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ABSTRACT In this study, the reliability of power distribution systems is analyzed using a novel strategy
of predictive reliability analysis based on the lifetime failure rate cycle in a bathtub curve shape and
considering the standard Weibull distribution to determine the trend of the failure rate in each period using
median rank regression for parameter estimation. The proposed strategy consists of three processes. The
first process involves separating the external and internal factors that influence power outages in the power
distribution system from the seasonal multimodal shape in the empirical distribution of the dataset using a
bisection algorithm of residuals of polynomial regression. Second, clustering and characterization of each
component in the power distribution system according to the condition of the total factor bathtub curve leads
to the introduction of the use of shape parameters as the total factor deterioration index (TFDI) with linear
regression trends of log scale shape parameters of the useful period. A simple approximation of the system’s
overall total factor bathtub curve using a sixty-year forecast is the final process presented that can be used in
reliability planning to address lifecycle risks. The actual time-to-outage dataset between 2015 and 2020 of
the Provincial Electricity Authority, Region 1, Northeastern Thailand, which covers the area of distribution
line life in the three periods of the bathtub curve, was used as the test data. The numerical results obtained
from the proposed process provide a comprehensive prediction of the reliability of the electrical distribution
system for risk response planning. The results show the proportion and amount of internal deterioration
versus external disturbances, helps to group components according to health and usability and prioritizes
them according to risk. Furthermore, it clarifies the important moments of status transition. All of these
factors make it possible to improve reliability in the right place at the right time. Every method that we have
chosen to improve for use in analysis is simple, provides a clear visualization of every step, and can be used
in practice.

INDEX TERMS Time to outage, failure rates, bathtub curve, standard Weibull distribution, predictive
reliability, electric distribution system, polynomial regression, bisection algorithm.

I. INTRODUCTION
Every economic and social activity must continuously
use electrical power. Even residential customers have this
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problem, reflected in the form of complaints at a higher level
than other power quality problems. This has led the electric
utility provider to establish numerical guarantee criteria for
this issue that are acceptable to both sides. The economic and
social impacts of a power outage are difficult to concretely
assess. The topic of dealing with power outages is called
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reliability analysis for power systems. The level of this prob-
lem is technically assessed in terms of frequency, duration,
and the number of customers, while the value and amount
of energy are used as alternatives. Collecting data on outage
times can contribute to reliability evaluations in three types:
assessment, prediction, and forecasting, which are useful for
improved reliability planning.

Reliability analysis of power distribution systems is based
on insights in the form of indices (SAIFI, SAIDI, etc.)
obtained from the reliability assessment process. This is used
along with descriptive statistical analysis of surrounding data
to plan the restructuring of the electricity distribution net-
work to increase the reliability of the system [1], [2]. These
processes assume that the failure rate (λ) is a constant value
or a time value only. The failure rate is an important char-
acteristic of homologous components and is often regarded
as time-varying in accordance with the Weibull probability
distribution function model. All assumptions for the time-
to-failure dataset are on the three trend lines that can be
described by the Weibull probability distribution function,
and the life cycle of the failure rate is described by the shape
of the bathtub curve. This is useful for reliability prediction or
condition-based reliability management as well as reliability
in other engineering fields [3], [4], [5], [6], [7], [8].

Predictive reliability analysis for electrical distribution sys-
tems provides insights related to the lifespan of systems
and components, as shown in Figure 1. This bathtub curve
shows that total risk management is beyond the scope of
maintenance work and extends to proactive planning from
precommissioning agreements (quality testing and warranty)
to periods when regular maintenance cannot prevent frequent
failures. This is called the wear period. The goal of this risk
management is to eliminate periods of high failure rates on
both sides. It must be recognized and acted upon without
a necessary cost assessment. This is the importance of the
insights gained from predictive reliability analysis.

Many previous studies have presented arguments against
this hypothesis, such as the inadmissibility of bathtub curve
charts in the electronics industry and even in the field of
electrical systems and components [9], [10]. Most studies
note the presence of modal or multimodal in the empirical
curve of the failure rate function or the probability density
function (PDF) of the time to failure dataset, which can be
obtained from various nonlinear methods such as the Kaplan-
Meier estimator, histogram, kernel density estimation, and
empirical cumulative distribution function [11], [12], [13],
[14], [15], [16], [17], [18]. The results of analysis using
the Weibull distribution on the time-to-failure dataset are
monotonic functions. When analyzing the presumed lifetime
failure data with the classical Weibull distribution model, the
characteristics of the bathtub curves are not found. Therefore,
improving the model to meet this need is a continuous area
of research and development [4], [19], [20], [21].
In practice, the bathtub curve is an assumption of lifetime

failure rates, and Weibull analysis is an important reliability
tool used to predict trends in each period. The two-parameter

Weibull distribution model (standard Weibull distribution)
[20] is still the most commonly used in practice. Due to
the simplicity of the estimation and interpretation methods,
it is important to use only the shape parameter (β) and the
scale parameter (α). The value of the shape parameter is an
important condition for identifying the trend characteristics
of three different failure rate values, consisting of a decreas-
ing trend, a constant trend, and an increasing trend, which
can be interpreted as whether a component or system is in the
lifespan of the infant period, the useful period, or the wear-
out period, respectively. This leads to a plan to respond with
different management strategies for the three periods, such
as burn in & warranty, corrective & preventive maintenance,
and replacement & reallocation [19], [20], [21], as shown in
Fig. 1. Conceptual details and recommendations for reliabil-
ity predictions are provided in IEEE Std 1413.1-2002 [22].

