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ABSTRACT This paper presents a novel method for estimating received signal strength (RSS) in indoor
radio propagation using a deep learning approach. The proposed method utilizes a training dataset
comprised of imitated real-world indoor environments and radio-map images generated through 2.4 GHz
ray-tracing. Additionally, we introduce a convolutional neural network (CNN) named Radio Residual
UNet (RadioResUNet) to facilitate the training and prediction of indoor radio propagation. To assess
the feasibility and effectiveness of this deep learning network for indoor radio estimation, we compare
the RSS obtained from practical wireless equipment with that obtained by RadioResUNet in two indoor
environments: an anechoic chamber and an office floor. Furthermore, we explore the prediction outcomes
achieved using different loss functions, including mean squared error (MSE), binary cross-entropy (BCE),
and dice binary cross-entropy (Dice_BCE), across varying dataset sizes. The results reveal that the proposed
deep learning-based radio estimation method exhibits estimation discrepancies of 4.25 dB and 5.4 dB
compared to practical measurements in real-world environments of the anechoic chamber and the office
floor, respectively. These results indicate a performance that is comparable to the indoor propagation model
of ITU-R P.1238. Additionally, we introduce an indoor radio estimation tool that utilizes the deep learning
network of RadioResUNet to predict radio propagation in a target area with minimal input.

INDEX TERMS Convolutional neural network (CNN), deep learning-based radio estimation, received signal
strength (RSS), indoor radio propagation, RadioResUNet, ray-tracing.

I. INTRODUCTION
The widespread adoption of wireless communications in
various local fields, including transportation, construction,
factories, and medical care, has led to an increasing demand
for easy wireless network construction [1], [2], [3], [4].
However, with the coexistence of various wireless systems
such asWi-Fi, Bluetooth, LPWA, 4G, and 5G cellular, as well
as the development of new wireless systems of beyond 5G
(B5G) and 6G, selecting and applying the optimal wireless
system in real-world environments has become a critical issue
for achieving high system efficiency [5], [6].

Developers usually plan the placement of multiple access
points in specific locations to optimize wireless connectivity
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for devices when implementing local wireless networks in
targeted areas. However, pinpointing the appropriate location
for installing these access points can be challenging due to
numerous factors that can influence the quality of wireless
connections, such as building layout, terminal mobility, and
obstructions. For example, a newcomer to the world of
wireless communications may plan to set up a Wi-Fi network
within their office. While installing a Wi-Fi access point in
any location in the office and checking device connectivity
may seem like the most straightforward approach, this
method is time-consuming and may not guarantee the most
optimal connectivity for devices within the office.

A more advanced approach to deploying Wi-Fi networks
involves using analytical models to simulate their instal-
lations. There are various models, including theoretical,
statistical, and simulation-based ones, that can be employed

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 138215

https://orcid.org/0009-0001-9344-1387
https://orcid.org/0000-0002-8496-1962
https://orcid.org/0000-0002-7027-8847
https://orcid.org/0000-0002-3759-4805


C. Pyo et al.: Deep Learning-Based Indoor Radio Estimation Method Driven by 2.4 GHz Ray-Tracing Data

to estimate the radio environment [7]. Additionally, the
wireless emulator project aims to develop a large-scale wire-
less emulation platform for the high-speed and large-scale
verification of emerging wireless communication systems
and technologies in a virtual space. The ongoing development
of the large-scale wireless emulator represents an approach
to speed up evaluations and enable virtual testing of wireless
communication systems [8], [9]. While these methods can
be helpful for beginners, constructing a model that meets
the user’s needs requires specialized knowledge, and the
applicable wireless parameters must be carefully considered
to obtain more accurate results.

Beginners in deploying wireless networks often face
difficulties in real-world scenarios and usually rely on the
expertise of wireless professionals to evaluate the wireless
environment and determine the best location to install
access points based on various conditions and requirements.
These experts use methods such as theory, statistics, and
simulation tools to provide outputs. While this approach
can meet user requirements, it can also be costly and time-
consuming, as constructing a wireless network involves a
substantial amount of trial and error, which must be executed
iteratively to achieve the optimal outcome. In the initial
stages of deploying a local wireless network, it is crucial
to comprehend the wireless environment of the target area,
as it can save time and expenses associated with traditional
procedures. For beginners, it is important to have an easy
understanding of the wireless situation in their desired area
without engaging in complex tasks.

