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ABSTRACT Assembly inspection methods have been widely used in the process of mechanical product
assembly for quality issues. However, some challenges remain to be solved, such as low detection efficiency,
poor accuracy and sensitive to camera view. This paper proposes an online assembly inspection scheme
based on hybrid neural network and positioning box matching. A hybrid multi-task learning neural network
with transformer attention mechanism is designed to simultaneously detect key points and assembly parts
with high accuracy and strong robustness. Utilizing the key points detection results, the transformation
relationships between the in-site assembly images and the standard templates are solved. According to the
results of assembly parts detection, the detected 2D positioning bounding boxes are matched with those in
the standard assembly templates, so as to evaluate whether the current step has quality problems. In addition,
the proposed method is tested on an assembly dataset constructed in this paper. For key points detection, the
average error is less than 1 pixel. For parts detection, the mean average precision is 97.66%. The missing and
wrong assembly inspection results show that the average F1 score reaches 93.96%. This inspection method
can be employed to detect the missing and wrong assembly faults of each assembly step online, improving
the assembly quality of products.

INDEX TERMS Assembly inspection, multi-task learning network, positioning box matching, vision
transformer.

I. INTRODUCTION
Assembly process is a key stage of mechanical products
development. In order to ensure the product quality, the
assembly inspection process usually is needed to make
sure whether operators or industrial robots complete the
assigned task correctly or not. Moreover, in modern industrial
production, the demand for small batch customized products
is increasing rapidly. Due to economic and technical reasons,
these small batches of complex products tend to be assembled
in a manual manner. In this mode, the assembly quality
and efficiency depend on the skills of operators largely

The associate editor coordinating the review of this manuscript and

approving it for publication was Frederico Guimarães .

[1]. Diverse and complex assembly processes significantly
increase the cognitive load of employees, rising the proba-
bility of assembly faults [2].

The commonly method of assembly faults inspection is to
manually compare the assembled products with 2D process
manual or standard 3D assembly model. The main purpose
is to check whether there are missing components and
whether the type, position or angle of assembly parts meet
the process requirements. However, the manual inspection
highly depends on the status and experience level of the
operator, and it is usually a laborious and time-consuming
work. In addition, the inspection process is usually carried
out after all the assembly steps are completed, lacking of
monitoring and quality control for each assembly step. When
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the missing or wrong assembly errors occur, parts need to
be removed and reinstalled again, which seriously reduce
assembly efficiency. Therefore, online quality inspection
systems have been gradually applied in the assembly field
to detect and avoid faults in real time, ensuring consistent
product quality and improving assembly efficiency [3].
Currently, vision-based inspection method has been stud-

ied by more and more researchers [4]. It is simple and
efficient, without additional use of complex sensors, and can
adapt to the inspection of most mechanical products [5].
Previous machine vision inspection works are mainly based
on the hand-designed feature descriptors and the template
matching operation is usually performed to inspect assembly
errors. Although it performs well when the features of target
region are rich and the image background is relatively fixed,
it is not suitable for dynamic assembly scenes with complex
background and uncontrollable lighting conditions [6]. And
the shortcoming of the traditional template matching-based
inspection method is that when the relative position between
the physical camera and the target changes, there will be a
difference in perspective between the in-site image and the
standard template. This difference in perspective will bring
errors to the template matching results.

Recently, as deep learning methods have made remarkable
achievements in image processing tasks, more and more
researchers begin to explore its application in defect inspec-
tion [7]. For instance, in structural damage detection, Cha et
al [8]. pioneered the deep learning-based cracks inspection.
The designed convolutional neural network (CNN) classifier
can automatically learn defect features, and effectively
locate concrete cracks under various image conditions by
a sliding window method. Although many works employ
the deep learning for defect inspection, the vast majority
of these works focus on surface texture defects, and less
attention is paid on functional defects inspection. Surface
defects are usually characterized by local texture anomalies,
while functional defects, such as assembly position or angle
faults of assembled parts usually have no obvious texture
abnormalities. To inspect assembly faults, it is not enough just
to detect the assembled part, but also to match the detected
part category and position to the standard assembly template.
Hence, the commonly used defect inspection method using
only object detection or segmentation technology cannot
effectively detect assembly faults.

This paper proposes an assembly inspection method to
further address these issues. The standard assembly templates
for each step are pre-constructed in a computer aided design
(CAD) software, and then the key points and parts in in-site
image are detected respectively using the designed multi-
task learning network. The detected key points are used to
align the standard template and the in-site image, and the
positioning box matching algorithm is employed to judge the
missing and wrong assembly faults. The main contributions
lie in two aspects:

1) An encoder-decoder multi-task learning neural net-
work integrating the transformer attention mechanism,

termed MTL-CenterNet, is designed to integrate key
points and parts detection with high accuracy, robust-
ness and timelines.

2) A homography matrix estimation method based on key
points detection is proposed to solve the perspective
difference between the in-site image and the standard
assembly template. Meanwhile, the detected position-
ing boxes containing rotation information are matched
with the template to determine whether the current
assembly step has quality problems.

II. LITERATURE REVIEW
A. HAND-DESIGNED FEATURE-BASED ASSEMBLY
INSPECTION
In previous works, the hand-designed feature-based methods
are commonly used in assembly inspection. Image features,
such as contour, edge, color, or corner features [9], [10],
[11], are firstly extracted according to the artificially designed
descriptors, and are then matched with the standard assembly
template. For instance, Liu et al. [12] studied a template
based inspection technology in semi-closed narrow space.
The Canny contour detection algorithm [13] and subpixel
algorithm [14] were used to detect whether there were
missing small parts and whether the assembly clearance met
the requirements. However, this detection method does not
performwell when the target area lacks rich texture. Kim et al.
[15] researched the status detection in ship assembly. The
GrabCut algorithm [16] was used to segment the ship section
objects, and the boundary contour features are extracted
and compared with the template database. Due to the large
template search space, the detection speed is limited. Hence,
Yang et al. [17] proposed an edge feature-based hatch cover
category detection method. A fast cover edge feature and
descriptor are designed to recognize different types of cover.
Cojocaru et al. [18] employed the color space features
of the image to segment the assembled part areas. This
method is not ideal when there exists a perspective difference
between the in-site image and the standard template.
To mitigate this, Tsai et al. [19] designed the expectation-
maximization algorithm to conduct the image alignment
task.

