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ABSTRACT The increasing integration of Inverter Interfaced Distributed Generators (IIDGs) into distribu-
tion networks has led to a more active nature of the grid. However, the accuracy-speed trade-off caused
by iterative algorithms and simplified models in the short-circuit current calculation method for active
distribution networks (ADNs) is becoming more prominent. To address this issue, we propose a novel
approach that utilizes Graph Convolutional Neural Networks (GCNs) for short-circuit current calculation
in ADNs. Our study explores the characteristics of short-circuit current in different network structures
and evaluates the feasibility of representing electrical quantities using a graph data format. The proposed
method employs the GCN model to calculate multi-output ADN short-circuit current and investigates
the block construction of the GCN model. Algorithm analysis demonstrates that our method effectively
calculates network-wide short-circuit current under various network structures, IIDG penetration rates, and
fault conditions, meeting both accuracy and computational speed requirements. The proposed method offers
several advantages, including superior precision, rapid computation, minimal hardware resource utilization,
and robust resistance to interference.

INDEX TERMS Short-circuit current calculation, graph convolutional neural network, multi-output regres-
sion, inverter interfaced distributed generator, active distribution network.

I. INTRODUCTION
The global adoption of low-carbon targets has popularized
the generation of new energy sources across the world.
Integrating decentralized new energy into Active Distribu-
tion Networks (ADNs) enables the efficient development
and utilization of Inverter Interfaced Distributed Generators
(IIDGs), gradually transforming the distribution network into
an active system [1].

The IIDGs introduce strong non-linear characteristics to
the ADN, particularly affecting the short-circuit current after
a fault incident [2]. This renders the conventional method
for calculating short-circuit currents in distribution networks
obsolete [3]. Short-circuit current calculations play a vital
role in Relay Setting and Coordination, Fault Location, and
Protection Equipment Selection. Consequently, many schol-
ars have undertaken research in the field of ADN short-circuit

The associate editor coordinating the review of this manuscript and

approving it for publication was Qiang Li .

current calculation, with the primary focus on enhancing
calculation accuracy and speed [4], [5], [6], [7], [8].

In an effort to elucidate the alterations in ADN short-
circuit current distribution following a fault occurrence, cer-
tain researchers have endeavored to formulate an intricate
model for Inverter-Interfaced Distributed Generators (IIDGs)
[7], [8], [9]. This detailed IIDG model comprehensively
represents the transient-to-steady-state changes in current
subsequent to an ADN fault [8]. While this detailed model
exhibits a commendable ability to accurately compute ADN
short-circuit current distribution, its complexity, and the intri-
cate calculation procedures introduce unnecessary iterations,
thereby diminishing calculation speed [9]. As the number
of IIDGs in the system grows, the computational efficiency
of the detailed model experiences a notable decline, and the
potential for non-convergence becomes a concern in larger
ADNs.

To enhance calculation speed, certain researchers have
put forth a streamlined and refined approach for calculating
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short-circuit currents [10]. These simplification efforts can
be categorized into two distinct approaches: one involves
streamlining the iterative calculation procedures, while the
other focuses on simplifying the IIDG model itself [11].
The streamlined iterative process can be further classified
into two categories: enhancements to the iterative compu-
tation method and the disassembly of computational tasks
based on the superposition theorem. Although the simplified
iterative process yields more pronounced speed improve-
ments, it comes with slightly stricter assumptions, potentially
increasing the risk of inaccuracies in the short-circuit cur-
rent calculations [12]. The simplified IIDG model primar-
ily aims to linearize the post-fault output of IIDGs. This
simplification often involves focusing solely on the output
amplitude while disregarding the specific changes in active
and reactive outputs, or it may exclusively consider the
changes in reactive power while ignoring alterations in active
power [13], [14]. Although these simplification methods for
short-circuit current calculations effectively enhance calcu-
lation speed, they come at the cost of reduced accuracy
or limited applicability due to the underlying assumption
conditions [15].

Certain scholars have introduced a calculation approach
founded on machine learning techniques to address the
trade-off between speed and accuracy in current distribution
calculations within ADNs [16], [17], [18]. The ML method
tackles the accuracy issue in electric current calculations
by learning the mapping between electrical characteristics
and short-circuit currents. A substantial dataset of corre-
spondences between ADN characteristics and short-circuit
current distributions is gathered from comprehensive sim-
ulation models encompassing both ADN and IIDGs. ML
methods demonstrate similar or smaller computational errors
and faster computational speeds compared to detailed mod-
eling methods. However, existing ML methods struggle to
adapt to ADNs with different network structures, requiring
retraining when the network structure changes. Developing
a separate short-circuit current calculation model for each
network structure is impractical, particularly in ADNs with
numerous network structure combinations, which may lead
to quantity disaster of the model.

