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ABSTRACT High-resolution plantar pressure recordings have the potential to be used in gait biometrics,
biomechanics, and clinical gait analysis. To accurately assess side-specific patterns and asymmetries, it is
essential to differentiate between left and right steps, which can be challenging when manual labeling is
not feasible and shoe type can vary. This research aimed to create and evaluate the performance of six
distinct algorithms (two inspired by existing literature and four novel ones) that take advantage of spatial and
temporal features combined with basic decision rules, machine learning, and deep learning to automatically
classify left and right footsteps from underfoot pressure recordings, taking into account difficulties associated
with footwear variability. A collection of more than 20,000 footsteps from 20 people and 41 different
types of shoes was used to assess the six proposed classification algorithms. The results demonstrate that
classification techniques based on spatial representations (peak pressure or binary images of footsteps) are
more effective than those based on center-of-pressure (COP) time series. The most successful approach,
which compares the area of the sole in different parts of the midfoot and forefoot, achieved an accuracy
of 99.7% in determining left and right footsteps, with a convolutional neural network (CNN) algorithm at
a close second (99.4%). These techniques were found to be robust to many types of footwear and may be
valuable for a variety of practical, community-based gait classification tasks.

INDEX TERMS Biomechanics, biometrics, center of pressure trajectory, foot classification, footstep
recognition, footwear, gait representation, gait recognition, peak pressure, plantar pressure images.

I. INTRODUCTION
The pressure exerted on the ground when walking is unique
to each person and is the result of complex biomechanical,
physiological, and behavioral processes. Recent technologi-
cal advances in pressure-sensing tiles and mats have enabled
the collection of precise, high-resolution recordings of the
pressure applied to the ground. These data have a variety of
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applications, such as gait biometrics, clinical gait analysis,
and monitoring of health and rehabilitation in smart homes
and facilities [1]. These systems capture the pressure exerted
on the ground at multiple points in time, providing a wealth
of information about a person’s movement from heel to toe
with each step.

To gain maximum insight into the high-dimensional, raw-
pressure recordings, it is essential to extract and label
individual footsteps as either left or right steps. This is
important because asymmetries in gait are common in both
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healthy and patient populations [2]. These asymmetries are
a unique feature of an individual’s gait [3], and can be used
to track gait rehabilitation and disease progression [4], [5],
as well as predict fall risk [6], [7]. To do this, it is necessary
to analyze each side separately, uncover any distinct patterns,
and compare the two sides.

Research into integrated pressure-based systems for gait
analysis has been largely limited to laboratory or clinic-
based barefoot walking, where left and right footsteps can
be identified manually or through a straightforward protocol
(e.g. asking participants to step on the sensor with a
certain foot or stride pattern [8], [9], [10]). However, for
practical, unsupervised applications such as long-term home
or community monitoring, the large number of steps and the
variety of walking paths make manual labeling impractical.
Additionally, many of these applications may involve users
wearing shoes, which could present additional difficulties for
simple rule-based labeling techniques, especially for shoes
that the system has not seen before. Consequently, there is
a need for a reliable automated labeling system for left and
right footsteps from pressure recordings to make the most of
the technology in real-world settings.

Only a handful of studies have developed algorithms for
automated classification of left and right footsteps, and they
only considered barefoot samples. Certain techniques rely
on the presence of multiple steps to exploit relationships
such as the angle between feet [11], [12], yet they are not
suitable for scenarios where users take unexpected routes
or where the sensor platform only captures one footstep.
Other studies have proposed techniques for classifying left
and right using spatial or peak pressure features of individual
footsteps, such as the number of pixels in different parts of
the foot [13], the similarity of peak pressures to left and right
foot template images [14], or deep transfer learning of peak
pressure images [15]. Unfortunately, since these works only
examined unshod (barefoot or sock-foot) samples, it is not
known how these techniques will work with different types
of footwear. To the best of our knowledge, no prior studies
have proposed a foot classification algorithm for shod data.
Therefore, the purpose of this study was to investigate the
effectiveness of six different algorithms (two inspired by the
existing literature and four new ones) in classifying left and
right footsteps using underfoot pressure data, while taking
into account the challenge of different types of footwear.

II. METHODS
A. PARTICIPANTS
The underfoot pressure data used in this work were collected
as part of an ongoing pressure-based gait biometric project
using a pressure-sensitive flooring system at the University
of New Brunswick (UNB), Canada. This study included the
footsteps of 20 subjects (10 women, 10 men) with ages
ranging from 20 to 71 and shoe sizes from US women’s
size 5.5 to US men’s size 13. Participants self-reported their
race or ethnicity from a list of eight categories (Aboriginal,

Black, East/Southeast Asian, Latino, Middle Eastern, South
Asian, White, or Other). Out of the group, 13 participants
were White, two East/Southeast Asian, two South Asian,
one Middle Eastern and two chose Other. Six participants
were left-leg dominant and fourteen were right-leg dominant,
where dominance was determined by the participant’s answer
to the question ‘‘Which leg would you normally use to kick
a stationary ball straight in front of you?’’ [16]. All subjects
provided their informed consent to participate in the study,
as approved by the Research Ethics Board of the University
of New Brunswick (REB 2022-132).

B. DATA COLLECTION
Dynamicwalking gait footstepswere collected as participants
walked back and forth on a runway consisting of a 2× 6 grid
of instrumented tiles (developed by Stepscan Technologies
Inc.), with an additional 2 × 2 grid of inactive tiles at each
end to allow for turning (Fig. 1). Each pressure sensing
tile measures 60 × 60 cm with a resolution of 120 × 120
pressure sensitive sensors (or pixels), resulting in an active
recording area of 4.32 m2, and a total of 172,800 pixels. The
participants conducted multiple 90-s walking trials in four
footwear conditions: (1) no shoes (barefoot or socks), (2)
standard shoes (Grand Court 2.0 Shoes, Adidas, provided by
the research team) and (3, 4) two pairs of their own personal,
commonly worn shoes. These personal shoes included dress
shoes (e.g., Oxfords, high heels), athletic shoes (e.g., running
shoes, trainers), sandals (e.g., thong sandals, slides) and
casual shoes (e.g., canvas shoes, loafers, slip-ons). Figure 2
shows a selection of pressure profiles under the foot for
various footwear conditions. As part of a larger ongoing
project, participants walked at four self-selected walking
speeds: (1) a comfortable, regular pace, (2) a fast pace, (3) a
slow pace, and (4) a slowdown (walking slower and stopping
at the end of the runway) for each footwear condition. As the
slowdown trials also included static footsteps, the present
analysis considered only the first three walking speeds to
focus on the dynamic footsteps of interest. With a sampling
frequency of 100 Hz, each 90-s trial resulted in a recording
of 240 × 720 × 9000 (y, x, frames) and between 52 and
119 captured footsteps, depending on the participant and the
walking speed.

