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ABSTRACT With the increase of distributed generations, the problems related to lack of inertia and
damping support for cascaded-type power networks are becoming more and more prominent. This may
lead to oscillation and even system instability. To address this problem, a decentralized control with adaptive
virtual inertia and damping combination method is proposed for islanded cascaded-type virtual synchronous
generator (VSG) systems. Firstly, a model of islanded cascaded-type VSGs was developed to analyze the
impact of changes in inertia and damping coefficients on frequency characteristics during dynamic processes.
Subsequently, a decentralized control was proposed, which employs an adaptive method for regulating
inertia and damping coefficients in real-time. The scheme effectively suppresses power and frequency
oscillation, leading to improved dynamic frequency performance. Furthermore, this decentralized strategy
only requires the local voltage and current measurements, ensuring a fully decentralized implementation.
The cascaded-type VSGs demonstrate satisfactory reliability. The stability of the proposed strategy has
been demonstrated, and guidelines for designing key control coefficients have been validated through the
Lyapunov energy function method. Simulation and experimental results validate the proposed method.

INDEX TERMS Cascaded-type VSGs, decentralized control, virtual inertia and damping combination.

I. INTRODUCTION
With the growing concerns regarding the energy crisis and
environmental pollution [1], [2], much attention has been
directed towards the electric power system that comprises
distributed generations (DGs) [3], [4]. In contrast to the
traditional synchronous generators (SGs), the inverter-based
DGs with conventional control methods obviously differ
in external characteristics. Notably, these DGs demonstrate
remarkable response speed and virtually nomoment of inertia
[5], [6].
With the increasing penetration of large-scale DGs, their

low inertia and poor damping characteristics have become
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prominent issues [7]. In the event of a disturbance, the system
may experience oscillations and even collapse [8]. To address
this problem, the VSG technology has gained significant
attention [9], [10]. The core idea is to imitate the swing
equation to provide the necessary inertia and damping support
[11], [12]. This technology enables power-sharing, frequency
regulating, and power oscillation suppression [13].

People have gradually become more interested in the
research on the frequency oscillation suppression control
and power oscillation suppression control of VSGs [14].
Currently, research on oscillation suppression control of
VSG is mainly divided into two aspects. The first aspect
is paralleled-type VSGs, which involve connecting multiple
VSGs in parallel [15]. It can operate in grid-connected mode
or islanded mode [5], [6]. Damping-based methods [16], [17]
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were presented to dampen oscillations of the system. In [16],
a reference-feedforward-based damping control method is
proposed. This method could adaptively tune the real-time
damping parameters without influencing the initial inertial
response. In [17], an active power oscillation damping control
is proposed for paralleled-type VSGs through an acceleration
control method. Then, inertia-based strategies were intro-
duced [18], [19]. The adaptation control scheme of virtual
inertia was presented in [18] to suppress the frequency oscil-
lation. Design guidelines based on stability analysis were
given in detail. In [19], a data-based intelligent virtual iner-
tia method is proposed that can decrease both frequency
drop and the rate of change of frequency (RoCoF). In [20],
the bang-bang inertia method, which has good frequency
response characteristics and robustness, is introduced. Next,
the fuzzy adaptive inertia control [21] and the neural network
optimization inertia control [22] were proposed to optimize
the inertia parameter. The inertia and damping combined
control strategy was proposed to take full advantage of the
freedom of adjustment [23]. Additionally, in [24], the output
impedancewas shaped through a virtual impedance controller
to improve the mismatched transmission line impedance,
and then power oscillation was damped. The damping-based,
inertia-based, inertia-and-damping combination control and
virtual impedance-based methods could effectively improve
the dynamic oscillation. However, these methods are only
available for paralleled-type VSGs.