In order to meet these requirements, our main contribution
is the development of a radio estimation tool that utilizes
deep learning, eliminating the need for analytical models
or simulation expertise. The tool predicts the wireless
environment in the target area by leveraging preprocessed
radio propagation data obtained through ray-tracing by
professional wireless analysts. With minimal information
provided by beginners, the tool simplifies the radio estimation
procedure by removing the need to directly handle analytical
models.

To realize a tool simplifying radio estimation, this paper
presents a novel method for estimating indoor radio propaga-
tion using deep learning. The proposed deep learning-based
radio estimationmethod utilizes a training dataset comprising
imitated real-world indoor environments and radio-maps
generated by ray-tracing. In the context of ray-tracing,
a radio-map typically represents a two-dimensional (2D)
depiction of radio wave propagation characteristics in a given
environment. These radio-maps, generated from ray-tracing
simulations, serve as training data for deep learning-based
radio estimation.

This paper introduces a simple and large-scale indoor
layout modeling method for creating an indoor environment
dataset for deep learning. To train and predict indoor
radio propagation, a convolutional neural network (CNN)
called Radio Residual UNet (RadioResUNet) is introduced
in this paper. The feasibility and effectiveness of the

proposed deep learning network for indoor radio estimation
are verified by comparing the received signal strength
(RSS) measured by practical wireless equipment with those
obtained by RadioResUNet in indoor environments of
the anechoic chamber and the office floor. The results
demonstrate the effectiveness of the deep learning network
for indoor radio estimation and indicate a performance that
is comparable to the empirical indoor propagation model of
ITU-R P.1238 [10].
The rest of the paper is organized as follows. Related

works are shown in Section II. Section III describes the
procedures of deep learning-based radio estimation for
indoor environments, and Section IV introduces the proposed
deep learning network of RadioResUNet. Estimation and
verification results of the proposed deep learning-based radio
estimation are shown in Section V. Section VI concludes this
paper.

II. RELATED WORKS
Deep learning has been successfully applied in wireless
communication systems, including physical layer compo-
nents and wireless network management [11]. The physical
layer of wireless communication systems plays a critical
role in transmitting and receiving signals over the air, and
optimizing its performance is vital for ensuring high-quality
wireless communication. Deep learning techniques have been
employed to optimize various physical layer components,
such as modulation and coding schemes, power control,
beamforming, channel estimation, and equalization [12],
[13], [14], [15], [16]. Additionally, a method that employs
ensemble learning techniques has been proposed for predict-
ing RSS using unmanned aerial vehicles (UAVs) in mobile
communications [17].
Furthermore, deep learning techniques have been applied

to improve various aspects of wireless network management,
including resource management and network management.
Resource management aims to enhance network perfor-
mance and efficiency by optimizing the allocation and
utilization of resources, such as radio spectrum, power,
and network resources [18], [19], [20]. On the other hand,
network management involves tasks such as monitoring and
controlling the network, identifying and resolving network
issues, optimizing network topology, and ensuring quality of
service [21], [22], [23].

Recent studies have explored the use of deep learning for
scheduling and routing in wireless networks, involving the
optimization of resource allocation, such as time slots and
frequency bands for different users or applications, as well
as determining the most efficient routes for transmitting data
packets through the network [24], [25], [26], [27].

Convolutional neural network (CNN) is one of the
typical deep learning networks used for image classification,
recognition, and segmentation [28], [29]. Various image
analysis models using CNNs have been proposed. Residual
network (ResNet) is a deep learning network that utilizes
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the residual block and skip connection method to address
the issue of model degradation caused by the vanishing
gradient problem in deep learning [30]. UNet is one of the
fully convolutional networks (FCNs) developed for pixel
classification in medical images, employing convolutional
down-sampling and up-sampling techniques [31]. UNet also
employs skip connections to retain positional information in
images that can be lost during convolutional up-sampling.
Residual UNet (ResUNet) is a deep learning network
in which a combination of the residual block and skip
connections is added to the convolutional layer to facilitate
efficient deep learning [32].
Radio-map images generated by ray-tracing can serve

as training data for deep learning networks. RadioUNet
is an extended network based on UNet, proposed for
estimating the outdoor wireless environment through image
segmentation of radio-maps calculated by ray-tracing [33].
A framework for a machine learning-based propagation
model has been proposed to estimate received signal strength
(RSS), considering the physical and geometric structure of
the propagation environment in urban cellular networks [34].

III. DEEP LEARNING-BASED INDOOR RADIO
ESTIMATION METHOD
In this section, we present a deep learning-based indoor
radio estimation method. The method involves creating a
training dataset of indoor environments that simulate various
real-world settings, along with radio-maps generated by ray-
tracing within the environments. We also propose a deep
learning network that learns the training dataset to infer the
indoor radio propagation.