The recordings were processed to extract individual
footsteps, which were then roughly aligned by translation
to their center of mass and rotation to their first principal
component axis. The footsteps were normalized in time
to 101 frames using nearest-neighbor interpolation. This
resulted in a total of 20,083 footsteps of size 75 × 40 × 101,
approximately 1,000 per subject. This dataset is a subset of
a larger footstep database that will be made available to the
research community when collection concludes.

C. GROUND TRUTH LABELING
Ground truth labels were acquired by combining visual
inspection and spatial relationships between consecutive
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FIGURE 1. Demonstration of the tile setup and data collection protocol:
(a) an example segment of a walking trajectory during a trial, where
participants walked back and forth across the tiles for 90 s using the
inactive regions at both ends of the runway for turning, and (b) a still
from one walking trial with corresponding pressure recordings.

FIGURE 2. Example peak pressure images for a selection of footstep pairs
with different footwear conditions: (a) barefoot, (b) sock-foot,
(c) standard shoes, (d) running shoes, (e) hiking shoes, (f) high heels,
(g) casual sneakers, (h) sandals.

FIGURE 3. Demonstration of the angle-based method used in conjunction
with visual inspection of video recordings to obtain ground truth labels.

footsteps. Video footage taken simultaneously with the
pressure recordings was analyzed to determine which leg
was used for the first step of each pass over the tiles and to
predict an expected left/right sequence for the pass (e.g. for
five recorded footsteps with the first one identified as a left
foot: left, right, left, right, left). As participants walked in a
consistent straight line across the tiles as per the collection
protocol, the angles between successive footsteps were then
used to confirm the predicted sequences. Figure 3 illustrates
this process for a sequence of four steps, where the centroids
of the bounding boxes were compared to calculate the angles
between each step. For example, with users walking from left
to right across the runway, negative angles with respect to
the x-axis (i.e., the direction of walking) indicated a right
step, and positive angles indicated a left step. Labels that
did not match the expected walking patterns, such as two
consecutive left or right footsteps, were flagged for further
manual inspection from the video and corrected as necessary.
In addition, all steps were examined visually to remove any

incomplete steps (e.g. participants walked partially off the
tiles at the start or end of the runway) and to further confirm
the labels. In total, the dataset contained 9,952 left steps
(49.6%) and 10,131 right steps (50.4%).

D. LEFT AND RIGHT FOOT CLASSIFICATION
Six different techniques were implemented for automated
classification of left and right footsteps. Three of them are
based on temporal information (i.e., foot center of pressure
(COP) time series), and the other three are based on spatial
information (i.e., gait representations such as binary or peak
pressure images of the footstep). In the time domain, kinetic
variables obtained from the COP time series provide a
thorough understanding of the forces and moments that act
on the body during walking. Foot COP, which has been
widely used in biometrics and biomechanics research [17],
[18], [19], is generally expressed in terms of the mediolateral
(ML) and anteroposterior (AP) directions. This is the path of
pressures underfoot from the moment the heel touches the
ground to the time the toe leaves it. It is calculated for each
time point as the average coordinates of the foot weighted
by the pixel intensities (i.e., pressure values). The COP was
determined for each step taken, resulting in two time series
of 101 points for each sample. To reduce noise, the time
series were also filtered using a second-order Butterworth
low-pass filter with a cutoff frequency of 20 Hz. In the spatial
domain, peak pressure images, also known as maximum
pressure or 100th percentile pressure (P100) images [8], are
two-dimensional (2D) representations of the footstep that
display the highest pressure sustained by each sensor (pixel)
during the stance phase. This is the variable most commonly
used in the literature on plantar pressure and is one of the
most effective gait representations for gait recognition [8],
[20]. The recordings of footsteps in this study capture high-
resolution shape and texture data from the sole during contact
with the ground (Fig. 2).

1) COP ENDPOINTS (COP EP)
The first classification approachwas developed by comparing
the initial and final ML coordinates of the COP time series.
An example COP trajectory for one right footstep is depicted
in Fig. 4(a). The triangle marker indicates the beginning of
the stance (heel strike), and circle marker denotes the end
of the stance (toe off). A rule-based classifier was created to
compare the ML endpoints; if the toe-off’s COP was higher
on the ML axis than the heel strike, it was classified as a left
foot, and the opposite was true for the right foot.

2) COP DYNAMIC TIME WARPING (COP DTW)
The second classification approach uses dynamic time
warping (DTW) and foot COP time series. DTW is a method
for measuring similarity between two time series that are
not necessarily synchronized in time. The COP time series
of the left and right footsteps of the training subjects were
averaged to create COP templates, with the test user excluded
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FIGURE 4. Demonstration of classification techniques for an example right footstep with the standard shoe: (a) COP EP, (b) COP DTW,
(c) COP TCN, (d) P100 PC, (e) P100 TM, and (f) P100 CNN.

to prevent any information leakage. The test steps were
compared to the templates by means of DTW with a cosine
distance metric. The template with the lowest alignment cost
(i.e., the global distance between the warped COP and the
template) determined the side prediction for the footstep
(Fig. 4(b)).

3) COP TEMPORAL CONVOLUTIONAL
NETWORKS (COP TCN)
The third classification approach uses temporal convolutional
networks (TCNs) [21] and the ML and AP COP time series.
The TCN framework uses casual convolutions and dilations
to adapt to sequential data, taking into account its temporal
nature and necessity for large receptive fields. This study

examines an architecture that employs a sequence of four
residual TCN blocks (Fig. 4(c)). Each block is made up
of two 1D causal convolution layers followed by weight
normalization, ReLU activation functions, and 25% dropout.
All convolution layers use n = 16 kernels of length k = 5,
but the dilation factors (d) increase by a power of two with
each residual block: the four blocks use dilation factors
of d = 1, 2, 4, and 8, respectively. An example of a
causal convolution with a dilation factor of two is shown
in Fig. 4(c), which demonstrates the increased range of
time points that contributes to each neuron of the activation
map. The TCN models were trained for 35 epochs with a
learning rate of 0.001 and a batch size of 128, using Adam
optimization.
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4) P100 PIXEL COUNTING (P100 PC)
Li et al. [13] proposed a classification approach for barefoot
pressure images that leveraged existing knowledge of the foot
structure. Specifically, they noted that the midfoot tends to be
more prominent on the lateral side of the sole. To implement
their strategy, the midfoot region of the P100 images was
segmented into two halves along theML axis, and the number
of active (non-zero) pixels in each half was used to determine
whether the step belonged to the left or right foot. Inspired by
this strategy, in this study a modified version was developed
that also takes into account the anatomy of the forefoot, which
is usually more prominent on the medial side of the sole.
The P100 images were cropped to their minimum bounding
rectangle and divided into six equal parts by dividing by two
along the ML axis and by three along the AP axis, as shown
in Fig. 4(d). The four upper segments (labeled A, B, C, and
D), which typically included the forefoot and midfoot, were
used to distinguish between the left and right steps. If the
number of active pixels in regions A and D was higher than
the number of active pixels in regions B and C, the step was
classified as a right step. Otherwise, it was classified as a left
step.