B. DEEP LEARNING BASED METHODS FOR DEFECT
INSPECTION
1) DEEP LEARNING BASED METHODS FOR GENERAL
OBJECT DETECTION
Compared with the hand-designed feature-based methods,
deep neural networks can automatically learn features in
images. and are more robust to background, angle of view,
and lighting conditions [20]. The deep learning-based object
detection network structure are mainly classified into CNN
and transformer.

CNN-based object detection methods have demonstrated
great advantages on many large scale public datasets.
CNN has strong rotation and translation invariant by using
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FIGURE 1. Framework of the proposed assembly inspection method.

convolution and pooling operations, which is conducive to the
effective identification and classification of objects. Mean-
while, features are extracted by sharing convolution kernel,
avoiding redundant calculations. Ren et al. [21] developed a
two-stage algorithm called Faster R-CNN. The recommended
candidate regions were first generated, and the target detec-
tion and localization were then performed. The two-stage
detection method is usually time consuming, which is not
suitable for the real time target detection. Later, Redmon et al.
[22] then proposed a single stage detector, YOLO, to conduct
real-time inference. In the process of the above network
detection, a large number of candidate boxes would be gen-
erated at the same target position. Therefore, Non-Maximum
Suppression processing was required [23]. To avoid complex
post processing, Zhou et al. [24] proposed Centernet,
an object detection model based on fully convolutional
network (FCN) [25], where each target was taken as its single
central point, so the Non-Maximum Suppression was not
required.

In recent years, researchers have introduced transformer
architecture from the natural language processing field into
vision tasks. Comapared with CNN, transformer has a larger
feature receptive field and stronger high-level semantic
feature extraction capability, enabling more accurate target
positioning [26]. Dosovitskiy et al. [27] proposed a pure
transformer-based network, of which images were segmented
into small pieces, and a linear embedded sequence of these
small pieces was fed to a designed transformer. The full trans-
former structure has a large number of parameters and high
computational cost, which is caused by a significant amount
of attention matrix calculations. To mitigate this, some
researchers improved the transformer-based visual detection
method to reduce the training difficulty and parameters [28].
Further, combined the advantages of CNN in extracting
local detail features and transformer in capturing global
semantic information, Lewis et al. [29] proposed a hybrid
dual network structure named PSNet for Polyp segmentation
tasks. Extensive comparative experiments showed that the

proposed model achieved the best performance on 5 existing
polyp datasets.

2) DEEP LEARNING BASED METHODS FOR SURFACE
DEFECT INSPECTION
Currently, inspection methods using deep learning have been
applied in many industrial visual defect inspection tasks,
such as scratches, chips on glass, cracks and so on [30]. For
instance, Cha et al. [31]. proposed a Faster R-CNN-based
inspection method to realize the flexible localization and
recognition of multiple damages in infrastructures. It is very
coarse to utilize positioning boxes to locate damages. Further-
more, to enable pixel-level defect location, Choi et al. [32].
designed a deep semantic segmentation model, SDDNet,
to conduct real-time pixel-level defect segmentation, where
the deep separable convolution [33] is employed to reduce the
computational cost. Later, Kang et al. [34] proposed STRNet
to conduct the pixel level crack segmentation task, and
the transformer attentionmechanism is employed to ignore
the wrong and irrelevant feature information. The proposed
network achieved the best performance in crack segmentation
and the processing speed achieved 49 FPS on large-size
images (1280 × 720).

Although these schemes have a good performance for the
inspection of many surface defects, they cannot be directly
applied to the inspection of assembly faults. Assembly faults
are mainly concerned with functional defects, such as the
missing assembly or the wrong assembly position of objects.

3) DEEP LEARNING BASED METHODS FOR ASSEMBLY
FAULT DEFECTS INSPECTION
Some researchers have studied the deep learning-based
assembly faults inspectionmethods. Andrés et al. [35] studied
the movement detection of the operator, and SSD algorithm
was used to conduct real time monitoring. To solve the
assembly quality detection problem of explosion-proof lamp
tubes inmanual assembly, Riedel et al. [36] designed a system
based on YOLOV4, which inspected the assembly omission
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FIGURE 2. Architecture of the MTL-CenterNet neural network.

faults and recorded them, ensuring the traceability of each
step. However, the relative pose changes between the camera
and the object during assembly process will make inspection
difficult. To solve this, Chen et al. [37] proposed an assembly
monitoring method, where the depth images are employed to
effectively detect the newly assembled parts from different
perspectives.

III. HYBRID MULTI-TASK LEARNING MODEL AND
POSITIONING BOX MATCHING-BASED ASSEMBLY
INSPECTION APPROACH
A. FRAMEWORK OF THE PROPOSED INSPECTION
METHOD
In this paper, a deep learning and positioning box matching-
based method is developed to realize the online inspection
of missing and wrong assembly problems. An encoder-
decoder multi-task learning neural network,MTL-CenterNet,
is designed to simultaneously detect assembly parts and key
points in the in-site image. The framework is shown in
Figure 1, including the offline preparation stage and online
detection stage.

In the offline preparation stage, a training dataset is
generated to train the MTL-CenterNet model. Images in
physical assembly scene are captured according to the
inspection task. Meanwhile, positioning boxes of parts and
four key points on base plate of the assembly object
are manual labeled. Using the images and corresponding
labels, the MTL-CenterNet model is trained with full
supervision.

Another task in offline stage is to establish the standard
assembly template. The virtual standard assembly scene
is established by CAD software. The standard assembly
template of each assembly step is collected using the camera
in virtual scene, and the standard positioning boxes and key
points information are also marked for the subsequent object
matching.

