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ABSTRACT Creep is a long-term property of concrete that poses a significant challenge to structural
engineering. The research content of this paper concerns how to accurately predict the creep behavior
of concrete. The overall purpose is to develop a robust predictive model based on the Northwestern
University (NU) database that overcomes the challenges encountered when handling tabular creep data,
including the lack of spatial correlations between features and the presence of noise. To achieve this goal,
a novel deep learning methodology that leverages convolutional neural networks (CNNs) is introduced.
First, the data preprocessing phase involves feature selection and K-nearest neighbor-based data filling to
enhance the quality of the given data. A soft-sorted 1D CNN is introduced to transform tabular data into
multichannel images, thereby taking advantage of spatial locality and feature sorting. Additionally, this
model incorporates noise reduction mechanisms through residual network encoders, achieving enhanced
data clarity and model accuracy. The mean absolute error (MAE) and root mean square deviation (RMSE)
of the model increase from 7.48 and 10.76 to 5.83 and 8.88, respectively. The major findings of this
research indicate a significant predictive accuracy improvement over the existing methods. The model
effectively captures the complex relationships between concrete creep and a range of influencing factors,
enabling precise and quantitative predictions to be obtained. These findings offer deep insights for
the field of civil engineering, enabling enhanced structural design, safety, and performance prediction
in concrete applications. This paper contributes to the ongoing exploration of advanced deep learning
techniques for addressing complex challenges in the domains of concrete mechanics and structural
engineering.

INDEX TERMS Concrete creep prediction, deep learning, soft-sorted CNN, residual network, noise
reduction.

I. INTRODUCTION
The creep behavior of concrete has a critically important
impact on structural design and should be thoroughly con-
sidered [1], [2]. Therefore, understanding and accurately pre-
dicting concrete creep is significant for evaluating the short-
and long-term performance of concrete structures subjected
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to continuous loads. To address this challenge, a denoising
residual neural network (DRNN) is proposed; it has exhibits
excellent performance in cross-validation experiments, and
its root mean square error (RMSE) and mean absolute error
(MAE) are 8.88 and 5.83, respectively. Furthermore, ablation
experiments are conducted to illustrate the effectiveness of
the residual encoder with regard to denoising. In this study,
the Northwestern University database [3] is used to train and
evaluate the proposed model. The database contains useful
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information, such as water-cement ratios, admixtures, cement
type classifications, temperatures and volume-to-surface
ratios.

A. SIGNIFICANCE OF THE STUDY
The creep behavior of concrete has an important effect on the
long-term deformation and stability of structural members.
With the passage of time, the degree of creep strain in
concrete increases, which may lead to continuous settlement,
deformation, and even cracking in the structure [4], [5].
In a long-term loading case, the creep behavior of concrete
may also affect the overall stability of the examined
structure [6].
The rate of creep is usually high in the early stages of

loading and decreases with time, but it does not increase
again after that [7]. While some recovery occurs when the
sustained load is removed, the concrete usually does not
return to its original state, and its elastic recovery and creep
recovery effects are less than the deformation induced under
a load [8], [9].
Additionally, creep can result in the shrinkage of concrete

columns and piers, and if the shrinkage values are unequal,
cracking may occur in concrete columns [10], [11], [12].
This situation can lead to the unexpected displacement of
the plate under the support column, introducing additional
stresses not considered during the design process [10].
Furthermore, creep in prestressed concrete can cause concrete
shrinkage, reduce the tensile forces in the reinforcement
mechanism, leading to a prestress loss, and ultimately
decrease the ability of the structure to counterbalance
external loads [13], [14], [15]. Over time, this can result
in excessive deflection. Moreover, creep interacts with
other factors, such as shrinkage, temperature, and humidity,
thereby influencing the deflection of prestressed concrete
structures [16].

