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ABSTRACT This research investigates control theory using an advanced two-dimensional inverted magnetic
needle system. The complex dynamics of the system are caused by a non-uniform external magnetic field.
The system dynamics are established using Euler’s equations, and an energy-based controller is proposed
to stabilize the needle near an unstable equilibrium point. We propose energy-based control techniques
and compare their performance to the Model Predictive Controller (MPC) performance. An important
contribution of this research is the rigorous investigation of closed-loop system stability using Lyapunov
function analysis and tracking the performance of energy-based control techniques and MPC controller.
The dynamic behavior of the magnetic needle is further enriched by two rotational degrees of freedom,
influenced by attractive and repulsive forces from external magnets. Moreover, we assess the effectiveness
of energy-based control strategies in both uniform and non-uniform magnetic fields, thereby expanding the
applications of control theory.

INDEX TERMS Control theory, industrial applications, energy-based controller, 2-D inverted magnetic

needle system, non-uniform magnetic field, system stability, tracking performance.

I. INTRODUCTION forces, demonstrating the practical translation of research and

Over the last five decades, researchers have extensively
used the inverted pendulum system as a standard for
control system studies. Its basic mechanical structure and
nonlinear dynamics have fueled advancements in nonlinear
control theory and resulted in advances in tackling practical
problems. This system has a wide range of applications in
aerospace engineering, such as launch vehicles and missiles,
as well as robotics, such as Segway and Pendubot [1], [2],
[3], [4], [5]. The inverted pendulum problem’s complexity
is valuable for real-world applications where gravitational
potential energy plays a significant role. Its applications have
proven crucial for stabilizing systems affected by external
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development efforts. Overall, the inverted pendulum system
is an indispensable tool for control system researchers.

When considering the use of the inverted pendulum
as a benchmark problem, the Earth’s uniform magnetic
field limits its applicability in control theory. However,
for studying interstellar travel and spacecraft experiencing
varying gravity fields from stars and planets, the inverted
magnetic needle system has been proposed as an alternative.
This system relies on a magnetic needle’s potential energy,
which is directly influenced by the non-uniform external
magnetic fields commonly encountered. While this study
assumes a constant external magnetic field, similar to
the one generated by permanent magnets, incorporating a
time-varying external magnetic field using electromagnets
significantly increases the model’s complexity.
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To accurately model real-world conditions, introducing a
time-varying external magnetic field is essential. However,
this complexity presents research opportunities. The goal of
this paper is to achieve two objectives: accurately model
the dynamics of the magnetic needle system, consider uni-
form and non-uniform external magnetic fields, and design
energy-based control strategies for stability and optimal per-
formance using Lyapunov’s function. Simulations compare
the performance and stability of these control strategies and
propose energy-efficient optimal control strategies to achieve
the desired reference position with minimal energy. Modeling
an inverted magnetic needle system with a time-varying
magnetic field and further exploration are beyond the scope
of this paper.

The 2-D magnetic needle system provides two degrees of
rotational flexibility in the needle. Because of the attractive
and repulsive forces between the external magnets and the
magnetic needle, this system has both stable and unstable
equilibrium positions. When the opposite poles of external
magnets and the magnetic needle are aligned, the magnetic
needle will be in a stable equilibrium state. In the opposite
case, if the poles are not aligned, the magnetic needle will be
in an unstable equilibrium state. The external magnetic flux
density and the magnetic needle dipole moment influence
the torque on the magnetic needle. The external magnetic
field pattern can be altered by varying the distance between
the permanent magnets. Modeling a non-uniform external
magnetic field increases the complexity of the dynamics
involved. Analyzing such complex system dynamics may
lead to the development of rich, nonlinear control methods.
This paper presents a novel 2-D magnetic needle system with
important implications for developing new control techniques
and validating existing ones. Although the system bears some
similarities to a pendulum system, the 2-D magnetic needle
system has more complex dynamics, given its nonlinear
external magnetic field.