FIGURE 1. Predictive reliability analysis using the bathtub curve of the
standard Weibull distribution.

Bathtub curves are used in analytical applications to man-
age assets over the lifetime of a component or system. In
business, they also play an important role in the study of
customer lifetime value and product life cycle. Bathtub curve
shapes appear in power system resilience to measure the
efficiency of power system recovery after severe or large-area
damage with low probability but high impact. This chart,
called the resilience curve or resilience trapezoid, shows that
the bathtub curve is an operational chart that is not a data
distribution model [23], [24], [25], [26], [27], [28].

There is a general understanding of the study topics: statis-
tical survival analysis, engineering reliability, event history
analysis in sociology, and duration analysis in economics are
just a few different names. To analyze time-to-event datasets,
expectations determine when and where we should worry.
The hazard function (h), failure function (λ), and force of
mortality (µ) have the same mathematical meaning. This
function results in the shape of the bathtub curve. In contrast,
the topics of statistical and psychrometric reliability refer to
measurement reliability, which aims to assess measurement
errors and suggest ways to improve testing to reduce errors.

The earliest survival analysis is found in John Gront’s
1662 publication, ‘‘Natural and political observations
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mentioned in the following index and made upon the bills
of mortality.

It has been continuously developed and its effectiveness
has been improved, and it has become an important tool that
is popularly used in actuarial analysis, epidemiology, and
demography [29], [30], [31].

A curve chart of the number of people who survived
until the age of 86 out of 100 Christiaan Huygens people
in 1669 shows important observations on the shape of the
distribution of the data. This is clearly a parametric model
that is one of the earliest survival curves [32]. Present-
ing survival charts has become a highly popular method of
presenting insights using a simple estimation method. The
Kaplan–Meier nonparametric model has been widely applied
(since 1958) in many academic fields, particularly in health
sciences. Kaplan-Meier curves, log-rank test, and Cox pro-
portional hazards regression have become popular survival
analysis techniques for analyzing time-to-event datasets [33].

TheWeibull distributionwas invented in 1937, andWeibull
analysis is now the most popular parametric model method
to analyze component and system lifetime failure data in
reliability engineering. Starting from the time to failure (TTF)
dataset, fitting theWeibull distribution model through param-
eter estimation leads to the derivation of the cumulative
distribution function (CDF or F(t)) and the probability den-
sity function (PDF or f(t)), the reliability function (R(t)), and
the failure rate function (λ(t)). A combination of the three
periods gives rise to a bathtub curve. Although there are many
parameter estimation methods, only three of the most popular
are used in practice: Weibull probability plot (WPP), median
rank regression (MRR), and maximum likelihood estimation
(MLE) [19], [20], [34], [35], [36].
Revisiting the beginnings of studies on this topic not only

honors those involved but also means uncovering the right
understanding to begin data analysis. It also includes clarifi-
cation of the nature of the analytical dataset and the optimum
timing of observation and recording for a large number of
components with similar characteristics. The original datasets
that gave rise to the reliability function analysis occurred in a
system that was virtually shielded from external influences,
which ultimately led to the analytical concept of time series
decomposition with outage time series presented in this arti-
cle. The verification of the suitability of the datasets used in
previous studies presents several interesting points. For exam-
ple, Aarset’s (1987) 50-device failure time dataset [37] was
used to develop a bathtub-shaped lifetime failure rate model.
It should be noted that the maximum time value from the data
(85 h) was observed over the actual lifetime. In addition, the
bathtub shape appears as an empirical distribution function
of the failure probability density function (PDF) and not as
a shape on the failure rate function. However, this type of
analytical work was not part of this study.

The analysis of time-to-event datasets seems to be closely
related to time-series analysis [4], [38]. Both datasets have a
time domain; the range of the time-series dataset is an exact

value, whereas the range of the time-to-event dataset does not
exist. Thus, the task of analyzing the time-to-event dataset
begins by mapping the data to the appropriate probabilities
using the desired probability distribution model to form the
time-series dataset. However, pairs with sequence values
can also be converted into time-series datasets. Therefore,
any data analysis technique applicable to time series can
be applied to time-to-event datasets. A basic decomposition
analysis [39] should be considered first. Tomeasure the good-
ness of fit of the model (goodness-of-fit test), it is preferable
to use the distance between the empirical cumulative distribu-
tion function (eCDF) [18], [40], [41], [42] and the cumulative
distribution function of the selected distribution. such as the
Kolmogorov-Smirnov test, Anderson-Darling test, root mean
square error (RMSE), coefficient of determination (R2) [43],
[44], and eCDF derived from the estimation. The goodness-
of-fit test is useful for comparing performance between dif-
ferent models and is used to analyze data with a single model
type.

Traditionally, reliability prediction for power distribution
systems is defined as finding the identity parameters of sim-
ilar components, such as the failure rate, repair rate, and
annual outage time (λ, r,U), to be used for reliability assess-
ment with analytic methods. This is similar to circuit analysis
with resistance, inductance and capacitance (R,L,C), and it
utilizes a fixed-time or constant failure rate [3]. However,
it is different from other areas of reliability engineering that
focus on analyzing the lifetime failure rate of components
or systems [22]. The predictive reliability analysis of power
distribution system outage datasets in previous research was
meant to predict the consequences after changes in the distri-
bution system structure using a constant failure rate for anal-
ysis, which is called predictive reliability assessment [45],
[46], [47], [48], [49], [50], [51], [52]. While the predictive
reliability analysis recommended by IEEE Std 1413.1-2002
for electrical distribution systems has not been clearly found
in previous research, there have been only a few attempts
to use this principle in the analysis of components such as
transformers and cables [38], [53], [54], [55], [56], [57], [58],
[59], [60].