The utilization of Graph Convolutional Neural Networks
(GCN) and a graph data format for storing ADN information
offers a promising solution as it preserves the network struc-
ture [19]. The GCN method exhibits robust capabilities for
handling graph data while also retaining the inherent physical
significance of the graph data itself [20].

Therefore, in this paper, we introduce a novel method
based on GCN for calculating short-circuit currents in ADNs.
Our approach addresses the trade-off between accuracy and
speed that is typically encountered in traditional short-circuit
current calculations, especially when there are changes in
the network structure. The main objective is to train a
short-circuit current calculation model capable of accurately
determining the network-wide short-circuit current following

any line fault in any network structure of the ADN. The
contributions of this paper are as follows:

1) To concurrently achieve both accuracy and speed in
ADN short-circuit current calculations, the GCN method is
employed to address the challenge of necessitating multiple
machine learning models due to topological shifts in network
structure. Leveraging the sensitivity of GCN to graph topol-
ogy and graph data, this approach can yield commendable
model performance with a moderate quantity of samples,
thereby enhancing the versatility of computational models.

2) By employing the line-graph concept, input features
encompassing current characteristics, fault attributes, and
IIDG features are amalgamated. The MP framework relays
these input features along the shortest path within the net-
work’s topology, allowing theGCNmethod to discern various
fault scenarios and IIDG outputs. This process enhances the
precision of short-circuit current calculations.

3) Various ADNs with distinct network structures produce
labeled current data that may exhibit a Long-Tail effect. The
input features can be differentially distinguished by employ-
ing Laplacian matrix transformation, facilitating a distinctive
mapping of the labeled current data and effectively mitigating
the Long-Tail issue.

The structure of this article is as follows: In Section II,
analyze IIDG’s fault characteristic. In Section III, we delved
into the GCN method and its application as a solution to
the challenge of computing short-circuit currents in ADNs.
Moving on to Section IV, we explored the approach centered
around the GCN-based method for short-circuit current cal-
culations, specifically focusing on addressing the Long-Tail
challenge. SectionV provides validation of themodel through
practical examples, encompassing scenarios encountered in
real-world applications. Finally, in Section VI, we summarize
the approach proposed in this paper.

II. FAULT ANALYSIS OF ADN
ADNs necessitate IIDGs to supply currents that align with
the specific requirements contingent on the operational con-
ditions. Consequently, IIDGs employ various control strate-
gies, including voltage-controlled IIDGs (V/f-IIDG) and
PQ-controlled IIDGs (PQ-IIDG). V/f-IIDG is predominantly
employed in microgrids, while PQ-IIDG finds greater utility
in ADNs that are interconnected with the primary grid [21].

In this paper, our focus is solely on ADNs that are inter-
connected with the primary grid. In such networks, the IIDGs
produce only positive-sequence components in their outputs.
When evaluating fault scenarios using a composite sequence
network, the positive sequence network must account for the
IIDG as an injected current source. In the event of a fault
within the ADN, compliance with grid regulations mandates
that IIDGs maintain a specified support voltage and refrain
from disconnecting immediately. This requirement is known
as LowVoltage Ride Through (LVRT) [22]. LVRT entails that
IIDGs adjust their output current levels based on the voltage
dips they experience. The specific equation governing LVRT
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is as follows: Iq = 0

Id =
S

UPCC

UPCC > 0.9UN (1a)


Iq = K ∗ IN ∗ (0.9 −

S
UPCC

)

Id =

√
(K ∗ IN )2 − I2q

0.2UN ≤ UPCC ≤ 0.9UN

(1b){
Iq = K ∗ IN
Id = 0

UPCC < 0.2UN (1c)

where Iq and Id are the reactive and active current components
output from the IIDG, respectively. S is the IIDG capacity.
UPCC is the IIDG access bus voltage.UN is the rated voltage,
IN is the rated current output from the IIDG, and K is the
current limiting multiplier of the IIDG.

From (1), it highlights that the extent of voltage drop
plays a pivotal role in determining the operating state of
the IIDG. This determination hinges on variations in both
reactive and active output levels. In (1b), an escalation in
reactive output coincides with a reduction in active out-
put, resulting in concurrent alterations in both the overall
output magnitude and phase. This phenomenon represents
a non-linear transformation process. Moreover, the output
in (1b) assumes a complex form, introducing complexity
into the calculation that involves complex numbers. In the
context of short-circuit current calculations, this complexity
poses challenges, increasing the computational difficulty, the
number of iterations, and overall computation time.

The output formula is characterized by non-linearity,
and the switching behavior of the three phases within the
LVRT exhibits non-linear traits. These operation phases are
continuous but lack differentiability concerning each other.
When we can only ascertain that the IIDG is in one of the
states (1a), (1b), or (1c), we can describe the IIDG’s output
using a computational formula. Furthermore, we can specify
the output of the IIDG in this context. During the iterative
calculation of short-circuit currents, each IIDG can exist in
three possible output states, and when there are N IIDGs, the
total number of potential output states for IIDGs following
an ADN fault is 3N . As the number of IIDGs increases, the
complexity of ADN short-circuit current calculations surges,
as evidenced by the exponential growth in the number of
iterative computations, leading to a substantial increase in
computational time.