A. A DEEP LEARNING PROCEDURE
Figure 1 depicts the deep learning procedure used for radio
estimation. Firstly, datasets containing images of indoor
environments, transmitter positions, and radio-maps are
prepared for training and validating the deep learning model.
During the recursive training phase, the deep learning model
infers radio-maps as prediction results and optimizes training
parameters, including the weights and biases of the deep
learning model, using a loss function. The estimation results
predicted by the pre-trained model are verified by comparing
them to wireless equipment measurements in real-world
indoor environments.

B. DATASETS
To enable deep learning-based radio estimation, we prepare
three datasets for training and validating the network: an
indoor environment dataset, a transmitter position dataset,
and a radio-map dataset.

1) INDOOR ENVIRONMENT DATASET
For deep learning-based indoor radio estimation, it is
necessary to train the network on various indoor environ-
ments, as radio conditions are highly influenced by the
environments. However, creating a dataset that represents

FIGURE 1. A deep learning procedure for radio estimation.

FIGURE 2. Examples of the indoor layout with the different density,
where the number and size of objects vary on a 30 m × 30 m plane.

a variety of practical indoor environments is challenging
due to the diverse layouts and building structures of indoor
spaces, which depend on their intended use, such as offices,
factories, and auditoriums. This paper introduces a simple and
large-scale indoor layout modeling method for creating an
indoor environment dataset for deep learning.

Indoor spaces contain various square and rectangular
structures such as walls, furniture, doors, windows, andmore.
To represent indoor environments, we randomly arrange
3D square and rectangular boxes of different sizes on
a 30 m × 30 m plane, as shown in Figure 2. We assume that
the maximum height of indoor objects is 3 m, and the indoor
density and layout may vary depending on the number and
size of objects in the space. We create 80 indoor datasets with
varying densities (the number of objects per m2), which form
our indoor environment dataset. Figure 2 provides examples
of 3D indoor layouts with different densities. We also
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FIGURE 3. Transmitter positions on a 30 m × 30 m plane.

TABLE 1. Ray-tracing parameters for calculating radio propagation.

use these 3D indoor layouts to generate radio-maps using
ray-tracing.

To use the created indoor environments in the CNN-based
deep learning network, we convert the 3D layouts to 2D
images. We slice the 3D layouts at heights of 0.5m, 1.5m, and
2.5m and save each slice as a 2D image for training. We color
the sliced rectangular objects using grayscale to represent the
blockage of radio propagation, while the space with grayscale
of RGB (255, 255, 255, i.e., white) represents open space. The
RGB grayscale values for rectangular objects are as follows:
metal is RGB (60, 60, 60), concrete is RGB (120, 120, 120),
wood is RGB (180, 180, 180), and glass is RGB (240, 240,
240). The default grayscale value for an object without a
specified material is RGB (0, 0, 0).

For data augmentation, we rotate the 2D images by 90,
180, and 270 degrees. In total, the indoor environment dataset
contains 4800 images generated from 80 indoor layouts, with
3 slices per layout, 4 rotations per slice, and 5 materials per
slice.

2) TRANSMITTER POSITION DATASET
The strength of the radio signal is largely affected by the
distance between a transmitter and a receiver. To account for
this, we place a transmitter at the intersection of a 3 m ×

3 m grid on a 30 m × 30 m plane, and prepare 81 transmitter
positions as shown in Figure 3.

3) RADIO-MAP DATASET
A radio-map is a 2D image that represents the radio
propagation of the received signal strength (RSS) between

FIGURE 4. Examples of radio-maps generated by ray-tracing from the
different indoor layouts and transmitter positions.

FIGURE 5. RGB values for grayscale representing receiver signal
strength (RSS).

a transmitter and a receiver. To calculate the radio
propagation, we used ray-tracing radio propagation software
ofWinProp [35] with the parameters: a frequency of 2.4 GHz,
a transmitter antenna height of 2.5 m, a transmit power
of 200 mW, and isotropic antennas with 0 dBi for both
the transmitter and receiver as shown in Table 1. Ray-
tracing is a practical method for measuring radio propagation,
widely applied in wireless communication environments.
This technique provides a comprehensive understanding of
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FIGURE 6. Overview of RadioResUNet.

FIGURE 7. Predicted output examples of Front_UNet and Back_UNet for
the ground truth image.

how radio waves interact with their surroundings, making
it a valuable tool for assessing radio wave propagation in
real-world scenarios [36], [37].