There are three major problems in applying Weibull anal-
ysis or reliability function analysis to power-outage data.

First, the reason that taking time to outage data to analyze
through survival analysis or in the form of a reliability func-
tion is not very popular in practice is that most of the failure
rates of components and systems are caused by external
factors rather than internal wear and tears on the components
and the system itself. The interpretation and utilization of
traditional analytical results does not make much sense.

Second, for distribution systems, there are a large number
of components and their actual lifetimes are similar, which
often results in consistently close estimates of the shape
parameter (β) of each component. It is difficult to find the
separation point of the shape parameter (β) to group the
components according to the bathtub curve condition.
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Predictive reliability indices for power distribution compo-
nents and systems should be introduced into practice to assess
their ability to use continuously. For example, an index called
the health index for reliability of a components [61], [62] that
measures the change in different materials in that component
and predicts its deterioration. similar to the deterioration
index in medicine [63], [64] or the lifetime capability index in
a production lots from industrial plants [65]. Through proper
interpretation, these indices can be applied as predictive reli-
ability indices.

Third, there is no clear method for combining the failure
rate function curves of the three periods into a complete
bath curve for predictive reliability management planning for
power distribution systems.

In this study, the reliability of the power distribution sys-
tem is analyzed using predictive reliability analysis on the
concept of bathtub curves and median rank regression for
parameter estimation of the standard Weibull distribution
(two-parameter), which is used to find trends in failure rates
to solve the above three problems. A three-process analytical
strategy is presented that consists of the following: first,
an analysis to separate the external and internal factors that
influence outages in the power distribution system using
nonlinear optimization with a bisection algorithm of residuals
of polynomial regression; second, the analysis clusters and
identifies the conditional features of the combined factor bath
curves of each component in the power distribution system
using linear regression of the natural log scale of the shape
parameter (ln β), which leads to the introduction of the shape
parameter (β) as a useful total factor deterioration index
(TFDI). Finally, a simple approximate charting of the tubular
curve of the system with a 60-year forecast is performed. In
every analysis process, the results are interpreted to formulate
risk management strategies. The proposed process is tested
with a time-to-outage dataset between 2015 and 2020 of
the Provincial Electricity Authority, Region 1, northeastern
Thailand, which covers the area of distribution lines that
complete three periods of the bathtub curve.

For the parameter estimation process of the proposed strat-
egy,median-rank regression (MRR) is selected to estimate the
parameters of the standardWeibull distribution becauseMRR
is a more deterministic method than the Weibull probability
plot. MRR can provide estimated results that are equivalent
to maximum likelihood estimation (MLE) and still provide
acceptable results when the amount of data is small. More-
over, MRR is easy to implement in practice. Polynomial
regression is used to estimate the trend line of the outage
time datasets to analyze separate outage datasets caused by
internal and external influences. The main reasons for using
polynomial regression are as follows. Polynomial regression
is an optimal empirical alternative model that can be observed
in the chart of the outage time function. The results obtained
from polynomial regression show that the original curvature
shape of the dataset is preserved and can be further adjusted to
achieve a trend line representing the most noticeable seasonal

excess. Polynomial regression has simple calculation steps
and is suitable for implementation in practice.

The novelty of our proposed strategy can be summarized
as follows:

1) A novel technique for predictive reliability analysis of
a power distribution system is presented. The proposed
strategy can provide the results of risk management
and estimation of the bathtub curve for both the overall
system and individual components.

2) A novel technique for separating internal and external
factors from outage data is presented based on trend
analysis with polynomial regression.

3) A novel total factor deterioration index (TFDI) is pre-
sented for simple and effective risk management.

The subsequent sections of this paper consist of the follow-
ing: the theorems adapted for use in this paper are presented
in section II, a step-by-step analysis of the three processes is
presented in section III, practical examples with real data are
presented in section IV, and the conclusion of the proposed
predictive reliability analysis strategy of the power distribu-
tion system is presented in section V, which is the final part
of this paper.

II. MODELS AND ALGORITHMS FOR PREDICTIVE
RELIABILITY ANALYSIS
The predictive reliability analysis for power distribution sys-
tems presented in this paper uses bath curve charts of failure
rates as the main application to manage lifecycle risk and
find trends in each period. This analysis is performed using
Weibull analysis, which uses median-rank regression to esti-
mate parameters because it is simple and practical and works
well when the amount of data is small [66], [67], [68]. In
addition to extracting as much insight as possible, a poly-
nomial regression model and bisection algorithm are used
to exclude outages caused by external disturbances, where
the linear regression model is used for conditional clustering
of components on the bathtub curve. In the following, these
models and algorithms are presented in principle, and the way
they can be utilized to achieve the objectives is described as
follows.

A. STANDARD WEIBULL DISTRIBUTION
The two-parameter Weibull distribution is called the standard
Weibull distribution because it is the most popular in practice
[20] and has only two main parameters: the shape parameter
(β) and the scale parameter (α). The failure rate trend can be
determined using the value of the shape parameter. Below is
the mathematical model of the Weibull distribution function.

For t ≥ 0, β > 0, and α > 0, t is the failure time, β is the
shape parameter, and α is the scale parameter.