Hence, the paramount challenge in conducting short-circuit
current calculations for ADNs lies in precisely ascertaining
the output of each IIDG following a fault event. Each specific
fault scenario corresponds to a distinct set of IIDG output
scenarios and distributions of steady-state short-circuit cur-
rent [23]. Building upon this understanding, the GCN-based
short-circuit current calculation method introduced in this
paper demonstrates practical feasibility and applicability for
ADNs.

III. GCN METHOD
A. GRAPH CONVOLUTIONAL NEURAL NETWORK AND
MESSAGE PASSING
The graph is a form of unstructured data, represented using
a set of nodes V and a set of connected edges E, i.e., the
set of graphs is G = (V,E). The graph structure as shown
in Fig. 1(a) has V = [v1, . . . ,vi, . . . ,v6] denote the set of
nodes, vi are vectors containing N features; eij is the edge
relationship between nodes vi and vj, and the set of eij
is E [24].
GCN is an ML-based method that aggregates the feature

information of nodesV based on connected edgesE [25]. The
aggregation process of graph data is shown schematically in
Fig. 2. In the Fig. 2, vab denotes the b− th node at a− th layer,
which is generated by aggregating node b at layer a− 1 with
its neighboring nodes. In Fig. 2, v32 in layer 3 can sense the
feature information contained in the non-adjacent v14 nodes.
This indicates that the GCN can effectively aggregate the
feature information of the nodes on the graph.

FIGURE 1. Example of graph structure.

FIGURE 2. Schematic diagram of node aggregation of GCN.

In this paper, the MP method is chosen as the framework
structure of the GCN method.MP can not only improve the
aggregation ability of GCN, but also has the ability to improve
the accuracy of the output [26]. The primary objective of the
MP framework is to aggregate the information from multiple
nodes while reducing the number of corresponding nodes.
A full operation involving graph convolution and readout is
referred to as a complete MP operation. The MP framework
can be mathematically expressed as follows:

X̃ , Ã = fsoftplus(freadout (fConv(X,A))) (2)
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where X denotes the input node feature for each MP oper-
ation, fConv denotes the convolution operation of MP, and
freadout denotes the readout operation of readout, and each
layer is processed using the activation function fsoftplus after
the operation. Each layer of MP changes the node features
and node connectivity relationships of the input graph. The
new node features is X̃ and the new adjacency matrix is Ã.

Yout = fsoftplus(W · X̃ + b) (3)

The training process of MLP is essentially learning a
weights matrix W and bias vectors b. The goal of MLP is to
establish the mapping relationship between the final node X̃
ofMP and the output targetYout . The Softplus as an activation
function is used to smooth the output values and prevent non-
convergence. The final output target value is noted as Yout .
In ADN short-circuit current calculation, the near-fault

short-circuit current is large, and the short-circuit currents
of the upstream and downstream branches of the near IIDG
buses will have IIDG boost or draw situations. The MP
framework can increase or decrease the transmitted feature
information according to the node distance of the graph data,
which ensures that the near nodes feel more information and
the far nodes feel less information. X̃ in (3) has the property
of conforming to the ADN short-circuit current distribution
even though X̃ converges to Yout . this reduces the possibility
of the variation of W and b, which enhances the accuracy of
the short-circuit current computation to some extent.

B. LAPLACIAN MATRIX
The graph data with different structures need to be processed
for different structures in order to improve the GCNmethod’s
ability to perceive different network structures. The features
corresponding to different structure graph can be extracted
using the graph convolution Laplace matrix transform. The
Laplace matrix transform needs to first express E as an
adjacency matrix A. Using A, the degree of each node can
be computed as d(vi). From d(vi), the degree matrixD can be
formed, whose main diagonal element Dii is expressed as:

Dii = d(vi) (4)

The graph convolution Laplacian matrix L corresponding
to the current Amatrix is obtained using the adjacency matrix
A and the degree matrix D [27]:

L = D− A (5)

Using L, the unit orthogonal feature vector ψ+ can be
found. Based on ψ+, it can achieve different and unique pro-
jectionmappings for graphswith different network structures.
As a result, ψ+ can achieve a unique vector transformation
of the operation mode, fault conditions and IIDG outputs of
ADNs with different network structures in the new orthogo-
nal space. This can enable a GCNmodel to effectively handle
the problem of short-circuit current calculation for ADNs
with different structures. In addition, the use of Laplacian
matrix to map the features to the new vector space for lin-
earisation can improve the computational speed of the GCN

model [28].Moreover, by usingL andψ+, Kirchhoff’s current
law is still upheld when recreating the present operational
state in the graph data of the ADN. Different network archi-
tectures can use this transformation [20].