We employ a 3D optical ray-tracingmethod to predict radio
wave propagation. This method tracks optical rays from a
transmitter to compute propagation loss, considering not only
free-space loss but also losses due to penetration, reflection,
and diffraction by obstacles. Increasing the number of
propagation paths, penetrations, reflections, and diffractions
enhances the accuracy of ray-tracing results. However, this
also results in longer computation times. To strike a balance
between accuracy and computation time, we have configured
the ray-tracing parameters, as presented in Table 1. The
maximum propagation path, penetrations, reflections, and
diffractions for ray-tracing propagation paths are set to 20,
2, 2, and 1, respectively.

Figure 4 shows examples of radio-maps generated by ray-
tracing from the different indoor layouts and transmitter posi-
tions, illustrating the variation in radio propagation patterns
across different settings. The combination of 4800 indoor
layouts and 81 transmitter positions generated 388,800 radio-
maps, which were divided into 233,280 for training, 77,760
for validating, and 77,760 for testing the deep learning
network.

Figure 5 represents the grayscale corresponding to the
RSS. In the grayscale, a brighter color indicates a higher RSS,
while a darker color represents a lower RSS. It is worth noting
that on a practical 2.4 GHz Wi-Fi network, RSS typically
ranges from -25 dBm to -100 dBm. An RSS over -26 dBm
is represented as RGB (0, 0, 0), and an RSS under -108 dBm
is represented as RGB (255, 255, 255).

IV. RADIORESUNET
This section introduces the proposed deep learning network,
called RadioResUNet, which is a CNN model for inferring
RSS in indoor environments. RadioResUNet comprises two
UNet models, namely Front_UNet and Back_UNet, as illus-
trated in Figure 6. Each UNet model includes an encoder,
a decoder, and a bridge, where the encoder downsamples
the input image, the decoder upsamples the downsampled
image to the same resolution as the input image, and the
bridge connects the encoder and the decoder. Additionally,
both Front_UNet and Back_UNet feature a skip connection
between the encoder and the decoder.

A. INPUT, OUTPUT AND TARGET
The training model requires two grayscale images as input,
both of which have a shape of (256, 256, 1): an indoor layout
and a transmitter position. It’s worth noting that (256, 256,
1) represents (H, W, C), which denotes the image height (H),
width (W), and channel (C). These two images are combined
to form a single input with a shape of (256, 256, 2). During
the recursive training period, the model generates a grayscale
radio-map as an output image, which is then compared to a
ground truth radio-map serving as the target image selected
from the validation dataset. Both the output and target images
have the same shape of (256, 256, 1).

B. FRONT_UNET AND BACK_UNET
The Front_UNet, which has bigger filters in both the encoder
and decoder, roughly extracts features from the input image,
while the Back_UNet, which has smaller filters in both
the encoder and decoder, further refines the features from
the output of Front_UNet. This results in a more precise
representation of the target radio-map. Figure 7 illustrates
the predicted outputs from both Front_UNet and Back_UNet,
which are compared to the ground truth radio-map. The
example demonstrates that Front_UNet estimates the RSS
roughly, while Back_UNet estimates it more accurately
compared to the ground truth.

C. ENCODER
The encoder of Front_UNet (EncoderF ) uses a ResNet
structure, as shown in Figure 8, to convolve the input image.
This image has been downsampled into a series of feature
maps with varying numbers of channels. The feature maps
begin at (256, 256, 2) and end at (2, 2, 1000). EncoderF
processes the input image using a recursive sequence of
feature map sizes: (256, 256, 2) → (128, 128, 40) → (64,
64, 60) → (32, 32, 100) → (16, 16, 150) → (8, 8, 300) →

(4, 4, 500) → (2, 2, 1000) as shown in Figure 8 (a).
The encoder of Back_UNet (EncoderB) also has a ResNet

structure, similar to that of Front_UNet. It convolves an image
created by concatenating the input image and the output
image from Front_UNet into a series of feature maps with
varying numbers of channels, starting at (256, 256, 3) and
ending at (2, 2, 110). EncoderB processes the input image
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FIGURE 8. A structure of the encoders and the decoders with skip
connections of RadioResUNet (a) and ResNet structure for each layer of
encoders and decoders (b).

using a recursive sequence of feature map sizes: (256, 256,
3) → (128, 128, 20) → (64, 64, 30) → (32, 32, 40) → (16,
16, 60) → (8, 8, 70) → (4, 4, 90) → (2, 2, 110) as illustrated
in Figure 8 (a).

D. DECODER
The decoders of Front_UNet (DecoderF ) and Back_UNet
(DecoderB) have a ResNet structure similar to those of the
encoders, but the decoders are connected to the corresponding
encoders through skip connections as shown in Figure 8.
The decoders restore the downsampled image to the same
resolution as the input image. The skip connection between
the encoders and decoders restores the feature map location
information lost during encoding.