The probability density function (PDF) is given by

f (t; α, β) =

(
β

α

) (
t
α

)β−1

exp

[
−

(
t
α

)β
]

(1)
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The cumulative distribution function (CDF) and the relia-
bility function are given by

F(t; α, β) = 1 − exp

[
−

(
t
α

)β
]

(2)

R(t; α, β) = 1 − F(t) = exp

[
−

(
t
α

)β
]

(3)

The hazard or failure rate function is given by

h(t; α, β) = λ(t; α, β) =
f (t)
R(t)

=

(
β

α

) (
t
α

)β−1

(4)

Utilization of parametric statistical models: The model
is optimized to fit the data using several methods for opti-
mizing parameter estimation. In this section, we review and
discuss the three most popular methods used in practice:
maximum likelihood estimation (MLE), Weibull probability
plot (WPP), and median rank regression (MRR).

1) MAXIMUM LIKELIHOOD ESTIMATION
This approach is accepted in computational results when the
amount of data is sufficiently large. The solution to this
problem is an optimization model with a maximum of log
likelihood function built from the probability density function
(PDF), which is used as an objective function. B > 0, α >

0 is used as a subject to a constraint where the partial deriva-
tive equal to zero together with a numerical computational
method is used as an optimization method to determine the
parameters. Although it does not start from an estimate of
the empirical distribution, to check its fit with real data, this
empirical distribution function is used as a reference value in
the calculations and comparison. The details of the method
can be found in references [20], [69], [70], and [71]. The
final result from Cohen’s analysis is another good alternative,
as shown in the following equation.

For estimated β :

[∑i=n
i=1 x

β
i ln xi∑i=n

i=1 x
β
i

−
1
β

]
=

1
n

∑i=n

i=1
ln xi (5)

and for estimated α:

α =

∑i=n

i=1

xβ
i

n
(6)

2) WEIBULL PROBABILITY PLOT
Because the popularity of statistical model performance is
often measured with reference values from the empirical
cumulative distribution function (eCDF), it is easier to initiate
the process of parameter estimation from this function esti-
mation than to begin with the log-likelihood function. For the
Weibull distribution, Benard’s median rank approximation
is commonly used to estimate this value, where i = 1, 2,
3, . . . , n is the sequence number of the failure-time data
in ascending order. eCDF or F(ti) can be determined using

the following equation:

F(ti) =
i− 0.3
n+ 0.4

(7)

Equation (2), when properly executed with the log-log
transform, yields a linear relationship model, as shown in
Equation (8), which can be used to generate a log-log-scale
grid on paper to estimate the parameters of the Weibull
function. In the Weibull probability plot paper (WPPP), the
slope of two or more approximate coordinates (F , t) is the
shape parameter (β) and the intersection point of this line,
and the straight line F(t) = 63.21% is the value of the scale
parameter (α). The final result of the log-log transformation
is as follows:

ln
(
ln

(
1

1 − F(t)

))
= β ln t − β lnα (8)

Compared to a linear relationship

y = mx + c (9)

this will obtain

y = ln
(
ln

(
1

1 − F(t)

))
(10)

x = ln t, m = β and c = β lnα (11)

This method of estimating parameters, although highly
variable, is sufficiently useful when performing on-site main-
tenance tasks in which onlyWPP paper and pens are available
for reliability prediction. Therefore, WPP remains popular
today.

3) MEDIAN RANK REGRESSION
The results from (8)–(11) provide an alternative for the need
to estimate β and α as accurately as possible using the linear
regression least square error technique. This estimate can be
obtained using the following equation:

β =
n

∑i=n
i=1 xiyi −

∑n
1 xi

∑n
1 yi

n
∑i=n

i=1 x
2
i −

(∑i=n
i=1 xi

)2 (12)

α = exp

[
β

∑i=n
i=1 xi −

∑i=n
i=1 yi

nβ

]
(13)

The combination of median rank approximation and lin-
ear regression analysis is known as median rank regression
(MRR).

Parameter estimation for the Weibull distribution using the
above and other methods is compiled and presented in [20],
[69], [70], and [71]. The final result from theWeibull analysis
has only one trend among the three periods of the bathtub
curve. This is called amonotonic result and is shown in Fig. 2.

B. POLYNOMIAL REGRESSION
A special form of multiple linear regression or multivariate
linear regression where the variables {x1, x2, x3, . . . , xn}
are replaced by {x, x2, x3. . . , xn} for i = 1, 2, 3, . . . , n
becomes a form of a polynomial regression function. The
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FIGURE 2. Monotonic pattern of the analytical results obtained by
Weibull analysis.

model can be adapted to a wide range of nonlinear datasets,
and the parameters {w0, w1, w2, w3, . . . , wn} can be esti-
mated using least-squares analysis. The model differences
can be determined using (14)–(16): [72]

Simple linear regression function:

y = w0 + w1x (14)

Multiple linear regression function:

y = w0 + w1x1 + w2x2 + w3x3 + . . . + wnxn (15)

Polynomial regression function:

y = w0 + w1x + w2x2 + w3x3 + . . . + wnxn (16)

The model can be generalized to a matrix for variables X,
response vector Y, error vector ε, and vector of parameters
w as follows:

Y = wX + ε (17)

With ordinary least squares estimation, the parameters can
be estimated as follows:

w = (XTX)−1XTY (18)

and the model performance is measured with the coefficient
of determination R2 defined as

R2
= 1 −

∑n
1

(
yi −

⌢yi
)2

∑n
1 (yi − ȳi)2

(19)

where yi is the observed value, ⌢yi is the fitted value, and ȳi
is the arithmetic mean of the dependent variable Y for the ith

case. In this study, polynomial regression of the outage time
function is used in conjunction with the bisection algorithm to
separate the outage data influenced by intrinsic and extrinsic
factors. The choice of the number of expressions for variable
x is mainly determined by the most pronounced seasonal
component together with the consideration of the value of R2.