C. ADN’s GRAPH REPRESENTATION
For the graph representation, the ADN line should be treated
as E and the ADN buses should be V. However, as mentioned
earlier, the ADN operation is represented using the current
values obtained from the line measurements. In order to be
able to represent the current characteristics in a reasonable
way, the graph representation in this paper chooses to use
the line-graph approach for the representation [29]. It means
that the branches of the original ADN as buses in the graph
and the interconnected relationships between the branches
as edges in the graph. In this regard, it needs to be treated
as the representation of Fig. 1(b), where Vij in Fig. 1(b) is
represented as a node consisting of eij in Fig. 1(a).

The graph features of the ADN should include relevant
information about the operational mode and faults in the nor-
mal state of the network. The normal operation of the ADN is
characterized by the branch currents, which can be obtained
through current measurements using current transformers
installed at the first end of each branch. These branch currents
provide valuable data for capturing the normal operating
conditions of the ADN and are therefore incorporated as part
of the graph features in the calculation process. The branch
current information is three-phase current effective values
IAi , IBi , ICi , where the subscript i indicates the i-th branch.
The IAi , IBi , ICi of all branches imply the operation of the
distribution network. For two-phase or single-phase lines, the
missing phase current is filledwith 0. In addition to the branch
current characteristics, the IIDG capacity value SDGi is also
part of the operating mode. Fault information then contains
fault type Ftype, fault location Floc, and fault transition resis-
tance Ron. For a distribution network with K branches, each
branch has the same number of graph node characteristics,
and graph node vi has the following characteristics:

vi = {IAi , IBi , ICi , SDGi ,Ftype,Floc, Ron} i = 1, 2, · · ·K

(6)

In (6), SDGi is unique to the IIDG branch and other
branches are padded with zeros for this feature. Floc indicates
the percentage of the fault location from the head of the line,
i.e. Floc⊂ [0, 1) , and when Floc= 0, the fault is considered
to have occurred at the head node. Ron is the transition
resistance. Ftype uses integers from 1 to 11 to indicate dif-
ferent types of faults. The Ftype, Floc, and Ron of non-faulted
branches are filled with 0.

The ADN-specific graph node VADN can be obtained
using (6). Since the electrical characteristics of the ADN
branches are chosen for the graph node characteristics, the
edge set E is chosen for the connection relationship of the
branches accordingly, which can construct the adjacency
matrix AADN. The adjacency matrix AADN can characterize
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the present network structure of ADN. When the structure of
ADN changes, the corresponding adjacency matrix AADN in
the graph data also needs to be modified.

The graphs representing the ADN uniquely correspond
to a set of network-wide short-circuit current distribution
data, establishing a graph-wise mapping [30]. In the case
of an ADN with K branches, the corresponding network-
wide short-circuit current labeled values can be described as
follows:

Y =
[
yA1 , yB1 , yC1 , . . . ,yAi , yBi , yCi , . . . ,yAK , yBK , yCK

]
(7)

where yAi , yBi , yCi are the A, B, and C three-phase short-
circuit currents of the i−th branch. For non-three-phase lines,
tag value only has the phase which has current.

D. LOSS FUNCTION
The GCN needs to use the loss function after each training
round to provide feedback to the network on the accuracy of
the training. It is more appropriate to choose Mean Square
Error (MSE) as the loss function, and forM outputs y has the
following equation:

MSE =

M∑
l=1

(ylout − yl)2

M
l ∈ {1, 2, · · · ,M} (8)

where ylout is the l−th predicted value of GCN and yl is the
l−th label value. When testing the training results with a test
set after training is completed, the use of Mean Absolute Per-
centage Error (MAPE) as an evaluation metric can accurately
measure the accuracy of the model regression predictions
among widely varying target values. For M outputs y is the
MAPE value calculated as follows:

MAPE =
100%
M

×

M∑
l=1

∣∣∣∣ylout − yl

yl

∣∣∣∣ (9)

The number of test sets is so large that it is difficult to show
MAPE one by one. The mean MAPEmean of MAPE is used
to indicate the average error of the model prediction, and its
maximum MAPEmax is used to indicate the error volatility.

IV. GCN-BASED SHORT-CIRCUIT CURRENT CALCULATION
METHOD
A. GCN-BASED SHORT CIRCUIT CURRENT CALCULATION
METHOD
The GCN method for calculating ADN short-circuit currents
requires storing the ADN electrical information as a graph
data structure. The graph data stores the ADN normal oper-
ation branch currents as node features according to (6), the
connection relationships of the branches as Ã matrices, and
the short-circuit current values of each branch as sample
labels according to (7). Different ADN network structures
are distinguished using the Ã matrix, and different ADN
operation modes are distinguished using the (6) features. Any
of the identified (6) features and the Ã matrix form a graph

data sample that has a unique corresponding set of graph data
labels as (7). A graph data sample and the corresponding set
of labels constitute a single piece of graph data.