5) P100 TEMPLATE MATCHING (P100 TM)
Oliveira et al. [14] proposed a template matching (TM) tech-
nique to differentiate between left and right P100 pressure
images of barefoot walking. To do this, a representative right
footstepwasmanually chosen from the dataset and used as the
right foot template, with a flipped version of that step serving
as the left foot template. In this study, theMünster104 left and
right templates [3], which are 63×27 barefoot peak pressure
images averaged over 104 healthy individuals, were used as
reference left and right footsteps for TM. The P100 images
were normalized to the same range as the templates and
then aligned to each template using a linear transformation
(including rotation, scaling, and translation). The footsteps
were then classified as left or right steps based on the sum
of the absolute differences (SAD) between each normalized,
aligned image and its respective template. The template with
the lowest SAD, that is, the template that best matched the
footstep, determined the predicted label (Fig. 4(e)).

6) P100 CONVOLUTIONAL NEURAL NETWORK (P100 CNN)
A convolutional neural network (CNN) was employed as the
last classification approach to automatically learn features
and classify peak pressure (P100) images. This research
examines a lightweight network that has two convolutional
layers (the first with 32 7 × 7 filters; the second with 64 5 ×

5 filters), followed by max pooling (3 × 3 filter with a stride
of 2) and a fully connected layer (1024 hidden neurons)
(Fig. 4(f)). The convolutional layers were followed by ReLU
activation functions, and the 25% dropout was applied after
the max pooling layer. CNNmodels were trained using Adam
optimization for five epochs with a learning rate of 1e-5 and
a batch size of 128.

E. EVALUATION
The three scenarios that were evaluated for each classification
technique were: (1) unshod (barefoot or socks), (2) shod
(wearing any type of footwear), and (3) all (both barefoot
and shod) samples. A leave-one-subject-out cross-validation
was used to divide the samples into training and test sets
for the techniques that required training samples. Nineteen
participants’ footsteps were used to create the models, and
one participant’s samples, which were not used in the
training, were used to assess the models’ ability to generalize
to unseen users and, for scenarios (2) and (3), unseen
footwear.

A statistical analysis was conducted to compare the per-
formance of various classification techniques and evaluation
scenarios, as well as to determine the influence of factors
such as sex, footwear type, dominant foot, and walking speed
on classification. First, to decide which technique was the
most effective, paired t-tests were conducted to compare
the accuracy of the six techniques. Second, to evaluate the
difference in performance between unshod and shod samples,
paired t-tests were conducted to compare the performance
estimates of scenario (1) with the estimates of scenario (2)
for each of the six techniques. Finally, two-sample t-tests
were used to compare independent subgroups, such as males
and females, those aged 25 or under and those older than
25, and those who walked barefoot and those who wore
socks during the unshod trials, as well as casual shoes, dress
shoes, athletic shoes, and sandals. Paired t-tests were used
to compare other groups, such as standard shoes and shoes
owned by participants, the left and right legs, the dominant
and non-dominant legs, and slow, normal, and fast walking.
In addition, Cohen’s effect size d was used to measure the
magnitude of the difference between two groups. This was
calculated by dividing the difference between the means of
the two groups by the pooled standard deviation. A small
effect size was defined as 0.2, a medium effect size as 0.5,
and a large effect size as 0.8 or higher. Comparisons with a
p value less than 0.05 and a d value greater than 0.20 were
considered significant.

III. RESULTS
A. FOOT CLASSIFICATION ALGORITHMS
In this research, four novel techniques (COP EP, COP
DTW, COP TCN, P100 CNN) and two modified techniques,
inspired by previously proposed strategies for barefoot
samples (P100 PC, P100 TM), were proposed for the
classification of left and right footsteps [13], [14]. The two
modifications made to previous techniques resulted in an
increase in accuracy. Specifically, Li et al. [13] proposed
a pixel counting strategy which only took into account the
active pixels in the mid-foot region of the P100 images.
This yielded accuracies of 97.7 ± 3.7% and 84.1 ± 9.0%
for the unshod and shod samples, respectively. However,
the proposed P100 PC technique, which also considers the
forefoot, achieved 100% perfect accuracy for unshod samples
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and 99.6 ± 0.4% accuracy for shod samples, representing
significant improvements of d = 0.85 for the unshod
scenario and d = 2.29 for the shod scenario (p < 0.05).
Similarly, the proposed P100 TM technique demonstrated
an increase in classification performance. By selecting
representative right footsteps from the training set to serve
as templates (the original footstep as the right template and a
flipped version as the left template) as in Oliveira et al. [14],
an accuracy of 99.5 ± 1.6% was found for the unshod
samples and 92.5±10.3% for the shod samples. By using the
Münster104 healthy barefoot templates [3], the performance
of the P100 TM technique was increased to 100% for
unshod samples (albeit a non-significant improvement; p =

0.17, d = 0.45) and 99.0 ± 1.0% for shod samples (a
significant improvement; p < 0.05, d = 0.87).

TABLE 1. Comparison of the classification accuracies of the six proposed
left and right classification techniques and between the unshod samples
(barefoot or sock-foot) and shod samples (in the standard footwear or
the participants’ shoes).

The classification accuracies of the six proposed tech-
niques for the (1) unshod, (2) shod, and (3) unshod and shod
(all samples) scenarios are presented in Table 1. The P100
PC technique had the highest accuracy on average among the
20 participants, with a score of 99.7%. The P100 CNN and
P100 TM techniques were close behind, with accuracies of
99.4% and 99.3%, respectively. Despite the wide range of
shoe sole shapes and profiles (Fig. 2), the three classifiers
based on spatial P100 image features outperformed those
based on the COP time series in all cases (p < 0.05, d =

1.20 − 2.14). The COP EP technique had the worst results
overall, with an average accuracy of 76.9% for all samples
(ranging from 47.0% to 98.4% among 20 users). Of the three
COP techniques, the TCN deep learning classifier had the
highest accuracy of 95.9%.