A. LITERATURE REVIEW

The inverted pendulum system is a benchmark problem
in control theory, with strong nonlinear dynamics and
under-actuation. In this paper, we do not consider under
actuation for the magnetic needle system which is left for
future work. The most famous types of inverted pendulum
systems are, Furuta Pendulum [6], [7], mobile inverted
pendulum [8], [9], cart pendulum [10], cart-pendulum with
limited track [11], the double inverted pendulum on a cart
[12], [13], triple inverted pendulum [14], spherical pendulum
[15], mobile inverted pendulum [16]. The stability of the
inverted pendulum structure during earthquakes is studied
in [17]. Nonlinear system modeling and controller design
and its stability analysis are discussed in [18] and [19].
The stabilization of the inverted pendulum using a model
predictive and optimal fuzzy controller is given in [20],
[21], [22], and [23]. Experimental validation of pendulum
stabilization using sliding mode controller is discussed
in [24], [25], [26], and [27]. Validation of state feedback
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and conventional controller [28] and the advantages of the
fuzzy controller over energy-based controller performance
in stabilizing inverted pendulum, underactuated systems
is explained in [29] and [30]. In [31], [32], and [33],
the design of a passivity-based controller (PBC) for the
electromechanical system is discussed.

The study on the energy-based controller design for
stabilizing and improving the performance of an inverted
pendulum system was given in [34] and [35]. Further, the
robust performance of robust adaptive super-twisting sliding
mode controller, back-stepping sliding mode control, and
cascaded fractional order controller performance of inverted
pendulum system was discussed in [36], [37], and [38].
The magnetic needle in an inverted position is restricted to
one degree of freedom in [39] and [40]. The dynamics of
the magnetic needle system were modeled under a uniform
magnetic field [41]. In this paper, we introduce a unique and
novel two-dimensional inverted magnetic needle system that
has not been previously explored. The nonlinear dynamics of
the system are derived using the Euler-Lagrange equation. By
providing a detailed analysis of the energy-based controller
design for the two-dimensional inverted magnetic needle sys-
tem dynamics, this paper makes a significant contribution to
the field of control engineering. A comprehensive analysis of
the closed-loop system stability is provided, and the tracking
performance of various control strategies is assessed through
comparative simulations. This investigation is conducted by
taking into account both uniform time-invariant external
magnetic fields and non-uniform external magnetic fields.
The contributions of the paper are given below,

o Establishing of two-dimensional inverted magnetic
needle system dynamics through Euler’s equations
considering a non-uniform magnetic field.

« External magnetic flux density 3D modeling using the
Gaussian function with minimum modeling error.

« Design of energy-based control strategies to stabilize the
needle near an unstable equilibrium point.

« Comparing energy-based control strategies with Model
Predictive Controller (MPC).

o Closed-loop system stability using a Lyapunov function
analysis.

B. MOTIVATION

Inverted pendulum systems are useful for theoretical and
practical purposes. Theoretical research on these systems
sheds light on key topics such as stability, controllability, and
robustness. In practice, they serve as a standard in control
engineering, allowing for the evaluation and optimization
of control algorithms for a variety of real-world problems.
In robotics, inverted pendulum systems help to develop
stability-enhancing control strategies, which enhance activ-
ities like balancing and humanoid robots in areas like uneven
terrain navigation, agile movement execution, and overall
control improvement. These systems are also important in
increasing the safety, maneuverability, and user experience
of self-balancing vehicles such as Segways and electric
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scooters. Additionally, they aid in designing algorithms that
reduce unwanted movements in camera gimbals, resulting
in stabilized footage, or control strategies that minimize
vibrations in industrial machinery to enhance stability.

Il. INTRODUCTION TO NOVEL 2-D INVERTED MAGNETIC
NEEDLE SYSTEM

The 2-D inverted magnetic needle system enables the needle
to have two degrees of freedom as depicted in Fig. 1.
In this setup, two external magnets with opposite poles
facing one another are placed, and the distance between
them is adjustable, providing a means to introduce significant
non-linearity in the external magnetic field if needed. The
magnetic needle experiences torque, which depends on the
distance from the external magnets. To allow free rotation
about the pivot point, the magnetic needle is pivoted at
its center using motor M, with one degree of freedom.
Furthermore, the shaft of motor M| is rigidly attached to the
center of motor M5.

The system inertial coordinates denoted as X;, Y;, and
Z; are considered, while the needle body coordinates are
represented by xp, yp, and z,. The external magnets are
arranged such that the direction of the magnetic field
lies along the negative X;-axis. Motor M) rotation occurs
about the Z;-axis, and the right-hand coordinate system
is completed by the Y;-axis. The magnetic needle body
coordinates are defined as follows: the magnetic needle
length is oriented along the xj-axis, and the rotation of motor
M is defined as the yp-axis, while the z,-axis conforms to the
right-hand rule of the coordinate system.
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Xi
‘ 5
Yi N M2 b s
=]
N P
4 s
/ /
f / o > shaft
/ Ve
Magnetic needle < “'r / /r’
f //
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FIGURE 1. Schematic of 2-D magnetic needle system.