The decoder of Front_UNet (DecoderF ) processes the
input image using a recursive sequence of feature map sizes:
(2, 2, 1000) → (4, 4, 500) → (8, 8, 300) → (16, 16, 150)
→ (32, 32, 100) → (64, 64, 60) → (128, 128, 40) → (256,
256, 1). The decoder of Back_UNet (DecoderB) processes the
input image using a recursive sequence of feature map sizes:
(2, 2, 110) → (4, 4, 90) → (8, 8, 70) →(16, 16, 60) → (32,
32, 40) → (64, 64, 30) → (128, 128, 20) → (256, 256, 1) as
illustrated in Figure 8 (a).

E. BRIDGE
The encoder and decoder in each Front_UNet and
Back_UNet are connected by a bridge, which serves as a
link between the downsampling and upsampling stages. The
bridge helps to transfer high-level feature maps from the
encoder to the corresponding decoder, enabling the decoder
to reconstruct the original input image with greater accuracy.

F. LOSS FUNCTION, OPTIMIZER AND LEARNING RATE
During training of the network, various loss functions such
as mean squared error (MSE), binary cross-entropy (BCE),
and the combination of dice loss and BCE (Dice_BCE) are
applied to optimize the model.

Mean squared error (MSE) loss is

MSE =
1
n

n∑
i=1

(̂yi − yi)2, (1)

where n is the number of pixels in the training image, ŷ is the
predicted result, and y is the ground truth.

Binary cross-entropy (BCE) loss is

BCE = −[ynloĝyn + (1 − yn)log(1 − ŷn)], (2)

where n is the number of samples in the dataset, y is the true
binary label of {0, 1}, and ŷ is the predicted probability that
the label is 1.

Dice binary cross-entropy (Dice_BCE) loss is

Dice_BCE = DL + BCE, (3)

where DL is dice loss represented by 1 minus dice
coefficient (e). Dice coefficient (e) represents the overlap area
between ground truth and prediction over the total area of
ground truth and prediction.

DL = 1−e

= 1 −
2

∑N
i=1 yîyi + 1∑N

i=1(yi + ŷi) + 1
, (4)

where n is the number of pixels in the training image, ŷ is the
predicted result, and y is the ground truth.

The adam optimizer is applied with a learning rate of 0.001
using a predefined schedule.

V. RADIO ESTIMATION VERIFICATION
Here, we verify the feasibility and effectiveness of the
proposed deep learning-based indoor radio estimation. For
this, we compare the RSS obtained from actual measurements
by wireless equipment with those obtained by RadioResUNet
in two indoor environments: an anechoic chamber and
an office floor. Additionally, we investigate the prediction
results obtained using different loss functions and varying
numbers of datasets. To evaluate the estimation performance,
we conduct a comparison between the deep learning-based
radio estimation and the empirical channel model of ITU-R
P.1238-12 [10]. Finally, we present a radio estimation tool
that utilizes the deep learning network of RadioResUNet to
predict the wireless environment with minimal information.
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FIGURE 9. Predicted outputs (A) and differences of ray-tracing and predicted RSS (B) upon the loss functions without external interference.

FIGURE 10. Differences of ray-tracing and predicted RSS upon the loss
functions and datasets.

Note that the hardware components for deep learning
include an NVIDIA RTX 3090 GPU, an Intel i9 processor
with a clock speed of 2.8 GHz, and 64 GB of RAM.
In addition, we utilize PyTorch and CUDA 11.4 as deep

learning frameworks for building and training the deep
learning network.

A. PREDICTION VERIFICATION
Figure 9 (A) illustrates the radio estimation results obtained
from ray-tracing and the predictions generated by RadioRe-
sUNet using the different loss functions and datasets in
an environment that mitigates external interference and
distortion. Figure 9 (B) shows the disparities between the
ray-tracing results and the predictions. Figure 10 depicts
the differences between ray-tracing and predictions when
changing the number of datasets in each loss function. Note
that difference (Diffpr ) is defined as the absolute value of
the discrepancy between the predicted RSS (RSSp) and the
ray-traced RSS (RSSr ) at each pixel of the image in all loss
functions, represented by:

Diffpr = |RSSp − RSSr |i, (5)

where i indicates the pixel position of the image of 256 ×

256 pixels.
It can be seen that the predictions using Dice_BCE have

a lower difference level compared to those using MSE
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FIGURE 11. Measurement by a driving robot in the anechoic chamber and
the office floor.

and BCE. The best difference case for Dice_BCE is 1.06 dB
at 48,600 datasets, while those for MSE and BCE are
5.635 dB at 388,800 datasets and 6.301 dB at 24,300 datasets,
respectively. These results indicate that RadioResUNet
using Dice_BCE provides more accurate prediction results
compared to MSE and BCE. Although we do not find a
significant difference in prediction when changing the dataset
in this case study, we will observe the effect of datasets on
radio prediction in practical environments in the following
section.