The second aspect is the use of cascaded-type VSGs.
A medium or high-voltage system can be formed in the
series by connecting low-voltage modules [25], [26], such
as photovoltaics (PVs) and energy storage devices. A self-
synchronized control scheme was proposed [27] for the
cascaded-type power network without requiring commu-
nications, allowing for stable operation under resistance-
inductance (RL) loads. Furthermore, [28] proposed a con-
trol strategy to expand the application scope of RL loads
and resistance-capacitance (RC) loads. However, this strat-
egy might lead to multiple equilibrium operation points.
In response, [29] proposed a self-synchronized way with
a unique equilibrium point. Despite the previous propos-
als for decentralized self-synchronized control schemes for
cascaded-type power networks, they could not provide inertia
and damping. Thus, the cascaded-type power network was
prone to oscillation or instability when disturbances occurred.
In order to expand the concept of VSG to a cascaded-type
power network, [30] proposed a communication-free mutual
damping control method to dampen oscillation. Additionally,
[31] presented a communication-free J-adaptive and D-fixed
control scheme. However, these proposals did not use the reg-
ulation degree of inertia and damping coefficient in real-time,
and there is room for further improvement in the performance
of power and frequency oscillation.

To address the aforementioned problem, this paper pro-
poses a decentralized control featuring an adaptive combina-
tion of virtual inertia and damping. The proposed controller
can be established only with the local voltage and current

information, making it a communication-free method. The
islanded cascaded-type VSG systems hold improved reli-
ability. Meanwhile, the utilization of real-time inertia and
damping coefficients contributes to enhancing dynamic fre-
quency response and mitigating frequency oscillations. The
main contributions of this paper are as follows:
1) The impacts of variations in virtual inertia and damping

on the dynamic frequency characteristics of cascaded-type
VSGs are revealed. The maximum initial RoCoF in a specific
VSG is primarily determined by its virtual inertia term, while
the damping term hardly affects its RoCoF. Changes in the
virtual damping parameter influence the steady-state error of
frequency and the system’s adjusting time.
2) A decentralized control approach is proposed, which

combines adaptive virtual inertia and damping, to enhance
the dynamic performance of systems. The proposed method
effectively dampens power and frequency oscillations of
islanded cascaded-type VSGs.

For convenience, the abbreviations are summarized in
Table 1.

TABLE 1. List of abbreviations.

The rest of this article is arranged as follows. Section II
presents the model and dynamic frequency characteristic
analysis of cascaded-type VSGs. Section III describes the
proposed decentralized adaptive control scheme, whose sta-
bility is proved in Section IV. Section V and Section VI
explain simulation results and experimental results. Finally,
Section VII summarizes this article.

II. MODEL AND DYNAMIC FREQUENCY CHARACTERISTIC
ANALYSIS OF CASCADED-TYPE VSGs
A. CASCADED-TYPE VSGS
The cascaded-type VSGs shown in Fig. 1 consist of n DGs
that are connected in series/cascade. Each DG includes a
low-pass filter that enables independent voltage source con-
trol for the inverters.

The self-synchronized P − ω control for cascaded-type
microgrids is [28]:

ωi = ω∗
+

mi
τis+ 1

sgn (Qi)
(
Pi − P∗

)
(1)

Vi = V ∗ (2)

where ωi and ω∗ represent the actual and nominal angu-
lar frequency, Vi and V ∗ signify the actual and nominal
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FIGURE 1. Schematic of cascaded-type VSGs.

voltage amplitudes, P∗ means the nominal active power,τi
is the filter’s time constant, sgn (·) represents a sign func-
tion. mi represents a positive constant. The self-synchronized
mechanism of the islanded cascaded-type microgrids highly
depends on load characteristics. Under the RL loads, the
inverse droop is applied, while the droop control is used under
the RC loads.

Rewrite (1) as follows:

τi

mi

dωDi

dt
= sgn (Qi)

(
Pi − P∗

)
−

1
mi

ωDi (3)

where ωDi denotes the angular frequency difference, and
ωDi = ωi − ω∗. By comparing the 2-order swing equation
of SGs [18] and (3), the virtual inertia Ji and damping Di
coefficients can be written as (4).

Ji =
τi

mi
, Di =

1
mi

(4)

From (3) and (4), the cascaded-type VSG model of the ith

module is represented as:

Ji
dωDi

dt
= sgn (Qi)

(
Pi − P∗

)
− DiωDi (5)

From a physical meaning standpoint, the model of (5) is con-
venient for inertia and damping parameters designing. The
cascaded-type VSGs incorporate multiple VSGs in a series
connection, which differs from cascade multi-level converter
VSGs. The cascade multi-level converters have a general LC
filter, which can be viewed as a single VSG.

