon, which seriously affects the
operational stability of the system [20], [21]. Further, to deal
with the nonlinear and uncertainties in the controlled systems,
many advanced control strategies make use of neural network
techniques. Sun et al. [22] proposed an amplitude saturation
controller, which is improved based on the radial basis func-
tion neural networks to enhance effectiveness and robustness
with respect to time delays. Liang et al. [23] designed a finite-
time fault-tolerant control strategy with high accuracy, strong
robustness, and anti-saturation based on the RBF neural net-
work. In addition, Sun et al. [24] fused a radial basis function
neural network into the basic controller, which has a robust
control performance that is able to mitigate the uncertainty.

Based on the above discussion, this paper proposes a mul-
tivariate cooperative internal model control strategy based on
RBF-NN inverse system, and applies it to ES and SVC to real-
ize the control strategy of chaos suppression in power system
considering their ability to regulate active and reactive power.
Given that power system chaotic oscillation are highly sensi-
tive to system parameters change and external disturbances,
and chaotic oscillation will affect multiple state variables in
the system, multivariate cooperative internal model control
(IMC) is chosen because it has the advantages of no chatter-
ing, fast response, robustness, and convenient tuning, which is
suitable for application in complex systems with strong cou-
pling and multiple variables to suppress chaotic oscillation.
Second, this paper decouples the pseudo-linearization of the

multi-input and multi-output (MIMO) power system model
into n single-input and single-output (SISO) subsystems
according to the inverse system theory and neural network
theory to realize the targeted control of the controlled
variables and effectively suppress the chaotic oscillations of
the power system with complex causes. In addition, since
the power system has many uncertainties, and considering
that RBF-NN has a very strong nonlinear fitting and fault
tolerance ability, the inverse system model of the power
system is fitted by RBF-NN instead of the mathematical
expression, which reduces the sensitivity of the IMC to the
change of the system parameters, and improves the stability
of the controlled system and the robustness of the controller.

II. POWER SYSTEM MODEL AND CHAOS DYNAMICS
ANALYSIS
A. ESTABLISHMENT OF SEVEN-DIMENSIONAL
CONTROLLED MODEL OF POWER SYSTEM
The dynamic models of ES and SVC [14] are introduced to
the classical four-dimensional model of a three-node power
system [25] to establish the seven-dimensional controlled
model of the power system, which consists of a generator
G1 representing the slack node, another generator G2 with
constant voltage amplitude, and a dynamic load. SVC and
ES are used to control the system power, considering that
in a real system, SVC can improve the power factor in the
power system on the consumer side and ES can balance the
power flow between the generator side and the consumer side,
so ES1 is installed on the generator G2 busbar, and ES2 and
SVC are installed on the dynamic load busbar. The equivalent
circuit of the power system is shown in Fig. 1.

The seven-dimensional controlled model of power system
is shown in (1).

δ̇m = f1(x) = ω

Mω̇ = f2(x) = −dmω + Pm + EmYmV sin(δ − δm − θm)
+E2

mYm sin θm − PES1

ṖES1 = −
1

TES1
PES1 +

KES1
TES1

uES1 = f3(x) +
KES1
TES1

uES1

Kqω δ̇ = f4(x) = −Kqv2V 2
−KqvV + E ′

0Y
′

0V cos
(
δ + θ ′

0
)

+EmYmV cos
(
δ − δm + θm

)
−

(
Y ′

0 cos θ ′

0 + Ym cos θm
)
V 2

− Q0 − Q1 − BV 2

Ḃ = −
1

TSVC
B+

KSVC
TSVC

uSVC = f5(x) +
KSVC
TSVC

uSVC

TKqωKpvV̇ = f6(x) = KpωKqv2V 2

+
(
KpωKqv−KqωKpv

)
V+Kqω

(
− E ′

0Y
′

0V sin
(
δ+θ ′

0
)

−EmYmV sin
(
δ − δm + θm

)
+

(
Y ′

0 sin θ ′

0 + Ym sin θm

)
V 2

− P0 −P1 − PES2)