C. BISECTION ALGORITHM
To find the roots of continuous nonlinear equations in the
form F(z) =0, the bisection method is one of the most
popular basic methods. A simple rule of thumb for deter-
mining the range of variables that has a solution is that the
bounding function of both variables is [−, +]. Subsequently,
this interval is divided into two parts and tested with the same
principle. This is repeated until a solution is obtained that
makes the value of the function equal to 0 or as close to 0 as
acceptable. This process of dividing a variable range into two
and then testing an objective function to select a range based
on optimum conditions, known as the bisection algorithm,
is widely adopted in solving optimization problems [73],
[74], [75], [76]. In this study, this method was adapted to filter
out outage data that are likely to be influenced by exogenous
factors in a seasonal pattern using an objective function as a
shape parameter and standard Weibull analysis (SWA) with
MRR as a constraint. Variable (z) is the residual boundary
of polynomial regression whose range is between the highest
residual boundary [−m,m], which can be expressed as a
mathematical model as follows:

Objective function:

minβ(z) (20)

Subject to the constraints:

r(i) = T (i) − P(i) (21)

z ∈ [−m,m] (22)

F(tl) =
l − 0.3
n+ 0.4

(23)

y = ln
(
ln

(
1

1 − F(tl)

))
(24)

x = ln tl (25)

β =
n

∑n
1 xlyl −

∑n
1 xl

∑n
1 yl

n
∑n

1 x
2
l −

(∑n
1 xl

)2 (26)

where:
T (i) is the outage time function,
P(i) is the polynomial regression function of T (i),
r(i) is the residual of the polynomial regression function,
m is the maximum absolute value of r(i),
z ∈[−m,m] is the residual boundary range used to extract

time-to-outage data influenced by seasonal external factors,
and
tl is the time-to-outage dataset in which exogenously

influenced data are already trimmed in seasonality from the
z-boundary condition, where l ∈{1,2, 3. . . , n} is the sequence
number of the outage time data, which is arranged from least
to greatest.

The bisection algorithm solution algorithm of this opti-
mization model begins after the regression process to obtain
the optimal P(i), and the implementation of this algorithm
follows the following sequence:
Step 1: Evaluate r(i) with (21) and obtain the maximum

upper bound in [0, m], which is used for the initial upper
bound of z0(0th iteration).
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Step 2: Divide the range by values between 0 and m with
an appropriately predicted value or divide the range by half
by setting it to obtain two upper bounds [0, a] and (a,m].
Find the middle value of each range as b = (0 + a)/2 and
c = (a + m)/2, and then obtain the boundaries [−b, b] and
[−c, c].
Step 3: Truncate the data from step 2 with the residual

boundary values from [−b, b] and [−c,c], resulting in two
attenuated datasets (tbl and tal). The obtained dataset is used
to estimate the shape parameter (β) using (23)–(26). With
smaller β values, this range provides a suitable solution.
Then, it becomes the new upper bound range in step 1 ([0,
a] or (a,m] replaces [0, m]), and the middle value becomes
the new range divider used in step 2 (b or c replaces a).
Step 4: Repeat steps 1-3 until the lowest and unchanged β

values are achieved. If all iterations are k cycles, the appro-
priate range is variable to. zk
This algorithm will be demonstrated again with actual

outage data in Section IV.

III. THE PROPOSED STRATEGY OF PREDICTIVE
RELIABILITY EVALUATION
In this paper, the processes of predictive reliability evaluation
for power distribution systems are presented based on the life
cycle failure rate usage in bathtub curves and a two-parameter
or standard Weibull distribution model. It is used to extract
trends for three periods (infant, useful, and wear-out) using
a MRR parameter estimation method to gain insights that
can be used to plan support for each period. The analysis
strategy is divided into three main processes to analyze the
power outage dataset in the power distribution system. A life
cycle risk management plan can be developed that consists
of a separate analysis of outage events caused by internal
and external factors using a bisection algorithm of residuals
in polynomial regression, clustering components analysis of
conditional health levels on individual component bath curves
using linear regression for a useful period and estimating a
simple bath curve of the overall power distribution system
using a forecast that is out of range for 60 years. An overview
of the strategies presented in this article is shown in Fig. 3,
and the details of the three main processes are as follows.

A. SEPARATING OUTAGE DATA INFLUENCED BY INTERNAL
AND EXTERNAL FACTORS
This process is proposed to analyze and assess the impact
of internal and external factors on outages. The mixture of
these influences gives a multimodal nature to the empiri-
cal distribution of time-to-failure (histogram) data using a
nonlinear optimization with a bisection algorithm of resid-
uals in polynomial regression. The results of the analysis
can distinguish outage events that are influenced by internal
degradation (trend) or external factors and disturbance char-
acteristics.

The analysis process is illustrated in Fig. 4. This process
is initiated by introducing the entire time-to-failure dataset
into a median rank regression estimated Weibull analysis and

FIGURE 3. Flowchart of the proposed strategy of predictive reliability
evaluations.

comparing the resulting PDF model to the empirical distribu-
tion characteristics derived from the histogram to consider the
consensus and accept the results obtained from the Weibull
analysis. Simultaneously, a parallel process is performed to
extract only the intrinsically influenced power-outage dataset
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using the bisection algorithm of residuals of polynomial
regression, and the resulting dataset (tl) is included in the
Weibull analysis. Finally, the results are compared, and mea-
sures to prevent power outages are found to be in line with
the results obtained from the analysis.

