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ABSTRACT Natural gas is widely used for domestic and industrial purposes, and whether it is being leaked
into the air cannot be directly known. The current problem is that gas leakage is not only economically
harmful but also detrimental to health. Therefore, much research has been done on gas damage and leakage
risks, but research on predicting gas leakages is just beginning. In this study, we propose a method based
on deep learning to predict gas leakage from environmental data. Our proposed method has successfully
improved the performance of machine learning classification algorithms by efficiently preparing training
data using a deep autoencoder model. The proposed method was evaluated on an open dataset containing
natural gas and environmental information and compared with extreme gradient boost (XGBoost), K-
nearest neighbors (KNN), decision tree (DT), random forest (RF), and naive Bayes (NB) algorithms. The
proposed method is evaluated using accuracy, F1-score, mean square error (MSE), mean intersection over
union (mIoU), and area under the ROC curve (AUC). The presented method in this study outperformed
all compared methods. Moreover, the deep autoencoder and ordinal encoder-based XGBoost (DA-MA-
XGBoost) showed the best performance by giving 99.51% accuracy, an F1-score of 99.53%, an MSE of
0.003, mIoU of 99.40 and an AUC of 99.62%.

INDEX TERMS Deep autoencoder, multivariate analysis, methane gas, risk detection, XGBoost.

I. INTRODUCTION
Early gas leakage prediction makes preventing future eco-
nomic losses possible. In addition, natural gas leakage can
exacerbate adverse health effects, such as hypertension, pul-
monary disease, pneumonia, asthma, and other respiratory
diseases. Therefore, gas leak detection is essential for gas-
intensive countries. Thus far, we found that more re-search
is necessary to predict gas leakage. Although there are stud-
ies on the harmful effects of gas leaks, more research is
necessary for predicting gas leaks [1], [2]. Deep learning
(DL) has recently made internet of things (IoT)-based mul-
tivariate time-series analysis possible because of its potent
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feature extraction and representation learning capabilities.
Nevertheless, some existing time-series analysis studies have
included unsupervised DL-based techniques [3]. To close
this knowledge gap, we examine unsupervised learning-based
risk detection and clustering for IoT time series within a
unified framework [4], [5].

This study proposes a novel method based on the deep
learning method that predicts gas loss by combining gas data
with environmental data. The proposed method consists of
three main modules: data preprocessing, data labeling, and
predictive analysis. The data preprocessing module removes
outliers using the deep autoencoder (DAE) reconstruction
error (RE) [6] and normalizes the data using OrdinalEncoder
(OE) transformation techniques. The data labeling module
selects only natural gas (NG) CH4 [7], [8] data from the
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preprocessed data, divides it into groups using the k-means
clustering algorithm, and classifies the data according to that
group. Afterward, the predictive analysis module builds a
model that predicts gas loss using machine learning algo-
rithms on the available data.

There are few related works that define natural gas leak
emission levels. Methane levels ranged between approxi-
mately 1800 and 2600 parts-per-billion (ppb) throughout,
whichwas consistent with the wind direction in [9]. Addition-
ally, [10] identified the primary as discriminated small leaks
<6 Lmin−1 frommedium leaks (6−40 Lmin−1) and a high
bin (>40 L min−1) for the estimated leak level.

We used a data survey from the Los Gatos Research CH4
analyzer’s high-sensitivity mobile and portable survey [11].
There was more than a sequence of differences in the sen-
sitivity of a device used to measure CH4 levels. Therefore,
this CH4 analyzer was susceptible to only a rare parts-per
billion (ppb) withdrawal from the background, and LDCs
frequently use handheld sensors with parts-per-million (ppm)
level sensitivities [12]. In this study, CH4 (ppm) is the target
feature, and OE methods are used for the real number to be
a labeling feature for the data preprocessing part [13]. The
measurement and estimated leak flow rate levels of CH4 are
shown in Table 1.

TABLE 1. CH4 leak detection measurement and estimated rate range.

In other words, models created according to the proposed
method improve the prediction results better than construct-
ing a predictive model using machine learning algorithms on
the data without preprocessing.