In online detection stage, the assembly quality of each
assembly step is assessed. The in-site image of each assembly
step is captured via a physical camera, and the positioning
boxes of parts and coordinates of key points are detected by
the trained MTL-CenterNet. The detected key points are used
to align the perspective between the standard template and the
in-site image. Then, the positioning box matching algorithm
is employed to match the positioning boxes pre-marked in
the template with those detected by the MTL-CenterNet.
According to the matching results, the assembly quality of
the current assembly step can be assessed.

B. INTEGRATED KEY POINT AND PART PREDICTION
MODEL
1) ARCHITECTURE OF THE PROPOSED MTL-CENTERNET
NEURAL NETWORK
CenterNet [23] is an anchor-free object detection neural
network. For each target in the image, CenterNet models
it as a single point and generates heatmap to predict the
location and size of the object. Inspired by CenterNet, the
MTL-CenterNet is proposed in this paper to integrate the task
of key point prediction and part positioning box prediction.
As shown in Figure 2, MTL-CenterNet includes two parts:
encoder and decoder. The input is a RGB image with a size
of 512 × 512 × 3, and the output is key point information
and positioning box information.

The task of the encoder is to extract semantic features of the
assembly objects. Mechanical parts are similar in color, lack
of texture and may have changes of rotation and translation
during the assembly process, which brings challenges to
the feature extraction, location and recognition of parts.
To improve the detection accuracy, the transformer-based
attention mechanism is integrated into the MobileNetV2
[38] backbone as an improved feature encoder. The CNN
layer and transformer layer are placed alternately, and
transformer layer is placed in the back half of encoder.

139226 VOLUME 11, 2023



S. Zhao et al.: Online Assembly Inspection Integrating Lightweight Hybrid Neural Network

The reason for alternating CNN and transformer layer
is to downsample the feature map via convolution and
pooling operations in CNN layer, reducing the subsequent
computational complexity for transformer layer. Meanwhile,
CNN layer is also used to raise the dimension of features,
and the global attention mechanism of transformer layer is
then leveraged to extract high dimensional semantic features
of the input image. Therefore, compared with pure CNN, the
improved hybrid encoder has stronger feature extraction and
modeling capabilities. Compared with pure transformer, the
improved hybrid encoder has lower computational cost and
fewer parameters. The output of the encoder is a 16 × 16 ×

96 feature map.
Then the decoder part is used to reconstruct the feature

map. In the decoder part, the channel dimension of the feature
map is firstly adjusted by two 1 × 1 convolution layers.
To realize the prediction from pixel to pixel, deconvolution
operation is then employed to up-sample the feature map for
three times. A feature map with size 128× 128× 64 is finally
obtained. Finally, according to our detection task, the key
point detection head and part detection head are set as output
layers respectively. They share the weight parameters except
for the detection head, forming a multi-task learning network,
which greatly saves network parameters and processing time.

For the key point prediction head, two parallel convolution
layers are used as the output layer to predict the center and
offset heatmap of the key points respectively. The output size
of the ‘‘Center’’ heatmap branch is 128× 128× 4, where four
different channels are employed to predict four corresponding
key points. To reduce the coordinate error caused by feature
downsampling operation, we set another branch to regress
the coordinate offset of each key point as compensation. The
output size of the ‘‘Offset’’ heatmap branch is 128 × 128 ×

2, and 2 is the two offsets of the key point in the width and
height direction.

The ground truth of each key point is represented by a
gaussian circle, with the key point coordinate as the center
of this circle. The gaussian distribution is used to generate
the values within the circle, and the values outside the circle
are set to 0. The Gaussian probability distribution of the key
point is calculated as (1):

Pxyc =
1

√
2πσ 2

exp(−
(x−ux)2 +

(
y−uy

)2
2σ 2 ) (1)

where (ux, uy) is the coordinate of the key point, (x, y) is the
coordinate in the Gaussian circle. σ is the variance, where 1/3
of the radius is taken.

For the prediction head of the positioning box, three
parallel convolution layers, ‘‘Center’’, ‘‘WH’’ and ‘‘Angle’’,
are used as the output layer to predict the heatmap of the
center, size and rotation angle of the positioning box. The
size of the ‘‘Center’’ heatmap is 128 × 128 × N , where
N is the number of types of parts. Similar to the key point
prediction task, the ground truth of the ‘‘Center’’ heatmap is
also represented by a Gaussian circle. The ‘‘WH’’ heatmap

branch represents the width and height of the detection box,
and its size is 128 × 128 × 2.
The commonly used horizontal positioning box contains

the position and the approximate size information of the part.
During the assembly process, when the parts are tilted or
rotated, it is hardly to fit the part well, especially for those
parts with large aspect ratio. Considering that, we add the
rotation information to make the detected box more fit the
part. The rotation information is defined as the angle between
the longer side of the part and the y-axis. Figure 3 shows the
angle definition of the rotated positioning box. The range of
angle is defined as [0, π ).

Finally, to train the MTL-CenterNet detector, for the
‘‘Offset’’, ‘‘WH’’ and ‘‘Angle’’ branch, the L1 loss is used.
To solve the problem of unbalanced part category, the
penalty-reduced regression with focal loss is employed to
calculate the loss of the ‘‘Center’’ branch. The expression is
as follows:

Loss

= −
1
M

∑
xyc

 (1− ˆYxyc)α log
(

ˆYxyc
)

if Yxyc= 1

(1−Yxyc)β log ( ˆYxyc)α log
(
1− ˆYxyc

)
otherwise

(2)

where M is the total number of labeled key points in one
training image, and α, β are hyper parameters, selected as
2 and 4 respectively. Yxyc and ˆYxyc are the actual and the
predicted coordinate of key point.

FIGURE 3. Rotated positioning box.