The COP DTW and P100 TM techniques had the highest
computational cost, requiring an average of 7.6 seconds to
classify all of the footsteps for one user (approximately
1000 footsteps, around 7.6 ms/step) on an Intel 2.00 GHz
Xeon CPU with 51 GB RAM. In comparison, the COP EP,
COP TCN, P100 PC, and P100 CNN techniques were much
faster, taking less than 0.3 ms/step. The CNN and TCN
classifiers required a one-time training computation, which

took an average of 34 s and 67 s to complete on an NVIDIA
Tesla T4 GPU.

B. THE IMPACT OF FOOTWEAR AND OTHER FACTORS
The results showed that the performance of the six techniques
decreased when shoes were worn, with the COP EP, P100 PC,
and P100 TM techniques being the most affected (p <

0.05). The average accuracy for the six techniques without
shoes was 96.2%, while the average accuracy with shoes
was 92.4%. However, the P100 PC technique still managed
to achieve an impressive 99.6% accuracy in distinguishing
between left and right footsteps for a database of 41 different
types of footwear. This included potentially difficult shoes
such as high heels (Fig. 2(f)), for which the P100 PC
technique correctly classified all but two samples (≈ 99%).

Table 2 examines how various factors affect classification
performance. Unless otherwise specified (for example, when
comparing different types of footwear), performance esti-
mates include both unshod and shod samples. No differences
in performance were observed between male and female
participants, those younger and older than 25 years old,
or walking with or without socks for any of the six classi-
fication techniques (p > 0.05). It was observed that the COP
EP and P100 PC techniques had varying results depending
on the type of shoe worn. The COP EP technique was not as
successful when casual shoes (e.g. flat-soled sneakers) were
worn compared to when athletic shoes (e.g. running sneakers
with structured soles) were worn (85.4% > 64.7%). The
P100 PC technique had a lower success rate for footsteps
in dress shoes compared to sandals, yet still achieved more
than 99% accuracy in both cases. It was remarkable that
the three COP techniques and the P100 TM technique had
significantly worse results with the standard shoes compared
to the participants’ own shoes (p < 0.05), even though the
standard shoes were included as training samples from other
participants. There were notable performance differences
between the left and right samples for the COP EP, COP
DTW, and P100 TM techniques, although the trends varied
between the techniques. Furthermore, these disparities were
not related to leg dominance. Lastly, the P100 CNN technique
was found to perform differently depending on the walking
speed; it was observed that the classification of footsteps
taken at a slow pace was higher than those taken at a normal
speed.

IV. DISCUSSION
The classification of left and right footsteps is a key pre-
processing step for pressure-based gait recording technolo-
gies to enable further analysis and classification of footsteps.
For example, footsteps can be compared regionally by
registering them with side-specific templates [3], [22]. This
allows the comparison of footprints from different individuals
or groups, for example, to evaluate the pressure distribution
of those with hallux valgus compared to healthy people
[23], or for identification purposes [8]. This left and right
labeling step can be done manually or with the aid of basic
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TABLE 2. Effect of factors: sex, age, unshod condition, footwear category, footwear type, side, side dominance, and walking speed on the classification of
left and right footsteps.

attributes such as foot progression angle for smaller clinical
examinations. However, this is not a practical approach
for most real-world environments, especially when gait
data is collected on a large scale over a long period of
time. Additionally, classification techniques that depend on
relationships between multiple steps will not be successful
if sensors detect unexpected walking paths or if only a
single footstep is captured. Potential environments such
as care homes and facilities with gait biometric systems,
like airports and offices with restricted access, are also
likely to encounter footwear. This presents an additional
challenge for classification, as even footsteps from the same
person can vary significantly depending on the type of shoes
they are wearing. This research investigated the ability to
automatically classify a single footstep as a left or right step,
taking into account a wide variety of footstep samples with a
broad range of foot sizes and shoe types. As a result, a foot
classification algorithm with near-perfect accuracy (99.7%)
was successfully developed.

FIGURE 5. Examples of misclassified steps using the P100 PC technique
and their true labels.

A. FOOT CLASSIFICATION ALGORITHMS
Existing research on foot classification techniques has
been limited to barefoot samples. The current investigation
revealed that previously proposed techniques [13], [14]

demonstrated relatively poor performance for shod samples
in the present work (84.1−92.5%), despite achieving perfect
classification accuracy for barefoot images in the original
studies. For both the P100 PC and P100 TM methods, which
were modified from the approaches in [13] and [14], the
proposed changes increased the classification accuracy of the
shod samples to ≥ 99%.
Of the six proposed classification techniques, the P100

PC approach had the best overall results, with a perfect
accuracy rate for unshod samples and an average accuracy
of 99.6% for shod samples. Additionally, it is a highly
efficient technique in terms of computation, making it ideal
for real-time processing of gait recordings. Figure 5 shows
examples of some of the footsteps that were misclassified
using the P100 PC technique. Notably, these misclassified
steps were isolated instances; even for shoes with complex
sole impressions such as those in Fig. 5(a) and 5(c), the pixel
counting rule was successful in classifying the majority of
samples. Only 1% of the samples from (a) and 3% of the
samples from (c) were misclassified with this technique. The
P100 CNN and P100 TM techniques, by contrast, were more
affected by shoe type, with the CNNmisclassifyingmore than
20% of the samples wearing the footwear from (a). However,
the P100 PC approach did struggle in some cases with
overpronated steps, as demonstrated by samples (d) and (f) in
Fig. 5. Since these footsteps were not frequently encountered
in the dataset, the P100 PC technique should be further
tested in individuals with a consistently overpronated gait,
as well as other potentially challenging cases, such as
feet and shoes with high arches or irregular sole shapes.
Interestingly, unlike the P100 TM and P100 CNN classifiers,
the P100 PC technique does not take pixel intensities into
account, only the shape of the sole’s contact with the ground.
Although the P100 CNN and P100 TM techniques had
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poorer performance overall for the dataset, these techniques
do consider pressure information and did not have the
same weakness to overpronated steps (i.e., both techniques
were able to correctly classify the samples (d) and (f) in
Fig. 5). It may, therefore, be advantageous to refine the
P100 PC strategy in future studies to include the pressure
distribution beneath the feet in addition to the spatial
information. Moreover, to reduce the risk of misclassified
steps, a confidence threshold could be established. The P100
PC classifier was more confident in correctly classified steps
than in misclassified ones, given the ratio of active pixels in
segments A and D to segments B and C (Fig. 4(d)) (p < 0.05,
d = 5.52). By rejecting steps with a ratio > 0.85, possibly
flagging them for further evaluation, more than 90% of the
misclassified steps using the P100 PC technique could be
identified, with the cost of flagging approximately 10% of
the otherwise correctly classified steps as well.