−Kpω
(
E ′

0Y
′

0V cos
(
δ+θ ′

0
)
+EmYmV cos

(
δ−δm+θm

)
−

(
Y ′

0 cos θ ′

0 + Ym cos θm
)
V 2

− Q0 −Q1 − BV 2
)

ṖES2 = −
1

TES2
PES2 +

KES2
TES2

uES2 = f7 (x) +
KES2
TES2

uES2

(1)
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FIGURE 1. Equivalent circuit diagram of controlled power system.

where the state variables x = [x1, x2, x3, x4, x5, x6, x7]T =

[δm, ω, PES1, δ, B, V ,PES2]T represent the power angle and
the angle-frequency difference of the generator G2, the active
power absorbed by ES1, the voltage angle of the load node,
the susceptance of the SVC, the voltage amplitude of the load
node and the active power absorbed by ES2, respectively.
Control inputs u = [u1, u2, u3 ]T = [uES1, uSVC , uES2]T .
In addition, M is the angular momentum of the generator;
dm is the modified damping coefficient; Pm is the input
mechanical power; Em is the constant voltage amplitude of
generator G2; Ym and θm are the magnitude and phase of the
admittance between the generator G2 and load busbar; Kpω,
Kqω, Kpv, and Kqv are load coefficients, whose subscripts pω,
qω, pv, and qv represent frequency dependence of the active
load, frequency dependence of the reactive load, voltage
dependence of the active load, and voltage dependence of
the reactive load respectively; P0 and Q0 are the constant
active and reactive powers of the induction motor in load; T is
the time constant of the induction motor; P1 and Q1 are the
active and reactive components of the dynamic load; E ′

0 is
the Thevenin equivalent voltage amplitude of generator G1;
Y ′

0 and θ ′

0 are the Thevenin equivalent magnitude and phase
of the admittance between the generator G1 and load busbar;
TES1, TES2, and TSVC are the time constants of ES1, ES2, and
SVC; KES1, KES2, and KSVC are the gains of ES1, ES2 and
SVC. Then, the values of the parameters in the model are
shown in Table 1 [14], [25]. Note that the parameters are per-
unit values, except for the angles, which are in radians.

TABLE 1. Parameters of power system.

B. NONLINEAR DYNAMICS ANALYSIS OF POWER SYSTEM
Due to load variations or system parameter changes, the
power system may be affected by load power disturbances,
resulting in unstable bifurcation and chaos in the power
system. Therefore, in this paper, a common low-frequency
power disturbance is taken as a load power disturbance,
focusing on analyzing the effects of the frequency and
amplitude of the disturbance on the nonlinear dynamics of

the power system. Then, the power system model with load
power disturbance can be seen from (2).

δ̇m = f1(x)
M ω̇ = f2(x) + Pk cos(2π ft)

ṖES1 = f3(x) +
KES1

TES1
uES1

Kqω δ̇ = f4(x)

Ḃ = f5(x) +
KSVC

TSVC
uSVC

TKqωKpv V̇ = f6(x)

ṖES2 = f7(x) +
KES2

TES2
uES2

(2)

where Pk and f are the amplitude and frequency of the load
power disturbance, respectively.

The initial value of the state variable of (2) is selected as
x0 = [0.3492,0,0,0.1387,0,0.9181,0]T , and the control inputs
are u= [0,0,0]T . First, when the amplitude of the load power
disturbance is small, the effect of the frequency of the power
disturbance on the nonlinear dynamics of the power system
is observed by fixing Pk = 0.01 and varying f within [1Hz,
4Hz], the local bifurcation diagram of the power system is
shown in Fig. 2(a).

FIGURE 2. Local bifurcation diagram with varying low-frequency power
disturbance.

