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ABSTRACT The state-of-the-art works for the segmentation of brain tumor using the images acquired by
Magnetic Resonance Imaging (MRI) with their performances are analyzed in this comparative study. First,
the architectures of convolutional neural networks (CNN) and the variants of U-shaped Network (U-Net),
a kind of Deep Neural Network (DNN) are compared and their differences are highlighted. The publicly
available datasets of MRI images specifically Brain Tumor Segmentation (BraTS) are also discussed.
Next, the performances of tumor segmentation of various methods in the literature are compared using
the parameters such as Dice score and Hausdroff distance (95). This study concludes that the U-Net based
architectures using the BraTS-2019 dataset outperform well compared with other CNN based architectures.

INDEX TERMS Brain tumor, convolutional neural networks, deep neural networks, image segmentation,
magnetic resonance imaging, U-Net.

I. INTRODUCTION
The non-invasive approaches such as Computed Tomography
(CT), Positron Emission Tomography (PET) and MRI are the
currently available imaging techniques for the diagnosis of
internal organs. The CT scan is a transmission-type imaging
technique in which X-ray radiation is used to obtain the
images of internal organs. PET is an emission-type imag-
ing technique which uses a radio-active isotopes injected
into the body to see the functions of organs. Since MRI
is a non-harmful technique and it provides clear informa-
tion about the internal body parts, it is mostly preferable to
diagnose the abnormalities. The confirmation of malignancy
of brain tumor through the non-invasive methods is still a
difficult task, even though the techniques with deep learning
models play a major role.

The structure of human anatomy can be viewed in three
planes [1] namely axial, coronal and sagittal using MRI
as in Fig.1 which depicts the three planes of human brain
images [2]. The phenomenon behind the MRI is the elec-
trification of hydrogen atoms in the human body with the
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FIGURE 1. Three Planes of MRI and the corresponding images of the
brain [1]. a) Axial, b) Sagittal and c) Coronal.

emission of radio frequency (RF) subject to a magnetic field.
Then the energy absorption by hydrogen nuclei occurs and
the energy is emitted as electrical pulses whenever the RF
stops. After releasing the energy, the atom is relaxed i.e., gets
back into its original stage and the time required for this is
called the relaxation time. The two types of relaxation time:
1) longitudinal (T1) and 2) Transverse (T2). By this, three
sequences of images are obtained and they are T1-weighted
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FIGURE 2. Three modalities of MRI Brain Images [3]. a) T1-weighted
b) T2- weighted and c) FLAIR.

(T1 or T1w), T2-weighted (T2 or T2w) and FLAIR. The time
taken for RF remittance and echo signal (ES) reception is
called the time to echo (TE). The short TE and RT are used
to generate the T1w images and the long TE and RT are
used to acquire T2w images. The properties of tissues with
respect to T1 and T2 decide the brightness and contrast of the
acquired images and hence the TE and RT play a vital role in
distinguishing the abnormalities present in the tissues.

The duration of TE and RT are long in FLAIR. The FLAIR
modality gives the information of the whole tumor whereas
T2 provides tumor core information (except edema).The T1c
provides the details of active tumor whereas T1 provides the
details of bone structures and tumor boundary.The T1, T2
and FLAIR modalities of MRI brain image [3] are depicted
in Fig. 2. T1- and T2-weighted images may typically be
distinguished simply by examining the CSF. On T1-weighted
imaging, CSF is dark, while on T2-weighted imaging, it is
bright. In FLAIR abnormalities remain bright but normal
CSF fluid is attenuated and made dark. This sequence is very
sensitive to pathology and makes the differentiation between
CSF and an abnormality much easier. The comparison of
three modalities are given in Table 1 [4].

TABLE 1. Comparison of T1w vs. T2w vs. flair [4].

Radiologists focus on particularly cerebrospinal fluid
space and the two matters – white and gray of the brain.
Fig.3 depicts the general brain image [5] and images of three
different regions of the MRI brain image [6].

Image segmentation contributes to a great extent to the
diagnosis of brain tumor whether malign or benign using
non-invasive methods. The segmentation approaches based
on the deep learning techniques using CNNs now become the
recent research works. However, CNN based techniques have
convergence problems. So, the researchers tried to get good
segmentation results using multimodality MRI images with
the advancement of deep neural network techniques such as
U-Net and its variants. Since the brain tumor is split up into

whole tumor (WT), enhanced tumor (ET), tumor core (TC)
and tumor area or active tumor, the segmentation of such sub
regions is required.