A deep learning-based foot classification technique,
P100 CNN, was almost as successful as the leading
method, P100 PC, achieving an average accuracy of 99.4%
(p < 0.05). This research used a relatively large and diverse
dataset compared to previous foot pressure studies [18], [24],
with approximately 1,000 steps per subject and 41 different
types of shoes among 20 participants. However, if the size
of this shoe dataset were increased, the CNN might be able
to gain a better understanding of left and right footstep
characteristics across shoe types. These abstract, non-linear
features may perform well even in cases where the basic
pixel counting method is not effective. Future research should
include a larger sample size and a broader range of shoe
types, particularly more difficult ones, such as high heels and
pointed-toe dress shoes with more symmetrical sole profiles.
Additionally, this research used a computationally efficient
object detection technique based on connected component
labeling and SORT (Simple Online Realtime Tracking) [25]
for footstep extraction as a pre-processing step. A prior
study [15] applied deep learning-based object detection
models to recognize left and right barefoot plantar pressure
images and achieved an accuracy of 99% in classifying
974 barefoot images using YOLOv4 [26]. It would be
beneficial to explore whether YOLO or other deep learning-
based object detection methods could be used to combine the
detection of footsteps and their labeling (left or right) for shod
data.

A third approach based on spatial features (from P100 peak
pressure images), P100 TM, also yielded excellent results.
This technique, which evaluated each footstep’s similarity to
barefoot left and right templates, achieved a perfect accuracy
rate for unshod samples and an average accuracy of 99.0%
for shod samples. In this research, the Münster104 templates
used for the P100 TM technique, although constructed from
barefoot footsteps, provided a more universal standard for
left and right pressure distributions than hand-picked samples
from the dataset. Further research should be conducted to
create templates from a wide range of shod footsteps, which
could potentially lead to increased accuracy when using

the template matching (TM) technique. Additionally, rather
than peak pressure images, other representations such as
mean pressure images (MPI) and motion silhouette images
(MSI) could be considered as input to the proposed spatial
feature classification techniques [20]. Peak pressure images,
which are the most prevalent image representation in plantar
pressure research [8], were selected for this work in part
due to the availability of the Münster104 peak pressure-
based templates [3]. The University of New Brunswick is
currently collecting data that could be used to create other
forms of 2D templates from a variety of barefoot and shod
footsteps.

The left and right classification techniques based on spatial
features (from P100 images) were found to be more effective
than those based on COP trajectories. This could be attributed
to the considerable variability in COP between individuals,
footwear conditions, and even step-by-step in some cases.
Figure 6 illustrates the variability in left footsteps for the
unshod and standard shoe trials. The distinctness of COP
profiles between individuals has been well documented in
the literature [11], [27], [28], [29], and the variability of foot
COP has also been shown to be affected by footwear [30]. The
COP EP and COP DTW techniques were able to accurately
classify samples for some of the twenty individuals with a
very high degree of accuracy (> 95%), yet they were entirely
unsuccessful for some participants and shoe types, resulting
in accuracies of around 50%, equivalent to random guessing.
On average, TCN’s deep-learned features were able to better
capture these variable COP patterns (i.e.,> 80% accuracy for
all participants and shoe types).

Notably, COP-based time series techniques have an advan-
tage over peak-pressure images in that they can be computed
from relatively low-resolution sensors or even force plates.
This makes them more cost-effective and allows for gait
analysis and classification in a wider range of environments.
The sensor system used in the present work had a very
high resolution (4 sensors/cm2, or 40,000 sensors/m2), which
may have been a factor in the success of P100-based spatial
image techniques. Vera-Rodriguez et al. [31] found that a
resolution of at least 650 sensors/m2 was necessary for
the biometric recognition of cumulative pressure footstep
images, as performance using these spatial features was
significantly degraded with lower sensor densities (i.e.,
increases in equal error rate (EER) of 7.7% and 13.2%
using subsampled sensor arrays of 430 sensors/m2 and
220 sensors/m2, respectively). They suggested that higher
resolutions would provide even better results than their
650 sensor/m2 configuration, given the observed trends in
performance. Therefore, future research should investigate
the effect of sensor resolution on the efficacy of spatial
feature-based left and right footstep classification techniques.
The combination of spatial (P100) and temporal (COP)
features should also be considered, which could potentially
improve the accuracy of predictions for footsteps with
uncertain outcomes, especially for systems with lower sensor
density.
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FIGURE 6. Within-user and between-user variability in COP trajectories
for barefoot and standard shoe left footsteps; (a) and (c) are the COP
trajectories for all footsteps from one participant, and (b) and (d) are the
averaged COP trajectories for all 20 participants.

B. THE IMPACT OF FOOTWEAR AND OTHER FACTORS
The accuracy of the left and right foot classification
techniques was impacted by certain factors, as is evident
from Tables 1 and 2. This study discovered that the use
of shoes can have a significant effect on classification
performance. Surprisingly, prior studies have only focused
on barefoot footsteps, and to the best of our knowledge,
this is the first investigation to look into the influence of
shoes on the accuracy of distinguishing between left and
right feet.

Some performance differences were observed for different
categories of footwear, such as significantly poorer perfor-
mance in classifying dress shoes compared to sandals with
the P100 PC technique. When classification techniques are
developed for applications that involve shod footsteps, the
influence of the type of shoe wornmust be taken into account.
Not only do different types of shoes leave different sole
impressions and pressure distributions, they can also affect
the way people walk. Bouchrika and Nixon [32] showed that
recognition rates from gait video sequences were much lower
when people wore flip-flops than when they were barefoot
or wearing trainers or boots. Similarly, high heels have been
shown to significantly impact both gait biomechanics and
underfoot pressure during gait compared to lower heeled
shoes [33], [34]. Footwear has also been associated with
changes inwalking speed [33], [35], and this study discovered
that walking speed may have an effect on the accuracy of
classification. The P100 CNN model was able to classify the
footsteps of the slow walking trials with greater precision

than those of the normal speed trials. It is possible that the
influence of shoes on walking can vary over time, both in
the short-term (e.g. after an hour of walking in high heels
or flat-soled shoes [36]) and in the long-term (e.g. due to
musculoskeletal damage caused by wearing high heels for a
long period of time [33]). Previous research with gait pressure
recordings has suggested methods for reducing the influence
of footwear on gait classification tasks, including person
identification; for example, including examples of high heels
as training data [31], [37] or using a weighting filter to
eliminate irrelevant sole information and focus only on the
sole of the shoe directly beneath the barefoot [38]. Future
research could explore the use of similar methods tominimize
the confounding effects of shoes on the identification of
footsteps.