B. PRACTICAL MEASUREMENT ENVIRONMENTS
To verify the feasibility of indoor radio estimation based on
deep learning, we conducted a comparison between the radio
estimations obtained by RadioResUNet and the practical
measurements using wireless equipment taken in an anechoic
chamber and an office floor.

Figure 11 shows practical radio measurements conducted
in the anechoic chamber and on the office floor. The anechoic
chamber was chosen to eliminate external signal interference
between a Wi-Fi access point (AP) and a terminal. It has
dimensions of 11.1 m× 16.5 m (Figure 11 (a)). The antennas
of both the AP and the terminal are positioned at a height
of 2.5 m. On the other hand, the office floor provides a larger
space of 30 m × 25 m, with the antennas of the AP and the
terminal placed at heights of 2.5 m and 1.5 m, respectively
(Figure 11 (b)).

We employ an autonomous driving robot to continuously
measure RSS between an AP and a mobile terminal within a
room. The robot is equipped with simultaneous localization
and mapping (SLAM) and navigation functions, utilizing
sensor data from a laser range finder (LRF) and map infor-
mation to estimate its position. The robot can autonomously
move from one point to another while recording its position
and RSS data [38], [39], [40]. Note that the map and robot
position information are used to align the pixel positions of
the radio estimation images obtained by RadioResUNet with
the practical measurements.

FIGURE 12. Measured RSS by the robot traversing the anechoic chamber.

FIGURE 13. Predicted RSS and differences upon loss functions in the
anechoic chamber.

C. ACCURACY IN AN ANECHOIC CHAMBER
Figure 12 provides a visual representation of the RSS
measurements obtained as the robot traversed the anechoic
chamber, capturing data points across the space. The obtained
RSS data is crucial for assessing the performance of the
RadioResUNet model. Additionally, Figure 13 presents
the RSS predictions generated by RadioResUNet using
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FIGURE 14. Measured RSS by the robot traversing the office floor.

FIGURE 15. Predicted RSS and differences upon loss functions in the
office floor.

three distinct loss functions: MSE, BCE, and Dice_BCE.
These figures also illustrate the differences between these
predicted RSS values and the actual measurements, offering
a comprehensive view of the model’s accuracy under various
loss functions. Note that difference (Diffpm) is defined as the
absolute value of the discrepancy between the predicted RSS
(RSSp) and the robot measured RSS (RSSm) at each pixel of

FIGURE 16. Predicted RSS upon changing datasets corresponding to loss
functions in the office floor.

FIGURE 17. Average differences between the robot measurement and the
predictions upon changing datasets.

the image in all loss functions, represented by:

Diffpm = |RSSp − RSSm|i, (6)

where i indicates the pixel position of the image of 256 ×

256 pixels.
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FIGURE 18. RSSs upon changing the separation distance between AP and
terminal (d ) estimated by the deep learning prediction of MSE, robot
measurement, and ITU-R P.1238 indoor channel model.

FIGURE 19. RSSs upon changing the separation distance between AP and
terminal (d ) estimated by the deep learning prediction of BCE, robot
measurement, and ITU-R P.1238 indoor channel model.

The average RSS differences for MSE, BCE, and
Dice_BCE are 7.29 dB, 6.20 dB, and 4.25 dB, respectively.
The Dice_BCE loss function provides higher accuracy
compared to MSE and BCE.

D. ACCURACY IN AN OFFICE FLOOR
Figure 14 provides a visual representation of RSS as
measured by the robot traversed the office floor, capturing
data points across the space. Figure 15 displays the RSS
predictions generated by RadioResUNet using three distinct
loss functions: MSE, BCE, and Dice_BCE. The accom-
panying figures also present the differences between these
predicted RSS values and the actual measurements, providing
a comprehensive view of themodel’s accuracy under different
loss functions. On average, the RSS differences for MSE,
BCE, and Dice_BCE stand at 12.69 dB, 13.30 dB, and
5.40 dB, respectively. Notably, the Dice_BCE loss function
yields higher accuracy when compared to MSE and BCE.