The main contribution of this paper is the following nov-
elty:

• A novel deep learning-based method is proposed to pre-
dict gas leakages by removing outliers with DAEmodel.

• The proposed method is evaluated on a real data open
dataset and can be used to compare the results in other
research works. In addition, the study was implemented
using actual open data that had not previously been used
with the ML algorithm, which future researchers can
widely use for comparative research.

• The proposed method is compared with baseline mod-
els based on extreme gradient boost (XGB), K-nearest
neighbors (KNN), decision tree (DT), random forest
(RF), and naive Bayes (NB) algorithms and shows
improved performance.

The remaining article is outlined as follows. Section II
provides a detailed survey of related work. The proposed
method is explained in Section III. Section IV presents the
experimental dataset, the methods used for comparison, the
evaluation metrics, and the comparative experiment results.
Section V concludes this research. Appendix shows feature
descriptions.

II. RELATED WORKS
Researchers have studied a pilot project of this mapping
approach to explore the first step in understanding the effects
of NG leaks. Some researchers have presented an automatic
encoder-based anomaly detection method for wind turbine
condition monitoring to implement preventive maintenance
programs [14], [15]. The data used in our research are
unlabeled, and the reconstruction-based architecture [16] of
autoencoder (AE) and unsupervised approaches have recently
made considerable strides in this endeavor. Similarly, some
other researchers proposed an unsupervised learning-based
leakage detection method that learns the characteristics of
normal operating conditions by reconstructing input data and
detects tube leakage by calculating its reconstruction error
[17]. Additionally, this paper aims to achieve the best gas leak
detection results by optimizing hyperparameter settings [18].
Recently, various studies have utilized deep learning (DL)

and machine learning (ML) techniques to address the chal-
lenge of detecting gas leaks in industrial control systems.
One such approach [19] introduces a lightweight architecture
called the Long Short-Term Memory Variational Autoen-
coder (LW-LSTM-VAE) and its combination with a one-class
support vector machine (SVM) [20] for anomaly detection
for this purpose. Real-time detection of leaks in natural gas
gathering pipelines is critical to ensuring the safe trans-
portation of energy from production sources. Since leak
samples are rare in real pipelines, modeling healthy data
is a prerequisite for reliable leak detection, and one of the
main solutions is multivariate time series (MTS) [23] feature
analysis. According to the authors [24], reconstruction and
prediction-based one-dimensional convolutional LSTM-AE
are proposed to enhance feature learning forMTS data. Based
on the learned features, a multimodel decision scheme with
one one-class support vector machine (OCSVM) is devel-
oped to deal with leak detection under multiple operation
conditions (MOC).

Moreover, Yang et al. [21] present a new design model
to increase the accuracy of pipeline leak detection. They
combined a one-dimensional convolutional neural network
(1DCNN) for adaptive data feature extraction and an
improved particle-particle optimization algorithm called vari-
able amplitude PSO (VAPSO) to optimize support vector
machine (SVM) parameters. Miao et al. [22] discussed the
important issue of pipeline leakage due to corrosion, which
adversely affects the safety and reliability of oil and natural
gas transportation. The authors proposed a new method for
the general identification of semi-controlled domains using
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FIGURE 1. Architecture of the proposed approach.

laser optical sensing technology, and the experimental results
identified the potential risk of missing with a recognition
accuracy of more than 95%.

In recent years, oil and natural gas pipelines have been
planned to be equipped with leak detection systems to mon-
itor operations and detect leaks. Although leak detection
methods used today cannot prevent leaks, they can play an
important role in limiting the impact of leaks. Many differ-
ent leak detection methods have been developed and tested
[25]. In [26], these methods were studied, their strengths
and limitations were analyzed, and the reliability of leak
detection methods was analyzed. Zhu et al. [27] proposed a
regression-based deep belief network (DBN)model to predict
the amount and rate of valve gas leakage in a natural gas
pipeline system.