IIl. MODELING SYSTEM DYNAMICS THROUGH EULER’'S
EQUATIONS

A. SYSTEM MODELING WITH UNIFORM MAGNETIC FIELD
The system dynamics are derived using Euler equations,

d (3T 8T+8U _odor 8T+8U

- =) -—+—=5,—|—=)-——+—=x

dt \agp) d¢p d¢p  mdt\ag) 86 98 "
)]
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where system kinetic and potential energy are represented by
T & U, respectively. Fig. 2 illustrates the rotation of motor
M, along the y,, axis, while motor M rotation is represented
along the z,, axis. The motor control input torque about the
ym and z,,;, axes is represented by 7y, and ;,,, respectively.

1) POTENTIAL ENERGY

The system potential energy depends on the external mag-
netic field B, and needle dipole moment M, and the system
potential energy is:

U = MB(1 + cos 6 cos ¢) 2)

The system dynamics are derived in the generalized
coordinates of the motor M>, as shown in Fig. 2. The rotation
angle about z,, axis is considered as 6, and the rotation angle
about the y,, axis is defined as ¢.

A permanent magnet’s magnetic dipole moment indicates
both the direction and intensity of the magnet’s magnetic
field. The steps below are used to compute it: The magnet
should first be placed in a known field in order to measure
the force or torque it experiences in order to estimate
the strength of the magnetic field. Next, determine the
magnet’s length, width, and thickness by measuring its
physical dimensions. Determine the magnet’s volume using
these measurements. To find the magnetic moment, multiply
the strength of the magnetic field by the volume of the
magnet. Lastly, use the well-known right-hand rule to find
the magnetic moment’s direction. This rule states that the
magnetic moment’s direction is perpendicular to both the
direction of the magnetic field and the direction of the force
or torque experienced.

2) KINETIC ENERGY
The system’s kinetic energy is determined by several factors,
including the angular velocity and inertia of the magnetic
needle. Specifically, the angular velocity about the y,, and
zm-axes is denoted by ¢ and 6, respectively. Notably, the
magnetic needle is free to rotate about both the y, and
zm-axes, which are mutually perpendicular. By taking into
account the individual kinetic energy about each axis, the
system’s total kinetic energy can be expressed as the sum of
these values.
I, ¢* 1,67
=5t 3)
System generalized coordinates are chosen to be (X, Y, Zm)s
at the center of mass Cy as shown in Fig. 2.

System inertia in y,,-axis,

m,(3r2 + 12)
Ly, = ——
12
System inertia about z,-axis is,

T

“

L, =Is + Iy, + IR + vy + I
_ mgr? N mM2(3l’1%,12 + 11%,[2)
T2 12

+ mM2x2) + Iy
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FIGURE 2. Proposed setup.

+ Iy + (sinz(qb)lxx + cos* ()T + mp(Le — x)z)
)

where, I is the shaft inertia which is joining the motor M and
M, Iy, is the motor M, inertia about zj,-axis. The rotor
and gearbox inertia of the motor M is represented by Iy, r
& Iy, G, and the needle inertia about z,,-axis is represented
by Iy, and I*»* [%% represents the needle inertia about its
principal axis of x; and z,. The system center of mass is
found using (6), where, C,, is the needle center of mass and
motor M center of mass is represented by Cyy,. The distance
between the Cyy, and system common center of mass Cy is x,
and Cy, Cyy, is Le.

my(Le — x) = mpp, X (6)

The system dynamics is derived from (2), (3), and (1).

. 1 .
b= (Iym —9.74 % 107 sin(2¢)6% + MB cos § sin ¢)

Ym
)
.. 1 ..
b= — (er 1 1.94 % 10~ sin(2¢)p6 + MB cos ¢ sin 9)
Zm
®

The 2-D inverted magnetic needle system exhibits two
equilibria, located at (¢, d), 0, é). At (m, 0,0, 0), the magnetic
needle is in a state of stable equilibrium, as evidenced by the
negative eigenvalues. Conversely, the system is found to be
unstable at (0, 0, 0, 0), since it features a positive eigenvalue.