E. ACCURACY UPON CHANGING DATASETS
Figure 16 offers valuable insights into the predicted RSS
across a range of dataset sizes. These datasets encompass

FIGURE 20. RSSs upon changing the separation distance between AP and
terminal (d ) estimated by the deep learning prediction of Dice_BCE, robot
measurement, and ITU-R P.1238 indoor channel model.

FIGURE 21. Comparison of the estimation differences between each deep
learning prediction of MSE, BCE, and Dice_BCE and robot measurement
and between ITU-R P.1238 and robot measurement.

various sizes, with data points collected from 388,800
to 3,000 samples. The predictions are generated using
distinct loss functions, including MSE, BCE, and Dice_BCE.
In conjunction with this, Figure 17 complements the
understanding by representing the average RSS differences
observed as the dataset size varies, with a specific focus on
the performance under each loss function. It’s noteworthy
that the Dice_BCE loss function demonstrates an advantage
in terms of prediction accuracy when compared to MSE
and BCE.

Furthermore, a key observation arises when delving
into the dataset size dynamics. Particularly, it becomes
evident that prediction accuracy generally exhibits a decline
when operating with smaller datasets, which is especially
pronounced at the 24,300 dataset size. This illustrates the sen-
sitivity of the model’s performance to dataset size. However,
it’s worth noting that beyond this point, a substantial increase
in dataset size does not yield a significant enhancement in
prediction accuracy.
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F. PERFORMANCE COMPARED TO ITU-R P.1238 INDOOR
CHANNEL MODEL
To evaluate the estimation performance, we conduct a
comparison between the deep learning-based predictions
and the empirical channel model of ITU-R P.1238-12 [10].
ITU-R P.1238-12 provides recommendations for propagation
data and prediction methods for the planning of indoor
radiocommunication systems and radio local area networks
in the frequency range 300 MHz to 450 GHz.

The basic transmission loss model of ITU-R P.1238-12 has
the following form:

L = 10αlog10(d) + β + 10γ log10(f ) (7)

d represents the separation distance in meters between the
AP and terminal, f represents frequency in GHz, α represents
the coefficient of distance transmission loss, β represents
the coefficient offset value of the basic transmission loss, γ

represents the coefficient of frequency transmission loss. For
an office non-line of sight (NLOS) environment on the same
floor, the parameters are set as follows: f = 2.44, α = 2.46,
β = 29.53, and γ = 2.38.

Figures 18, 19, and 20 present detailed results illustrating
how RSS changes with variations in the separation distance
(d) between the access point (AP) and the terminal. These
figures display results obtained from three sources: robot
measurements, the ITU-R P.1238 indoor channel model,
and the deep learning predictions using MSE, BCE, and
Dice_BCE, respectively.

In addition to these individual representations, Figure 21
provides a comprehensive overview of the estimation differ-
ences. It compares the RSS predictions made by the deep
learning models (using MSE, BCE, and Dice_BCE) with the
RSS measurements obtained from the robot. It also contrasts
the RSS predictions generated by the ITU-R P.1238 indoor
channel model with the robot’s RSS measurements.

Remarkably, the results show that the deep learning-based
predictions using the Dice_BCE loss function offer perfor-
mance on par with or exceeding that of the predictions
generated by the ITU-R indoor channel model for separation
distances up to 25 meters.

G. PERFORMANCE UPON CHANGING IMAGE SIZE
We have conducted a comprehensive analysis to assess the
relationship between training image size and its impact on our
deep learning outcomes. Training image size can potentially
influence various aspects, including computational process-
ing time and the performance of prediction results.

The results, labeled as (a), (b), and (c) in Figure 22, depict
the training time per epoch and RSS estimation results when
altering the input image size to 128 × 128, 256 × 256, and
512 × 512, respectively. Notably, using a 512 × 512 input
image requires approximately 1100 seconds for Front_UNet
and around 860 seconds for Back_UNet. A 256 × 256 input
image takes roughly 360 seconds for Front_UNet and about
290 seconds for Back_UNet, while a 128 × 128 input image
consumes approximately 240 seconds for Front_UNet and

FIGURE 22. Training time and RSS prediction result upon changing
learning image size of 128 x 128, 256 x 256, and 512 x 512.

FIGURE 23. RSSs upon changing the image size for the deep learning
prediction.

around 215 seconds for Back_UNet. Intuitively, larger images
demand longer processing times due to the increased number
of pixels to train, and vice versa.