Classification performance for the standard shoes (a
casual sneaker in this study, Fig. 2(c)) was observed to
be worse than that of the shoes owned by the partic-
ipants. Even when the footsteps in the standard shoes
were used as training samples, the COP DTW and
COP TCN classifiers had difficulty recognizing them. It is
likely that the participants were not as comfortable and
secure in these unfamiliar shoes as in their own, customary
shoes, which affected their COP patterns. Melvin et al. [39]
suggested that individuals should acclimatise to unfamiliar
shoes by taking at least 166 steps per foot in order to
stabilise peak pressure values for five different types of
shoes. However, in the present study, participants only took a
few steps (5-10) to test the fit of the standard shoes before
recording. Moreover, as the standard shoes were new and
had a relatively inflexible, flat-soled design, they were not as
‘worn-in’ as the participants’ habitual shoes. Further research
is needed to explore the influence of new and unfamiliar
footwear on walking patterns, particularly shoes that are
significantly different from the wearer’s usual footwear,
whichmay have amore pronounced effect on gait and posture
(e.g. the effects of wearing high heels for inexperienced
users [37], [40]).

For three of the classification techniques (COP EP, COP
DTW and P100 TM), the performance for left and right
footsteps was not the same. This is similar to the findings
of Ardhianto et al. [15], who found that the classification
performance for right footsteps was better than left footsteps.
They proposed that this could be because the dataset had
a larger number of participants who were dominant in the
right leg. This research showed that the more successful side
changed depending on the technique used and there was no
evidence that leg dominance had an effect on performance.
The difference in performance between left and right steps is
suspected to reflect typical asymmetries in human walking,
even for the healthy participants included in this work.
Asymmetry may be affected by biological factors such as
age, strength imbalances, and functional anomalies, as well
as factors such as walking speed and external disturbances
like unilateral loading (e.g., carrying a bag on one side of the
body) [2], [41].

VOLUME 11, 2023 137945



E. Macdonald et al.: Underfoot Pressure-Based Left and Right Foot Classification Algorithms

It is noteworthy that sex and age had no effect on
the performance of the current set of 20 participants.
Generally, gender and age bias is a major issue for automated
decision systems such as biometric technologies [42] and
healthcare screening or diagnosis systems [43]. Studies have
demonstrated that gender and age can affect joint kinematics
and kinetics during gait [44], [45], and gait data from video
capture and wearable sensors have been used to accurately
predict gender and age [46], [47]. These factorsmay also have
an indirect effect on gait data. For example, gender and age
may influence the type of footwear worn, and certain types
of footwear (e.g. high heels) may be more difficult to classify
using pressure-based gait data and may be disproportionately
represented in one group. Although these factors did not
have a significant impact on the performance of the current
dataset, gender and age bias will be taken into account in
future studies. The present dataset was largely composed of
white participants (13 out of 20), thus making it impossible
to accurately evaluate any potential bias due to ethnicity and
race. To do so, future studies should includemore participants
and assess any potential sources of bias in the left and right
classification of footsteps, as well as other components of the
gait classification or analysis pipeline (e.g. during registration
to templates).

V. CONCLUSION
This study developed new algorithms for automatically
distinguishing between left and right feet based on floor
pressure sensors. These algorithms are capable of handling
both barefoot and shod footsteps. Using the proposed
pixel counting technique, which is based on the spatial
characteristics of the sole’s contact with the sensor, it was
found that the accuracy for classifying more than 20,000
footsteps, despite the wide variety of represented shoe types,
was 99.7%. Furthermore, interactions between independent
variables (footwear and walking speed) and dependent
variables (peak pressure, center of pressure, and accuracy)
were examined, indicating that these factors must be taken
into account when trying to develop left and right foot
classification algorithms.

VI. ACKNOWLEDGMENT
(Eve MacDonald and Robyn Larracy are co-first authors.)

REFERENCES
[1] E. J. Harris, I.-H. Khoo, and E. Demircan, ‘‘A survey of human gait-based

artificial intelligence applications,’’ Frontiers Robot. AI, vol. 8, Jan. 2022,
Art. no. 749274.

[2] A. Nasirzade, H. Sadeghi, H. R. Mokhtarinia, and A. Rahimi, ‘‘A review of
selected factors affecting gait symmetry,’’ Phys. Treatments-Specific Phys.
Therapy J., vol. 7, no. 1, pp. 3–12, 2017.

[3] T. C. Pataky, K. Bosch, T.Mu, N. L.W. Keijsers, V. Segers, D. Rosenbaum,
and J. Y. Goulermas, ‘‘An anatomically unbiased foot template for inter-
subject plantar pressure evaluation,’’ Gait Posture, vol. 33, no. 3,
pp. 418–422, Mar. 2011.

[4] C. Beyaert, R. Vasa, and G. E. Frykberg, ‘‘Gait post-stroke: Patho-
physiology and rehabilitation strategies,’’Neurophysiologie Clinique/Clin.
Neurophysiol., vol. 45, nos. 4–5, pp. 335–355, Nov. 2015.

[5] A. Mirelman, P. Bonato, R. Camicioli, T. D. Ellis, N. Giladi, J. L.
Hamilton, C. J. Hass, J. M. Hausdorff, E. Pelosin, and Q. J. Almeida,
‘‘Gait impairments in Parkinson’s disease,’’ Lancet Neurol., vol. 18, no. 9,
pp. 697–708, 2019.

[6] K. Hill, J. Schwarz, L. Flicker, and S. Carroll, ‘‘Falls among healthy,
community-dwelling, older women: A prospective study of frequency,
circumstances, consequences and prediction accuracy,’’ Austral. New
Zealand J. Public Health, vol. 23, no. 1, pp. 41–48, Feb. 1999.

[7] T.-S. Wei, P.-T. Liu, L.-W. Chang, and S.-Y. Liu, ‘‘Gait asymmetry, ankle
spasticity, and depression as independent predictors of falls in ambulatory
stroke patients,’’ PLoS ONE, vol. 12, no. 5, May 2017, Art. no. e0177136.

[8] T. C. Pataky, T. Mu, K. Bosch, D. Rosenbaum, and J. Y. Goulermas, ‘‘Gait
recognition: Highly unique dynamic plantar pressure patterns among 104
individuals,’’ J. Roy. Soc. Interface, vol. 9, no. 69, pp. 790–800, Apr. 2012.