In the GCNmethod, the Amatrix of each graph data is first
decomposed using (5) to obtainψ+ that uniquely corresponds
to different network structures. ψ+ can map the information
of nodes in the graph data to a new coordinate system. This
can differentiate the features of different sample nodes of the
same network structure, and also differentiate the features of
nodes with similar values in different network structures.

Moreover, message passing is performed using (2) for
the electrical information generated based on the network
structure. The message passing mechanism passes the current
information, IIDG information, and fault characteristics of
each node to all nodes, so that each node can feel the effect of
the current IIDG and fault characteristics on it. As the number
of network layers for message passing increases, the value
calculated for each node converges to its corresponding fault
current. Finally the short-circuit current calculated at each
node is output using (3).

The most important feature among the graph data of ADN
is the Ã matrix of the current ADN. When the structure of
ADN is changed, the corresponding Ã matrix needs to be
modified first, and then the node features are obtained accord-
ing to Eq. (6), and the output labels are obtained according to
Eq. (7).

B. SHORT CIRCUIT CURRENT CALCULATION FLOW
The process of calculating the short-circuit currents in ADN
using GCN can be divided into twomain steps: obtaining data
samples and training the GCN model. The detailed flowchart
for the training process is illustrated in Fig. 3.

FIGURE 3. GCN Model training flow of short-circuit current calculation.

In the step of obtaining data samples, the initial stage
involves constructing a comprehensive simulation model of
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FIGURE 4. Structure of 123 node active distribution grid.

the ADN using Matlab/Simulink. The actual ADN is accu-
ratelymodelled usingmatlab simulation software and the grid
operation mode is obtained through simulation of accurate
modelling. The fault conditions and locations are set in the
accurate ADNmodel to obtain the corresponding short circuit
current values. Subsequently, a significant volume of ADN
sample data is acquired through simulation using the Mat-
lab/Simulink model. The sample data is generated based on
the criteria outlined in (6)-(7). Finally, the obtained sample
data undergoes pre-processing procedures.

The features in VADN not only have a large range of values,
but also have different physical meanings, so they need to
be pre-processed. Numeric data needs to be normalized, and
textual data needs to be given numeric identifiers. The pre-
processed data are divided according to the network structure,
with 80% of the data being the training set and the remaining
20% being the test set [31].

In the subsequent step of model training, the GCN model
is constructed based on equations (2)-(3). The model is
designed to accept pre-processed graph data as input, while
the loss function employed is MSE. The objective of training
the model is to acquire the optimal mapping relationship

between the input and output. Upon satisfaction of the MSE
conditions or completion of the specified number of training
epochs, the model is evaluated using the test set and verified
using MAPE. If the MAPE criterion is not met, adjust-
ments to the hyperparameters of the GCN model are neces-
sary. The aim of hyperparameter tuning is to minimize the
MAPE.

The GCN-based short-circuit current calculation method
can be trained offline and applied online. Using the actual
ADN accurate modelling, the fault conditions and locations
are set in the accurate ADN model to obtain the correspond-
ing short-circuit current values. The training of the GCN
short-circuit current calculation model is completed using the
sample data obtained from the simulation. After the GCN
model has been trained, it can be applied to the ADN online.
When applied online, the short-circuit current value calcu-
lated by the GCN model can be used as the reference value
of fault current, which is of some significance for the online
adjustment of relay protection. The short-circuit currents cal-
culated using the GCN model can also be applied to quickly
locate the location of the fault occurrence in order to reduce
the workload of the field staff.
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C. CHALLENGE OF CHANGING NETWORK STRUCTURE
The short-circuit current distributions in ADNs can vary
depending on the network structure, even under the same
fault conditions. Additionally, the short-circuit current val-
ues of individual branches can exhibit significant variations
due to differences in network structures. To illustrate this
point, we consider the IEEE 123 nodes ADN depicted in
Fig. 4, which consists of 5 switches. During normal opera-
tion, only one switch is open while the rest remain closed
to ensure acyclic operation. Consequently, there are five
distinct network structures [32]. In the event of a fault
occurring at position K1, the magnitude of the short-circuit
current measured at the branch connecting branch 54-57
is directly influenced by the specific network structure in
place.