B. RELATED WORK
In a dry environment, the relative humidity distribution
within concrete pores at different time intervals has a
significant impact on the creep behavior of a concrete
structure. In this context, Parrott [17] proposed a nonlinear
diffusion equation based on finite-difference and finite-
element solutions that can make fundamental predictions
about creep behaviors in dry concrete. However, in both
short-term and long-term prediction scenarios, this equation
fails to exhibit asymptotic behavior and does not align well
with more extensive experimental data. Furthermore, Baant
and Baweja [18] established more accurate prediction models
based on the approximate proportionality between the level of
moisture loss and the decrease in average relative humidity
in pores, as well that as between drying shrinkage and
moisture loss. Nevertheless, these models, which rely on
finite parameters and empirical analysis, cannot accurately
reflect creep relationships.

The accuracy of creep prediction relies on short-term
concrete measurement data. Without such data, long-term

creep predictions cannot be made. Therefore, based on linear
regression models using historical data, a compliance func-
tion [19] J(t, t%) was introduced for the B3 model. B3 is an
effective equation, and its theory is founded on the principles
of solidification theory and microstress theory, with the
notable advantage of encompassing all free parameters for
creep deformation with elastic strain [20]. These parameters
can be linearly predicted using the least-squares method to
minimize prediction biases. However, this model is highly
inaccurate in terms of predicting concrete lifetimes that are
expected to span decades. A significant drawback is the lack
of laboratory data for modern concrete, which would enable
model calibration. To address this, Northwestern University
compiled a new database, categorizing creep types and
collecting data on various parameters, such as environmental
temperature, humidity, fly ash, and admixtures. Building
upon this comprehensive database, the B4 model [21] was
introduced, offering a model based on concrete components
and environmental conditions. In comparison with the B3
model, B4 also accounts for the influences of various types of
aggregates, cement and admixtures [21]. Nevertheless, these
empirical statistical models do not consider the impacts of
nonlinear parameters on creep and cannot comprehensively
account for the various complex scenarios encountered in real
engineering projects.

With the increasing popularity of machine learning, this
technology has been widely used in research on building
material performance [22], [23]. Researchers have attempted
to utilize statistical methods to investigate the numerical rela-
tionships between creep and other variables. Liang et al. [24]
attempted to predict and analyze creep through ensemble
machine learning based on a tree structure and Bayesian
optimization parameters, and they statistically measured the
importance levels of different variable factors. However,
although a tree-based model is suitable from the perspective
of model complexity, it is often easy to overfit such a model
because it cannot smoothly segment a high-dimensional
feature space, and it heavily relies on the quality of the
input data. In addition, many researchers [25], [26], [27]
have used simple single-layer artificial neural networks
(ANNs) to predict creep in masonry. However, due to
limitations regarding the number of parameters and the
inability of simple single-layer networks to effectively
express nonlinear features, the predictive performance and
generalization abilities of these models are restricted. Nev-
ertheless, as databases have improved, the ability of deep
learning to study complex features has become increasingly
evident, resulting in significant breakthroughs in creep
prediction.

Abed et al. [28] considered the temporal dependencies
of time series within their architecture and developed a
time delay-focused neural network model founded on theory.
Garoosiha et al. [29] used a Bayesian framework to optimize
the parameters of artificial neural networks. El-Shafie
and Aminah [30] introduced a nonlinear autoregressive
exogenous input (NARX) creep prediction model, which
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achieved improved prediction accuracy. However, these
studies suffered from limited data, limited parameters, narrow
model applicability, and model simplicity.

Furthermore, a hybrid model combining multigenetic
genetic programming (MGGP) and an ANN [31] was
used to predict concrete creep compliance. This model
employed a large number of samples and parameters from the
NU database for model fitting and performance evaluation
purposes. Additionally, Zhu and Wang [32] pioneered the
integration of convolutional neural networks (CNNs) into
creep prediction. CNNs have achieved remarkable success
in pattern recognition due to their ability to efficiently learn
hidden, abstract features in data. The accuracy, generalization
and stability of creep prediction can be improved by
using an adaptive one-dimensional CNN to capture com-
plex nonlinear data relationships. Such models accurately
predict various creep characteristics. However, as tabular
data lack spatial correlations, the direct introduction of
one-dimensional convolutional networks may not capture
valuable spatial information. Additionally, Hubler et al. [3]
noted that approximately 800 of the 1400 creep curves
in their NU database consider admixtures and suggested
that admixtures could have a significant effect on creep.
However, due to the complexity of admixtures in creep
prediction, in most models, the effect of admixtures is
excluded from the parameter selection process. Last, data
collection errors can impact accuracy, as the utilized model
may learn incorrect information. Unfortunately, none of
the aforementioned methods effectively handle data noise.
This research aims to propose a creep prediction method
that considers the influence of admixtures and can process
data noise; our results are verified using the NU dataset.
In addition, reinforced concrete under a long-term continuous
load is randomly selected for prediction, and each important
module in the proposed model is compared to evaluate its
effectiveness.