B. SYSTEM MODELING WITH NON-UNIFORM MAGNETIC

FIELD

To derive the system dynamics of a given system using Euler
equations, it is necessary to have a clear understanding of
its kinetic and potential energies. In the preceding section,
we obtained these values for the system under consideration
by assuming a uniform magnetic field. In this section,
we will instead consider a non-uniform magnetic field and
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re-derive the system dynamics accordingly. Although the
system’s kinetic energy remains the same for both uniform
and non-uniform magnetic fields, the potential energy for
the non-uniform external magnetic field (NUEMF) case is
discussed next.

C. POTENTIAL ENERGY

In an inverted pendulum system, the potential energy of
the pendulum depends on its height and acceleration due to
gravity.

Uy = mgh

The potential energy of a pendulum is described by U,
with m representing the mass of the pendulum, g representing
the acceleration due to gravity, and h representing the
height of the pendulum relative to some reference level.
In an inverted pendulum system, the pendulum’s height is a
function of its angle concerning the vertical, and as this angle
changes, so too does the pendulum’s height. As a result of this
observation, we can conclude that the potential energy of the
pendulum varies as a function of both its height and angle,
due to the constant value of acceleration caused by gravity.

The system potential energy U,, depends on the magnetic

needle torque as,
6 0
v == [ [ wasag ©)
0 Jo

where, magnetic needle torque t depend on dipole moment
M, external magnetic field B as,

T=MXxB
The magnetic needle dipole moment is
M = [Msingcos6® Msingsind Mcos¢]  (10)
The external magnetic flux density is,

B = [Bx By By]

D. MODELING OF NON-UNIFORM EXTERNAL MAGNETIC
FIELD

The dipole approximation of a rectangular-cross-section bar
permanent magnets is discussed in [42]. The magnetic field
of the external magnets is found using COMSOL, and it is
compared with the dipole approximation. The non-uniform
external magnetic field modeling using COMSOL software
has < 2 % error. External magnetic field x, y, and z
components are modeled using the Gaussian function, and
the parameters of this Gaussian function are chosen to get an
optimal fit for By, By, and B;. In Fig. 3, the relation between
the standard deviation and modeling error is shown.

The external magnetic field x-component B, variations are
shown in Fig.4. It is minimum, when ¢ equals to /2 rad and
0 equals to 7 /3, 4 /3 rad. Similarly, it is maximum, when ¢
equals to /2 rad and 6 equals to 27 /3, S /3 rad.

140409



IEEE Access

P. S. Kumar et al.: Modeling and Lyapunov-Based Nonlinear Control Strategies

[3,]

—0
+ X
4r . +o ]
; y
w3 g : .o, |
)
o . .
S *
wi )

N
|

15

0.5 1
o (Standard deviation)

FIGURE 3. Standard deviation for best approximation of By, By, B;.

0.1+
oy

0.05-| v o . Data (BX).
P i 45 - Surfage fit (B,)
e 0 Vel . it
(i) ¢ sy,

-0.05 ikl i

2 2 6 8

¢ (rad) 0 (rad)

FIGURE 4. Surface fitting using Gaussian function for By component.

The x-component of the external magnetic field variations
with respect to 8, ¢ is modeled using the Gaussian function,
with a standard deviation of o, = 0.37 as,

By = —0.09 (e~ @O—127+c@=7/27) 4 (=@ -43*+c(-n/2%)

x =

+0.09( e~ (@O—1.9+c(@-m/2)%) | e*(u(975.1)2+c(¢77r/2)2))
(11)

where,

1 1

= —, bZO, = —
202 ¢ 202

Figure 5 illustrates variations in the y-component of an
external magnetic field as a function of 6 and ¢. More
specifically, the maximum flux density near the poles of
the external permanent magnets leads to a maximum at
both the stable and unstable equilibrium points. The system
itself exhibits a stable equilibrium at (;r/2, 7 /2) rad, and an
unstable equilibrium at (37/2, 7 /2) rad.

The external magnetic field y-component is modeled using
the Gaussian function, with a standard deviation of o, = 0.36,

By = 0.2(ef(a<97n/2>2+c(¢fn/2>2> + ef<a(974.7>2+c(¢fn/2>2>)
(12)

In Fig.6 the external magnetic field z-component variations
are shown, and it is modeled using Gaussian function with a
standard deviation of o, = 0.39,

B, = —0.094(6—(0(9—ﬂ/2)2+c(¢—1.7)2)
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FIGURE 5. Surface fitting using Gaussian function for By component.
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FIGURE 6. Surface fitting using Gaussian function for B; component.