When any of switch1, switch2, switch3, or switch4 is
activated, the short-circuit current from the system power
supply directly passes through branch 54-57, resulting in a
significantly high measured short-circuit current exceeding
100A. However, when switch5 is activated, neither the sys-
tem power supply nor the IIDG provides any short-circuit
current to branch 54-57. As a result, the measured current
value is very low, less than 1A. This observation highlights
the substantial variation in short-circuit current values across
branch 54-57, with differences exceeding thousands of times
or more. This situation where a small number of samples have
a large impact is called Long-Tail [33].
By utilizing GCN and ψ+, it is possible to overcome

the Long-Tail issue which cause conflict between balancing
network structure samples and balancing target values. Dif-
ferent ψ+ can realize the projection of graph data of different
network structures on different bases, which can effectively
distinguish the input features of different network structures.
This can solve in principle the difficult problem of changing
target prediction due to changes in network structure.

However, during the process of deep learning, the
computation of the graph convolution Laplacian matrix is
susceptible to the issues of gradient explosion or gradient
disappearance. To address this challenge, [34] proposed the
concept of renormalization in GCN networks in. This innova-
tive approach mitigates the problems associated with gradient
instability. Consequently, in this paper, the GCN method
incorporating the concept of renormalization is selected as
the model for calculating short-circuit currents.

V. ALGORITHM VALIDATION
A. CASE STUDY
To assess the efficacy of the GCN-based ADN short-circuit
current calculation method, the IEEE 123 node system
is employed as an illustrative case study. This system,
along with the corresponding IIDG connection locations,
is depicted in Fig. 4. The system power connection point is
denoted by node 150, with an ADN voltage level of 4.16kV.
The total load in the system is 3557kW, and the penetration
rate of IIDG is approximately 50%.

To simulate the actual system operation, IIDG capacity and
load size were randomly generated within [0.8, 1.2] times
of their original values. The original values are from [32].
IIDG adopts a network-following type of control strategy.
IIDG capacities from IIDG1 to IIDG16 are 300kw, 20kw,
20kw, 20kw, 300kw, 10kw, 10kw, 10kw, 10kw, 300kw, 20kw,
20kw, 20kw, 20kw, 400kw, 20kw, 20kw, 20kw respectively.
The random fluctuations of the parameters cover the cases of
IIDG penetration rates in [20%, 80%]. The penetration rates
are obtained in groups of 1% each, for a total of 60 different
sets of penetration rate cases, which is the same grouping
method as in [30]. When setting the fault, Fline is randomly
selected and the fault types Ftype, Floc and Ron are randomly
set according to Fline The Floc setting range is 20% of the
line length as a group and five fault line ranges are selected.
Ron range is [1, 1000] and five transition resistance cases are
randomly selected. the setting range of transition resistance
should match the fault type. For the way the fault conditions
are set refer to [35].

For each line, a total of 25 fault combinations are gener-
ated, resulting in 25 different fault conditions. In the case of
the IEEE 123 node ADN, five distinct network structures are
created by sequentially disconnecting five contact switches.
The network structure is represented by the adjacency matrix
in the graph data. To cover all fault scenarios on each line
under each network structure, a total of 1500 sets of data are
required. Since three-phase short circuits are considered the
most severe faults in ADN, the calculation example focuses
on three-phase faults. Other fault types are handled similarly
to three-phase short circuits. Therefore, this paper requires
495,000 sets of data, encompassing 66 three-phase branched
short circuits under five network structures. The GCN model
uses sample data from the 123-node model simulation of
Figure 4. The network in Fig.4 is from [32], and the descrip-
tion of the parametric model in this section is a modified
description of [32]. All other ADN networks can be used in
this way for sample simulation and training using the GCN
model in this paper.

B. GCN MODEL TRAINING
In (2)-(3), the specific number of MP layers and MLP layers
cannot be determined directly. The optimal number of layers
needs to be determined through experimentation. The experi-
ments conducted on the GCN network layers are summarized
in Table 1. In the MP layers, the number of output nodes is
set to 256. The notation ‘‘1-layer MP’’ indicates the use of
a single MP layer with 256 convolutional kernels. Similarly,
‘‘2-layerMP’’ refers to the use of twoMP layers with 128 and
256 convolutional kernels respectively. For ‘‘3-layer MP,’’
three MP layers are employed with 64, 128, and 256 convo-
lutional kernels respectively.

Through the experiment, it can be seen that when the num-
ber of messaging layers is determined, the influence of the
number of MLPs on the final output MAPEmean is more obvi-
ous, and regardless of the number of messaging layers, MLPs
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TABLE 1. Experimental results of gcn model structure.

choose 2 layers to have the optimal MAPEmean. While the
number of layers of MP is more correlated with MAPEmax,
the same MLP layers have smaller MAPEmax when MP is
2 layers, which means that the output target value has higher
overall accuracy with less volatility. Therefore, the structure
of the GCN model is determined as 2-layer MP with 2-layer
MLP. The model structure is same as (2)-(3) while the epochs
are set to 500 and batch size is 64 for hyperparameters tuning
of the model. The learning rate is variable, with 10e−4 for the
first 150 epochs, 10e−5 for 150-350 epochs, and 10e−6 for
the last 150 epochs. Themulti-output model training platform
uses a CPU of the i7-9900K and version 3.8.8 of Python.