Figure 23 illustrates that employing a larger image size of
512 × 512 does not improve RSS prediction compared to the
256 × 256 image size. On the contrary, when the distance is
less than 7 meters, the image size of 256 × 256 provides a
prediction result closer to that of 512 × 512, as compared to
the RSS prediction of ITU-R. On the other hand, a smaller
image size of 128 × 128 leads to a noticeable decrease in
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FIGURE 24. A radio propagation estimation tool for drawing an indoor
layout.

FIGURE 25. A radio propagation estimation output.

performance compared to the 256 × 256 image size, even
though it reduces computational processing time. The results
demonstrate that choosing the appropriate image size is a
crucial aspect of deep learning for radio estimation using
CNNs, and an image size of 256× 256 strikes a good balance
between prediction accuracy and computational processing
time.

H. A RADIO PROPAGATION ESTIMATION TOOL
We have developed a user-friendly radio estimation tool
that utilizes deep learning to predict the radio environment
in a targeted area with minimal input. Unlike traditional
approaches that require analytical models and simulation
expertise, the tool simplifies the process of deploying
wireless networks, making it accessible even for beginners.

The tool’s interface, as shown in Figure 24 and Figure 26,
includes a menu and canvas that enable users to draw or

FIGURE 26. A radio propagation estimation tool for loading an indoor
layout.

FIGURE 27. A radio propagation estimation output.

load the indoor layout and to set the position of the antenna.
With just two inputs - the indoor layout and the antenna
position - the tool generates a predicted radio propagation of
RSS, as depicted in Figure 25 and Figure 27. By simplifying
the measurement process and removing the requirement for
analytical models, the tool streamlines the wireless network
deployment procedure and enables users to concentrate on the
practical aspects of wireless network implementation.

VI. CONCLUSION
This paper introduced a novel approach for estimating indoor
radio propagation using deep learning. Our method leveraged
a training dataset comprising diverse real-world indoor
environments and radio-map images generated through
ray-tracing radio propagation. We introduced a convolu-
tional neural network (CNN) called RadioResUNet, which
played a pivotal role in training and predicting indoor
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radio environments. The feasibility and effectiveness of the
deep learning-based indoor radio estimation were validated
through a meticulous comparison of RSS obtained through
practical measurements and that obtained using RadioRe-
sUNet. Our assessment covered two indoor environments: an
anechoic chamber and an office floor. Moreover, we explored
the prediction outcomes obtained using different loss func-
tions of MSE, BCE, and Dice_BCE and varying dataset
sizes. The results indicated that our deep learning-based radio
estimation method achieved measurement discrepancies of
4.25 dB and 5.4 dB compared to practical measurements
carried out by an automatic driving robot with wireless equip-
ment in real-world environments of the anechoic chamber and
the office floor, respectively. The outcomes implied that our
prediction performancewas comparable to the indoor channel
model of ITU-R P.1238. Lastly, we introduced a user-friendly
radio estimation tool that harnessed deep learning to predict
the radio environment in a specific area with minimal input.

The proposed recursive network structure of Front_UNet
and Back_UNet could operating quasi-tuning in Front_UNet
and fine-tuning in Back_UNet. This investigation has raised
an important question concerning the optimal number of
iterative UNet operations to achieve peak performance. Our
forthcoming research will focus on enhancing our approach
by meticulously reconstructing UNet, taking into account
convolutional and optimization parameters. Furthermore,
to enable a broader application of deep learning-based radio
estimation in wireless communications, several factors need
to be considered in future work:

• Antenna Types: With wireless systems evolving to
achieve higher throughput and improved radio access,
various antenna types like MIMO (Multiple Input,
Multiple Output) and beamforming antennas are being
adopted.

• Operational Frequencies: In addition to current wireless
communication frequencies, the wireless communica-
tion landscape is expanding to encompass a wider range
of frequencies. This includes the utilization of new radio
frequencies such as millimeter-wave and terahertz in
future wireless communication technologies.

• Wireless Environments: Recognizing the significant
differences in radio propagation characteristics between
indoor and outdoor environments is crucial. Further-
more, it’s essential to consider extreme areas such as
tunnels, deep-sea environments, and outer space as
potential scenarios for future wireless communication.

NOTATION

Following abbreviations and symbols are used in this paper:

BCE Binary Cross-Entropy.
CNN Convolutional Neural Network.
Dice_BCE Dice Binary Cross-Entropy.
MSE Mean Squared Error.
ResUNet Residual UNet.
RadioResUNet Radio Residual UNet.

RSS Received Signal Strength.
d distance between a transmitter and a

receiver.
f operation frequency (GHz).
α coefficient of distance transmission

loss.
β coefficient of the offset of basic trans-

mission loss.
γ coefficient of frequency transmission

loss.
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