+ e*(a(974.7)2+c(¢,1.9)2))
+ 0.093(e*<a<97ﬂ/2>2+c<¢71.9>2>
+ O.O93e_(“(9—4-7)2+c(¢—1.17)2)) (13)

In Fig. 7, the torque t, acting on the magnetic needle about
Z-axis due to the external magnetic field x, and y-components
are shown.

0.4 . Bx (Tesla)
0.2 . By (Tesla)
- 7, (Nm)

4 2 I T T T T T I
5
o (rad) %0 (rad)®

FIGURE 7. Torque about Z-axis.

The magnetic needle initially aligns with the X-axis while
the external magnetic field is aligned with the Y-axis, based
on the chosen coordinate system. As 6 increases, the external
magnet’s south pole attracts the north pole of the needle,
resulting in a torque in the positive Z-axis. When 6 exceeds
/2 radians, the attraction between the needle and external
magnet causes the torque to shift towards the negative Z-axis.
At 7 radians, a repulsive force occurs between the north poles
of the needle and external magnet, leading to a torque in the
negative Z-axis. Figure 7 shows that as 6 increases to 37/2
radians, the torque returns to the positive Z-axis because of
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the repulsive force between the needle and the north pole of
the external magnet.
System kinetic energy about Y, Z-axes,
I, * 1,,6°
=—— T,==— 14
) z ) (14)
System dynamics is derived from (9), (14),

" 1 U . 1 U
¢= _(tym__n)’ez_(TZm__n)
I)’m 8¢ IZm a0

IV. LYAPUNOV-BASED OPTIMAL NONLINEAR CONTROL
STRATEGIES FOR OPTIMAL PERFORMANCE AND
CLOSED-LOOP SYSTEM STABILITY

In robotics and control theory, an energy-based controller is
a kind of controller that makes use of the idea of energy
shaping to produce better control outcomes. This type of
control has gained popularity recently because it makes
complicated systems controllable without necessitating a
thorough understanding of the dynamics at play. The energy
of the system is described as a function of its state
variables by the energy function. In order to maintain
stable functioning, the controller’s main goal is to direct the
system’s energy to a specified equilibrium or limit cycle.
Traditional control techniques, on the other hand, usually
focus on directly manipulating the positions or velocities
of the system, which can be far more challenging and
inefficient.

Compared to conventional control methods, the
energy-based control strategy offers a number of benefits.
First, the controller can guarantee stability under a variety of
initial conditions since it employs a state-independent energy
function. Second, the controller is structure-preserving,
meaning that it maintains any inherent structural properties of
the system under control, such as symmetry and conservation
laws. Finally, the approach often simplifies the design
process and reduces controller complexity, leading to lower
implementation costs. Energy-based control techniques have
been widely used in various domains, such as power systems,
robotics, aerospace, and mechanical systems, and have
shown significant improvements in terms of system stability,
robustness, and energy efficiency.

Ty

A. NONLINEAR OPTIMAL CONTROL STRATEGIES FOR
UNIFORM MAGNETIC FIELD SYSTEM

Energy is the basic property of the general physical systems
(electrical, mechanical). The supplied energy Es to the
passive system is equal to the sum of stored E, and dissipated
energy Ey i.e,

Es =Eyx +E4

System stability can be analyzed based on the system input
and output energy. Nonlinear and time-varying systems can
be controlled by controlling the energy of the system. The
controller is designed to shape the energy storage function
of the system, to have minimum energy at the desired
point.
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The magnetic needle has minimum energy at a stable
position and maximum energy at an unstable position.
Initially, a magnetic needle is positioned at an unstable
equilibrium, and different control strategies are designed to
equate the system energy to the desired energy Ep. The total
system energy Er is the sum of potential energy (2) and
kinetic energy (3),

L, > I,6°
ym¢ + Zm

Er =  MB(1 + cosfcos¢p) + - 5 (15)
The energy corresponding to the desired position,
Ep = MB(1 4 cos 6, cos ¢gq) (16)

where, 6; and ¢, represents the magnetic needle desired
angular position about z,,, v, axis. Energy storage function
v is considered as [43],

Er -2, Y= - =L an)
vV = —_ s e — —
T D I T p)—
The condition for closed-loop system stability is,
dv
— <0 18
dt — (18)