B. ANALYSIS OF THE DYNAMIC FREQUENCY
CHARACTERISTICS
From [28], the expression of active power Pi and reactive
power is,

Pi =
Vi
Zload

n∑
j=1

Vj cos
(
δi − δj + θload

)
(6)

Qi =
Vi
Zload

n∑
j=1

Vj sin
(
δi − δj + θload

)
(7)

where δi is a voltage phase-angle. Zload and θload mean load
impedance module and phase angle. By substituting (2) into
(6), we have,

Pi = κ cos θload

n∑
j=1

cos
(
δi − δj

)
− κ sin θload

n∑
j=1

sin
(
δi − δj

)
(8)

where κ = (V ∗)2
/
Zload . Ignoring the transmission line, the

load demands Pload and Qload are written as,

Pload = n2κ cos θload ,Qload = n2κ sin θload (9)

Combining (8) and (9), we have

Pi =
1
n2
Pload

n∑
j=1

cos
(
δi − δj

)
−

1
n2
Qload

n∑
j=1

sin
(
δi − δj

)
(10)

From (10), the small-signal model expresses as,

1Pi = αi1Pload −

n∑
j=1

βij
(
1δi − 1δj

)
(11)

where
αi =

1
n2

n∑
j=1

cos
(
δoij

)
βij =

1
n2
Poload sin

(
δoij

)
+

1
n2
Qload cos

(
δoij

) (12)

where superscript ‘‘o’’ means its related initial value, δoij =

δoi − δoj . Qload is a constant.
From 1ωDi = 1ωi, ωi = δ̇i, we have,

1δi =
1
s
1ωDi (13)

(13) From (13) and (11), yields,

s1Pi = sαi1Pload −

n∑
j=1

βij
(
1ωDi − 1ωDj

)
(14)

Equation (5) is rewritten as,

1ωDi =
sgn (Qi) 1Pi
(Jis+ Di)

(15)

Take two VSGs as an example, and the system’s load is an
RL load. From (14) and (15), we have,

s1P1 = sα11Pload − β12 (1ωD1 − 1ωD2)

s1P2 = sα21Pload − β21 (1ωD2 − 1ωD1)

(J1s+ D1) 1ωD1 = 1P1
(J2s+ D2) 1ωD2 = 1P2

(16)

Then, we can get the transfer functionG (s)=1ωD1
/
1Pload ,

G (s) =
1ωD1

1Pload
=
J2α1s3 + D2α1s2 + (β21α1 + α2β12) s

J1J2s4 + as3 + bs2 + cs
(17)
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where

a = J1D2 + J2D1 (18)

b = J1β21 + D1D2 + J2β12 (19)

c = D1β21 + D2β12 (20)

According to (17), the Bode Diagram method is applied
to analyze the impact of variations in inertia and
damping on dynamic frequency. The Bode Diagram of
magnitude-frequency characteristic in the low-frequency
interval shows the steady-state frequency deviation. The
high-frequency curve presents the initial values of the RoCoF.
Let D1 = 100,D2 = 50, J2 = 25, the Bode Diagram for
three different values of J1 is presented in Fig. 2(a). When
D1 = 100,D2 = 50, J1 = 20, Bode Diagram is presented
in Fig. 2(b) for three different values of J2. From Fig. 2,
a largerJ1 contributes to decreasing the initial RoCoF of
VSG#1, however, variations of J2 have a minor influence on
the initial RoCoF of VSG#1. When the parameters (J and D)
of both VSGs are the same, values of the initial RoCoF for
the two DGs are the same. Therefore, the conclusion can be
drawn as follows: 1) the virtual inertia parameter primarily
affects its own maximum initial RoCoF; 2) Different J1 and
J2 have a minor influence on the steady-state frequency
deviation; 3) the different resonance peak values can reflect
the oscillation frequency and magnitude.

FIGURE 2. Bode diagram of G (s) with (a) J1 variations, (b) J2 variations.