II. METHODOLOGY
The proposed method aims to enhance the accuracy of
predicting and analyzing the creep behaviors of concrete ele-
ments by studying the technical patterns and environmental
conditions of concrete using a CNN. Therefore, to address
this challenge, the DRNN model is proposed. The DRNN
model is primarily composed of four components: a soft
sorting layer, a noise reduction encoding module, a CNN
layer, and a prediction module. The model framework is
illustrated in Fig. 1. The main notations used in this paper
and their descriptions are listed in Table 1.
Prior to the input stage, given the presence of random data

gaps and feature intricacies, several preprocessing techniques
are employed to rectify the utilized data. Through an in-depth
exploration of the influencing factors that contribute to
concrete creep and a careful assessment of missing feature
volumes, the relevant local data attributes are manually
curated and captured. The selected features are presented in
Table 1. Furthermore, the experimental results underscore

TABLE 1. Major notations used in this paper.

FIGURE 1. Model framework.

the considerable impact of K-nearest neighbors (KNN) on
data imputation and postfeature selection. The dataset is
augmented to 19,294 entries through KNN interpolation.
In addition, for the model to learn to separate noise and data
during the training process, we add Gaussian noise to the data
to assist the noise reduction encoder in achieving this goal.

In the context of tabular data, the absence of spatial
correlations among features necessitates the insignificance
of the column positions. To address this issue, a soft-sorting
1-dimensional CNN is introduced prior to the model,
reordering the tabular features to construct 2-D pseudoimages
to give them spatial relevance.
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Furthermore, a key objective of the refined methodology
is to reduce the noise within the data, thereby heightening
the precision and dependability of the output predictions.
Similar to the fact that noise in a city can affect the
quality of life of residents, noise in data usually affects
the quality of data, which leads to a decrease in model
accuracy [33], [34]. Based on this, a noise reduction encoder
structure grounded in residual networks is incorporated into
the proposed approach. This structure aims to mitigate noise
and generate global features. Residual learning contributes
to noise reduction within images, enhancing data clarity
and, consequently, increasing the accuracy of the results.
This choice is predicated on the recognition that small
datasets can pose more intricate mapping challenges to the
learning processes of neural networks due to the inherent
incompleteness of a high-dimensional input space and the
intricacies of data sampling. As such, this training strategy
fosters model stability and mitigates generalization errors.

Finally, while ReLU activation is usually applied in CNNs,
this approach is inappropriate for regression tasks involving
tabular data. In contrast, deep learning-based regression
analysis requires a smooth activation function. Therefore, the
tanh function is adopted to improve the nonlinearity of the
network.

FIGURE 2. Method pipeline.

In summary, the proposed method adeptly addresses the
common issues encountered in concrete creep prediction
tasks, encompassing missing data, spatial feature correla-
tions, and noise interference. The overall pipeline of the

method is shown in Figure 2. It offers an effective means
for anticipating the future creep behavior of concrete within
its service life based on the discernible data attributes of
concrete elements. This approach holds substantial promise
for continued research and real-world applications within this
domain.

A. SOFT SORTING
In a convolutional neural network, the convolutional kernel
often serves as a potent feature extractor, capitalizing on
two crucial properties that are inherent to input images:
local connectivity and spatial locality [35], [36], [37].
Local connectivity signifies that each kernel establishes a
connection with a confined portion of the input image during
convolution. Spatial locality refers to the high correlations
among the pixels/voxels that are subjected to the convolution
kernel. Treating these elements in a joint manner frequently
facilitates the extraction of meaningful feature representa-
tions. Nonetheless, the disposition of tabular data differs
from that of images. Tabular data lack the inherent order and
arrangement seen in images, rendering their features spatially
uncorrelated [38].