The controller is designed to satisfy the above condition.
System total energy with respect to time,

dEr dU dT

a a T a
Change in potential energy with respect to time is,
du . . .
T —MB(¢ cos 6 sin¢ + cos ¢ sin66)

To design the controller, one should know how the accelera-
tion affects rate of system kinetic energy, which is,

dar - ...
E = ym¢¢ + Izmee

From (7) and (8), change in system kinetic energy concerning
time is,
ar . 5 . .5 .
= ¢ (zy,, — 9.74 % 107 sin(2¢)0” + MB cos 6 sin §)
+6(ts, + 1.94 % 1077 sin(2¢)$6 + MB cos ¢ sin6)

The rate of system total energy depends on the angular
velocity of the needle and the motor control input as,
dET

—- =0n, +0z, (19)

Different control strategies are designed to satisfy the
system’s closed-loop stability condition (18). The first control
strategy is,

Tym1 = _(ET - ED)¢1 Tom1 — _(ET - ED)9

In steady-state, system output has sustained oscillations
(see Fig. 8) using this control strategy. A second control
strategy is designed to improve the system performance,
by increasing the controller gain and by limiting the angular
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velocity of the magnetic needle. The second control strategy
using ““sgn’’ is chosen as,

Ty, = —Ky(Er — Ep)sgn(), t,,, = —K(Er — Ep)sgn(d)

System steady-state performance is further improved using
“sat” function in the third control strategy, by reducing the
amplitude of oscillations,

Ty,5 = —Ky(Er — Ep)sat(®), t,,, = —K (Er — Ep)sat(f)

The performance of individual control strategies is discussed
in the following section in detail.

B. NONLINEAR OPTIMAL CONTROL STRATEGIES FOR
NON-UNIFORM MAGNETIC FIELD SYSTEM

In a feedback control system for an inverted pendulum, the
controller strives to maintain the pendulum at a vertical
position by regulating the system’s potential energy. By mea-
suring and modifying the state of the system using feedback,
it can make the necessary adjustments to regulate the system’s
potential energy, maintaining a stable, upright position for the
pendulum.

In a magnetic needle system, controllers based on energy
are designed to hold the needle at a desired position while
also satisfying closed-loop stability conditions. The needle
is allowed to rotate about two perpendicular axes. The total
energy for each axis is computed as the sum of its potential
and kinetic energies E7y, E7.

ETyZTy—}—U‘, Er,=T,4+ U,

where, system kinetic and potential energy about Y-axis
is Ty & Uy, similarly, about Z-axis T, & U,. System
energy storage function corresponding to Y and Z-axis
is vy & vy,

Uy = (ETy - EDy)z/Z,

where energy corresponding to the desired position of the
magnetic needle about Y and Z-axis is Epy & Ep,.
The condition for closed-loop system stability is,

v, = (Er; — Ep,)*/2

dvy dv,
— =<0, — =<0, 20
dt — d — 0)
We consider the first control strategy as,
Ty, = —(Ery — Epy), 15 = —(Er. — Ep:)f

From the above-designed control strategies we can observe
that, as the magnetic needle reaches the desired position,
the system’s total energy is almost equal to the energy
corresponding to the desired position. The control input goes
to zero because it depends on the difference between the
system’s total energy and the desired energy. In steady-
state, the system output has sustained oscillations using
Ty, Tz about y,, zy-axes. The steady-state performance is
improved by limiting the angular velocity of the magnetic
needle using ““sgn’’ function and by increasing the controller
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TABLE 1. System parameters.

Motor parameters Specifications
Motor M7, M2 mass (m g, » mar,) 60g
Motor My radius (rpz,) 10mm
Motor M2 length (Iz,) 60mm

0.32 % 10~ 7 K gm?

Motor Mj rotor inertia (Ipyy,.,)
5.5 % 10~ 7K gm?