[9] R. Vera-Rodriguez, J. S. D. Mason, J. Fierrez, and J. Ortega-Garcia,
‘‘Comparative analysis and fusion of spatiotemporal information for
footstep recognition,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 35,
no. 4, pp. 823–834, Apr. 2013.

[10] M. Heydarzadeh, J. Birjandtalab, M. B. Pouyan, M. Nourani, and
S. Ostadabbas, ‘‘Gaits analysis using pressure image for subject identifi-
cation,’’ in Proc. IEEE EMBS Int. Conf. Biomed. Health Informat. (BHI),
Feb. 2017, pp. 333–336.

[11] G. Qian, J. Zhang, and A. Kidané, ‘‘People identification using gait via
floor pressure sensing and analysis,’’ in Proc. Eur. Conf. Smart Sens.
Context. Cham, Switzerland: Springer, 2008, pp. 83–98.

[12] J. Zhang, G. Qian, and A. Kidane, ‘‘Footprint tracking and recognition
using a pressure sensing floor,’’ in Proc. 16th IEEE Int. Conf. Image
Process. (ICIP), Nov. 2009, pp. 2737–2740.

[13] B. Li, Z. Yao, J. Wang, S. Wang, Q. Wu, P. Wang, and X. Yang, ‘‘Analysis
of plantar pressure image based on flexible force-sensitive sensor array,’’
in Proc. 13th Int. Symp. Comput. Intell. Design (ISCID), Dec. 2020,
pp. 326–329.

[14] F. P. M. Oliveira, A. Sousa, R. Santos, and J. M. R. S. Tavares, ‘‘Towards
an efficient and robust foot classification from pedobarographic images,’’
Comput. Methods Biomech. Biomed. Eng., vol. 15, no. 11, pp. 1181–1188,
Nov. 2012.

[15] P. Ardhianto, B.-Y. Liau, Y.-K. Jan, J.-Y. Tsai, F. Akhyar, C.-Y. Lin,
R. B. R. Subiakto, and C.-W. Lung, ‘‘Deep learning in left and right
footprint image detection based on plantar pressure,’’ Appl. Sci., vol. 12,
no. 17, p. 8885, Sep. 2022.

[16] N. van Melick, B. M. Meddeler, T. J. Hoogeboom, M. W. G. Nijhuis-van
der Sanden, and R. E. H. van Cingel, ‘‘How to determine leg dominance:
The agreement between self-reported and observed performance in healthy
adults,’’ PLoS ONE, vol. 12, no. 12, Dec. 2017, Art. no. e0189876.

[17] M. Roberts, D. Mongeon, and F. Prince, ‘‘Biomechanical parameters for
gait analysis: A systematic review of healthy human gait,’’ Phys. Therapy
Rehabil., vol. 4, no. 1, p. 6, 2017.

[18] P. Connor and A. Ross, ‘‘Biometric recognition by gait: A survey of
modalities and features,’’ Comput. Vis. Image Understand., vol. 167,
pp. 1–27, Feb. 2018.

[19] S. Mehdizadeh, K. Van Ooteghem, H. Gulka, H. Nabavi, M. Faieghi,
B. Taati, and A. Iaboni, ‘‘A systematic review of center of pressure
measures to quantify gait changes in older adults,’’ Experim. Gerontol.,
vol. 143, Jan. 2021, Art. no. 111170.

[20] R. Larracy, A. Phinyomark, and E. Scheme, ‘‘Gait representation: From
vision-based to floor sensor-based gait recognition,’’ inProc. IEEE Sensors
Appl. Symp. (SAS), Jul. 2023, pp. 1–6.

[21] S. Bai, J. Zico Kolter, and V. Koltun, ‘‘An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,’’ 2018,
arXiv:1803.01271.

[22] B. G. Booth, E. Hoefnagels, T. Huysmans, J. Sijbers, and N. L.W. Keijsers,
‘‘PAPPI: Personalized analysis of plantar pressure images using statistical
modelling and parametric mapping,’’ PLoS ONE, vol. 15, no. 2, Feb. 2020,
Art. no. e0229685.

[23] T. Hida, R. Okuda, T. Yasuda, T. Jotoku, H. Shima, and M. Neo,
‘‘Comparison of plantar pressure distribution in patients with hallux
valgus and healthy matched controls,’’ J. Orthopaedic Sci., vol. 22, no. 6,
pp. 1054–1059, Nov. 2017.

[24] H. Deepashini, B. Omar, A. Paungmali, N. Amaramalar, H. Ohnmar, and
J. Leonard, ‘‘An insight into the plantar pressure distribution of the foot
in clinical practice: Narrative review,’’ Polish Ann. Med., vol. 21, no. 1,
pp. 51–56, Jun. 2014.

137946 VOLUME 11, 2023



E. Macdonald et al.: Underfoot Pressure-Based Left and Right Foot Classification Algorithms

[25] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, ‘‘Simple online
and realtime tracking,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP),
Sep. 2016, pp. 3464–3468.

[26] A. Bochkovskiy, C.-Y. Wang, and H.-Y. Mark Liao, ‘‘YOLOv4: Optimal
speed and accuracy of object detection,’’ 2020, arXiv:2004.10934.

[27] P. C. Connor, ‘‘Comparing and combining underfoot pressure features
for shod and unshod gait biometrics,’’ in Proc. IEEE Int. Symp. Technol.
Homeland Secur. (HST), Apr. 2015, pp. 1–7.

[28] G. Qian, J. Zhang, and A. Kidané, ‘‘People identification using floor
pressure sensing and analysis,’’ IEEE Sensors J., vol. 10, no. 9,
pp. 1447–1460, Sep. 2010.

[29] T. Takeda, K. Kuramoto, S. Kobashi, and Y. Hata, ‘‘On optimal operator
for combining left and right sole pressure data in biometrics security,’’ Adv.
Fuzzy Syst., vol. 2013, pp. 1–10, Jan. 2013, doi: 10.1155/2013/620312.

[30] Z. B. Barrons and G. D. Heise, ‘‘The impact of shod vs unshod walking
on center of pressure variability,’’ Gait Posture, vol. 81, pp. 116–119,
Sep. 2020.

[31] R. Vera-Rodriguez, J. S. D. Mason, J. Fierrez, and J. Ortega-Garcia,
‘‘Analysis of spatial domain information for footstep recognition,’’ IET
Comput. Vis., vol. 5, no. 6, p. 380, 2011.

[32] I. Bouchrika and M. S. Nixon, ‘‘Exploratory factor analysis of gait
recognition,’’ in Proc. 8th IEEE Int. Conf. Autom. Face Gesture Recognit.,
Sep. 2008, pp. 1–6.