FromFig. 2(a), it can be seen that when the frequency of the
load power disturbance in the power system varies between
[1.0 Hz, 1.402 Hz], chaotic phenomena appear in the system,
and chaotic motion occurs in the power angle δm, voltage V
and other state variables in the system. When f >1.402 Hz,
a merging crisis occurs in the system, and the chaotic attractor
splits from one to three, and as f continues to increase to 4Hz,
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the system gradually behaves as a three-cycle limit loop, and
this state also puts the electrical parameters in the system into
a state of continuous oscillation.

In addition, fix f = 1.5 Hz and vary Pk within [0, 0.2]
to observe the nonlinear dynamics change of the system as
shown in Fig. 2 (b). When Pk is gradually increased at [0,
0.0171], the system changes from a three-cycle motion to
a state of coexistence of three chaotic attractors, and when
Pk = 0. 0172, a merging crisis occurs to make the three
chaotic attractors merge into one larger chaotic attractor, and
the size of this chaotic attractor keeps increasing as Pk keeps
increasing, indicating that the larger the amplitude of the
low-frequency power disturbance, the greater the nonlinear
dynamics of the power system.

Further, Pk = 0.15 and f = 1.5 Hz are chosen to plot the
chaotic attractor phase diagrams and timing diagrams of the
power system, as shown in Fig. 3 and Fig. 4. From Fig. 3,
it can be seen that when the power system is in a chaotic state,
the state variables of the system form a chaotic orbit around
the equilibrium point with dimensionality, randomness and
boundedness. In addition, Fig. 4 shows that the state variables
of the system exhibit continuous irregular oscillations in
the chaotic state, and this type of oscillation can seriously
affect the operation of the power system, such as causing
mechanical damage to generators, component damage to
transmission lines, and even voltage collapse in the power
system, which poses an obvious threat to the safety and
stability of the power system.

FIGURE 3. Attractor phase diagram between state variables (Pk =0.15,
f =1.5Hz).

FIGURE 4. Timing diagram of δm and V (Pk =0.15, f =1.5Hz).

III. DESIGN OF MULTIVARIATE COOPERATIVE IMC
BASED ON RBF-NN INVERSE SYSTEM
A. DESIGN OF RBF-NN INVERSE SYSTEM
In order to improve the control accuracy and to reduce the
interactions between the subsystems ofMIMO power system,
(1) is subjected to nonlinear decoupling control, the key of
which lies in the establishment of the corresponding inverse

system. According to the Interator algorithm [26], the design
steps of the inverse system of (1) are as follows:

1) SELECTION OF VARIABLES
Considering the power angle of generator and load voltage
are significant indicators to measure the stability of the power
system, decouple (1) into three SISO subsystems over them
for high-performance control. Then, suppose the controlled
state variables (controlled outputs) are δm, δ, and V :

y = [y1, y2, y3]T = [x1, x4, x6]T = [δm, δ,V ]T (3)

Next, to enable effective control of both the generator and
consumer sides, ES1 on the generator G2 busbar and SVC
and ES2 on the dynamic load busbar control δm, δ, and V
respectively, so that uES1, uES1, and uES2 are selected as
control inputs:

u = [u1, u2, u3]T = [uES1, uSVC , uES2]T (4)

2) ANALYSIS OF SYSTEM REVERSIBILITY
Reversibility is a necessary condition for the existence of an
inverse system in a controlled system. First, the derivative is
continuously derived for the controlled variable y1 until the
control input u is explicitly included in y(α1)1 , as shown in (5).

y(1)1 = x2

y(2)1 =
f2 (x)
M

y(3)1 =
A11ẋ1 + A12ẋ2 + A13ẋ3 + A14ẋ4

M
+

A15ẋ5 + A16ẋ6 + A17ẋ7
M

=
F1 + A13 (f3 (x) + KES1u1/TES1)

M

(5)

where:
A11 = −EmYm cos(x4 − x1 − θm)x6,
A12 = −dm, A13 = −1, A17 = 0,
A14 = EmYm cos(x4 − x1 − θm)x6,
A15 = 0, A16 = EmYm sin(x4 − x1 − θm)
Also, the derivative is continuously derived for the

controlled variable y2 until the control input u is explicitly
included in y(α2)2 , as shown in (6).