Motor M7 gear box inertia (IMng )

Terminal resistance (Rg) 0.331Q

Terminal inductance (L) 0.103 mH
Motor torque constant (Kyy,) 0.4368 Nm/A

Back emf constant (K}) 0.4208 V-sec/rad

I
0 0.5 1 15 2 25 3 3.5 4 4.5 5

0 I I I I

Time(sec)

FIGURE 8. System response for different control strategies about yn-axis.

gain. However, the system output has a small amplitude of
oscillations in steady-state as shown in Fig. 13 & 14, because
of using ““sgn” function in the controller design. The second
control strategy using ““sgn” function is,

Ty, = — y(ETy - EDy)Sgn(é),
7, = —K(E; — Ep;)sgn(0)

When compared with the other control strategies’ perfor-
mance, better closed-loop system performance is achieved
using ‘“‘sat” function in the controller design as shown in
Fig. 13 & 14. Because the control of the needle angular
velocity is smooth when we use “‘sat”” function compared to
“sgn” function. Third control strategy using “‘sat” function
is given by,

1y, = —Ky(Eqy — Epy)sat(@),
T3 = —K (ET; — Epy)sat(6)

V. SIMULATION RESULTS

A. COMPARATIVE STUDY OF ENERGY-BASED CONTROL
STRATEGIES FOR UNIFORM MAGNETIC NEEDLE SYSTEM
The control strategies are designed using the Lyapunov
function to improve the system output response, and to satisfy
the closed-loop system stability. The actuator and sensor
nonlinearities are considered to analyze the actual system
behavior in simulation. System parameters are considered in
Table. 1,

The system reference input (Ref) is considered to be
0.2 radians from the unstable equilibrium. System output
response of different control strategies about y,,, z;,-axis are
shown in Fig. 8, & 9.
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FIGURE 9. System response for different control strategies about z;,-axis.

The angular position of the magnetic needle about a
different axis is ¢y,,, ¢y, and ¢, ., about y,-axis for
the corresponding control input voltage Vy, ., Vy,.,, Vy,;5-
Similarly, 6, 0,,, and 0, , are the angular position of the
magnetic needle about z,,-axis for the corresponding control
voltages of V, ., V, », V..

In steady-state, system output has sustained oscillations
from 0.18 to 0.22 radians, when we use the first control
strategy ty,,. The system output performance is improved
by increasing the controller gain and by limiting the angular
velocity of the magnetic needle using “sgn” function in the
second control strategy t,,,. The steady-state performance is
further improved by using ““sat” function in the third control
strategy Ty, ;.

The relation between the acceleration of the magnetic
needle and control input 1, & 7, is given in (7) & (8).
Different control strategies are designed by considering
torque, as a control input. To know whether the control input
is physically realizable or not, torque is converted into voltage
using the motor dynamics (21). The relation between the
applied input voltage V, back emf voltage V;, and voltage
drop across the armature resistance R and inductance L

[44] is,
. . di
T = Kl V =iR +LE +Vp 21)

The relation between the energy storage function, E7, and
Ep is given in (17). In Fig. 10, system energy storage
function (v) variations with respect to time for the different
control strategies is shown. As the magnetic needle reaches
the desired position, total system energy is almost equal to
the energy corresponding to the desired position. So, the
difference between the system’s total energy and the desired
energy is almost zero at the steady state. Here Ej, E; and
Ej3 represents the system energy storage function for different
control strategies.

B. SYSTEM PERFORMANCE COMPARISON WITH MPC
CONTROLLER AND DIFFERENT CONTROL STRATEGIES OF
ENERGY-BASED CONTROLLER

The MPC controller is an advanced control technique widely
used in various industries and applications. It operates as
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FIGURE 11. System performance comparison with MPC controller
and 7y ..
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FIGURE 12. System performance comparison with MPC controller and
Energy-based control strategies.

a feedback control mechanism, utilizing a mathematical
model of the system, constraints, and optimization objectives.
This allows it to calculate optimal control actions at
each time step. The controller’s performance parameters,
such as robustness and aggressiveness, can be adjusted by
modifying parameters like prediction horizon (Np), control
horizon (Nc), input constraints, weights, and sampling time.
Fig. 11, and 12, shows the effectiveness of the MPC controller
and energy-based control techniques in closed-loop systems.
As shown in the figure, the MPC controller performs better
than energy-based control approaches in both transient and
steady-state situations.
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FIGURE 13. System response for different control strategies about
Ym-axis.
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FIGURE 14. System response for different control strategies about
Zm-axis.

C. COMPARATIVE STUDY OF ENERGY-BASED CONTROL
STRATEGIES FOR NON-UNIFORM MAGNETIC NEEDLE
SYSTEM

The tracking and steady-state performance of different
control strategies are discussed in this section. These control
strategies are derived to hold the magnetic needle at its
desired position. Tracking the performance of different
control strategies about the Y-axis is shown in Fig. 13.
System output has more amplitude of oscillations in steady-
state, using 7y1. The steady-state response is improved using
the “sgn” function and by increasing the controller gain
in 7y,. Further, the tracking and steady-state performance
are improved by using the “sat” function in 7y3. Similarly,
different control strategies are designed to improve the system
output response about the Z-axis. The system output response
of different control strategies about the Z-axis is shown in
Fig. 14.