FIGURE 3. The soft sorting rule.

To enable the convolutional kernel to more effectively
extract tabular features, referring to Qians work [39] on
credit scoring, a direct approach that reshapes the input data
into a multichannel image format is adopted. Subsequently,
we employ a fully connected (FC) layer to learn the correct
ordering through backpropagation, thereby addressing this
challenge. The proposed approach involves a soft-sorted
one-dimensional CNN, which is shown in Fig. 3. This
model is primarily designed to introduce an additional
feature dimension via the FC layer. This enhancement
provides sufficient pixels to a 2D gray-valued pseudoimage
through dimensionality extension and subsequently injects
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meaningful structure information into the resulting image
through feature ordering.

During this process, the data are transformed into a 64 × 1
feature image format, similar to an image with a limited
height but a broad width. The CNN training process involves
working with such images rather than conventional tabular
data. As the backpropagation algorithm unfolds, the feature
images are constantly adjusted to learn the accurate order and
arrangement of their features.

B. RESIDUAL MODULE AND ENCODER STRUCTURE
Due to the excellent noise reduction performance of resid-
ual neural networks [40], an encoder-decoder structure is
constructed based on a residual module. As shown in the
example of Fig. 4,, the encoder is mainly composed of
a residual module, which learns the mapping relationship
of data to separate the feature noise. The decoder consists
of a CNN for learning features and representing the final
results.

FIGURE 4. Block connection rule.

The skip connections in a ResNet allow the network to
improve upon the performance of a CNN on tabular data
by reducing data noise. Skip connections enable the model
to effectively learn residuals and capture the differences
between the input and target variables, thereby removing
noise from the data and capturing the potential patterns
and relationships between the input and target variables
[40]. Moreover, the model is able to study the differences
between the input and output instead of learning the entire
input-to-output mapping [41]. This enables ResNets to
achieve greater depth than traditional CNNs and learn more
complex data patterns. The residual connection is defined

as follows [41]:

R(x) = F(x,Wi) + x (1)

where x is the input for a set of convolutional layers, F(·)
is the residual mapping function, Wi denotes the weights of
the convolutional layers, and R(·) is the output of the residual
block.

In the encoder architecture, a methodical process is
employed to manipulate the features. A residual module,
which comprises one-dimensional convolutions supple-
mented by auxiliary noise injected into the data, is used
to address interference. This constitutes the pivotal phase
of the denoising process. During the convolution process,
properly expanding the feature channels can enhance the
saliency of the features and improve the attained denoising
effect [41]. In addition, increasing the number of feature
channels allows the model to better capture the nuances of
local information [42]. Finally, global features are deployed
to capture the common trends and patterns among the features
to provide better generalization and model performance.
The global features are generated by a one-dimensional
convolutional layer. Cumulatively, these operations in the
encoder systematically enhance the spatial correlations in the
model, effectively reduce noise, and facilitate overall global
feature understanding.

C. ACTIVATION
To enhance the ability of the model to represent nonlinear
relationships and restrict the output range of the network
layers, activation functions are essential in neural networks.
Numerous activation functions have been developed, and the
ReLU function is widely used in tasks such as classification
because of its nonlinearity and ease of computation; however,
the ReLU function is a nonlinear activation function that sets
all negative values to zero. This can cause a neural network
to lose information about the magnitudes of negative data,
which is important for regression tasks. In contrast, linear
activation functions are better suited for regression tasks
because they can output any real number, including negative
values. Therefore, the tanh function is favored due to its
continuity, monotonicity, clear upper and lower bounds, and
effectiveness in regression tasks [43]. The tanh function is
adopted as the activation function for all layers except the
output layer in this model. The mathematical expression of
the tanh function is as follows:

α(z) =
ez − e−z

ez + e−z
(2)

The result output by the activation function is denoted as
α(z), where z represents the input of the activation function
and the computational result of the network layer.