y(1)2 =
f4 (x)
Kqω

y(2)2 =
A21ẋ1 + A22ẋ2 + A23ẋ3 + A24ẋ4

Kqω
A25ẋ5 + A26ẋ6 + A27ẋ7

Kqω

=
F2 + A25 (f5 (x) + KSVCu2/TSVC )

Kqω

(6)

where:
A21 = EmYm sin(x4 − x1 + θm)x6,
A22 = 0, A23 = 0, A27 = 0,
A24 = −[E ′

0Y
′

0 sin(x4 + θ ′

0) + EmYm sin(x4 − x1 + θm)]x6,
A25 = −x26 ,
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A26 = −2Kqv2x6 − Kqv + E ′
0Y ′

0 cos(x4 + θ ′
0)+

EmYm cos(x4 − x1 + θm)−

2(Y ′
0 cos θ ′

0 + Ym cos θm)x6 − 2x5x6
Then, the derivative is continuously derived for the

controlled variable y3 until the control input u is explicitly
included in y(α3)3 , as shown in (7).

y(1)3 =
f6 (x)

TKqωKpv

y(2)3 =
A31ẋ1 + A32ẋ2 + A33ẋ3 + A34ẋ4

TKqωKpv
A35ẋ5 + A36ẋ6 + A37ẋ7

TKqωKpv

=
F3 + A37 (f7 (x) + KES2u3/TES2)

TKqωKpv

(7)

where:

A31 = [Kqω cos(x4 − x1 + θm)

− Kpω sin(x4 − x1 + θm)]EmYmx6,

A32 = 0,A35 = −Kqω,A37 = Kpωx26 ,

A34 = −Kqω[E ′
0Y ′

0 cos(x4 + θ ′
0)

+ EmYm cos(x4 − x1 + θm)]x6
+ Kpω[E ′

0Y ′
0 sin(x4 + θ ′

0)

+ EmYm sin(x4 − x1 + θm)]x6,

A36 = 2KpωKqv2x6 + (KpωKqv − KqωKpv)

− Kqω[E ′
0Y ′

0 sin(x4+θ ′
0)+EmYm sin(x4 − x1+θm)

− 2(Y ′
0 sin θ ′

0+Ym sin θm)x6 − 2x5x6]

− Kpω[E ′
0Y ′

0 cos(x4 + θ ′
0)+EmYm cos(x4 − x1+θm)

− 2(Y ′
0 cos θ ′

0 + Ym cos θm)x6 − 2x5x6]

According to (5), (6), and (7), α = [α1,α2,α3]T = [3, 2,
2]T , which are defined as the relative orders. In addition, the
Jacobain matrix J and its determinant |J | corresponding to
y(αi)i (i = 1, 2, 3) are:

J =


∂y(3)1
∂u1

∂y(3)1
∂u2

∂y(3)1
∂u3

∂y(2)2
∂u1

∂y(2)2
∂u2

∂y(2)2
∂u3

∂y(2)3
∂u1

∂y(2)3
∂u2

∂y(2)3
∂u3



=


−KES1
MTES1

0 0

0
−KSVCx26
KqωTSVC

0

0
KpωKSVCx26
TKqωKpvTSVC

−KES2
TKpvTES2

 (8)

|J | = −
−KES1KSVCKES2x26

MKqωTSVCTKpvTES1TES2
(9)

Since x6 ̸= 0 in the system workspace, the Jacobain
matrix J is full rank, and its determinant |J | ̸= 0, that is,
J is non-singular. Moreover, the sum of relative orders of the
contrilled system is α1 + α2 + α3 = 7, which is equal to the
dimension of the controlled system (1). Thus, according to
reference [26], the controlled system is reversible.