C. MODEL PERFORMANCE COMPARISONS
The effectiveness of ML-based multi-output methods for
short-circuit currents has been previously demonstrated
in the literature [18]. In this paper, two representative
methods, namelyMulti-Target Regressor Stackin-LightGBM
(MTRS-LightGBM) and Regression Chain - LightGBM
(RC-LightGBM), from the problem transformation approach,
are selected for comparison with the GCNmulti-output meth-
ods. To validate the effectiveness of the ML method, the
computational performance of the traditional iterativemethod
is used for cross-comparison validation. The Newton Raph-
son method is chosen for the conventional iterative method.
Also, a comparison is made with the short circuit current
calculation method using simplified model. The simplified
model for IIDG uses a simplification method that considers
IIDG as (1c) only. This is a simplifiedmethodwhere the IIDG
fully outputs reactive current.

The datasets used in the comparison are obtained from
the simulation of the IEEE 123 ADN, specifically from the
network structure where the contact switch at branch 57-60 is
disconnected (as shown in Fig. 4). The GCN method utilizes
graph-based data storage, while the datasets for MTRS-
LightGBM and RC-LightGBM employ a structured data
storage format. Since the network structure is fixed, a total

of 99,000 data sets are used, with 79,200 sets allocated for
training and 19,800 sets for testing. The comparison results
are presented in Table 2, where the better performing method
for each metric is highlighted in bold font. The ‘‘test time’’
in Table 2 refers to the duration required to process the test
dataset.

TABLE 2. Performance comparison of different methods.

The results in Table 2 demonstrate that the GCN-based
short-circuit current multi-output regression, within the fixed
network structure, achieves results closer to the true values
compared to the problem transformation method. The GCN
approach not only enhances the calculation speed but also
ensures accuracy, thereby addressing the trade-off between
accuracy and speed in ADN short-circuit current calculations.
Additionally, the GCN model has a smaller size, resulting in
reduced storage requirements and hardware footprint.

Compared with the iterative method, the GCN method has
a lower overall average error, and it can be considered that
the GCN method has a similar accuracy to the traditional
Newton iterative method. And the GCN method can substan-
tially improve the speed of short-circuit current calculation.
Compared to the method using simplified model, the GCN
method has better performance in terms of both speed and
accuracy. Although the speed of the simplified model method
is close to that of the GCN method, its accuracy fluctuates
greatly. In particular, currents in branches far from the fault
location and with nearby IIDGs are prone to large deviations
in accuracy.

The performance comparison between the GCN algorithm,
MTRS-LightGBM, and RC-LightGBMwas conducted using
data from different network structures, and the results are pre-
sented in Table 3 and Fig. 5. Table 3 provides an overview of
the performance comparison among the three methods using
data from five network structures. On the other hand, Fig. 5
illustrates the performance variation of the three methods as
the number of structures increases from 1 to 5.

According to Table 3, the GCN method exhibits superior
performance compared to traditional MLmethods across five
different network structures. In contrast to Table 2, where
the network structure was fixed, MTRS-LightGBM and
RC-LightGBM methods experience a more than tenfold
decrease in accuracy under the five network structures, while
the GCN method demonstrates minimal changes in accu-
racy. The error fluctuations, represented by MAPEmax, are
significantly higher for the problem transformation methods,

VOLUME 11, 2023 140099



R. Ye et al.: GCN-Based Short-Circuit Current Calculation Method for Active Distribution Networks

TABLE 3. Performance comparison of multiple output models with
network structure change.

FIGURE 5. Performance of different models with different network
structures.

reaching up to 14.256%. Such fluctuations of 14% indicate
the inadequacy of the traditional ML methods in handling
multiple outputs of ADN short-circuit current with varying
network structures. In contrast, the GCN method exhibits
error fluctuations below 0.6%, which is within an acceptable
range. This implies that the GCN method is capable of meet-
ing the requirements for short-circuit current calculation in
ADNs with diverse network structures. Fig. 5 further illus-
trates the performance variations of different multi-output
methods as the number of network structures increases.
The error volatility of MTRS-LightGBM and RC-LightGBM
methods significantly grows, while the error fluctuations of
the GCN remain relatively smooth.

D. ANTI-INTERFERENCE CAPABILITY OF MODELS
In real-world applications, it is common to encounter data
loss during data acquisition and transmission. To compensate
for this lost data, a random zeroing technique is applied to
the input features of the test set, where each random loss
represents the loss of three-phase data for a specific node.
The 123 nodes in Figure 4 have a total of 118 lines, and there
are 118 nodes in the GCN. Data loss is handled by randomly
setting all current data to zero at any number of nodes in each
graph data. When X branch currents are lost, there is loss
rate =X/118.
The control group continues to use the problem trans-

formation method, and its performance under different
data loss ratios is presented in Table 4 and Fig. 6. In
Table 4, the values highlighted in bold indicate smaller
error data, reflecting better performance. Columns 3 to 5 of
Table 4 represent model training and testing using data from

determined network structures, while the last column indi-
cates the interference resistance of the models trained with
data from the five network structures.