D. LEARNING PROCESS
The loss function and optimizer are crucial components
for implementing the backpropagation algorithm in neural
networks. The loss function measures the degree of closeness
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between the predicted and true values of the utilized network.
In most creep prediction models, the MSE is used as
the loss function to quantify the deviation between the
observed and true values. In the proposed model, two tasks
must be simultaneously accomplished: noise reduction and
prediction. Therefore, during the learning process, both
targets should be simultaneously iterated in the same loss
function. This can be expressed as follows:

L =

N∑
i=1

(
∥xi − x̂i∥22 + αℓ(̃xi, x̂i)

)
+ λ�(2) (3)

The modified objective function L is designed to optimize
the model by considering three essential aspects: data fitting,
noise removal, and regularization. In this formulation, the
goal is to find an optimal set of model parameters 2 that
balances these factors to enhance the model’s performance
and generalization capabilities. The variable N represents the
total number of data samples in the dataset, and each sample
is defined by the true data vector xi and the corresponding
predicted data vector x̂i. The parameter α introduces a trade-
off between the noise removal term and the data fitting term,
enabling control over the relative importance of each com-
ponent. The loss function ℓ(·) quantifies the dissimilarities
between data points. It measures the discrepancy between the
noisy data vector x̃i and the predicted data vector x̂i for each
sample, reflecting the model’s capacity to mitigate the impact
of noise in the observations. The term �(2) contributes
a regularization effect to the model. By considering the
model parameters 2, this term discourages complex and
overfitted models, ultimately enhancing the model’s ability
to generalize to unseen data. The λ parameter controls
the strength of the regularization term in the overall loss
function.

E. DATA PREPROCESSING
This study utilizes the NU database to train and validate
the proposed model. The database comprises 29,196 creep
compliance observations acquired at various time points
and includes additional dimensional characteristics, such as
water-cement ratios, admixtures, cement type classifications,
aggregate types, and test types [3]. These characteristics
provide more valuable information and enhance the gener-
alization performance of the model.

Due to the large proportion of missing values for some
important features of the dataset, the KNN method is
deployed to complete the data to some extent. KNN
interpolation is amachine learning technique used to populate
missing values in a dataset by predicting these values based
on the values of their nearest neighbors in the dataset
[44]. KNN interpolation is effective because it can use
information from the surrounding data points to accurately
predict missing values. However, different features may
contain highly relevant information. To sum up, the accuracy
and efficiency of KNN is the reason for applying it to data
imputation in this study.

If all features are fully filled, redundant informationmay be
introduced, resulting in excessive computations and reduced
data completion accuracy. Therefore, we need to select
some particular features to complete instead of filling in the
entire dataset [45], [46]. For relatively unimportant features
with few missing values, samples containing missing values
should be excluded. In addition, the missing values in the
NU dataset often exhibit the characteristics of missing whole
segments. For example, when data are collected in a certain
area over a certain period of time, some features cannot be
collected for specific reasons, and all the features displayed
in the dataset are missing. To simulate this situation when
testing the performance of KNN, a mask of length 10 is set
to randomly delete the whole data segment for an affected
feature. To select the features that are worth patching, the
following experimental procedure is designed 1 for KNN
interpolation.

Algorithm 1 KNN-Based Missing Data Imputation
Data: Complete dataset D, KNN parameter K
Determine the number and percentage of missing
values in D;
Select the KNN algorithm and set K ;
Split D into a training set Dtrain and a test set Dtest;
foreach feature F in D do

Select F for imputation;
Fit the KNN model to Dtrain using other features;
Predict the missing values in Dtest using the KNN
model;
Evaluate the model performance using the MAE
and RMSE;
Update the imputation performance list F ;

Select the most N effective Fs for Fset ;
According to concrete creep knowledge, select the
important Fs from Fset;

After feature completion and selection are performed,
the 2 features that are most worthy of data completion,
which are W/C and fc28, are selected. Furthermore, the
KNN algorithm requires optimization. A hyperparameter
optimization method, namely, a grid search, is used to
discover the optimal set of hyperparameters. Specifically,
a set of possible values is predefined for each hyperparam-
eter, the model is trained and evaluated with all possible
hyperparameter value combinations in the grid or matrix,
and the optimal set of hyperparameters is selected based
on the obtained evaluation metrics. After completing the
training and hyperparameter adjustment process, the model
with 50 neighbors and distance weights is chosen as the final
solution.