The corresponding comparison results of three different J1
and J2 are presented in Fig. 3, which verifies this conclusion.
Under the constant load power, the caparison results of the
three different conditions (J1 = 10, J2 = 25; J1 = 20, J2 =

25; J1 = 30, J2 = 25) are present in Fig. 3(a). Similarly,
the other comparison results are shown in Fig. 3(b) (J1 =

20, J2 = 15; J1 = 20, J2 = 25; J1 = 20, J2 = 35).
The RoCoF is calculated by (26), which will be explained
in Section III Part B. For example, in Fig. 3(a), compared
toJ1 = 10, J2 = 25, the initial RoCoF is greater thanJ1 =

20, J2 = 25, and they hold different oscillation frequencies
and magnitudes. In addition, the steady-state frequency of
the three conditions is equal. The bode diagram of (17) is
presented in Fig. 4(a) as D1 changes, and J1 = 20,D2 = 50,
J2 = 25. When D1 = 100, J1 = 20, J2 = 25, the bode
diagram with D1 variations is shown in Fig. 4(b). Different
damping coefficients have little influence on initial RoCoF.
However, they do affect the equilibrium point of frequency.

Increasing the damping coefficient can reduce the resonance
peak value and the adjusting time. The comparison results in
Fig. 5 confirm the above conclusions.

FIGURE 3. Comparison results of frequency and RoCoF with (a) J1
variations, (b) J2 variations.

FIGURE 4. Bode diagram of G(s) with (a) D1 variations, (b) D2 variations.

FIGURE 5. Comparison results of frequency and RoCoF with (a) D1
variations, (b) D2 variations.

As described above, the frequency characteristics in the
dynamic process can be summarized as follows: 1) adjusting
the virtual inertia parameter of the ith VSG mainly affects its
maximum initial RoCoF. Changes in the damping parameter
hardly affect the maximum initial RoCoF; 2) adjusting virtual
damping influences the frequency equilibrium value and the
adjusting time.
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From (17), the root locus diagrams with changes in the
control parameter of J1, J2,D1,D2 are displayed in Fig. 6(a),
(b), (c) and (d), respectively. As seen, the system is stable.

III. PROPOSED CONTROL METHOD
A. PROPOSED DECENTRALIZED CONTROL WITH
ADAPTIVE VIRTUAL INERTIA AND DAMPING
COMBINATION
The proposed decentralized control with adaptive virtual iner-
tia and damping combination is introduced in this section.
From (5), the proposed adaptive virtual inertia and damping
combination control scheme is constructed as follows,

Ji = J0i + kJ
(
ωi − ωcom,i

) dωDi

dt
(21)

Di = D0iekD(ωi−ωcom,i) (22)

where J0i and D0i signify the nominal inertia and damp-
ing term. kJ and kD mean the positive coefficient. ωcom,i
means the angular frequency of the current of the trans-
mission line through a phase-locked loop (PLL) of VSG#i.
From subscripts in (21) and (22), the proposed method is a
fully decentralized way. From (21) and (22), the inertia and
damping coefficients change adaptively in real-time based
on

(
ωi − ωcom,i

)
.

Due to the series structure, there is,

ωcom,i = ωcom,j = ωcom (23)

From (23), ωcom,i is the global variable. All VSGs can con-
struct their virtual inertia and damping term based on this
global variable. In the steady state, from (21) and (22), ωi =

ωj = ωcom, Ji = J0i,Di = D0i. According to (1), δoi =

δoj , the different VSGs hold equal phase angles. Combining
(2), the load voltages are equivalent to the aggregate of all
VSG voltages. Therefore, the proposed scheme optimizes the
dynamic frequency performance but does not affect the steady
state.

The dynamic variation diagram of ωi is presented in Fig. 7.
The oscillations are divided into four intervals:[t0, t1], [t1, t2],
[t2, t3], [t3, t4]. The required control laws of Ji and Diin the
different inverters are listed in Table 2.

TABLE 2. Control laws in the different intervals.