Further, transform (5), (6), and (7) to obtain the expression
of the inverse system 8 as follows, in which the control
outputs and their derivatives are used to represent the control
inputs the of inverse system:

u = (u1, u2, u3)T

= 8
(
y(3)1 , y(2)2 , y(2)3 , y1, y

(1)
1 , y(2)1 , y2, y

(1)
2 , y3, y

(1)
3

)
(10)

3) RBF-NN FITTING INVERSE SYSTEM
Since the construction of mathematical models of controlled
objects in practical engineering is affected by uncertainties
and leads to inaccuracies, the identification of inverse systems
by input and output data can improve the construction of
inverse systems. Since (10) is extremely nonlinear and its
establishment depends on the certainty of the controlled
system model, and the power system is affected by many
uncertainties in actual operation, considering that RBF-NN
has excellent nonlinear fitting ability and generalization
performance, RBF-NN is used to fit (10) in order to improve
the accuracy and stability of the inverse system.

RBF neural networks have an input layer, a hidden layer,
and an output layer [27]. The output from the input layer d to
the hidden layer is a nonlinear activation function hj (t):

hj (t) = exp

[
−

∥∥X (t) − Cj (t)
∥∥2

2σ 2
j

]
, j = 1, 2, · · · ,m (11)

where X (t) is input vector, Cjis the center vector of the j- th
implicit layer node, m is the number of implicit layer nodes,
and σj is the width of the Gaussian basis function.

Moreover, the output Y from the implicit layer to the output
layer is implemented by weighting as follows:

Yi (t) =

m∑
j=1

εjihj (t), i = 1, 2, · · · , n (12)

where ε is the weight of the output layer and n is the number
of nodes in the output layer.

Fig. 5 plots a schematic of the RBF-NN fitted inverse
system: sufficient uniform random signals are input to excite
the input-output characteristics of the inverse system, and
the RBF-NN model is trained using the obtained inputs and
outputs to obtain the RBF-NN inverse system.

FIGURE 5. Schematic diagram of the RBF-NN fitted inverse system.

Further, after fitting the inverse system by RBF-NN, the
RBF-NN inverse system is connected before the controlled
system (1) to form a pseudo-linear composite system
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that decouples the MIMO power system into three SISO
pseudo-linear subsystems with respect to the controlled
variables:

Gi (s) = s−αi , i = 1, 2, 3 (13)

Then the schematic diagram of the pseudo-linear decou-
pling process is shown in Fig. 6, where [ y(3)1 , y(2)2 , y(2)3 , y1,
y(1)1 , y(2)1 , y2, y

(1)
2 , y3, y

(1)
3 ]T = [ v1, v2, v3, z10, z11, z12, z20,

z21, z30, z31]T .

FIGURE 6. Schematic diagram of the pseudo-linear decoupling process.

Meanwhile, in order to verify the output consistency of the
established RBF-NN pseudo-linear composite system with
the pseudo-linear SISO subsystem, we analyzed the output
error between the two, as shown in Fig. 7. It can be seen that
the error between the output of the RBF-NN pseudo-linear
composite system (y) and the output of the pseudo-linear
SISO subsystem (yIM ) is almost zero when the input signals
are the same, indicating the feasibility of the RBF-NN inverse
system.

FIGURE 7. Error curves between yIM and y when using RBF-NN inverse
system.

B. DESIGN OF MULTIVARIATE COOPERATIVE IMC
The basic idea of multivariate cooperative IMC is to
parallelize a controlled system with a matching internal
model and use the difference of its outputs to feed back to
the controller input, so that multiple controlled variables are
stabilized at the target operating point. Therefore, combining
the pseudo-linear composite system with the pseudo-linear
SISO subsystem, the control structure is shown in Fig. 8.

FIGURE 8. Control structure of multivariate cooperative IMC based on
RBF-NN inverse system.

Where GC (S) is multivariate cooperative IMC controller,
GM (S) is internal model, L(S) is IMC controller, yref is
tracking signal for control, and y is controlled output.