As each modality of MRI gives different information about
the tumor, the task of segmentation becomes time consuming
process. This is because, it is required to take theMRI images
using four modalities for the same patient and blending of
four different information about one tumor. Fig. 4 shows that
the brain image of one patient obtained using four modalities
of MRI. However, they do not provide the same information.
So, some researchers attempted to segment the sub regions
of brain tumor using multi modal MRI images. Some works
have attempted only to segment the abnormal portion from
the fused version of the four modalities of MRI images.
Some authors performed the segmentation of tumor parts
individually from all modalities of MRI images and then the
fusion of four segmented parts is achieved to get a single
image. In the literature, most of the researchers employed
the Dice score to evaluate how the new method achieves the
segmentation compared to the ground truth.

II. DIFFERENCE BETWEEN THIS REVIEW AND OTHER
REVIEWS
In the past few years, a number of noteworthy brain tumor
segmentation surveys have been released. Table 2 lists the
pertinent recent surveys together with their specifics and
highlights [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24]. Among these
[15], [18], and [24] are most similar. Most of the answers to
the BraTS2012–2018 issues were covered by the authors in
[15], [18], and [25], however there was a lack of an analysis
based on technique category and highlights. The review of
traditional brain tumor segmentation techniques was also
the subject of survey conducted by [13]. But it does not
included a technical study or a description of segmentation
techniques based on deep learning. Before 2013, the major-
ity of the suggestions for early state-of-the-art brain tumor
segmentation techniques mixed traditional machine learning
models with manually created characteristics, according to a
survey published in [7]. A survey of MRI-based brain tumor
segmentation was published in 2014 [8]. Deep learning-based
techniques are not included in this survey. [24] focused on
the technical examination of deep learning-based brain tumor
segmentation techniques, whereas Nalepa et al.’s [14] inves-
tigation covered the impacts and technical aspects of several
types of data augmentation methods with an application to
brain tumor segmentation. Our study focused on the architec-
ture of various CNN based and DNN based neural networks
for Segmentation of Brain Tumor usingMRI Images. Further,
the benchmark datasets released from 2012 to 2021 and other
publicly available datasets were discussed.

III. PUBLICLY AVAILABLE DATASETS
The researchers use a number of publicly available datasets
to review the proposed methodologies. This part highlights a
few important and challenging datasets [26], [27], [28], [29],
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FIGURE 3. MRI brain image and its regions [5]. From left to right – General brain image with its regions, MRI Brain image, image of gray
matter, image of white matter and image of cerebrospinal fluid.

FIGURE 4. Illustration of brain tumor segmentation [90]. Top – from left to right, the images are respectively of
volumetric T1, T1c, T2 and FLAIR modalities of MRI images of brain tumor. Bottom – from left to right, the images
are of whole tumor, tumor core, enhancing tumor and all tumor areas.

[30], [31], [32], [33], [34], [35], [36], [37], [38]. The most
challenging MRI datasets are BraTS.The BraTS Challenge
is released every year and features more challenges with
a resolution of 1 mm3 voxels. The state-of-the-art works
using BraTS datasets of MRI brain tumor images released in
2012 to 2021 [26], [27], [28], [29], [30] are considered in this
paper. The datasets contain the brain tumor images belonging
to glioblastoma (GBM) i.e., higher grade glioma (HGG) and
lower grade glioma (LGG). The datasets BraTS 2012 and
BraTS 2013 have a smaller number of images but they are
being used along with the latest datasets. Because these
two datasets contained the annotations which were provided
manually by the clinical experts. Since BraTS 2014, BraTS
2015 and BraTS 2016 have pre-operative and post-operative
images and also the annotations were given to the fusion
of segmented images using four modalities, they were dis-
carded in the datasets released in 2017 to 2021. The BraTS -
2017, 2018, 2019 and 2020 were released for challenging the
task of image segmentation and survival prediction whereas
the BraTS 2021 was released for segmentation followed
by the classification of brain tumor. Summary of publicly
available datasets are given in Table 3 and Fig.5. BraTS