The control lows of Ji. In [t0, t1] and [t2, t3], the angular
frequency ωi deviates from ωcom,i, a larger Ji will conduce
to decrease frequency deviations. Similarly, in [t1, t2] and
[t3, t4], the ωi tends to return ωcom,i, a smaller Ji will help
accelerate ωi returning to ωcom,i. The control lows of Di.
In the first and the second intervals, the angular frequency

FIGURE 6. Root locus with changes of (a) J1, (b) J2, (c) D1, (d) D2.

FIGURE 7. Dynamic variation diagram of ωi .

ωi is greater than ωcom,i, and a larger damping coefficient
is required to slow down ωi. On the contrary, in the third
and fourth intervals, ωi is less than ωcom,i, a smaller damping
term is needed to make ωi accelerate. In summary, the control
method of the proposed scheme is to make ωi align with
ωcom,i. Thus, the power and frequency oscillation is damped.

B. ACQUIRING OF THE DIFFERENTIAL TERM
Direct calculation of the differential term dωDi

/
dt may bring

out measurement noises. To solve that, the acquiring of
dωDi

/
dt is introduced in the next. Substitute (21) into (5),

then,[
J0i+ kJ

(
ωi − ωcom,i

) dωDi

dt

]
dωDi

dt
= sgn (Qi)PDi − DiωDi

(24)

where PDi = Pi − P∗. From the control lows in Table 1,
solving (24), yields,

dωDi

dt

=

−J0i +
√
J20i + 4kJ

(
ωi − ωcom,i

)
(sgn (Qi)PDi − DiωDi)

2kJ
(
ωi − ωcom,i

)
(25)

To avoid singularity, substituting (22) into (25), yields,
(26), as shown at the bottom of the next page.
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FIGURE 8. Control block diagram of the proposed method.

Therefore, the term dωDi
/
dt is obtained by (26) without

derivative action. The control block diagram of the proposed
method is depicted in Fig. 8, in which Lf , Cf represent the
filter inductor and capacitor.di and VDC are the duty cycle
and the voltage at the DC side.

IV. STABILITY ANALYSIS
To verify the stability of the proposed scheme and give the
design ranges of key control parameters, the stability analysis
of the proposed control strategy is carried out in this section
using the Lyapunov energy function method [32].
Transmission line current rewrites as:

Iejδcom =

n∑
j=1

Vjejδj

Zloadejθload
=

V ∗

Zload

n∑
j=1

ej(δj−θload) (27)

where I and δcom are the current amplitudes and phase angles.
Equation (27) can be expressed as,

cos δcom =

n∑
j=1

cos
(
δj − θload

)
(28)

sin δcom =

n∑
j=1

sin
(
δj − θload

)
(29)

Then, the phase-angle δcom writes:

δ̇com =
1
n

n∑
j=1

δ̇j (30)

Equation (30) is rewritten as:

ωcom =
1
n

n∑
j=1

ωj (31)

Substituting (2) into (6), we can get,

Pi =
(V ∗)2

Zload
n∑
j=1

[
cos

(
δi − δj

)
cos θload − sin

(
δi − δj

)
sin θload

]
(32)

Usually, δi − δj ≤ θload , (32) becomes (33).

Pi = a− b
n∑
j=1

sin
(
δi − δj

)
(33)

where

a =
n (V ∗)2 cos θload

Zload
(34)

b =
(V ∗)2 sin θload

Zload
(35)

Substituting (33), (34) and (35) into (24), we have,

J0iω̇Di = sgn (Qi)

a− P∗
− b

n∑
j=1

sin
(
δi − δj

)
− D0ie

kD
n

n∑
j=1

(ωj−ωj)
ωDi −

kJ
n

(ω̇Di)
2

n∑
j=1

(
ωj − ωj

)
(36)

The constructed Lyapunov energy function ELy is,

ELy = Ep + Ek (37)

where EP is the potential-energy function, Ek is the kinetic-
energy function. They can rewrite,