FIGURE 4. The process for filtering outage data is influenced by internal
and external factors.

B. CLUSTERING OF COMPONENTS BASED ON BATHTUB
CURVE CONDITIONS
This process presents a segmented analysis and characterizes
the conditional features on the total-factor bath curves of each
component in the power distribution system by determining
the boundary β for the useful period using linear regression

estimates of ln β to estimate the life period of the components
and recommend the use of the shape parameter as a total
factor deterioration index (TFDI).

The analysis process is illustrated in Fig. 5. This analyt-
ical process begins by importing the outage dataset of each
component to determine the shape parameter of each compo-
nent withWeibull analysis usingMRR parametric estimation.
Subsequently, a range of shape parameters (β) is performed
to group the components within the useful period for all the
factors that influence the outage. By linear regression analysis
of ln(β), the components can be grouped into three groups
(infant, useful, and wear-out periods). Finally, a contingency
plan is developed according to the conditions of each group
and prioritized by risk using the shape parameter as the total
factor deterioration index (TFDI).

FIGURE 5. The process for evaluating the operating conditions of each
component based on the bathtub curve.

C. ESTIMATING SIMPLE BATHTUB CURVE FOR
REPRESENTATION OF THE OVERALL ELECTRICAL
DISTRIBUTION SYSTEM
In this process, an analysis is presented to plot the bathtub
curve of the system as a total factor by taking the outage
datasets grouped in Section B. It is then introduced into the
Weibull analysis by MRR to determine the shape parameters
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(β) of each period and scale parameters (α) from all outage
data. Then, the failure rates are estimated out of range as an
estimated time close to the actual lifespan (60 years) of each
period. The end of the infant period (TInfan) and the beginning
of the useful period are estimated at the same failure rate
point, and the transition point from the useful period to the
wear-out period (TWear−out) is estimated when the cumulative
probability distribution function (CDF) of the useful period
is equal to 1. These two transition points allow a simple bath
curve approximation to be used as an overall representation of
the power distribution system to plan reliability management
based on life conditions. The analysis process is illustrated in
Fig. 6.

FIGURE 6. The process for estimating a simple bath curve.

While the outage datasets are used to analyze the proposed
strategy, two conditions are considered. First, the data collec-
tion period must include at least two outage events and must
not be too long for the data to be within one period of the
bathtub curve. Second, the data collection area must cover all
three periods with a conditionally qualified component on the
bathtub curve.

Regarding some alternativemodels,Weibull familymodels
are the main choice for analyzing time-to-event datasets to
obtain bathtub curve conditional failure rate functions due to
their ability to adapt to a wide range of data distributions,
including normal distributions and exponential distributions.
For models used to perform trend analysis on outage time
datasets, variousmodels can be used, such as parametricmod-
els (linear regression, polynomial regression, multiple regres-
sion, moving-average model, etc.) and nonparametric models
(kernel regression, spline smoothing, locally weighted scat-
terplot smoothing, etc.). However, using them together to
separate outage datasets based on internal and external factors
has not attracted comparable research.We consider the choice
and improvement of the model for use in this study based on
the achievability of our proposed strategy and the simplicity
of the numerical calculations that can be used in practice.

The essential validation processes to assess the perfor-
mance, accuracy, and suitability of the proposed strategy are
performed and discussed as follows.

1) The Weibull analysis results are validated by compar-
ing their shape compatibility with the histograms of the
empirical distribution.

2) MRR is used for evaluating the desired parameters
in the proposed strategy. MRR has been used and
validated by several previous studies of parameter
estimation.

3) Polynomial regression is used for modeling the outage
time series because it is flexible and adaptable to a vari-
ety of curve shapes and can clearly show the proportion
of seasonal components while preserving the shape of
the basic trend curve. In addition, the suitability of the
model can be considered based on the clarity of the
seasonal component and the R2 value.

4) The performance of the newly improved bisection
algorithm’s solution is confirmed by convergence of the
solution to a single optimal point.

5) The bathtub curve estimation method used in the pro-
posed process is derived from the books recommended
in reference no. [9]. The accuracy of the bathtub curve
can be accurately considered from the information indi-
cating the actual service life of each component. How-
ever, the lack of actual service information presents a
difficulty for the validation of the bathtub curve in prac-
tice. The bathtub curvemay be validated by considering
the characteristics and relevant parameters.

IV. CASE STUDIES AND RESULTS
In this study, a predictive reliability analysis of power distri-
bution systems is presented to plan the lifetime reliability of
components and systems. This demonstrates the implemen-
tation of the proposed strategy with a time-to-outage dataset
in the electricity distribution system of the Provincial Elec-
tricity Authority in Area 1, northeastern Thailand, between
2015 and 2020. It consists of 855 distribution lines, each of
which has a number of outage data varying from 1 to 157,
totaling 15,380 power outage records. The data collection
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FIGURE 7. The Weibull analysis results of the total factor dataset: (a)-(d) and internal factor dataset: (e)-(h).

area has distribution lines covering all life stages from incep-
tion to deterioration, and some distribution lines can be
identified as being more than 55 years old. Collecting data for
six years makes it possible to determine that the data obtained
for each distribution line are contained in only one range on
the bathtub curve chart. The three proposed strategies for
predictive reliability analysis of power distribution systems
are described in detail below. This dataset is available for
downloads, as shown in the Appendix.