[33] N. J. Cronin, ‘‘The effects of high heeled shoes on female gait: A review,’’
J. Electromyogr. Kinesiol., vol. 24, no. 2, pp. 258–263, Apr. 2014.

[34] S.-H. Hyun, Y.-P. Kim, and C.-C. Ryew, ‘‘Effect on the parameters of
the high-heel shoe and transfer time of ground reaction force during level
walking,’’ J. Exercise Rehabil., vol. 12, no. 5, pp. 451–455, Oct. 2016.

[35] R. Dobbs, A. Charlett, S. Bowes, C. O’Neill, C. Weller, J. Hughes, and
S. Dobbs, ‘‘Is this walk normal?’’ Age Ageing, vol. 22, no. 1, pp. 27–30,
1993.

[36] D. Y. Ko and H. S. Lee, ‘‘The changes of COP and foot pressure after one
hour’s walking wearing high-heeled and flat shoes,’’ J. Phys. Therapy Sci.,
vol. 25, no. 10, pp. 1309–1312, 2013.

[37] D. Marcin, ‘‘Human gait recognition based on ground reaction forces in
case of sport shoes and high heels,’’ in Proc. IEEE Int. Conf. Innov. Intell.
Syst. Appl. (INISTA), Jul. 2017, pp. 247–252.

[38] Y.-O. Cho, B.-C. So, and J.-W. Jung, ‘‘User recognition using sequential
footprints under shoes based on mat-type floor pressure sensor,’’ Adv. Sci.
Lett., vol. 9, no. 1, pp. 591–596, Apr. 2012.

[39] J. M. A. Melvin, S. Preece, C. J. Nester, and D. Howard, ‘‘An investigation
into plantar pressure measurement protocols for footwear research,’’ Gait
Posture, vol. 40, no. 4, pp. 682–687, Sep. 2014.

[40] P. A. de Oliveira Pezzan, S. M. A. João, A. P. Ribeiro, and E. F. Manfio,
‘‘Postural assessment of lumbar lordosis and pelvic alignment angles in
adolescent users and nonusers of high-heeled shoes,’’ J. Manipulative
Physiolog. Therapeutics, vol. 34, no. 9, pp. 614–621, Nov. 2011.

[41] X. A. Zhang, M. Ye, and C. T. Wang, ‘‘Effect of unilateral load carriage
on postures and gait symmetry in ground reaction force during walking,’’
Comput. Methods Biomech. Biomed. Eng., vol. 13, no. 3, pp. 339–344,
Jun. 2010.

[42] P. Drozdowski, C. Rathgeb, A. Dantcheva, N. Damer, and C. Busch,
‘‘Demographic bias in biometrics: A survey on an emerging challenge,’’
IEEE Trans. Technol. Soc., vol. 1, no. 2, pp. 89–103, Jun. 2020.

[43] R. R. Fletcher, A. Nakeshimana, and O. Olubeko, ‘‘Addressing fairness,
bias, and appropriate use of artificial intelligence and machine learning in
global health,’’ Frontiers Artif. Intell., vol. 3, Apr. 2021, Art. no. 561802.

[44] S. H. Cho, J. M. Park, and O. Y. Kwon, ‘‘Gender differences in three
dimensional gait analysis data from 98 healthy Korean adults,’’ Clin.
Biomech., vol. 19, no. 2, pp. 145–152, Feb. 2004.

[45] A. G. Thakurta, ‘‘Human gait with reference to age, gender and impact of
load: A review,’’ Adv. Appl. Physiol., vol. 1, no. 2, p. 24, 2016.

[46] J. P. Singh, S. Jain, S. Arora, and U. P. Singh, ‘‘Vision-based gait
recognition: A survey,’’ IEEE Access, vol. 6, pp. 70497–70527, 2018.

[47] M. A. R. Ahad, T. T. Ngo, A. D. Antar, M. Ahmed, T. Hossain,
D. Muramatsu, Y. Makihara, S. Inoue, and Y. Yagi, ‘‘Wearable sensor-
based gait analysis for age and gender estimation,’’ Sensors, vol. 20, no. 8,
p. 2424, Apr. 2020.

EVE MACDONALD (Graduate Student Member,
IEEE) received the B.Sc. degree in electrical engi-
neering from the University of New Brunswick,
Fredericton, NB, Canada, in 2023. She is currently
pursuing the M.Sc. degree with the School of
Computing, Queen’s University, Kingston, ON,
Canada. Her research interests include gait recog-
nition, artificial intelligence, and cybersecurity.

ROBYN LARRACY (Graduate Student Member,
IEEE) received the B.Sc. and M.Sc. degrees
in electrical engineering from the University of
New Brunswick (UNB), Fredericton, NB, Canada,
in 2019 and 2021, respectively, where she is
currently pursuing the Ph.D. degree in electrical
engineering. She is a member of the Health Tech-
nologies Laboratory, UNB. Her research interests
include gait analysis, gait biometrics, and machine
learning.

ANGKOON PHINYOMARK (Member, IEEE)
received the B.Eng. degree (Hons.) in computer
engineering and the Ph.D. degree in electrical
engineering from the Prince of Songkla University,
Hat Yai, Thailand, in 2008 and 2012, respectively.
His dissertation research was awarded the ‘‘Best
Ph.D. Thesis Award’’ from the National Research
Council of Thailand. He was a Postdoctoral
Research Fellow with GIPSA and LIG Labo-
ratories, Université Grenoble Alpes, Grenoble,

France (2012–2013), and the Human Performance Laboratory, University of
Calgary, AB, Canada (2013–2016). From 2016 to 2017, he was a Researcher
with the ISI Foundation, Turin, Italy. He has been a part of the Institute of
Biomedical Engineering, University of New Brunswick, Fredericton, NB,
Canada, since 2017, where he is currently a Senior Research Scientist.
His research interests include biomedical signal processing and machine
learning, wearable sensors, and gait biomechanics and biometrics.

ERIK SCHEME (Senior Member, IEEE) received
the B.Sc., M.Sc., and Ph.D. degrees in elec-
trical engineering from the University of New
Brunswick (UNB), Fredericton, NB, Canada,
in 2003, 2005, and 2013, respectively. He is
currently an Associate Professor with the Depart-
ment of Electrical and Computer Engineering, the
Associate Director of the Institute of Biomedical
Engineering, and the Director of the Health Tech-
nologies Laboratory, UNB. His research interests

include the application of signal processing and machine learning for
human–machine interfaces, mobility and rehabilitation, digital health and
diagnostics, and biometrics. He is a Registered Member of the Association
of Professional Engineers and Geoscientists of New Brunswick (APEGNB).

VOLUME 11, 2023 137947

http://dx.doi.org/10.1155/2013/620312