Ek =
1
2

∑
J0iω2

Di (38)

dωDi

dt
=

2
(
sgn (Qi)PDi − D0iekD(ωi−ωcom,i)ωDi

)
J0i +

√
J20i + 4kJ

(
ωi − ωcom,i

) (
sgn (Qi)PDi − D0iekD(ωi−ωcom,i)ωDi

) (26)
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EP = sgn (Qi) ×{
−

n∑
i=1

(
a− P∗

) (
δi − δoi

)
−b

n−1∑
i=1

n∑
j=i+1

[
cos

(
δi − δj

)
− cos

(
δoi − δoj

)] (39)

Combining (36), (38) and (39), we can get,

ĖLy = −

n∑
i=1

D0ie

kD
n

n∑
j=1

(ωi−ωj)
ω2
Di


−
kJ
n

n∑
i=1

ωDi (ω̇Di)
2

n∑
j=1

(
ωDi − ωDj

)
(40)

Rewrite (40) as the matrix, yields,

ĖLy = −ωT
[
D +

1
2

(9L + L9)

]
ω (41)

where

ωT
= [ωD1, ωD2, · · · ωDn]T (42)

9 =
kJ
n
diag

[
(ω̇D1)

2 , (ω̇D2)
2 , · · · (ω̇Dn)

2
]T

(43)

D = diag
[
D01eγ1 ,D02eγ2 , · · ·D0neγn

]T (44)

γi =
kD
n

n∑
j=1

(
ωi − ωj

)
(45)

L = nEn×n − In×n (46)

where En×n = diag [1, 1, · · · 1]. In is the all-one matrix,
in which all elements are 1.

Let that λi is the eigenvalues of the matrix. For a n × n
matrix A, the spectral radius ρ (A) is expressed as ρ (A) =

max |λi| (i = 1, · · · n). In addition, ρ (A) ≤ ∥A∥, where ∥A∥

is the norm of A. Then, there is,

ρ

(
1
2

(9L + L9)

)
≤

∥∥∥∥12 (9L + L9)

∥∥∥∥ ≤ ∥9∥ ∥L∥ ≤ ζmax ∥L∥ (47)

where ζmax is the maximum element of the matrix9. Define
that dmin is the minimum damping for all VSGs, i.e., dmin ≤

min
i=1,··· ,n

{D0ieγi}. If ζmax ∥L∥ < dmin, (47) is rewritten as,

ρ

(
1
2

(9L + L9)

)
< dmin (48)

In addition, for the symmetric matrix (9L + L9) and D,
we have,

λ

(
D +

1
2

(9L + L9)

)
> 0 (49)

The matrix D +
1
2 (9L + L9) is a symmetric positive

matrix. Thus, there is,

ĖLy = −ωT
[
D +

1
2

(9L + L9)

]
ω < 0 (50)

From (50), ELyis damped. Therefore, the proposed strategy
is stable. Stability proof completed.

The design control parameters should satisfy,

ζmax ∥L∥ < dmin (51)

dmin ≤ min
i=1,··· ,n

{
D0iekD(ωi−ωcom,i)

}
(52)

Define that RoCoFmax is the permissible maximumRoCoF
values for VSGs. Combining ∥L∥ = n, (43) and (51),
we have,

0 < kJ <
dmin

RoCoF2
max

(53)

From (52), we can get,

0 < kD ≤

∣∣∣ln dmin
D0i

∣∣∣∣∣∣∣ min
i=1,··· ,n

(
ωi − ωcom,i

)∣∣∣∣ (54)

Therefore, the control parameters should satisfy (53) and
(54) to maintain the stable operating. The design ranges of the
adaptive control coefficients for the proposed control method
are provided.

V. SIMULATIONS
A 3-cascaded VSG is implemented in this section to demon-
strate the feasibility of the proposed method. Based on the
Matlab/Simulink SimPowerSystems platform, simulations
are implemented, and Table 3 presents the related parameters.

TABLE 3. Parameters for simulations.

TABLE 4. Quantitative comparisons.
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A. CASE 1:SIMULATION WITH J-FIXED AND D-FIXED
CONDITION
This case is performed with the J -fixed (kJ = 0) and D-
fixed (kD = 0) situation, where D1 = D2 = D3 = 100,
J1 = 15, J2 = 30, J3 = 45. Simulation results of Pi, fi,
RoCoF and J/D parameters are exhibited in Fig. 9(a), (b),
(c) and (d). For [0s, 5s], the system’s adjusting time is about
3.2s, which is about 2.5s in the interval [5s, 10s]. After t=5s,
the maximum RoCoF is about 5.3Hz/s. Figure 9(e) shows
the voltage and current waveforms, and reactive powers are
presented in Fig. 9(f). Therefore, the power and frequency
oscillations occur with the fixed virtual inertia (J-fixed) and
fixed damping (D-fixed) control.