datasets with time points given in Table 4. Figshare [31]
brain tumor dataset containing 3064 T1-weighted contrast-
enhanced images from 233 patients with three kinds of brain
tumor: meningioma (708 slices), glioma (1426 slices), and
pituitary tumor (930 slices).RIDER dataset [35] contains
MRI multi sequence images of 19 patients with glioblas-
toma. The ISLES dataset [36] is a medical imaging collection
aimed at improving research in ischemic stroke diagnosis and
treatment. It includes MRI and CT scans, annotated lesions,
and various data sources, aiming to enhance patient care and
healthcare outcomes. REMBRANDT dataset [38] contains
MRImulti sequence images of 130 patients with glioma types
of grade II, grade III and grade IV. Different types of tumor
types with publicly available dataset is given in Table 5 [33],
[37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47],
[48], [49], [50], [51], [52], [53].

IV. BRAIN TUMOR SEGMENTATION
The technique of separating the pixels to identify and dis-
tinguish the target area, typically a lesioned region from the
surrounding and healthy tissues is known as segmentation
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TABLE 2. Recent surveys related to ‘brain tumor segmentation’.

in medical imaging. It is a challenging task in the case
of brain tumors due to the characteristics of the tumor in
the MR images [54]. Several MRI segmentation techniques
have been developed based on tissue characteristics [55].
These techniques can be divided into five primary classes:
intensity-based approaches, manual segmentation, atlas-
based methods, surface-based methods, and hybrid segmen-
tation methods [56]. In fact, a variety of applications in image
segmentation have been established by hybrid techniques,
a combination that includes two or more techniques and soft
computing techniques such as fuzzy logic, neural networks,
and genetic algorithms. In order to achieve economical solu-
tion cost, tractability, and robustness, soft computing exploits
the tolerance for imprecision, ambiguity, partial truth, and
approximation. In addition, deep learning methods are fre-
quently used for image segmentation, which mimics the
functioning of the human brain and yields quick and precise
results.

Traditional image processing techniques include Thresh-
olding [57], Region growing [58], [59], Watershed

transform [60] and Active contour [61], [62]. Machine learn-
ing and deep learning based approaches include supervised
learning, semi supervised learning and unsupervised learn-
ing. Unsupervised approaches for brain tumor segmentation
using MRI images typically involve methods that do not
require prior labeled data for training. These methods rely
on the inherent properties and patterns within the MRI
images to segment the brain tumors. Unsupervised techniques
known as clustering-based segmentation divide an image
into groups of pixels with similar brightness without using
training images. Actually, clustering techniques use the exist-
ing image data to self-train. By repeating two procedures,
namely data clustering and estimating the attributes of a
certain tissue class, segmentation and training are carried
out simultaneously. The k-means clustering [63], [64], fuzzy
c-means clustering [65], [66], Markov random field [67],
and expectation-maximization approach [68] are the most
often used clustering techniques. This survey focus on deep
learning based segmentation methods such as CNN based
segmentation and U-net based segmentation.
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TABLE 3. Summary of publicly avalable datasets.

TABLE 4. Summary of brats datasets from the year 2012 to 2021.

V. CNN BASED SEGMENTATION
The clinical applicability of the T1wMRI sequence for tumor
segmentation has been improved by the cross-modal distil-
lation approach to train the convolutional neural network
(CNN)withmulti-MRI sequences such as T1w, T1c, T2w and
FLAIR [69]. The high and low grades of glioma tumor were
segmented by introducing three types of architectures based
on CNN [70] namely Sparse Multi OCM, Input Sparse Multi

OCM and Dense Multi OCM using Occipito-temporal path-
way technique. The authors also used overlapping patches to
extract both local and global features. A network architecture,
DRINet [71] has been proposed based on the architectures
of Dense Net [72], [73] for analysis and Residual Inception
Net [74] for synthesis without pooling. In order to overcome
the convergence problems in the convolutional neural net-
work (CNN), recently, some researchers focused on quantum
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FIGURE 5. Publicly available dataset.

neural networks. A quantum network with new architecture
has been proposed in [75] for the automatic segmentation in
which the pixel intensity of the image was considered as the
quantum bits and the weight of the intermediate layer for each
neuron was set as π /2 wherein the input layers were the gated
layer andmulticlass quantum inspired sigmoidal functionwas
used.