2) HYBRID ENCODER COMBINING CNN AND
TRANSFORMER
As shown in Figure2, the encoder ismainlymade up of a stack
of Conv block and Vit block. The Conv block extract features
through CNN layer, and the same residual block structure as
MobileNetV2 is adopted. The Vit block is mainly made up of
transformer, which is placed in the back half of the encoder
to extract higher level semantic features.

The Vit block is shown in Figure 4. For a
H × W × C feature map, patch embedding is applied firstly.
A 1×1 convolution is used to project the dimension of the
feature map to a higher dimension ofH×W× d. The feature
map is then expanded with the dimension of (h×w)×N× d.
Then, it is fed into the transformer attention module for
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feature extraction, and the dimension of the obtained feature
map is still (h× w) × N× d. Then, the feature map is folded
into the dimension of H × W × d and projected back to the
original H × W × C dimension through a 1 × 1 convolution.

FIGURE 4. Vision transformer (vit) block.

The transformer structure includes the multi-head self-
attention (MSA) and feed forward modules, with residual
connection and layer normalization used after each block.
The feed forward module is a multilayer perception (MLP)
block that projects the dimension of the feature map to four
times the original dimension and then projects back to the
original dimension.

The structure of the MSA module is shown in Figure 5
(a). For the input feature map, a series of MLP operations
are first performed to project the input to multiple subspaces,
obtaining multiple single-head feature maps. Then, each
group of single-head feature map is multiplied with three
learnable attention matrixes respectively, obtaining three
quantities Qi, Ki and Vi. And the scaled self-attention layer is
then employed to purify the single-head feature map. Finally,
the obtained multiple groups of single-head feature maps
are concatenated together and once again projected by MLP
layers.

The detailed computation process of the scaled self-
attention module is shown in Figure 5 (b). The calculation
formula is as (3):

Head i = softmax(
Q·KT
√
dK

)V (3)

where Headi is the output single-head feature map, and dk is
the scale factor and its value is the variance of the Q·KT .

C. TRANSFORMATION MATRIX CALCULATION AND
POSITIONING BOX MATCHING
During the assembly process, the position or rotation angle of
the product on the workbench usually changes with assembly
operations. Hence, there is a difference in perspective
between the pre-collected standard assembly template and
the in-site image, which will cause error for the subsequent
positioning box matching to inspect assembly faults.

Based on the perspective transformation theory, to align
the in-site image and the standard template, at least four
points located in the same plane are needed to be selected
to establish the transformation relation. Specially, during the
assembly process, the selected four key points should not be
occluded. The type and location of the four key points in the

FIGURE 5. Multi-head self–attention (MSA) module.

standard assembly template can be marked and measured in
advance. Meanwhile, the corresponding four key points in
the in-site image can be predicted by the proposed MTL-
CenterNet. The maximum value in each output channel of the
‘‘Center’’ heatmap branch represents the predicted key point,
and four channels of the center heat map are responsible for
detecting four different key points respectively. According to
the detected four key points from the in-site image and the
corresponding key points pre-set in the standard template, the
transformation matrix can be calculated by (4): x ′

y′

1

 =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

  x
y
1

 (4)

where (x, y) is key point coordinate predicted by the MTL-
CenterNet from in-site image, (x’, y’) is the corresponding
coordinate on the standard assembly template.

Based on transformation matrix, the in-site image is
aligned with the standard template. Then the missing and
wrong assembly faults are inspected by the positioning
box matching algorithm. The matching algorithm calculates
the intersection over union (IoU) between the detected
positioning box and the standard box to determine whether
the corresponding relation between the actual assembly
position and the standard position is correct. Figure 6 shows
the actual positioning box and standard template box of the
current assembly part. The IoU matching formula is as (5):

IoU2D =
Sr ∩ Sv
Sr ∪ Sv

(5)

where Sr is the positioning box in the standard assembly
template, and Sv is the detected box.

The positioning box matching algorithm contains the
following steps.

Step 1: Select a part assembled in this step from the
template, named A.
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FIGURE 6. Actual positioning box and standard template box of the
current assembly part.

Step 2: The standard positioning box of A is expressed as
(O, P0, P1, P2, P3), where O is the central point and P0, P1,
P2, P3 is the four vertices. Search the positioning box of the
part intersecting with A at the corresponding position of the
in-site image, denoted as Ai. If it is not searched, the current
step exists a missing assembly problem.

Step 3: According to (5), calculate the IoU of A and Ai.
If the IoU is less than the preset threshold value, the current
step exists a wrong assembly problem.

Step 4: Judge the category of A and Ai. If they are of the
same type, this step can be considered as qualified assembly.
Otherwise, the current step exists an assembly type fault.

Step 5: Repeat the above steps for all parts assembled under
the current assembly procedure in the template.

In this paper, the positioning box matching threshold is set
to 0.65. When the IoU matching result is less than the preset
threshold, the current assembly step is judged to unqualified.

IV. EXPERIMENTS AND ANALYSIS
A. TEMPLATE OBTAINING AND NEURAL NETWORK
TRAINING
In this section, the public model for manual assembly
(MONA) [39], is employed for following inspection exper-
iments. The length, width and height of MONA are
250 mm, 150 mm and 50 mm respectively, consisting of
a bottom plate, 16 parts and 18 assembly steps. We use
3D printing to make corresponding assembly parts. Eight
main parts in MONA are selected for the subsequent
experiments, namely TR_M6_Corner, BR_Column, Square,
Cylinder, TM_Attachment, TL_M4_Hole, TL_M4_Rest and
BL_Block_Top, which consists of 10 assembly steps in total.
For template images obtaining, we use the virtual camera in
CAD to collect images of each assembly step in the standard
assembly state. For each template, the key points and standard
positioning box information are manually marked. Partial
template images and annotated information are shown in
Figure 7.

To train the MTL-CenterNet network, 240 assembly
images in the ten selected assembly steps are collected as
the training dataset of MONA assembly, and 60 images are
collected as the test dataset. These images are obtained from

different angles and under different lighting conditions in real
assembly backgrounds, as shown in Figure 8. Each image
is manually labeled with key points and positioning boxes
information. In addition, four common data enhancement
methods are used to augment the training data, including
image rotation, image flip, adding noise, and color space
transformation. The final number of images in training
datasets is 1200. The detailed information of the collected
dataset is shown in Table 1.