B. CASE 2:SIMULATION WITH J-ADAPTIVE AND D-FIXED
CONDITION
This case is carried out with the adaptive virtual inertia
control (J-adaptivekJ = 5 and D-fixedkD = 0), in which
D1 = D2 = D3 = 100, J1 = 15, J2 = 30, J3 = 45. The
load schedules remain the same as in case 1, and the vari-
ations in active power, frequency, RoCoF, J/D parameters
are displayed in Fig. 10(a), (b), (c) and (d). When the inverse
droop control is employed (RL loads), a significant increase
in frequency is observed with the rise in active load. The
voltage and current waveforms are presented in Fig. 10(e),
while the reactive powers are displayed in Fig. 10(f). From
these results, the adjusting time is approximately 2.8s and 2s
in the first and second intervals, respectively. The maximum
RoCoF occurs around 2.7Hz/s after t=5s. Compared to the J -
fixed and D-fixed control, the virtual adaptive inertia control
can reduce the adjusting time and initial maximum RoCoF,
thereby improving the dynamic frequency performance.

C. CASE 3:SIMULATION WITH J-ADAPTIVE AND
D-ADAPTIVE CONDITION
This case is implemented with the proposed method, i.e., J-
adaptive (kJ = 5) andD-adaptive (kD = 0.5). The simulation
parameters of this case are set as follows: D1 = D2 =

D3 = 100, J1 = 15, J2 = 30, J3 = 45. Under the same
conditions as Case 1 and Case 2, simulation results of Pi, fi,
RoCoF and J/D variations are exhibited in Fig. 11(a), (b), (c),
and (d). The adjusting time reduces to 2s in the first interval
and 1.6s in the second interval, with the maximum RoCoF
at about 2.3Hz/s.The voltage and current waveforms are
depicted in Fig. 11(e), while the reactive powers are presented
in Fig. 11(f). Table 4 provides the quantitative comparisons
between Case 1, Case 2, and Case 3. It can be observed
that oscillations are effectively mitigated with the proposed
method. In addition, these simulation results validate the
stability performance of the proposed control method.

D. CASE 4:SIMULATION WITH SWITCHING FROM RL TO
RC
This simulation is performed under the load switching from
RL in [0s, 5s] to RC in [5s, 10s]. The allocations of Pi and Qi

FIGURE 9. Simulation results with the J-fixed and D-fixed condition (a) Pi
(b) fi (c) RoCoF (d) J/D parameters (e) voltage and current waveforms (f)
Qi .

are presented in Fig. 12(a) and (b). The waveforms of fi are
depicted in Fig. 12(c). The voltage and current waveforms
are presented in Fig. 12(d). It can be seen that the inverse
droop is applied in the first interval, while droop control
is used in the second interval. Under the RL or RC loads,
the RoCoF curve may exhibit different positive or negative
signs. Therefore, the proposed method enables stable oper-
ation even when load demands transition from RL loads
to RC loads.
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FIGURE 10. Simulation results with the J-adaptive and D-fixed condition
(a) Pi (b) fi (c) RoCoF (d) J/D parameters (e) voltage and current
waveforms (f) Qi .