According to SISO pseudo-linear subsystems (13), the
internal model can be expressed as:

GM i (S) = Gi (S) , i = 1, 2, 3 (14)

Introduce inertia element to construct controller, and λ is
the controller parameter:

Li (S) =
1

(λiS + 1)
αi

, i = 1, 2, 3 (15)

where αi is equal to the corresponding α value in (13).
Then, combining (14) and (15), the multivariate coopera-

tive IMC controller is obtained as follows:

GCi (S) =
Sαi

(λiS + 1)
αi

, i = 1, 2, 3 (16)

Further, according to (14) and (15), the error equation of
the control system can be obtained from Fig. 8:

Ei (S) =
1 − Li (S)

1 + Li (S)G−1
Mi (S) [GP (S) − GMi (s)]

R (S)

i = 1, 2, 3 (17)

Substituting (15) into (17) gives:

Ei (S) =
(λiS + 1)αi − 1

(λiS + 1)αi + lm (S)
R (S) , i = 1, 2, 3 (18)

where GP (S) is the transfer function of controlled system in
Fig. 8, that has been shown to have an upper error bound
lm (S) [28].
Set lim

S→0
lm (S) = C (constant), then:

1) If R (S) = r0/S, then the final error of the system after
the controlled is e (∞) = lim

S→0
S

[
(λiS+1)

αi−1
(λiS+1)

αi+lm(S)

r0
S

]
= 0;

2) If R (S) = r0/S2, then the final error of the system
after the controlled is e (∞) = lim

S→0
S

[
(λiS+1)

αi−1
(λiS+1)

αi+lm(S)

r0
S2

]
=

αiλir0
1+C , which is a constant.
Therefore, as long as the value of λi is small, the step

and ramp signals can be tracked with high accuracy by
introducing an IMC structure into the controlled system based
on Fig. 8, using a filter as in (15). From the above analysis,

VOLUME 11, 2023 139117



Z. Liu et al.: Multivariate Cooperative Internal Mode Control of RBF Neural Network

FIGURE 9. The attractor phase diagram before and after adding the
designed controller.

the controller (16) is theoretically able to suppress the chaotic
oscillations of the power system and keep the system stable.

IV. SIMULATION ANALYSIS
In this paper, a multivariate cooperative IMC based on
the RBF-NN inverse system is used to simulate power
system (2) with chaotic behavior due to the low-frequency
power disturbance that Pk=0.15 and f=1.5 Hz are chosen,
and the state of power system is shown in Fig. 3 and Fig. 4.

The initial value of the state variable of (2) is selected as
x0 = [0.3492,0,0,0.1387,0,0.9181,0]T , the target operating
point is yref = [0.346,0.1371,0.9318]T , and controller
parameters are λ = [0.01,0.01,0.01]T . Then, the designed
controller is added at the 100-th s of system (2) operation,
and its attractor phase diagram is shown in Fig. 9.

It can be seen from Fig. 9 that the power system exhibits
chaotic attractor with complex and chaotic orbit in the first
100s, which reveals that the power system is in an extremely
unstable operating state around the equilibrium point. Then,
when the designed controller is added in the 100-th s, the
chaotic attractor disappears and the state of the system
quickly and steadily reaches the set target operating point
from the chaotic orbit, demonstrating the effectiveness of the
designed controller.

In addition, Fig. 10 shows the timing diagrams of the
controlled variables δm, δ, and V before and after adding the
designed controller, which shows that the state variables of
the system show continuous chaotic oscillations when the
controller is not added, and the oscillating state variables
stabilize to the fixed point immediately after adding the
controller, and the control effect is smooth after 100s
without any chattering. Meanwhile, Fig. 11 shows the power
characteristics of ES1, ES2 and SVC after the power system
is under control, which can show that PES1, PES2, and B can
achieve stability, and Fig. 11 also shows that the ES absorbs
part of the active power in the controlled system and the
SVC compensates the reactive power to maintain the power
balance in the system to eliminate the chaotic oscillations.

FIGURE 10. Timing diagrams of the controlled variables before and after
adding the designed controller.