In [28], the advantages of the statistical shape anal-
ysis (SSA) method were presented in comparison to
principal component analysis (PCA), discrete wavelet
transforms (DWT), and polynomial curve fitting (PCF) algo-
rithms for improving detection selectivity [29]. Additionally,
Song et al. [30] presented a gas leak detection method for
galvanized steel pipes based on acoustic emissions. Machine-
based approaches to environmental engineering have been
widely used to predict natural gas leaks. Our previous
research used OE normalization and k-means clustering for
data preprocessing [31]. However, we improved the perfor-
mance of our previous study by using a DAE-based outlier
removal process. Classification methods are trained on nor-
mally distributed data. In very rare cases, learning from data
with outlier errors reduces the ability to predict other standard
distributed data. Therefore, in this study, we show that we can
improve the power of the model by first removing the outlier

values during training and then training themodel on themost
normally distributed data.

Autoencoders are widely used for reducing data dimen-
sions [32] by learning data [33] representations [34] and fault
detection in acid gas removal units [35]. The authors of [36]
used a clustering algorithm and reconstruction error from the
deep autoencoder model to detect outliers in an unsupervised
mode. Another autoencoder usage is to remove image denois-
ing and time-series data. In the following, we introduce the
proposed model with an open urban dataset that can be easily
extended to the case of dataset batches.

III. METHODOLOGY
The proposed approach has four modules: data-create pro-
cessing, data preprocessing, data labeling, and predictive
analysis. The general architecture of the proposed method is
presented in Fig. 1. The first module describes the research
procedure by creating a CH4 dataset from an IoT-based
mobile vehicle. As shown in the figure, the re-search pro-
cedure and the data processing steps have several stages,
as mentioned in the related literature [1]. The second module
uses DAE and OE transformation techniques. As a result of
this module, normalized clean data are passed to the k-means
algorithm in the next module for data labeling. After that,
several machine learning algorithms are trained using the
prepared experimental data.

A. DATA PREPARATION
This work uses vehicles based on IoT technology to detect gas
leakage rates usingmachine learning using data from a survey
of outdoor street CH4 leakage [1]. These mobile surveys
frequently combine data processing algorithms to provide a
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variety of data outputs, including maps showing the locations
of leaks and estimates of their magnitude. Based on the time
stamp from the vehicle position, this module first examined
the atmospheric CH4 concentrations. The CH4 concentration
[37] is filtered for each set of increased values following the
baseline computation. Subsequently, the CH4 emission rate
is determined. Afterward, the primary location of the natural
gas leak was identified, and the highest CH4 concentration
was measured for real-time stamp indication. Finally, the data
collected for the visualization of the combined roadwayswere
examined for leak indicators. Weller et al. [38] investigated
the relationship between leakage indicators and the occur-
rence of actual leaks in their study, as well as possible biases
in leak size estimations. Their analysis determined emissions
by calculating the mean natural logarithm of the maximum
excess CH4 during peakswith 20 ormore observations. Addi-
tionally, they conducted Monte Carlo simulations to assess
the variability of emissions based on the estimated emission
levels derived from all observed leakage events. In this pro-
cess, they randomly selected a specific number of detections
(observed peaks) from a pool of all confirmed peak detections
for each given number of detections. They then calculated
the average percentage difference between the simulated and
reference emission levels for each verified peak, yielding
numerical values [39]. Environmental characteristics include
longitude and latitude features [40].

B. DATA PREPROCESSING
We use a DAE to clean our data. The AE is an unsupervised
artificial neural network that learns how to efficiently com-
press and encode data and then reconstruct the data from
the reduced encoded representation to a representation as
close to the original input as possible [41]. The structure of
the AE consists of an encoder and a decoder. The encoder
compresses input data by reducing the data dimension, while
the decoder reconstructs the compressed data into output.
Thus, the number of input neurons equals the number of
output neurons in the AE [42]. The RE [43] of the AE is the
difference between the input and its reconstructed output.