E. CASE 5: SIMULATION WITH SINGLE-PHASE
ASYNCHRONOUS MACHINE
This simulation case is implemented under the asynchronous
machine loads condition. At t=5s, a load step is introduced.
Initially, the J-fixed and D-fixed control scheme is employed,
and the corresponding results of Pi, Qi and fi are exhibited in
Fig. 13 (a1), (b1), and (c1). Notably, oscillations of frequency

FIGURE 11. Simulation results with the J-adaptive and D-adaptive
condition (a) Pi (b) fi (c) RoCoF (d) J/D parameters (e) voltage and
current waveforms (f) Qi .

are observed in the depicted plots. Subsequently, the pro-
posed scheme involving adaptive virtual inertia (J-adaptive)
and damping (D-adaptive) combination is performed under
the same load condition. The results of Pi, Qi and fi are
displayed in Fig. 13(a2), (b2), and (c2). On comparison,
it can be observed that the proposed scheme demonstrates
improved frequency regulation in the presence of asyn-
chronous machine load. In addition, the stable operating is
guaranteed.
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FIGURE 12. Simulation results with load switching (a) Pi (b) Qi (c) fi
(d) voltage and current waveforms.

TABLE 5. Settings for experiment validations.

VI. EXPERIMENT VERIFICATIONS
Limited by the experimental conditions, a cascaded-type
VSG experimental prototype involving two VSGs was built
in the lab to verify the feasibility of the proposed method,
as shown in Fig. 14. Each VSG is controlled by a Rapid Con-
trol Prototyping (RCP) YXSPACE controller. The relevant
setting parameters can be found in Table 5.

A. CASE 1:PERFORMANCE OF THE J-FIXED AND D-FIXED
TERM
In the experimental test, the designed control parameters are
configured as: kJ = 0, kD = 0. The control methodology
involving J-fixed and D-fixed terms is employed. The load
step occurs at t=12s. The experimental voltage and current
waveforms for the first interval are displayed in Fig. 15. The
frequency of VSG#1 and VSG#2 is shown in Fig. 16(a), and

FIGURE 13. Comparative results (a) Pi (b) Qi (c) fi .

FIGURE 14. Experimental prototype of cascaded-type VSGs.

FIGURE 15. Experimental waveform with the J − fixed and D − fixed
control .

the system reaches a steady state after t=1.5s. The results of
RoCoF are plotted in Fig. 16(b), with the maximum RoCoF
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FIGURE 16. Experimental results with J-fixed and D-fixed control (a) fi
(b) RoCoF (c) Pi .

FIGURE 17. Experimental waveform with the J − fixed and D − fixed
control .

being approximately 350Hz/s. Further, Fig. 16(c) illustrates
the changes in active power over time.

B. CASE 2:PERFORMANCE OF J-ADAPTIVE AND
D-ADAPTIVE TERM
The experimental conditions are the same as in case 1.
The control scheme employing J-adaptive and D-adaptive
terms is carried out, with kJ = 3e − 4, kD = 0.04.
The load steps at t=9s. The experimental waveforms of
voltage and current for the first interval can be seen in
Fig. 17. Variations of frequencies over time are displayed
in Fig. 18(a), with an adjusting time of approximately 1.1s
in the first interval. The RoCoF is presented in Fig. 18(b),
where the maximum RoCoF is about 200Hz/s. Figure 18(c)
depicts active power changes over time. Compared with
case 1, the proposed method demonstrates the ability to
dampen power oscillations and acquire dynamic frequency
improvement.

FIGURE 18. Experimental results with J-adaptive and D-adaptive control
(a) fi (b) RoCoF (c) Pi .

VII. CONCLUSION
To solve the problem of oscillations in islanded cascaded-
type VSGs, this study proposed a decentralized control
that combined adaptive virtual inertia and damping. The
dynamic frequency characteristic was revealed for islanded
cascaded-type VSGs when inertia and damping parameters
changed. An adaptive decentralized control scheme is pro-
posed, incorporating virtual inertia and damping terms to
dampen the power and frequency oscillations. Moreover, the
design of the main control coefficients is presented. The pro-
posed scheme could effectively suppress the dynamic power
and frequency oscillations without impacting the steady-state
performance. It can be applied to improve the frequency
performance in the dynamic process for islanded cascaded-
type VSGs. The results of simulations and experiments have
verified the feasibility of the proposed scheme.

Compared to centralized methods, the proposed scheme is
a fully communication-free approach. It is especially advan-
tageous in situations where there are a large number of VSGs
and significant distances between them. Based on this work,
future investigations will consider topics such as the grid-
connected mode, the three-phase cascaded-type VSG system,
the series-parallel structure, and so on.
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