TABLE 1. The prepared dataset for train and test.

The neural network training and subsequent test exper-
iments are performed on a Windows 10 system, equipped
with a NVIDIA Quadro P4000 GPU and an Intel Xeon
e5-2630 CPU. The input training images are resized to
512 × 512 x 3. The training batch size, weight decay,
momentum is set to 4, 5e-4, 5e-4 respectively. The starting
learning rate is 1e-3, dropping to one tenth of the original
value every 50 rounds, and the minimum is 1e-5.

B. KEY POINTS DETECTION AND ERROR ANALYSIS
1) PERFORMANCE OF KEY POINTS DETECTION
To verify the effectiveness of the MTL-CenterNet model
for key points detection, four points, P0, P1, P2 and P3 on
the base plate of MONA assembly are selected, as shown
in Figure 9(a). During the assembly operation, the selected
four points should not be occluded, thus ensuring that the
algorithm can correctly solve the transformation relation
between the assembly template and in-site image. The
detected heatmap and the corresponding coordinates are
shown in Figure 9(b) and Figure 9(c), respectively. As shown
in Figure 9(b), the channel dimension of the output heatmap
is 4, corresponding to 4 key points.

Table 2 shows the predicted coordinates of key points.
Here, x and y represent ground truth, and x0, y0 represent the
predicted coordinates.1x and1y are errors inX direction and
Y direction, respectively. According to Table 1, the average
pixel error in X direction is 0.975, and in Y direction is 1.

2) ERROR EVALUATION OF KEY POINT DETECTION
During the process of assembly, the rotation anglewill change
with the movement of the assembly product on workbench.
Meanwhile, due to the change of the relative distance
between the camera and the assembly product, contents
on the in-site image also have different scales. Hence,
different rotation angles and grade of scale variations of the
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FIGURE 7. Template obtaining for partial assembly steps.

FIGURE 8. Example of image data for training

FIGURE 9. Key point detection.

TABLE 2. The pixel coordinates of key points.

assembly object will affect the detection accuracy. In this
section, the proposed MTL-CenterNet is also compared with
SIFT, SURF, ORB and SuperPoint [40] methods, which are
commonly used for key points detection. The SIFT, SURF
and ORB are traditional feature points detection methods
based on descriptors, while SuperPoint is based on deep
learning. The Root mean square error (RMSE) is adopted to
calculate the pixel error.

RMSE =

√
1
N

·

∑N

i=1
(Pi − P̄i) (6)

where N is the number of key points, Pi is the coordinate of
the detected key point and P̄i is the ground truth.
For the influence of different degrees of rotation, as shown

in Figure 10, eight images are collected and tested, and the
center of MONA rotates 0◦, 20◦, 40◦, 60◦, 80◦, 100◦, 120◦,
and 160◦ in the counterclockwise direction respectively.
To eliminate interference, the image content collected only
contains the baseplate of MONA, and no other interferences
are set.

FIGURE 10. Different rotation angles.

The obtained average pixel error of each detection method
is shown in Figure 11. For different degrees of rotation, the
key points detection errors of our method are relatively stable.
The mean pixel error is about 1.5 pixels. SuperPoint shows
high accuracy when the rotation angle is less than 60 degrees,
and its error is about 0.5 pixels. But when the rotation angle is
greater than 60 degrees, its detection error increases rapidly,
about 6 pixels. Similarly, the ORB detector shows a poor
accuracy and stability for large rotation, with a maximum
error of about 7 pixels when the rotation is greater than
80 degrees. SIFT and SURF have relatively stable accuracy,
and their results are about 1 pixel against different rotation
angles. In conclusion, our method shows a high detection
accuracy under different rotations, which is superior to ORB
based on descriptors and SuperPoint based on FCN.
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FIGURE 11. Pixel error at different rotation angles.

To compare the scale invariance of different algorithms,
Gaussian blur is applied to the acquired images to simulate
the scale variation of the images caused by the camera
shooting distance. As shown in Figure 12, the grade of scale
variation is controlled by the size of Gaussian convolution
kernel. The larger the convolution kernel is, the more blurred
the image is, which means that the camera is farther away
from the assembly object. The convolution kernel varies
from 1 to 11, with a step size of 2, and is divided into 6 levels
in total.

FIGURE 12. Different grade of scale transform.

The average pixel error at different scales is shown in
Figure 13. When the roughness of the image increases, the
proposed 8 algorithm and SurperPoint show good stability.
For different grades of roughness, the pixel error of the
proposed method is stable at 1.5 pixels, and the SuperPoint is
stable at about 0.9 pixels. For the descriptor-based detection
method, the error increases with the increase of image
roughness level. The pixel error of the SIFT and ORB
detectors is up to 150 pixels, and SURF is also over
120 pixels.

The detection speed has an important influence on whether
it can provide real time feedback of assembly inspection

FIGURE 13. Pixel error at different grade of scale variations.

for operators. The average time and frame rate of these
algorithms are also tested. For fair comparison, the size of
the input image of different methods is unified to 512 ×

512 x 3, and the result is shown in Table 3. The methods
based on descriptors are more time-consuming, while the
deep learning methods are fast. The frames per second (FPS)
of the algorithm proposed in this paper can reach 35.7 for
the 512 × 512 size of the input image, which can detect key
points in real time.

TABLE 3. Key points detection speed comparison.