FIGURE 11. Power characteristics of ES and SVC after power system
control.

Then, to further illustrate the superiority of the designed
controller, we partially zoom in on Fig. 10 and compare
it with the control strategy in the reference [19] and
reference [29]. Then, the results are showed in Fig. 12 (a),
Fig. 12 (b), and Fig. 12 (c). Note that control strategy 1 repre-
sents proposed control method in this paper, control strategy
2 represents the approach of the reference [29], and control
strategy 3 represents the approach of the reference [19].
As can be seen from Fig. 12, all control strategies allow
the power system to reach the target operating point (red
dotted lines) from the chaotic state within 1s with almost no
overshoot. However, the proposed control method allows the
controlled variables to enter into stabilization approximately
at A1 (100.075s), A2 (100.077s), and A3 (100.077s), whereas
control strategy 2 at B1 (100.524s), B2 (100.519s), and
B3 (100.519s), and control strategy 3 at C1 (100.263s), C2
(100.249s), and C3 (100.249s). It is obvious that control
strategy 1 has the fastest convergence speed among the three
strategies, which can guarantee the stable operation of the
power system.

Furthermore, to test the low sensitivity of the proposed
control strategy to parameter mutations, this paper increases
the load reactive power Q1 to 11.3904 at the 101-th s to
intervene in the controlled power system, and the results are
shown in Fig. 12. According to (2), since the change of the
load reactive power has a small effect on the generator power
angle δm, Fig. 12 (a) shows that both control strategies are
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FIGURE 12. Timing comparison diagrams of controlled variables with two
control strategies.

able to keep δm stable when the intervention occurs. However,
since the load reactive power can directly affect the dynamics
of the angle δ andmagnitudeV of the voltage at the load node,
and the increase of Q1 brings the power system closer to the
limit point, which reduces the voltage stability, in Fig. 12 (b)
and (c), control strategy 2 is not able to keep δ and V tracking
the reference values at the time of the intervention occurrence
plainly, and instead they are re-stabilized at another fixed
point at D2 (101.529s) and D3 (101.525s) approximately
with error 9.8% and 5.2% respectively. In addition, at the
101-th s, control strategy 3 also produces a tiny tracking
error of almost 0.2% evenly, which can be ignored. However,
in practice, due to the extremely high nonlinearity of the
power system, even small parameter errors can trigger or even
exacerbate its nonlinear behaviour, which must be avoided.
As a comparison, the generalisation capability of RBF-NN
enables the designed inverse system of the power system
to quickly deal with the uncertainties arising from sudden
changes in the load reactive power, and therefore the proposed
control strategy (control strategy 1) is able to keep δ and

V stabilized at the reference values in the face of sudden
changes in the system parameters, suggesting that it has
low parameter sensitivity and high robustness to ensure the
stability of the power system.

V. CONCLUSION
In this paper, based on the nonlinear theory, the chaotic
phenomenon generated by the seven-dimensional model of
power system containing SVC and ES when low-frequency
power disturbance is applied is analyzed, and secondly,
a multivariate cooperative IMC strategy based on RBF-NN
is designed for this problem by combining SVC and ES, and
the following conclusions are obtained:

1)If the frequency of the applied low-frequency power
disturbance is less than 1.402 Hz or the amplitude is greater
than 0.0172, there is a high probability of chaotic behavior
in the power system, which is manifested by irregular
oscillations of the system state variables.

2)The fitting of RBF-NN to the inverse system of the
power system has high accuracy and can provide an effective
solution to the real power system in pseudo-linearization
decoupling.

3)The multivariate cooperative IMC strategy based on the
RBF-NN inverse system has a significant suppression effect
on chaotic oscillations in power system, and can quickly
stabilize the system state at the target operating point with
smooth and no-chattering control effects.

Chaotic behavior is a potential threat to the stable operation
of the power system, while the proposed control strategy
with SVC and ES can make an effective response to it, thus
improving the stability and safety of the power system.
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