The architecture proposed in [75] was replicated in [76]
with some functional modification in the quantum inspired
sigmoidal function. The Otsu’s scheme has been emphasized
to optimize the architecture proposed in [77] by maximizing
the variance of classes in the case of multiclass level clas-
sification. A new network was proposed using the basis of
qutrit of quantum computing [78] for the counter propagation
with self-supervising to update the weights of the interme-
diate layer. But the methods proposed in [75], [76], [77],
and [78] dealt only with the T1c modality of MRI images.
The local and contextual information were extracted from the
MRI image [80] by hybridization of two-path and three path

networks [79] to detect the brain tumor. The brain tumor part
was segmented from the fused version of CT, MRI, PET and
SPECT images using robust edge analysis and probabilistic
neural network [81].
Brain tumor part was segmented using heterogeneous CNN

from the three planes of MRI images and optimized by
conditional Radom fields based recurrent regression neural
network [82]. The segmentation was achieved by aggregating
the results of two different CNNs [83] wherein one CNN used
2 convolutions at each layer and another one used 3 convo-
lutions at each layer. The tumor segmentation was enhanced
by reducing the effect of overlapping image patches [84] by
introducing conditional Random Fields, a kind of CNN. The
network architectures exclusively for whole tumor detection,
tumor core detection and enhanced tumor were cascaded
to frame a new architecture called CA-CNN [85] and used
in [86] from the four modalities of brain tumors. The Bat
algorithm and the improved invasive Weed Optimization
were combined with the Residual network [87] to improve
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TABLE 5. Summary of tumor types with publicly available brain tumor dataset.

the tumor segmentation usingmultimodalMRI images. How-
ever, the performance of the quantum neural network and its
types are slightly lower than the CNN based Neural Networks
[69], [88], [89], [90], [91], [92], [93], [94], [95], [96]. The
CNN based architecture proposed in [95] is depicted in Fig.6
wherein T1 and T2 images are fused.

VI. U-NET BASED SEGMENTATION OF BRAIN TUMOR
In the literature, the researchers have attempted to segment
the tumor part by utilizing the advantages of four modali-
ties of MRI brain images using a kind of deep architecture
called U-Net.

A. NETWORK ARCHITECTURE OF U-NET - BASICS
The functional structure of basic U-Net [97] is illustrated in
Fig. 7. In this basic structure, there are two phases namely
1) encoder and 2) decoder may also be called respectively
as 1) down-sampling and 2) up-sampling. Usually, in U-Net
architecture, four stage convolution on the encoder side and
three stage convolution on the decoder side is performed. The
purpose of the encoder is mainly for size downing the image.

In Fig. 6, the 572 × 572-dimensional original image is
taken and the same is reduced (down sampled) by the encoder
at each stage. Using a decoder (up -sampling), the reduced
image size is resumed to its original size. In the existing

works, a pooling layer may be used to reduce the unwanted
features. The basic difference between the CNN architecture
and the U-Net architecture is the concatenation of features of
encoder and decoder. The CNN architectures perform only
the segmentation whereas U-Net architectures can perform
image fusion, segmentation and fused segmentation. And
hence, this study focuses more on U-Net based architectures.

B. U-NET BASED SEGMENTATION OF BRAIN TUMOR
The fusion of T1c, T2 and FLAIR MRI sequences has been
achieved using a deep network called SF-Net [88] wherein
the fusion, an auxiliary task of the network was used to
advance the segmentation accuracy. This network achieved
segmentation accuracy higher than an asymmetrical U-Net
with a variational auto encoder branch [98]. A two stage
cascaded U-net proposed as a variant of this approach [99].
The authors dynamically adjusted the loss weights based on
an uncertainty approach [89] instead of a static adjustment.
The high informative patterns of brain tumor were extracted
from the different modality ofMRI sequences to train the net-
work and transferred them to one modality using a generative
adversarial network for improved tumor segmentation [90].
A new framework called KD-Net was introduced in [91]
to train the network with a multimodality MRI sequence
(teacher model) to enhance the accuracy of segmentation
using a T1c MRI sequence (student model). A U-Net [92]
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FIGURE 6. Architecture proposed in [95].

FIGURE 7. Network architecture of basic U-Net [97].

based correlation model has been proposed [93] wherein the
features of eachmodality were extracted by separate encoders
for discovering the correlation between them to get the fused
representation. From the fused representation, the enhanced
version of each modality and segmentation of tumor were
obtained using separate decoders. The fusion of volumetric
multimodal MRI data was achieved using depth wise sepa-
rable convolution [94] from the fused features of multimodal
MRI sequences [95]. The features of four modalities of MRI
images were obtained using a dual network [96] in which the
fused features of tumor and modality specific feature codes
were decoupled to tumor specific features. Then the features

were reconstructed to get the segmented image of the brain
tumor.