C. ASSEMBLY PARTS DETECTION
1) COMPARISON WITH OTHER DETECTION METHODS
The test dataset is selected to verify the assembly parts
detection performance of the MTL-CenterNet model. These
assembly parts included in the test dataset have similar colors,
different sizes and lack of texture. Partial detection results
are shown in Figure 14, where different color boxes represent
different parts types. The MTL-CenterNet is also compared
with two types of mainstream algorithms in parts detection,
including the Faster-RCNN, Yolo-V5s and SSD based on
anchor and CenterNet without anchor. For fair comparison,
the input size of different methods is also unified to 512 ×

512 x 3. The results of various algorithms are shown in
Table 4, which includes the detection accuracy, the number
of model parameters, the detection time and frame rate. The
detection accuracy is evaluated by the mean intersection over
union (mIoU) and the mean average precision (MAP). The
computational complexity is also measured by the index of
floating point operations (FLOPs).
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FIGURE 14. Sample test results of partial parts.

In terms of detection accuracy, the proposed MTLCen-
terNet achieves the highest mIoU and MAP of 93.13and
97.66%, respectively. And the algorithm has the lowest
number of parameters. This means that our model is more
lightweight, which is ideal for deployment on edge devices
with limited computing resources. In terms of detection
speed, Yolo-v5s achieves the fastest detection speed, but our
algorithm is only 4.22ms slower and theMAP value exceeded
it by 5.29%.Meanwhile, the computational complexity of our
model is also relatively low in compared ones.

TABLE 4. Performance of parts detection.

2) K-FOLD RANDOM VALIDATIONS
To determine whether the trained model has the problem of
overfitting, 10-fold cross validation experiment is carried out.
In each round of experiment, 10% of the data is randomly
selected from the train dataset, test dataset and total dataset
respectively. The final trained model is tested on these data,
and the mIoU is used as the evaluation index. Results are
shown in Table 5. Each column represents the mIoU obtained
from each round of experiment. After 10 round experiment,
the average mIoU of the trained model in the training dataset,
test dataset and total dataset are 94.07%, 93.12% and 93.57%,
respectively. The final performance we get in Table 4 is
93.13%. The cross validation results are very close to the
claimed performance, so it is found that no overfitting occurs
in the trained MTL-CenterNet model.

In order to fully test the performance generalization ability
of different detection methods on the test dataset, we also

TABLE 5. 10-fold random validation for the trained model (%).

carried out the 10-fold cross-validation. In each round of
validation, 10% of the data is randomly selected from our
test dataset, which is then used to test our detection method
and the other four comparative modes respectively. The
validation results are shown in Table 6. It can be seen that
our method achieves the highest mIoU in 7 out of 10 rounds
of validation. The average mIoU is 93.22%, which is very
close to 93.13% we obtained using the total test dataset.
The above two 10-fold cross validation experimental results
demonstrate that our test dataset are not specifically prepared
to achieve a higher performance, and our designed model has
good generalization.

TABLE 6. 10-fold cross validation for different methods on test
dataset (%).

3) EXPERIMENTS FOR THE IMPROVED HYBRID ENCODER
To verify the performance of the improved hybrid encoder,
the proposed hybrid encoder is comparedwith the pure Trans-
former or CNN encoders, including the Swin- Transformer
[28] and Resnet50 [41], and the original MobileNetV2 [38]
is also leveraged as the baseline. The experimental results are
shown in Table 7.
In terms of detection accuracy, the Swin-Transformer

achieves the best performance, while the number of param-
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eters and computational complexity are also higher, which
are 12 times and 4 times of ours respectively. Meanwhile,
with only about 8% of the parameters and 25% of the
computational cost of the Swin-Transformer backbone, our
mIoU and MAP performance lagged by only 0.48% and
0.73%, respectively. The MobileNetV2 baseline achieves the
fastest detection speed and lowest computational complexity,
but the mIoU and the MAP is 5.25% and 4.29% lower than
ours respectively. As a whole, our improved hybrid encoder
achieves a good balance between the detection accuracy and
the computational cost.

TABLE 7. Performance of parts detection with different backbone.

4) COMPARATIVE EXPERIMENT OF DIFFERENT TYPES OF
POSITIONING BOX
Experiments are conducted to compare the positioning
accuracy of different types of box for the part with large
aspect ratio. As shown in Figure 15, the TR _Corner part
in MONA, is chosen to demonstrate the detection results of
the rotated box and horizontal box. Figure 15(a) is the image
taken by the camera, and Figure 15(b) is the image obtained
according to the transformation relation between the standard
template and in-site image. The experimental results show
that the horizontal detection box contains a lot of background
information, while the rotated box can effectively fit the parts,
improving the accuracy of subsequent object matching.

FIGURE 15. Detection results of different types of positioning boxes.

D. MISSING AND WRONG ASSEMBLY FAULTS INSPECTION
In this section, the assembly inspection method is used to
carry out the missing and wrong installation faults inspection
experiment, and the workbench is shown in Figure 16.
For each assembly step of MONA, sample images of
qualified assembly and unqualified assembly are collected
respectively, and the assembly states in these images are
recorded. A total of 150 sample images are collected,
including qualified, 8 missing and wrong assembly, and the

number of each assembly sample is 50. The types of wrong
assembly consist three common cases, part type error, angle
error and position error. The precision, recall and F1 score
are used in this paper as evaluation indexes for assembly fault
inspection. Based on the positioning boxmatching algorithm,
the IoU value between the detected positioning box and the
standard box is calculated. When the IoU result is less than
the preset threshold, it’s judged that the current step has a
missing or wrong assembly error.

FIGURE 16. Assembly workbench.

After testing all samples, the final precision, recall and
F1 score of three types of assembly samples detected by
the proposed inspection method are calculated respectively,
and the result is shown in Table 7. In Table 8, the qualified
assembly samples, missing assembly samples and wrong
assembly samples are denoted as ‘‘Qualified’’, ‘‘Missing’’,
and ‘‘Wrong’’, respectively. The proposed inspection method
has achieved the F1 score of 90.91% for qualified assembly,
97.09for missing assembly and 93.88% for wrong assembly.
The inspection result of some samples is shown in Figure 17.
The dashed line box is the real position of the part, and the
solid line part is the bounding box detected by the proposed
part detection model. Experimental results demonstrate that
the proposed method can effectively inspect the assembly
faults for each assembly step.