Fig. 2 shows the structure of the proposed AE model in
this study. First, it projects input X to a lower dimension
that works in the encoder; then, it reconstructs output X’
from the low-dimensional projection in the decoder. Sequen-
tially, the proposed AE has five hidden layers with 17, 14,
5, 1, 5, 14, and 17 nodes. Moreover, hidden layers in the
encoder use the ‘‘ReLU’’ [44], [45] activation function and
hidden layers in the decoder use the ‘‘tanh’’ [46] activation
function. In summary, 17 features after min-max normaliza-
tion are used to train the AE, where the activation functions
for the encoder and decoder are the rectified linear unit
(ReLU) and hyperbolic tangent (tanh), respectively. In other
words, the AE learning process compresses the input into a
lower-dimensional space called the latent space and decom-
presses the compressed data into output that closely matches
the original data [47]. Then, it calculates the difference

between the input and reconstructed output and changes the
network weights to reduce this difference.

FIGURE 2. Structure of the proposed DAE method architecture of the
proposed approach.

First, we trained the DAE model on the whole dataset.
Then, we calculated their reconstruction errors by themean of
the squared difference between the input and output described
in expression (1):

RE =
1
n

∑n

i=1

∥∥xi − x ′
i

∥∥2
2 (1)

where n is the number of records, x is the original input, and x ′

is the reconstructed input. First, the RE of the training dataset
was calculated using the DAEmodel. The mean and standard
deviation of these REs were then used to estimate a threshold
for splitting the training dataset, which can be described as
follows.

Threshold =
1
k

n∑
i=1

RE +

√√√√1
k

n∑
i=1

[
REi −

1
k

n∑
i=1

REi

]
(2)

where k is the number of instances in the training dataset
and REi is the reconstruction error of the i th training
instance. Consequently, two different training datasets were
prepared, and the RE-based threshold was estimated for fur-
ther analysis. Subsequently, a threshold was used to select
an appropriate hypertension prediction model from the DAE
models that were trained on the two prepared datasets. For the
DAEmodel, the learning rate was configured to minimize the
mean squared error set to 0.001, and the Adamax optimizer
was employed [48]. The batch size was set to 32 and the
number of epochs was specified to 1000. The performance
of the DAE model was compared under different threshold
values for the CAR_SPEED feature in Table 2. This table
helps to understand how the DAE model performs with vary-
ing threshold settings. It provides information about mean
values, variability, and statistical significance of the model’s
performance. The MSE between predicted and actual values

VOLUME 11, 2023 140743



K. Dashdondov et al.: NDAMA: A Novel Deep Autoencoder and Multivariate Analysis Approach

TABLE 2. Comparative results of threshold values for DAE model.

FIGURE 3. Plots of CH4 data (a) with and (b) without outliers by
significant probability.

was measured to be 0.021 for the Original Dataset, 0.0186 for
the high threshold, 0.0185 for the medium threshold, and
0.0184 for the low threshold. Lower MSE values indicate
better performance of the model. The t-test and p-values sug-
gest significant differences between the original dataset and
each threshold category. Mean differences and confidence
intervals were also calculated to provide more insight into
the impact of thresholding on the CAR_SPEED feature. The
mean value difference between the original dataset and each

FIGURE 4. Plots of CH4 data with and without OE transformation:
(a) without OE and (b) with OE of CH4.

threshold category was calculated, which showed that the
mean difference for the original dataset was 4.174. For the
high threshold, it was 3.852; for the medium threshold, it was
3.862; and for the low threshold, it was 3.862.

Based on our analysis, we added the mean and standard
deviation, which we named ‘‘low,’’ to calculate a threshold
value for comparison. We calculated the 75th percentile as
‘‘high’’ and the 50th percentile as ‘‘medium’’ using this
threshold value and compared the results in Table 2. Our
findings revealed that a lower threshold value of 0.0409 led
to better outcomes for the selected data.

Fig. 3 shows data with andwithout outliers from the dataset
by several values. Fig. 3 (a) shows the original dataset with
outliers. Fig. 3 (b) shows a plotted dataset without outliers
based on the DAE method. After that, the outlier threshold
value is estimated by summing the average reconstruction
error and standard deviation. Then, if the reconstruction error
of the data exceeds the threshold value, these data will be
removed from the dataset. In this figure, N means the number
of cases.