A hierarchical fusion strategy [100] was employed in
U-Net to fuse the features from the encoder and the skip
function using a hybrid fusion network. In this work, images
of each modality of MRI were given to individual encoders
with an atrous convolution and the hybrid attentional fusion
was applied to fuse the features of multiple modality images.
Hence this network required only one decoder to get the
segmented image. Fine grained, multi scale and long depen-
dent glioma features were obtained using auto-weight dilated
convolution [101] instead of normal convolution for the
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fusion of multimodal MRI images and to segment the tumor
regions.

The advantages of deep learning based segmentation and
statistical based segmentation were integrated [102] to refine
the segmentation usingMRI images. A U-Net of U-Net [103]
has been proposed in which U-Nets were embedded in the
up sampling part and four ResNet in the down sampling part
and also, the brain tumor segmentation was achieved by serial
and parallel merging the output of each ResNet with the
corresponding U-Net. The U-Net has been modified using
the inception module in each layer in [104]. The inception
module was designed by the concatenation of two serially
connected 3 × 3 convolutional kernels, one 5 × 5 kernel and
one 1×1 kernel in both stages of sampling of theU-Net. Three
variants of a lightweight hierarchical convolutional network
were constructed [105] using a residual hierarchical convo-
lutional network for fusing the advantages of MRI images of
T1c, T2 and FLAIR for segmentation.

The U-Net architecture was modified in [106] by the inte-
gration of many parallel convolutions with pooling in the
down sampling part and aggregation of features obtained
from convolution at each layer in up sampling part with the
corresponding down sampling part for segmentation of tumor
using the masked four types of MRI brain images. The author
proposed a transformer based segmentation approach called
UNETR [107] in which a transformer encoder connects
directly to decoder via skip connection for medical image
segmentation.The U-Net was combined with a dual encoder
based R –Transformer network in [108] which constituted
a feature branch for extracting global context information
and a patch branch for extracting semantic features from the
different modalities of MRI images. A new network named
Z-Net [109] was proposed with single convolution layers at
the beginning of the down sampling part and end of the up
sampling part and double convolution at all other layers to
segment the brain tumor in binary version.

A 1 × 1×1 convolution was performed after a 3 × 3×3
convolution for depth wise separable convolution [110] at
each stage in U-Net to segment the tumor from all modali-
ties MRI images. Brain tumor has been segmented using an
MRI brain image and its edge image by a modified U-Net
architecture called Edge U-Net [111] wherein the edge guid-
ance block obtained from the image and its edges in down
sampling were concatenated with the concerned-up sampling
part. The U-Net architecture was also modified with efficient
spatial attention (ESA) [112] block with depth-wise sepa-
rable convolution and lightweight spatial attention module
instead of conventional convolution to segment the tumor in
MRI FLAIR brain images. A new block called context block
[113] has been introduced between the encoder and decoder
part to aggregate the contextual multi scale information. The
accuracy of the segmentation of tumor sub region has been
increased using the application of context block.

AU-Net based neural network has been introduced in [114]
by connecting a deep network and an auxiliary network. The

coalescing convolution was applied at the deep network to
gather the highlighted tumor region and then the same was
given to the auxiliary network with different modalities of
MRI brain images. An approach of generalized pooling [115]
by unifying the average pooling and maximum pooling
was introduced and tested in U-Net. The study concluded
that the generalized pooling have increased the accuracy of
segmentation of WT, TC and ET. A 3-D U-Net architec-
ture modified with lightweight variant architecture called
HDC – Net [116], a computationally more efficient one was
presented to decrease the number of channels to segment all
tumor sub regions in one pass.