FIGURE 17. Assembly quality inspection samples.

TABLE 8. Assembly quality inspection result.
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V. CONCLUSION
In this paper, an online deep learning-based inspection
scheme is proposed to inspect assembly faults. A novel multi-
task learning model with transformer attention mechanism,
named MTL-CenterNet, is proposed to integrate key points
detection and parts detection. The detected key points are
used to solve the transformation relation between the in-site
image and the template image. Based on this, the detected
positioning box is matched with the standard positioning
boxes to judge whether there are missing or wrong assembly
faults. To verify the proposed model, key points and parts
detection experiments are carried out, and the results are
superior to other mainstream algorithms. In addition, the
assembly inspection experiment is also conducted. The
results show that the average F1score for missing and wrong
assembly error identification reaches 93.96%.

The proposed deep learning-based assembly inspection
method still requires a large amount of manually annotated
training data, which will limit its further application in
industry. Future works will focus on unsupervised or weakly
supervised detectionmethods to reduce the burden of datasets
preparation. Moreover, the structure of the MTL-CenterNet
model will be further optimized to reduce the computational
complexity.

REFERENCES
[1] Y. Torres, S. Nadeau, and K. Landau, ‘‘Classification and quantification of

human error inmanufacturing: A case study in complexmanual assembly,’’
Appl. Sci., vol. 11, no. 2, p. 749, Jan. 2021.

[2] C. Chen, T. Wang, D. Li, and J. Hong, ‘‘Repetitive assembly action
recognition based on object detection and pose estimation,’’ J.Manuf. Syst.,
vol. 55, pp. 325–333, Apr. 2020.

[3] R. Iqbal, T. Maniak, F. Doctor, and C. Karyotis, ‘‘Fault detection and
isolation in industrial processes using deep learning approaches,’’ IEEE
Trans. Ind. Informat., vol. 15, no. 5, pp. 3077–3084, May 2019.

[4] H. F. Le, L. J. Zhang, and Y. X. Liu, ‘‘Surface defect detec-
tion of industrial parts based on YOLOv5,’’ IEEE Access, vol. 10,
pp. 130784–130794, 2022.

[5] Y. Fu, X. Ma, and H. Zhou, ‘‘Automatic detection of multi-crossing crack
defects in multi-crystalline solar cells based on machine vision,’’ Mach.
Vis. Appl., vol. 32, no. 3, p. 60, May 2021.

[6] X. Jiang and S. Wang, ‘‘Railway panorama: A fast inspection method
for high-speed railway infrastructure monitoring,’’ IEEE Access, vol. 9,
pp. 150889–150902, 2021.

[7] Y. Wang, M. Perry, D. Whitlock, and J. W. Sutherland, ‘‘Detecting
anomalies in time series data from a manufacturing system using recurrent
neural networks,’’ J. Manuf. Syst., vol. 62, pp. 823–834, Jan. 2022.

[8] Y.-J. Cha, W. Choi, and O. Büyüköztürk, ‘‘Deep learning-based crack
damage detection using convolutional neural networks,’’ Comput.-Aided
Civil Infrastruct. Eng., vol. 32, no. 5, pp. 361–378, Mar. 2017.

[9] D. G. Lowe, ‘‘Distinctive image features from scale-invariant keypoints,’’
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004.

[10] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, ‘‘Speeded-up robust
features (SURF),’’ Comput. Vis. Image Understand., vol. 110, no. 3,
pp. 346–359, Jun. 2008.

[11] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, ‘‘ORB: An efficient
alternative to SIFT or SURF,’’ in Proc. Int. Conf. Comput. Vis., Nov. 2011,
pp. 2564–2571.

[12] Y. Liu, S. Li, J. Wang, H. Zeng, and J. Lu, ‘‘A computer vision-based
assistant system for the assembly of narrow cabin products,’’ Int. J. Adv.
Manuf. Technol., vol. 76, nos. 1–4, pp. 281–293, Jan. 2015.

[13] J. Canny, ‘‘A computational approach to edge detection,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. PAMI-8, no. 6, pp. 679–698, Nov. 1986.

[14] F. Da and H. Zhang, ‘‘Sub-pixel edge detection based on an improved
moment,’’ Image Vis. Comput., vol. 28, no. 12, pp. 1645–1658, Dec. 2010.

[15] M. Kim, W. Choi, B.-C. Kim, H. Kim, J. H. Seol, J. Woo, and K. H. Ko,
‘‘A vision-based system for monitoring block assembly in shipbuilding,’’
Comput.-Aided Des., vol. 59, pp. 98–108, Feb. 2015.

[16] C. Rother, V. Kolmogorov, and A. Blake, ‘‘‘GrabCut’: Interactive
foreground extraction using iterated graph cuts,’’ ACM Trans. Graph.,
vol. 23, no. 3, pp. 309–314, 2004.

[17] X. Yang, X. Fan, J. Wang, X. Yin, and S. Qiu, ‘‘Edge-based cover
recognition and tracking method for an AR-aided aircraft inspection
system,’’ Int. J. Adv. Manuf. Technol., vol. 111, nos. 11–12, pp. 3505–3518,
Dec. 2020.

[18] J.-I.-R. Cojocaru, D. Popescu, and L. Ichim, ‘‘Real-time assembly fault
detection using image analysis for industrial assembly line,’’ in Proc. 43rd
Int. Conf. Telecommun. Signal Process. (TSP), Jul. 2020, pp. 484–487.

[19] D.-M. Tsai and Y.-C. Hsieh, ‘‘Machine vision-based positioning and
inspection using expectation–maximization technique,’’ IEEE Trans.
Instrum. Meas., vol. 66, no. 11, pp. 2858–2868, Nov. 2017.

[20] P. Tang, Y. Guo, H. Li, Z. Wei, G. Zheng, and J. Pu, ‘‘Image dataset
creation and networks improvement method based on CAD model and
edge operator for object detection in the manufacturing industry,’’ Mach.
Vis. Appl., vol. 32, no. 5, Sep. 2021.