This module’s last step is to normalize outlier-removed
data using the OE transformation technique. We encode
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FIGURE 5. Target dataset based on the CH4 open dataset.

categorical variables as an integer array. The input of this
transformer is identical to the integer or a string array and rep-
resents a value obtained according to the category (discrete)
characteristics. This section converts features into ordinal
integers. As a result, one integer column (0 to n-1) appears
in one element, and n is the number of categories [31]. Fig. 4
shows plots of CH4 with and without OE by number of
categories.

C. DATA LABELING
This module selects the CH4 feature, which is the value
of methane from the preprocessed dataset for data label-
ing. As the first open dataset had no labels, we used the
k-means algorithm, a multivariable clustering method devel-
oped by MacQueen in 1967 [49]. It divides the samples into
k subgroups of n samples in the most comparable class.
The Euclidean norm measures the distance between data
points and each cluster’s core point (centroid). Based on the
result of the k-means algorithm, we assigned the class label
[1], [2] as low, medium, or high. When we use OE trans-
formation, there is no imbalance problem when we divide
labels by the k-means clustering algorithms. Additionally,
this formed label range is close to the theoretical range.
This is another advantage of using OE transformation in our
research. Finally, we combine the class labels with the outlier
removed dataset except for the CH4 feature because the CH4
feature is used to determine class labels [50].

D. PREDICTIVE ANALYSIS
We train machine learning-based RF, KNN, XGB, DT, and
NB algorithms [49] on our experimental dataset. We split the
training dataset base 70% for training and 30% for testing.

NB: Naive Bayes is a probability-based classification
algorithm. It computes the probability for each class label and
selects the class label with the highest probability and cal-
culates the probability by considering all features separately.
It is called conditional independence.

KNN: The k-nearest neighbor algorithm is used for clas-
sification purposes. First, a user defines the value of the k

parameter, which is the number of nearest samples used for
prediction. Then, all distances between the test data and the
training dataset are calculated and sorted in descending order.
Finally, the top k instances from the ordered dataset are used
to predict the class label. The majority-voted class label will
be assigned to the output label.

DT: The decision tree classifier is an interpretable label and
a commonly used algorithm. It builds a model to predict the
target variable via decision rules trained from the data.

RF: The random forest is a type of ensemble algorithm.
It consists of several decision tree classifiers trained in dif-
ferent subsamples of the whole dataset. For prediction, the
majority-voted class label of these decision trees is chosen as
the output.

XGB: XGBoost [51] uses a method called CART (classi-
fication and regression) in which all leaves are related to the
final score of a model, unlike the decision-making tree that
only considers the result values of leaf nodes [52]. While a
common decision-making tree is interested in how well the
classification performed, CART enables the comparison of
superiority among models that retain identical classification
results.

IV. EXPERIMENTAL STUDY
A. DATASET
In this study, the open gas leak dataset is used [53]. Natural
gas (NG) masses were measured using a Picarro CH4 sensor
and a Google Street View machine [1]. This refers to gas
sensors that are resistant to fire and wired and wireless
transmitters that can be used in high-sensitivity facilities.
In addition, the vehicle used is an IoT-based remote monitor-
ing system with a dual-antenna diagnostic solution used for
real-time data aggregation analysis [54], [55]. Furthermore,
we present a list of environmental and gas features in raw data
properties of NG found in mobile-device-based methane gas
research [1], [2]. Among 78,811 case data in total, ‘‘Date’’
and ‘‘Time’’ were used as indices to eliminate duplicate
and missing values. Fig. 5 shows the procedure for creating
the target dataset. Initially, we removed a row of missing
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values and features unrelated to gas leaks, after which there
were a total of 69,824 records from 78,771 records origi-
nally and 17 features from 34. After removing outliers from
69,828 records, 61,148 records remained. Fig. 5 expresses the
standard deviation of 32-dimensional data among the total
34-dimensional data excluding ‘‘Date’’ and ‘‘Time’’. Data
for ‘‘Frac_Days_Days_Jan1’’, ‘‘Frac_Hrs_Since_Jan1’’,
‘‘Julian_Days’’, and ‘‘Epoch_Time’’ where the standard
deviation was ‘‘0’’ were removed. The descriptions of fea-
tures in Table 7 are shown in Appendix.
In the process, ‘‘Alarm_Status’’, ‘‘Inst_Status’’, ‘‘Cav-