TABLE 4. Performance comparison of multi-output model with different
rates of data loss.

From Table 4, it can be observed that when the data loss is
below 3%, the performance of MTRS-LightGBM and GCN
methods is comparable. However, the GCN method exhibits
higher accuracy, although its output fluctuation is slightly
larger compared to MTRS-LightGBM. As the amount of
data loss exceeds 5%, the advantage of GCN becomes more
pronounced, with improved accuracy and reduced output
fluctuation. When the data loss is below 10%, the GCN
method demonstrates higher resistance to interference and
shows minimal fluctuations due to network structure changes
and data loss, ensuring higher availability compared to the
problem transformation methods.

Fig. 6 depicts a performance comparison between the GCN
method and the problem transformation method for a high
percentage of lost data. It provides a visual representation of
the accuracy and fluctuation of the output for both methods
under different levels of data loss. The graph highlights the
performance of the GCN method with bold values, indicat-
ing smaller error data. The MAPEmean of each method is
low. However, the MAPEmax grows rapidly after the amount
of data loss reaches 20%, which means that the regressed
short-circuit current values fluctuate widely and some branch
currents have exceeded the acceptable range. However, the
GCN is an order of magnitude smaller than the problem
transformationmethod in terms ofMAPEmax, andwhenGCN
is lost by 50%, the MAPEmax is similar to that of the problem
transformation method when the data is lost by 40%.

Consequently, the GCN method exhibits superior anti-
interference ability, successfully regressing the overall fluc-
tuation of short-circuit current values even within a 20% data
loss scenario. This remarkable resilience of GCN is crucial
for its practical engineering application since significant devi-
ations in accuracy only occur when the data loss rate exceeds
20%. Thus, the GCN method proves to be highly reliable and
suitable for real-world deployment in scenarios with potential
data loss.
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FIGURE 6. MAPE comparison for different methods under high
proportion of data losing.

VI. CONCLUSION
IIDG’s output during a short-circuit fault in an ADN exhibits
strong non-linear behavior. This strong non-linear behavior
affects both the calculation accuracy and computational speed
of the iterative method employed to determine the short-
circuit current.

The non-linear behavior of IIDG’s output during a
short-circuit fault in an ADN has a significant impact on
both the accuracy and computational speed of the iterative
method used to determine the short-circuit current. When
there is a large quantity of IIDGs and the network size is
substantial, the aforementioned paradox becomes even more
pronounced. Although ML combined with structured data
input does not inherently compromise computational accu-
racy and speed, its ability to handle diverse network structures
is limited. To address this limitation, this study presents a
novel multi-output model for short-circuit current estimation
based on GCN. This model effectively incorporates both the
network structure and real-world electrical measurements,
offering a viable solution to the challenge of accurately calcu-
lating short-circuit current. Notably, the proposed model can
be seamlessly adapted to different structured ADNs using a
single model. In conclusion, it can be inferred that:

1) The GCN multi-output model demonstrates remark-
able efficiency and accuracy in predicting network-wide
short-circuit currents, particularly when encountering differ-
ent branch faults under a predetermined network structure.
Additionally, its compact size results in substantial savings
in hardware resource usage and computational time during
real-time applications.

2)The GCN approach exhibits a remarkable sensitivity to
the adjacency of network structures, enabling it to precisely
capture the mapping relationship across diverse network
configurations. This capability addresses the challenge of
handling separate network architectures that may lead to sig-
nificantly varying target values, thereby enhancing the accu-
racy of regression tasks. As a result, the proposed approach
holds great practical relevance.

3) The GCN multi-output model showcases strong
resilience to interference, particularly when dealing with

sampled data loss within the actual grid. Even under condi-
tions where the data loss ratio reaches up to 20%, the model
remains operational and continues to provide reliable predic-
tions for short-circuit currents, ensuring robust performance
in real-world scenarios.

The GCN-based short-circuit current calculation method
still has some limitations. The more network structure of
AND changes, the larger the error of short-circuit current
obtained from the regression of GCN model. When the ADN
network structure changes significantly, it is suggested that
the GCN model needs to be retrained. The GCNs retrained
based on ADNs of different network structures are all appli-
cable to the current network structure used for GCN training.
And the GCN model converges regardless of the current
number of ADN nodes. In future research, the impact of
network structure changes on the output accuracy of the GCN
model can be further reduced by reconfiguring the graph data
node features or adjusting the GCN perception method of the
graph data.
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