Extreme gradient boosting (XGBoost) is an excellent tool
for measuring the importance of a feature with respect
to accomplishing a target task. During the process of
training each decision tree, XGBoost considers the con-
tribution of each feature and segments the features with
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TABLE 2. Selected features from the NU database [3].

high contributions to reduce the value of the objective
function. After training multiple decision trees, XGBoost
accumulates or averages the importance of each feature in
each decision tree to obtain the final importance score of
each feature [47]. Therefore, empirical analysis and XGBoost
parameter tuning are conducted for the features in the
utilized data, and features that are weakly correlated with
creep in the database are removed. In addition, because
the neural network can suppress the expression of some
features with relatively small contributions, 22 features are
still maintained as the final features after completing the
feature selection process, as shown in Table 2. In Fig. 6,
dt, sigma, fc28 and so on significantly impact the creep
performance of concrete. Based on the employed cleaning
strategy, 19,294 samples remain as the final input data,
as shown in Fig. 5. To measure the performance of the model
and prevent overfitting, we divide the cleaned sample set
into a training set, a test set, and a verification set at a ratio
of 7:2:1.

F. EVALUATION METRICS
Four evaluation metrics are applied to measure the ability of
the proposed model to predict concrete creep. They include
the correlation coefficient (R), relative error (RE), MAE, and
RMSE. The formulas of the four evaluation indicators are as
follows:

RE =
|ŷ− y|
y

(4)

RMSE =

√√√√1
n

n∑
i=1

(ŷi − yi)2 (5)

MAE =
1
n

n∑
i=1

|ŷi − yi| (6)

R =

∑n
i=1(ŷi − ¯̂y)(yi − ȳ)√∑n

i=1(ŷi − ¯̂y)2
√∑n

i=1(yi − ȳ)2
(7)

Here, ŷ represents the label predicted by the model,
y represents the real label, ¯̂y represents the average value of

FIGURE 5. Feature distribution of the preprocessed data.

FIGURE 6. Feature importance rankings.

the predicted labels, ȳ represents the average value of the real
labels, and n represents the number of samples.

G. PARAMETER SETTINGS AND MODEL TRAINING
PROCESS
To assess the stability of the tested models, they should be
trained five times, and the means and standard deviations of
their MAEs and RMSEs should be calculated. The models’
parameters are randomly initialized. To facilitate the quick
deployment and validation of the experiments, the PyTorch
framework is used for the deep learning approach, and
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the scikit-learn library is used for the tree-based approach.
During training, the models and data are run on a GPU
module to significantly reduce the time needed for model
training. This research is performed on a server with an
Intel(R) Core(TM) i9-9940 CPU, 16 GB of RAM, a GeForce
RTX 3070 GPU, and a CentOS 7 system.

TABLE 3. Performance metrics yielded by the tested methods.

III. RESULTS ANALYSIS
A. OVERALL PERFORMANCE
Several experiments are conducted to measure the per-
formance achieved by the proposed method and other
baseline methods on the utilized dataset and conduct a
performance comparison. The baseline approaches include a
random forest (RF), extreme gradient boosting (XGBoost),
a multilayer perceptron (MLP) and a convolutional neural
network (CNN). Each model is trained five times to calculate
the means and standard deviations of its metrics. Table 3
presents the R, RE, MAE, and RMSE scores obtained by all
methods, with the best results shown in bold.

Based on the prediction results described by the evaluation
metrics in Table 3 and by R in Fig. 7, the following conclu-
sions are produced. (1) The proposed model outperforms all
other methods. This impressive performance is mainly due to
the efficient extraction of useful information by the model.
(2) On the test set, the proposed model demonstrates stable
and robust performance, with the smallest standard deviation
compared to those of the other models. This means that
the proposed model architecture has stability properties that
allow it to learn similar representations in different training
iterations, making it less affected by noise and changes in
the data. This is mainly due to the noise reduction process,
which enables the model to suppress randomness in the data
and pay more attention to the stable features of the data,
resulting in more stable predictions and greatly improving the
generalization capability of the proposed model. (3) Among
the baseline deep learning methods, the MLP performs
significantlyworse than the othermethods, as it requiresmore
layers and nodes to learn complex features, making it more
susceptible to overfitting. The proposed model addresses
this issue by using a residual module to achieve improved
generalization, while the convolutional layer helps efficiently
extract high-dimensional abstract features, allowing the
proposed model to capture the overall relationships between
features more effectively. (4) In regression tasks, deep
learning methods are superior to tree-structured methods,
which may still be effective in classification tasks but have

FIGURE 7. Model comparison.

limited expression capabilities for capturing the complex
nonlinear relationships between features.