A. PROCESS 1: SEPARATING OUTAGE DATA INFLUENCED
BY INTERNAL AND EXTERNAL FACTORS
This analytical strategy uses all time-to-outage data to char-
acterize the failure rate function relative to the duration of

the bathtub curve by comparing the results of the empirical
probability density distribution models from the histogram
chart with the pattern obtained from the Weibull analysis.

The empirical distribution is multimodal due to the influ-
ence of exogenous factors on the seasonal pattern, which is
different from the result obtained from the Weibull analysis
(resulting β = 1.414867 and α = 31,509.48), as shown
in Fig. 7 (a)–(d). When Weibull analysis is performed
on the seasonally excluded data (trend), the results were
β = 1.065085 and α = 24,299.63, and the distributions
are consistent with the empirical distributions shown in
Fig. 7 (e)–(f). A comparison of the failure rate function
between the total factor and internal factor is shown in
Fig. 7 (d) and (h), which shows the influence of external
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FIGURE 8. The chart shows each step of the process of extracting outages caused by seasonal external influences.

factors that can change the Weibull analysis results from the
wear-out period to a useful period.

The trend and seasonal components are then separated
using the bisection algorithm of residual polynomial regres-
sion. Polynomial regression is an optimal empirical alterna-
tive model that can be observed in the chart of the outage
time function, as shown in Fig. 8 (a). The 8th-order poly-
nomial function is chosen because it clearly shows seasonal
components as in (27) and the chart in Fig. 8 (a), which
shows the curve of the outage time function, T(i), polynomial
function, P(i), and residual function, r(i). The results of lin-
ear regression (first-order polynomial regression) polynomial
functions of orders less than the 8th show a clearly incomplete
proportion of seasonal components and haveworseR2 values,
while the results of polynomial functions of orders higher
than 8 show that an excessively high fit to the dataset causes
the proportion of seasonal components to be reduced.

P(i) = (−1.50×10−27)i8+(8.10×10−23)i7+(−1.66×10−18)i6

+(1.54×10−14)i5+(−4.65×10−11)i4+(−1.94×10−7)i3

+ (1.46 × 10−3)i2 + 1.45i+ 999.99

R2
= 0.99853 (27)

The bisection algorithm has a reasonable residual bound-
ary of z= [−132.191,132.191], as shown in Fig. 8 (b) and (c).
The variation in residual time r(i) seems to be irregular in
Fig. 8 (b). The strange fluctuation in the residual time is
caused by the random behavior of power outages in the
electrical distribution system, and the periodic behavior is
influenced by seasonal effects. In Fig. 8 (d), the residual
outage dataset is presented in terms of tl .

Putting all time-to-outage datasets into the Weibull anal-
ysis allows the prediction of the overall power distribution
system in the wear-out period. However, contradicting the
empirical distributions from the histogram prevents the accu-
racy of the predictions from being confirmed. The repeated
periodic multimodal appearance suggests the presence of
seasonal external disturbances. By truncating the data to
only data from internal influences, the analytical results
are consistent with the empirical distribution. The overall
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power distribution system in the useful period is shown
in Fig. 9.

FIGURE 9. Comparing the failure rates of the ti and tl datasets.

From the evaluation results, if seasonal external factors
cause 86.63% of power outages, 13.37% of the outages are
caused by internal factors. Therefore, an appropriate response
plan should focus on preventing external causes and ensuring
that the power distribution system is durable to seasonal
external factors. The factors for outage events in power dis-
tribution systems consist of internal and external factors.
Internal factors may include age-related deterioration, manu-
facturing defects, and installation errors. External factors are
disturbances from the environment, such as weather, trees,
living things, and other objects. Considering internal and
external factors in risk analysis, internal factor risk analysis
is a reliability prediction task, while external risk analysis
is often referred to as outage cause analysis in reliability
assessment tasks.

There are two observations for the analysis of general
time-to-failure datasets. First, the presence of a modal or mul-
timodal pattern on the empirical distribution may be caused
by interference from external factors, and it causes an error in
the deterioration analysis of the system or components by the
Weibull analysis method. Second, the useful period clustering
with time-to-outage datasets considering both internal and
external factors in practice for electric power distribution
systems can be given the value of the shape parameter (β)
as an interval instead of 1, as in the traditional model.

B. PROCESS 2: CLUSTERING OF COMPONENTS BASED
ON BATHTUB CURVE CONDITIONS
The analysis presented in this strategy uses Weibull analysis
on discrete datasets or power distribution line sections to
predict the combined extrinsic and intrinsic degradation from
855-line section components. The β values of each compo-
nent are obtained closely and continuously over a wide range.
Therefore, it is necessary to perform clustering to separate
the component groups into three periods based on bath curve
characteristics using a natural log scale of shape parameter
(ln β) linear regression model to determine the β range of
the useful period to separate the infant and wear-out periods.
The results of β estimation with theMMR of each component

and the estimation of β for the useful period are shown
in (28)–(30) as follows.

Linear regression of ln β:

lnβ = 0.001862Cno. − 0.221318 (28)

Range of useful period:

−0.161 ≤ lnβ ≤ 0.919 (29)

0.851 ≤ β ≤ 2.508 (30)

FIGURE 10. Results of shape parameter estimation of each component
and estimation of shape parameter ranges in the useful period.