ity Pressure’’, ‘‘Gps_Abs_Lat’’, ‘‘Gps_Abs_Lon’’ and
‘‘Ws_Rotation’’ of which the deviation of feature data
had dis-appeared additionally were eliminated addi-
tionally and, thus, the final 14 features, where the
gas feature is ‘‘CH4’’, and environmental features are
‘‘Car_Speed’’, ‘‘Cavitytemp’’, ‘‘Ws_Wind_Lat’’, ‘‘Warm-
boxtemp’’, ‘‘Ws_Cos_Heading’’, ‘‘Ws_Sin_Heading’’,
‘‘Wind_E’’, ‘‘Wind_Dir_Sdev’’, ‘‘DasTemp’’, ‘‘Wind_N’’,
‘‘Ws_Wind_Lon’’, ‘‘EtalonTemp’’ and ‘‘OutletValve’’, have
been used for data analysis in the next stage. Table 3 shows
the number of records in each class for the testing and training
process.

TABLE 3. The number of records in each class.

B. EVALUATION METRIC
The performance evaluation was completed using accuracy,
AUC, F1-score, mean Intersection over Union (mIoU), and
MSE [47]. We can find the precision and recall as follows
where TP is true positive, FP is false positive, and FN is false
negative:

Precision =
TP

(TP+ FP)
,Recall =

TP
(TP+ FN )

(3)

Precision and recall are important metrics for evaluating
classification models. Precision measures the accuracy of
positive predictions, while recall measures the model’s ability
to identify all positive instances. These metrics are useful for
imbalanced datasets or when the cost of false positives and
negatives varies.

The F1 score is the harmonic mean of precision and recall
as follows:

F1 =
2 · Precision · Recall
(Precision+ Recall)

(4)

We studied the multiclass case, and the average of the F1-
score of each class label with weighting depends on the
average parameter, as shown in (4).

FIGURE 6. Comparison charts of the datasets. (a) Learning rate and
max_depth; (b) depth and n_estimators; (c) accuracy score and
max_depth Target dataset based on the CH4 open dataset.

Accuracy is a measure of the degree of closeness of the
calculated value to its actual value. Accuracy is the sum of
the true positive (TP) fraction and true negative (TN) fraction
among all the test data, as shown in (5).

Accuracy =
TP+ TN

TP+ FP+ FN + TN
(5)

The AUC (Area Under the Curve) is a crucial metric for
multiple classification models as shown in (6). It’s calcu-
lated by finding the area under the ROC (Receiver Operating
Characteristic) curve with false positive rate (FPR) and true
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TABLE 4. Evaluation results of the compared algorithms on the experimental dataset (%).

positive rate (TPR). A higher AUC value indicates better
model performance, making distinguishing between positive
and negative instances easier. It’s beneficial for imbalanced
data sets or when the cost of false positives and negatives
varies.

AUC =

∑n

i=1

(FPRi + FPRi+1) · (TPRi+1 − TPRi)
2

(6)

In addition, one of our evaluated metrics is the mean squared
error (MSE) for the predicted leaks relative to actual values:

MSE =
1
mn

∑m−1

i=0

∑n−1

i=0
[X (i, j) − Y (i, j)]2 (7)

with m and n being the number of observations, where m is
the number of data points and n is predicting NG. X and Y
are the actual and predicted values for the i, jth data point,
respectively.