TABLE 4. Performance metrics compared by the referred methods.

To further measure the advancements provided by the
proposed model, the DTNN model is compared with some
of the best machine learning and deep learning methods
for creep prediction. One ensemble learning approach with
Bayesian parameter optimization [24] and one effective CNN
with K-means data division [32] are cited for comparison,
and the results are shown in Table 4. It can be observed
that the proposed model outperforms the other models except
in terms of the MAE, and because of the efficient dataset
preprocessing strategy, the baseline models also outperform
models from other works with respect to some metrics.
These results show that the DTNN is better at fitting data
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and capturing changes in the target variables. However, its
relatively large MAE indicates that the RF and XGBoost
achieve better prediction performance than the DTNN in
certain circumstances.

FIGURE 8. Measured and predicted creep.

TABLE 5. Partial parameters of four cases.

B. CASE STUDY
To illustrate the practical applicability of the proposed con-
crete creep prediction model, four case studies are performed
from the real world. The target objects are 8200 mm x
600 mm cylinders; thus, their volume-to-surface (V/S) ratios
are 42.8. Some differential treatments are performed on the
sample conditions to verify the generalization ability of the
proposedmodel: the temperatures of all samples at the time of
the test are 19.5-20.5 degrees, the humidity levels are 47.5-50,
the water-cement ratios are 0.4-0.6, and the ages are 24 to
28 days. The duration of the creep measurements for the
four samples is 100 days. Finally, to verify the performance
of the model under the influence of admixtures, a retarder
with 0.5% of the weight of the cement is added to C4. For
comparison purposes, the other three samples do not contain
any admixtures. Some of the key attributes are shown in
Table 5.
The model prediction results obtained based on the DRNN

are shown in Fig. 8. For comparison, four other models
are used, including the MLP, CNN, RF, and XGBoost
approaches. In each scenario, the DRNN exhibits the most
agreement with the experimental results. The baselinemodels
can only accurately predict creep compliance in parts of

different time periods, but the DRNN demonstrates an
excellent fitting ability for all measurement periods; as
such, the results of the DRNN are always better than those
of the other baseline models. In these four scenarios, despite
the excellent performance of some models in some scenarios,
the DRNN can always obtain a very good prediction
effect, which proves the stability of the DRNN with regard
to obtaining prediction conclusions in different scenarios.
In addition, although most models achieve good prediction
performance in the early stage, their long-term prediction
errors are large. Finally, because the DRNN predicts the
smoothness of the resulting curve, it provides antinoise and
anti-overfitting abilities.

FIGURE 9. Effect of the autoencoder.

C. EFFICIENCY OF THE AUTOENCODER
To substantiate the efficacy of the residual encoder in the
proposed model, a comprehensive ablation experiment is
devised. This experiment serves to prove the contributions of
the dual functionalities of the encoder: denoising and global
feature extraction. The objective is to systematically assess
the impact of the encoder on the model performance within
the context of the input data.

Two dataset configurations defined as D̂ and D are
designed. D̂ is infused Gaussian noise to simulate the
influences of noise encountered in the real world, while ‘‘D
remains pristine, devoid of introduced noise. Two models are
also designed: one with an encoder component and the other
without this component. To obtain more convincing results,
the soft sorting layer is included in both models.

On both D̂ and D, each model is subjected to independent
training and testing processes for 300, 500 and 1000 epochs,
respectively. During training, suitable loss functions and
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optimizers are deployed to optimize the respective model
variants. Last, employing evaluation metrics encompassing
the MAE and RMSE, the performance of the two model
configurations is quantitatively assessed.