Fig.8 and Fig.9 depict the architecture developed in [88]
and [93] respectively. Both [88] and [93] provide fused and
segmented images. An improved U-Net architecture called
InR-ResCBAM-U-net [117] was used for simplified train-
ing of DNN to achieve segmentation with higher accuracy.
ACNNwithU-Net basedmodel was proposed in [118] to rec-
tify the problem of tumor segmentation and the brain tumor
was classified as non-enhancing tumor, necrosis, enhancing
tumor and edema. The performance of the developed mod-
els based on U-Net for segmentation of abnormalities in
brain using MRI images was compared by different learning
parameters [119]. In this FLAIR MRI scan was used for the
segmentation of WT, TC and ET. The difference between
the variants of U-Net architectures proposed in [69], [88],
[93], [98], [99], [100], [101], [103], [106], [108], [109], [110],
[111], [112], [116], and [117] are summarized in Table 5. The
U-Net architecture was modified by hybridizing the network
[120] with residual block and attention block (in between the
concatenation of down sampling part with up sampling part)
and deep supervision block at the end of the decoder part
from multi-resolution T1c, T2 and FLAIR MRI images. The
tumor was segmented using three U-Net with three planes of
MRI brain images and then majority voting was applied to
select the best segmented results [121]. A hybrid architecture
resembling the U- Net was introduced with DenseNet121 in
the encoder part and U- Net in the decoder part for tumor
segmentation using MRI images [122].

The U-Net was also modified [123] with ResNet-50 [124]
in the encoder part and the squeeze and excitation network
[125] in the decoder part. A U-shaped weight alignment
module [126] was proposed by hybridization of the resid-
ual module and multi-channel multi-scale module to extract
the targeted information using dilated attention module. The
tumor part in brain image was segmented with the maximum
features using the ensemble of the segmented image obtained
from an auto encoder, SEGNet and U-Net [127]. Masked
manual segmented brain tumor images were combined with
the concerned enhanced images for the accurate segmentation
of glioma using U-Net [128]. Also, in this work, grade II and
grade-III glioma were classified using VGG16.

The types of brain tumors (here three) were segmented
from enhanced version of MRI images by Fuzzy logics using
DeepBrainet2.0 [129] which was optimized by varying the
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FIGURE 8. Architecture of SF-Net proposed in [88].

FIGURE 9. Architecture proposed in [93].

number of both neurons and layers of the architecture. A new
type of U-Net called DDU-Net was proposed in [130] with
single encoder and dual decoder for extracting edge features
and semantic features and were fused to obtain segmented
tumor image. The tumor segmentation was performed using
3D U-Net and from this segmented image, the intra tumor
features were extracted using a local symmetric inter sign
operator [131] using U-Net. Transformer based U-Net archi-
tecture was proposed to utilize the advantages of PSWin
[132] transformer with U-Net for tumor segmentation. Also,
U-Net architecture was modified by a structure called up-skip
connection [133] in which weighted the addition of two con-
tinuous down sampling parts with the concerned-up sampling
part to enhance the segmentation of brain tumor. A new archi-
tecture called CANet [134] has been introduced to get the
fused image of brain tumor from three segmented brain tumor
images obtained from the four modalities of MRI images.
A new architecture called RD2A-SPP [135] was modelled in
which the atrous spatial pyramid pooling was introduced to
segment the brain tumor part fromMRI images. The fusion of
MRI and Computed Tomography (CT) images of brain tumor

was performed [136] using 2D and 3DU-Net Architectures to
register and segment the tumor part. A new network architec-
ture was developed based on Deeplabv3+ [137] in which the
ResNet 18 was utilized in the down sampling part and dilated
convolution with ASPP were used between the encoder and
decoder parts to segment the tumor part for classification. The
conventional U-Net was modified [138] with three variants of
ResNet-50, ResNet-101 and ResNet 50 in the down sampling
part to extract the multi- channel feature maps to segment the
brain tumor from MRI images. The summary of variants of
U-Net Architecture is depicted in Table5.

For medical image segmentation, Zhou et al. [139] sug-
gested a variant of the U-Net model called U-Net + +,
with nested structure and re-designed skip connections.
This model worked well for image segmentation from elec-
tron microscopy (EM), CT, MRI, and histopathology. The
U-Net++ [140] architecture is illustrated in Fig. 10.
U-Net++ is a network that uses dense convolutional blocks
to bridge semantic gaps between encoder and decoder feature
maps. The original U-Net is shown in black in the graphi-
cal abstract, dense convolution blocks on the skip paths are
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FIGURE 10. Architecture proposed in [140].