In addition, our models were evaluated using Jaccard loss,
also known as the Intersection over Union (IoU) metric,
a standard measure for assessing segmentation performance
[56], [57]. As part of our experimental design, we computed
the mIoU, which is a widely accepted metric for evaluat-
ing semantic segmentation models. The mIoU is determined
by calculating the ratio of true positive pixels to the sum
of true positives, false negatives, and false positives across
all segmented pixels. This calculation is expressed by (8),
underscoring the significance of accurately delineating target
classes to achieve a high mIoU score as follows [58]:

mIoU =
1
Nc

∑Nc

i=1

TP∑Nc
j=1 FP+

∑Nc
j=1 FN − TP

(8)

where Nc is the number of classes.

C. HYPERPARAMETER RESULTS
For better results, we tuned some XGBoost hyperparameters
using the grid search infrastructure in scikit-learn [59] on
the target dataset. In Fig. 6 (a), we show a plot of each
learning rate as a series showing f1-weighted performance
as the number of trees varied. In this figure, we show that
the best result observed was a learning rate [60] of 0.1 with
500 trees. We can see that the expected general trend holds,
where performance improves as the number of trees increases
[5]. Next, in Fig 6 (b), we show a relationship between the
number of trees in the model and the depth of each tree.
We created a grid of 9 different n estimators’ values (100
to 500) and 6 different max depth values (2, 4, 6, 8, 10,
12), and each combination was evaluated using 10-fold cross-
validation. A total of 9 × 6 × 10 or 540 models were trained
and evaluated. We can see that the best result was achieved
with n estimators of 400 and a maximum depth of 5 in a f1-
weighted score, but there was no significant difference from
a maximum depth of 10.

Finally, we used the grid search capability built into
scikit-learn to evaluate the effect of different subsample val-
ues from 0.1 to 1.0 on the target dataset. In Fig 6 (c), we show
these mean and standard deviation log loss values to obtain
a better understanding of how performance varies with the
subsample value.We can see that 40% achieved the best mean
performance, but we can also see that as the ratio increased,
the variance in performance was almost the same.

D. PERFORMNCE EVALUATION
Data preprocessing and predictive analysis modules were
implemented in Python using the sklearn library [53].
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The data First, the performance of the baseline models
is measured to compare them with our proposed method.
We directly trained baseline models on the raw dataset
using the machine learning algorithms shown in Fig. 1.
Additionally, OE-based baseline models are trained on the
dataset without removing outliers. All of these are machine
learning algorithms that consider the same datasets and
features/performance metrics. Therefore, DAE-OE-XGB is
compared with other machine learning algorithms as well
as with the proposed algorithm. By comparing the proposed
algorithm with other machine learning algorithms, our model
performed well when considering various features, such as
accuracy, AUC, MSE, F1-score, and mIoU score. Table 4
shows the baselinemodels’ and proposedmethods’ compared
performances, where the highest values of evaluation scores
are marked in bold. As a result, OE-based data normalization
can improve the performance of models that were trained on
raw datasets. Moreover, the combination of DAE-based out-
lier removal andOE-based data normalization in the proposed
methods outperformed all compared baselines.

The KNNmodel showed the best accuracy of 98.57%, and
it improved to 98.62% when using OE-based normalization
on the baseline model. The XGBoost algorithm gave the best
result of all the compared models, with an accuracy rate of
99.193%, an F1-score of 99.38%, an MSE of 0.004, mIoU
of 99.18% and an ROC of 99.53%. The DAE-OE-RF model
achieved the second-best accuracy rate of 99.013%, F1-score
of 99.23%, MSE of 0.005, mIoU of 99.07% and AUC of
99.41%. The DAE-OE-NB model exhibited lower results
than the other proposed predictive models for the evaluation
metrics. The NDAMA-XGBoost algorithm yielded the best
results of all the models compared, with an accuracy rate of
99.51%, F1 score of 99.501, MSE of 0.003, mIoU of 99.40%
and ROC of 99.618%.

TABLE 5. The Statistical significant of the overall mean accuracy, p-value,
and log loss evaluations for gas leakage prediction NDAMA algorithms.