Fig. 9 showcases the comparative performance trends of
the complete model equipped with the residual encoder
and the baseline model across D and D̂. On both datasets,
it becomes evident that the baseline model is consistently
weaker than the complete model with respect to the MAE
and RMSE metrics. This superiority in performance shows
that the residual encoder plays a significant role in enhancing
the model’s predictive accuracy, and on the data with noise,
the complete model is less affected by noise than the
baseline model. Consequently, the encoder’s effectiveness in
addressing the denoising and global feature extraction tasks
emerges as a key contributing factor to the overall improved
performance of the complete model.

This result substantiates that the functionalities of the
residual encoder have an effect on augmenting the model’s
ability to capture potential concrete construction feature
patterns while also effectively reducing the influence of
noise. This denoising capability is particularly evident in the
performance of the complete model when predicting D̂.

FIGURE 10. The difference between the raw dataset and the
KNN-imputed dataset in terms of features W/C and fc28.

TABLE 6. The performance of KNN.

D. EFFICIENCY OF KNN
The data imputation method produces particularly great
results for two features, w/c and fc28, in Table 6. These results
are characterized by remarkably lowMAE and RMSE values.
Remarkably, the MAE values obtained for the predicted
data points closely align with those of their true data
points, indicating a high level of precision in the imputation
process. Similarly, the RMSE values are small, highlighting
the excellent agreement between the predicted and original
values. To further illuminate the experimental results, Fig. 10

is plotted. The figure demonstrates almost impeccable
alignment between the predicted points and the actual data
points. This remarkable level of correspondence emphasizes
the ability of the proposed algorithm to accurately infer
missing values.

IV. CONCLUSION
To address the challenge of predicting long-term deforma-
tions induced by concrete creep, this study embarks on
a comprehensive exploration of data-driven methodologies,
seeking reliable deep learning solutions. A network architec-
ture is organized by considering the effect of admixtures; it
includes a residual encoder for denoising and global feature
extraction, one soft-sorting dense layer in the first layer of
the model and a conventional CNN prediction module. This
model utilizes the power of deep learning to address complex
concrete-related questions.

In addition, this research constructs a series of data pre-
processing methods, including a data completion algorithm
based on KNN and a feature selection approach based on
the feature importance and concrete material knowledge of
XGBoost. A total of 19,294 samples are finally obtained
while retaining sufficient valid features.

The differences among the performances of different
models are investigated, and the results are interpreted. In this
endeavor, evaluation metrics, including R, RE, the MAE, and
the RMSE, are explored while also accounting for standard
deviations to evaluate the stability of the output predictions.
These assessments reinforce the robustness and reliability of
the proposed model. Compared with a traditional CNN and
other baseline methods, the model provides improvements
of 95.04, 0.09, 5.83 and 8.88 in the four evaluation metrics,
respectively.

Furthermore, through systematic experiments, including
an ablation study, the effect of the residual encoder on
enhancing the predictive ability of the model is substantiated.
Notably, this encoder exhibits dual capabilities: denoising
and global feature extraction. The ability of the resultant
model to consistently outperform other approaches, as val-
idated across datasets with and without synthetic noise,
accentuates the significance of the encoder in terms of
mitigating the negative effects of noise while capturing
potential feature patterns.

Despite the encouraging results of this study, the models
and experiments should continue to be refined.

1) First, this study introduces Gaussian noise in the
experiment to simulate noise in real data, but in a real
case, the intensity, distribution, and effects of noise
may havemore complex and disordered characteristics.
Therefore, more refined noise simulations can more
accurately reflect the noise situations of actual data.
One potential solution is to use adversarial neural
networks or codec structures to learn and model noise
distributions.

2) Second, the soft sorting process is rough, and the
single-layer neural network cannot learn fine-grained
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spatial characteristics, resulting in pseudoimage fail-
ures. A feasible method is to design a more complex
pseudoimage generator to sort spatially uncorrelated
data.

3) Finally, concrete creep behavior forms data with
time series characteristics. Although the proposed
model has sufficient feature mining capabilities, the
traditional CNN model may not fully consider the
influence of time characteristics. Therefore, future
research can focus on time series models with limited
data. Due to the difficulty of collecting long-term
concrete performance characteristics and data volume
limitations, LSTM is a highly feasible scheme.
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