A limit cycle is a stable periodic motion in which
the system’s state variables fluctuate about a set point or
trajectory for a specified time before returning to that point or
trajectory. Limit cycle behavior refers to the stable periodic
motion of the system’s energy state in the context of an
energy-based controller. In general, energy-based controllers
strive to reduce the energy of the system under control. Long-
lasting oscillations may arise when the controller is unable to
bring the system to the intended state.

An energy-based control system maintains stable operation
by controlling the system’s energy to a predetermined
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FIGURE 15. Tracking error of different control strategies about z,;-axis.
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FIGURE 16. Limit cycle behavior of different control strategies about
Ym-axis.

equilibrium or limit cycle. When the controller’s actions
cause the system’s energy to attain a stable periodic state,
the result is the limit cycle behavior. This form of oscillatory
behavior, which has a fixed amplitude and frequency, is com-
monly seen in simple nonlinear systems like oscillators.

Control systems can gain from limit cycle behavior in
a number of ways, including increased energy efficiency
and system stability. But it can also result in unfavorable
outcomes like noise or wear and tear. As a result, under-
standing and controlling limit cycle behavior is essential
when designing control systems. The tracking error of various
control strategies is illustrated in Fig. 15. The first control
strategy exhibits limit cycle behavior with a +1 degrees
tracking error amplitude. The second strategy reduces the
tracking error to +0.25 degrees. However, the third control
strategy outperforms the others, limiting the tracking error to
+0.1 degrees.

Limit cycle behavior is observed in the system output
using different control strategies about y,, and z,,-axis, which
shows the relation between the angular position and angular
velocity. The angular velocity varies from 10 to -5 rad/sec
using the first control strategy, and the system output has
a sustained oscillation in the steady state about y, and
zm-axes. This steady state performance is improved by
limiting the angular velocity using a ““sat” function as shown
in Fig. 16 & 17.

In the context of the system’s control strategies, Fig. 18
provides insights into the variation of the energy storage
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FIGURE 17. Limit cycle behavior of different control strategies about
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FIGURE 19. Energy storage function about z;-axis.

function concerning time. According to the illustration, both
the total energy and the desired energy converge toward zero
as the system approaches its desired angular position. It’s
worth noting that the energy storage function is a function
of the difference between the system’s total energy and the
desired energy. Hence, obtaining an ideal system response is
achievable by using appropriate control strategies embedded
within the system’s operation.

Fig. 19 illustrates the variation of the energy storage
function with respect to time around the Z-axis. During the
transient period, the difference between the reference input
and the system output is more significant. Therefore, there
is a greater difference between the system’s total energy and
the desired energy during this period. In the steady state, the

VOLUME 11, 2023

energy storage function reaches a minimum at the desired
position of the magnetic needle.

VI. CONCLUSION

The research findings highlight the significance of the
novel 2-D inverted magnetic needle system and its potential
applications in control theory. Our study investigates the
dynamics of this system, considering both uniform and
non-uniform external magnetic fields. This unique system
provides opportunities for innovative control approaches
based on magnetic needle dynamics, which have prac-
tical applications. To stabilize the system and improve
its transient and steady-state performance, we design an
energy-based controller based on the Lyapunov function.
Furthermore, we carried out a thorough examination and
comparison of various control techniques’ transient and
study-state performance with the MPC controller. Our
analysis and simulation results show the effectiveness of
MPC controller over energy-based control strategies and the
optimization of system response through accurate modeling
of non-uniform external magnetic fields. This research paves
the way for future exploration and experimentation in this
field.

Future research can focus on developing advanced control
strategies tailored specifically to the dynamics of this system.
Nonlinear control methods, adaptive control approaches,
and optimal control techniques could be investigated to
enhance tracking performance, stability, or energy efficiency.
Additionally, addressing the challenge of under-actuation,
where there are fewer control inputs than degrees of
freedom, presents an important research direction. Finding
effective ways to handle under-actuation can lead to practical
applications of the inverted magnetic needle system in
real-world scenarios.

The authors declare that they have no conflict of interest.
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