[21] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-
time object detection with region proposal networks,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.

[22] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[23] N. Bodla, B. Singh, R. Chellappa, and L. S. Davis,
‘‘Soft-NMS—Improving object detection with one line of code,’’ in
Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 5562–5570.

[24] X. Zhou, D. Wang, and P. Krähenbühl, ‘‘Objects as points,’’ 2019,
arXiv:1904.07850.

[25] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks
for semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3431–3440.

[26] N. Carion, F. Massa, and G. Synnaeve, ‘‘End-to-end object detection
with transformers,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), vol. 2020,
pp. 213–229.

[27] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, ‘‘An image is worth 16×16 words:
Transformers for image recognition at scale,’’ 2020, arXiv:2010.11929.

[28] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B.
Guo, ‘‘Swin transformer: Hierarchical vision transformer using shifted
windows,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021,
pp. 9992–10002.

[29] J. Lewis, Y.-J. Cha, and J. Kim, ‘‘Dual encoder–decoder-based deep polyp
segmentation network for colonoscopy images,’’ Sci. Rep., vol. 13, no. 1,
pp. 1–12, Jan. 2023.

[30] X. Tao, X. Gong, X. Zhang, S. Yan, and C. Adak, ‘‘Deep learning for
unsupervised anomaly localization in industrial images: A survey,’’ IEEE
Trans. Instrum. Meas., vol. 71, pp. 1–21, 2022.

[31] Y. Cha, W. Choi, G. Suh, S. Mahmoudkhani, and O. Büyüköztürk,
‘‘Autonomous structural visual inspection using region-based deep learn-
ing for detecting multiple damage types,’’Comput.-Aided Civil Infrastruct.
Eng., vol. 33, no. 9, pp. 731–747, Sep. 2018.

[32] W. Choi and Y.-J. Cha, ‘‘SDDNet: Real-time crack segmentation,’’ IEEE
Trans. Ind. Electron., vol. 67, no. 9, pp. 8016–8025, Sep. 2020.

[33] F. Chollet, ‘‘Xception: Deep learning with depthwise separable convo-
lutions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 1800–1807.

[34] D. H. Kang and Y.-J. Cha, ‘‘Efficient attention-based deep encoder
and decoder for automatic crack segmentation,’’ Struct. Health Monitor.,
vol. 21, no. 5, pp. 2190–2205, Sep. 2022.

[35] M.-A. Zamora-Hernández, J. A. Castro-Vargas, J. Azorin-Lopez, and
J. Garcia-Rodriguez, ‘‘Deep learning-based visual control assistant
for assembly in industry 4.0,’’ Comput. Ind., vol. 131, Oct. 2021,
Art. no. 103485.

[36] A. Riedel, J. Gerlach, M. Dietsch, S. Herbst, F. Engelmann, N. Brehm, and
T. Pfeifroth, ‘‘A deep learning-based worker assistance system for error
prevention: Case study in a real-world manual assembly,’’ Adv. Prod. Eng.
Manage., vol. 16, no. 4, pp. 393–404, Dec. 2021.

139234 VOLUME 11, 2023



S. Zhao et al.: Online Assembly Inspection Integrating Lightweight Hybrid Neural Network

[37] C. Chen, C. Li, D. Li, Z. Zhao, and J. Hong, ‘‘Mechanical assembly
monitoring method based on depth image multiview change detection,’’
IEEE Trans. Instrum. Meas., vol. 70, pp. 1–13, 2021.

[38] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

[39] J. Blattner, J. Wolfartsberger, and R. Lindorfer, ‘‘A standardized approach
to evaluate assistive systems for manual assembly tasks in industry,’’ in
Proc. Conf. Learn. Factories. (CLF), 2021, pp. 1–6.

[40] D. DeTone, T. Malisiewicz, and A. Rabinovich, ‘‘SuperPoint: Self-
supervised interest point detection and description,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2018,
pp. 224–236.

[41] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

SHIWEN ZHAO received the B.E. degree in aero-
craft manufacture engineering from the Nanjing
University of Aeronautics and Astronautics, Nan-
jing, China, in 2021. He is currently pursuing the
M.S. degree in mechanical engineering with the
Huazhong University of Science and Technology,
Wuhan, China. His research interests include deep
learning and machine vision.

JUNFENG WANG (Member, IEEE) received the
B.E. degree in engineering from Beijing Jiaotong
University, Beijing, China, in 1991, and the
Ph.D. degree in mechanical engineering from the
Huazhong University of Science and Technology,
Wuhan, China, in 2004. From 2009 to 2010, hewas
a Visiting Scholar with the S. M. Wu Manufactur-
ing Research Center, University of Michigan, Ann
Arbor. He is currently a Professor and the Dean
of the Department of Industrial andManufacturing

System Engineering, School of Mechanical Science and Engineering,
Huazhong University of Science and Technology. His research interests
include production systems, industrial augmented reality, and human–robot
collaborative assembly. He is a member of IISE and CMES.

WANG LI received the B.E. degree in mechanical
design manufacture and automation fromWeifang
University, Weifang, China, in 2013, the M.S.
degree in mechanical engineering from Central
South University, Changsha, China, in 2016, and
the Ph.D. degree in mechanical engineering from
the Huazhong University of Science and Technol-
ogy, Wuhan, China, in 2022. He is currently a
Postdoctoral Researcher with the Department of
Information Technology Equipment, FiberHome

Telecommunication Technologies Company Ltd., Wuhan. His research
interests include augmented reality and artificial intelligence.

LONGFEI LU received the B.E. degree in indus-
trial engineering from the Huazhong University of
Science and Technology, Wuhan, China, in 2022,
where he is currently pursuing the M.S. degree
with the Department of Industrial and Manufac-
turing System Engineering, School of Mechanical
Science and Engineering. His research interests
include deep learning and automatic assembly.

VOLUME 11, 2023 139235