FIGURE 11. 3D U-Net architecture proposed in [144].

shown in green and blue, and deep supervision is shown in
red. U-Net++ is distinguished from U-Net by its red, green,
and blue components In [141] the accuracy of brain tumor
segmentation improved further by introducing multi-scale
jumping connection. In [142] introduced a multimodal brain
tumor segmentation model called DenseTrans model that
combines enhanced Swin Transformer and U-Net++. The
model extracts local features using the enhanced U-Net++

Encoder. Each layer in the hierarchical U-Net then sends the
extracted features to the swin transformer, which learns the
long-distance dependency and retrieves the global context
data. In [143] author improved segmentation accuracy by

optimization of inception v2 net by segmentation net with
16 new layers for whole tumor detection and FFCM used
for tumor core and edema detection. Li et al. proposed a
cascaded 3D U-Net and 3D U-Net++ [144] in which two
3D U-Net for whole tumor and tumor core segmentation
and 3D U-Net++ for enhanced tumor segmentation effec-
tively. Fig.11 and Fig.12 depict the architectures developed in
[144]. In [145] author proposed a two stage transfer learning
approach comprised of U-net with residual network for brain
tumor detection and YOLO2 for classification of glioma,
meningioma and pituitary tumors. The author proposed an
optimized U-net [146] for brain tumor segmentation after
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FIGURE 12. 3D U-Net++architecture proposed in [144].

experimenting different U-net variants-UNETR [107], Seg-
ResNetVAE [98], Residual U-Net [147], and Attention U-Net
[148]). The summary of variants of U-Net Architecture is
depicted in Table 5.

VII. PERFORMANCE EVALUATION
In the literature, most of the researchers used the dice
similarity coefficient (Dice Score) and the 95 percentile
Hausdorff distance (95% HD) to evaluate the perfor-
mance of the segmentation of the brain tumor using MRI
images.

A. DICE SCORE
The overlapping between the annotations and the per-
formed segmentation is the Dice score [149] and is given
by

Dice =
2 |a ∩ b|
|a| + |b|

where a is the foreground voxel set in annotation and b is the
foreground voxel set in the performed segmentation.

B. HAUSDORFF DISTANCE (95%)
The maximum distance between a set and the nearest point of
another set is called maximum Hausdorff distance [149]. Let
X and Y be two different sets as in Fig. 13.

FIGURE 13. Hausdorff distance estimation curve.

The Hausdorff distance from set X to set Y is a maximum
function given by

dH (X ,Y ) = max (dXY , dYX )

The measured values of Dice score and Hausdroff distance
(Hd95) by the methods [88], [93], [98], [99], [101], [103],
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TABLE 6. Summary of comparison of variants of U-NET architecture.

[106], [108], [110], [112], [116], [117], [120], [121], [122],
[123], [126], [130], [131], [132], [133], [134], [135], and
[144] are extracted in Table 7.

From the values in Table 7, it is inferred that the methods
which used the BraTS dataset 2019 outperformed compared
to other datasets in terms of Dice Score and Hd95. Even
though the BraTS 2020 and BraTS 2021 datasets have more
information compared to BraTS 2019, the performance of the

methods is not satisfactory. The performance of segmentation
of ET is poor compared to TC and WT irrespective of meth-
ods and datasets.

VIII. BRAIN TUMOR SEGMENTATION CHALLENGES AND
FUTURE RESEARCH DIRECTIONS
Brain tumor segmentation faces several challenges, including
variability in tumor appearance, image quality, inter-observer
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TABLE 7. Measured values of dice score and Hd95.

variability, tumor heterogeneity, partial volume effect, data
imbalance, registration and motion artifacts, edema and infil-
tration, computational complexity, lack of annotated data,
generalization across scanners and acquisition protocols,
and real-time clinical use. To address these challenges,
researchers can develop robust algorithms [150], [151], [152]
using deep learning techniques like convolutional neural
networks (CNNs), improve image quality through prepro-
cessing techniques, create standardized annotation protocols,
employ advanced models like 3D CNNs or multi-modal
imaging data, and consider local image information to accu-
rately distinguish tumor boundaries. Data imbalance can
be mitigated by using techniques like oversampling, under
sampling, or class weighting during training. Image reg-
istration techniques can correct for motion artifacts and
ensure alignment between multi-modal images, improving
the accuracy of segmentation across different modalities
and time points. Advanced segmentation algorithms can