TABLE 5 shows the results of ROC curve analysis
for NDAMA methods. For all of the compared methods,
accuracy (p-value<0.000001) was statistically significant.
A low p-value (typically below a significance threshold like
0.05) may indicate that a model’s performance is statis-
tically significant [58]. Although the NDAMA improved
the performance of single algorithms, the NDAMA_XGB
outperformed the other NDAMA methods. In the case of
XGB, accuracy was 87.57, and it has been improved to 99.51
(95% CI, 99.39-99.63) by using DAE based NDAMA_XGB,
shown in TABLE 5. Finally, ‘‘Log loss’’ is a metric used to

assess the accuracy of probabilistic predictions made by a
model. It measures how well the predicted probabilities align
with the actual outcomes. A lower log loss indicates better
performance. For example, the NDAMA_XGB model has a
log loss of 22.79. Generally, higher accuracy, lower variance,
and lower log loss are desirable characteristics for a model
[61].

In Fig. 7, we present box and whisker plots illus-
trating the mean accuracy scores obtained through k=10
cross-validation. Our findings revealed that XGB exhibits
consistently high accuracy with minimal variance, which is
a promising result. Notably, the unexpectedly poor perfor-
mance of NB stands out.

FIGURE 7. Comparison a box and whisker plot for mean accuracy of the
proposed NDAMA methods.

The NDAMA-based method exhibited lower results than
the other proposed predictive models for evaluation metrics.
We provided multiclass ROC curves for each model com-
pared with the average ROC curves in the target dataset in
Fig. 8.

FIGURE 8. Receiver operating characteristic curves of the algorithms
compared to the DAE-OE method.
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The ROC curves for each comparative method on the
target dataset with 10-fold cross-validation are clearly dis-
played in Fig 9. When the training set is divided into several
subsets, it is feasible to compute the mean area under the
curve and view the variance in the curve for 10-fold cross-
validation. As a result, Fig. 9 shows the ROC curve for
each cross-validation process with the mean. As noted above,
we propose to find better model performance to predict
XGBoost and RF for this dataset. Next, we compared our
proposed methods to show the effects of different modules
by the XGBoost algorithm, as shown in Fig 9.

FIGURE 9. Comparison of the proposed modules and other guidelines for
the XGBoost algorithm.

Compared with other state-of-the-art AE-based methods
for gas leak detection, our proposed NDAMA method shows
the best performance in all cases. Table 6 shows the results
compared with other state-of-the-art AE-based methods for
gas leak detection.

TABLE 6. The comparisons of classification applications of ML models
using other methods for gas leakage.

V. CONCLUSION
This study proposed a method consisting of three modules to
predict gas leakage. Preparing efficient training data through
data preprocessing and data labeling modules has dramat-
ically improved the productive performance of machine
learning algorithms. Using this method to create gas leakage
data levels for air assessments in Korea is also possible.

TABLE 7. The environmental feature description of the target dataset.

In other words, we used a DAE model to distinguish highly
distorted parts from the raw dataset, and the AEmodel fits the
more commonly distributed majority dataset to reconstruct
them with a minor error. Therefore, outliers can be easily
distinguished by the AE model. The data were normalized
using OE transformations and k-means clustering, and the
experimental data were ready. The DAE-OE-XGB model
had the best results from constructing a predictive model
using RF, KNN, XGB, DT, and NB algorithms on the pre-
pared experimental dataset. According to the accuracy scores
achieved after k = 10 cross-validation, the NDAMA_XGB
model is accurate, which means it predicts the target vari-
able accurately around 99.51% (95% CI, 99.39-99.63) of the
time. The proposedNDAMAmethods significantly improved
the accuracies of the DAE-OE and other baseline methods.
Finally, the log loss of the NDAMA_XGB model is 22.79,
so it can be concluded that the model has high accuracy,
low variability, and low log loss, so it is an effective model.
As a consequence, the proposed framework emerged as the
best predictive model, capable of significantly outperforming
existing state-of-the-art baseline models.

APPENDIX
FEATURE DESCRIPTIONS
We conducted a general description of the environmental
features used in the experimental study for the target dataset,
as shown in Table 7.
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