distinguish between the tumor core and surrounding edema
or infiltrative regions, incorporating features such as inten-
sity, texture, and shape. Computational complexity can be
optimized by using parallel processing, hardware accelera-
tion, and cloud computing resources, as well as real-time
implementations or accelerated model architectures for clin-
ical use. Collaborating with medical institutions to create
large, diverse, and well-annotated datasets can increase the
effective size of the dataset and improve model general-
ization. Domain adaptation techniques or transfer learning
approaches can make models more robust to variations
in imaging equipment and protocols. Real-time process-
ing can assist in clinical decision-making during surgery
or treatment planning. In conclusion, collaboration between
computer scientists, radiologists, and healthcare profession-
als is essential for developing effective tools for brain
tumor segmentation that can improve patient care and
outcomes.
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To achieve robust and reliable segmentation methods
with deep learning, challenges include long training times,
over-fitting, and vanishing gradients [153]. Batch normal-
ization [154], [155] is used to address these issues, while
overfitting [156] occurs when the number of images in the
target domain is small. Techniques like augmentation [157]
can increase the number of data. Vanishing gradients [158]
are a major issue in deeper networks, as the final loss value
may not be efficiently back-propagated into shallow lay-
ers. Several algorithms [159], [160] have been proposed to
combat these issues. Research on brain tumor segmenta-
tion primarily relies on fully supervised methods, which are
time-consuming and labour-intensive. Recent studies have
evaluated self-supervised representations, and futuremethods
are expected to use self, weak, and semi-supervised training
with fewer labels.

Deep learning in brain tumor segmentation is a rapidly
evolving field that requires further development. Future
directions include improving model generalization, incor-
porating new technologies, and expanding the scope of
applications. These include developing models that can
perform well on diverse datasets and clinical scenarios,
enhancing transfer learning and domain adaptation tech-
niques, developing interpretable and explainable models,
integrating information from multiple imaging modalities,
and developing efficient 3D image segmentation models.
Clinical integration and validation are also crucial, with large-
scale, multicenter studies being conducted to validate deep
learning models in real-world clinical settings. Real-time
and edge computing environments can facilitate the integra-
tion of deep learning models into clinical workflows, and
future work may explore optimizing models for efficient
deployment on resource-constrained platforms. Addressing
concerns related to patient data privacy and security is also
crucial for the adoption of deep learning models in health-
care. The integration of information from multiple imaging
modalities, such as MRI, CT, PET, and functional imaging,
can provide a more comprehensive understanding of tumor
characteristics. Future research could explore methods for
fusing data from diverse sources to improve segmentation
accuracy. Weakly supervised learning techniques can be used
to address limited annotated data, while transfer learning
and domain adaptation techniques can generalize models to
different imaging conditions, populations, and institutions.
Explainable AI (XAI) is essential for enhancing transparency
and clinical acceptance of deep learning models. Incorporat-
ing dynamic and functional imaging data, such as perfusion or
diffusion-weighted imaging, could provide valuable insights
into the tumor’s physiological properties. Automated lesion
grading and characterization could provide clinicians with
additional information for treatment planning and prog-
nosis. Uncertainty quantification is essential for clinical
decision-making, and future research might explore methods
for uncertainty quantification in brain tumor segmentation.
Collaborative learning approaches, where models are trained
across multiple institutions without sharing raw data, can

address privacy concerns. Federated learning techniques can
enable collaborative training of deep learning models on
decentralized datasets. Interactive and real-time segmentation
could improve the usability of deep learning tools. Ethical
considerations and bias mitigation are crucial as AI tech-
nologies are integrated into healthcare. Large-scale clinical
validation studies and integration of deep learning models
into routine clinical workflows are essential steps for real-
world impact. These directions reflect the evolving nature of
deep learning research in brain tumor segmentation.

IX. CONCLUSION
Thus, the state-of-the-art works for the segmentation of brain
tumor usingMRI images are analyzed and their performances
are compared. The architecture of various CNN based and
DNN based neural networks have been surveyed. Further, the
benchmark datasets released from 2012 to 2021 and other
publicly available datasets were discussed. Based on this
survey, it can be concluded that the U-Net based architec-
ture of DNN outperformed well compared to CNN based
segmentation and the conventional segmentation methods.
Also, we suggest that the performance of the brain tumor
segmentation can be improved by using a large sized dataset
for training with implementing modifications in the U-Net
architecture for reducing the computational complexity.
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