The results of this analysis are shown in Fig. 10 (a)–(b),
which clearly show the changes in the slopes of the curves
for the three distinct intervals according to the condition
of the bath curve. This near-zero slope difference range
is the component within the useful period. By convert-
ing the variable from Component ID to Component No.
(Cno.), a linear regression analysis is performed. The range
of shape parameters for grouping components within this
range can be estimated as in (30). When the shape param-
eters of each component are arranged in descending order,
they are found to be consistent under different service life
conditions. They are therefore suitable for use as well as
other reliability indices (SAIFI, SAIDI, etc.), which may
also be referred to as the total factor deterioration index
(TFDI).

The results of the ratio parameter estimation for each
component in the form of a histogram showing the normal
distribution pattern are presented in Fig. 11.
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TABLE 1. List of components in the wear-out period arranged in priority with TFDI.

FIGURE 11. The scale parameter of each component obtained from
Weibull analysis shows a normal distribution pattern.

The results of the analysis are as follows. Of the 855 com-
ponents, 92 components had only one outage in a 6-year

period. These components could not be analyzed by Weibull
analysis, but it could be determined that these devices were in
a useful period. A total of 59 components were in the infant
period (6.90%), 602 were in the useful period (70.41%),
and 194 were in the wear-out period (22.69%). Most of
the components were within the range of normal use, with
corrective and preventive protection. The proportions differed
considerably between the 194 components that were already
degraded and 59 that were just beginning to be used. There-
fore, it can be suggested that the amount of new construction
work is too small and insufficient to support the replace-
ment of deteriorated parts. There should be more work on
new construction projects to replace the deteriorated compo-
nents listed in Table 1, which can be ordered by importance
from the value of β that can be used in the form of the
total factor deterioration index (TFDI). The proportion of
external factors that have a high influence on the deterio-
ration of components is shown in Table 1. Therefore, the
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FIGURE 12. Weibull analysis results of each component based on the total factor bathtub curve.

allocation of new components must be additionally consid-
ered to be able to withstand disturbances from the external
environment.

The chart of component failure rates in the first three and
last three parts of each period in which the constituent shapes
that can be combined as a characteristic of the bathtub curve
are shown in Fig. 12. The superimposed shape of the bathtub
curve is shown in the same period as in Fig. 12 (a) and can
be separated into a discontinuous bathtub curve, as shown in
Fig. 12 (b).

C. PROCESS 3: ESTIMATING SIMPLE BATHTUB CURVE
FOR REPRESENTATION OF THE OVERALL ELECTRICAL
DISTRIBUTION SYSTEM.
The simple total-factor bathtub curve estimation of this
overall power distribution system is the last process of
the predictive analyses presented in this paper. The failure

rate is estimated from the range up to 60 years with the
Weibull distribution model using the aggregated data as
grouped in Section B to find the shape parameter (β) of each
period. The infant period was 0.87304, the useful period was
1.4282441, and the wear-out period was 3.150178, while the
scale parameter (α) was used together for every period of
31,509.48 hours, which was the value obtained from all data.

The results of the estimation of failure rates were out
of range for up to 60 years for all three periods. Failure
equal to 0.000029 times per hour (0.254 times per year)
at approximately 17520 hours (2 years) is termed the end
of the infant period (TInfan), and the transition junction can
be selected from the useful period to the wear-out period
at the first point of the cumulative probability distribution
function (CDF) equal to 1, which is approximately the point
equal to 0.000109 times per hour (0.954 times per year) at
approximately 271,560 hours (31 years). This is called the
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FIGURE 13. The simple total factor bathtub curve estimation of this
overall power distribution system.

beginning of the wear-out period (TWear−out), as shown in
Fig. 13 (a)–(c).

In Fig. 13 (c), the bathtub curve failure rate values are
adjusted to be expressed in units of times per year and show
that there is a useful period starting at 2 years and ending
at 31 years. A summary of this insight can be advantageous
because the appropriateness of the warranty period after con-
struction must not be less than two years, and the period
of monitoring the use and costs incurred during this period
should be in agreement since commissioning. The service life
of components that should be considered for the reallocation
of the construction project to replace the original project
should be considered starting at 31 years of service life.

Another important issue is setting operational targets to
manage the reliability of the power distribution system, which
should be based on the utilization of this bathtub curve. The
effect of annual changes in the system and component failure
rates is an important factor in planning and predicting future
outcomes.

All analyses and calculations in this study were performed
using Microsoft Excel. The dataset, demonstration of calcu-
lation methods and analysis results are provided in the files
listed in the Appendix.

V. CONCLUSION
This study attempted to explore and create strategies and
methods that apply the principles of predictive reliability
analysis recommended by IEEE Std 1413.1-2002 to power
distribution system outage datasets, which has not been
clearly shown in previous research.

The test dataset from the Provincial Electricity Authority
Region 1 in northeastern Thailand is a common feature of
general electricity distribution time-to-outage datasets and
can be representative of other time-to-event datasets with
multimodal empirical distributions, in which the proposed
strategies and processes can be used for predictive analysis
even though the results are different from the test datasets.

The following is a summary of the test results of the
proposed strategy.

First, it was revealed that the failure rate caused by internal
factors of the system itself is in a useful period, and seasonal
external factors cause 86.63% of power outages. This case
study also indicates that the multimodal in the empirical
distribution is caused by interference from external factors.

Second, in this study, the linear regression of ln β in the
low-slope range was chosen to define the boundary of the
useful period with β between 0.851 and 2.51, and a ratio
that may lead to future problems was found. The number
of components in the wear-out period was 3.6 times higher
than in the infant period, so it may be interpreted that the
construction for the replacement work cannot keep up with
the deterioration. Therefore, it was proposed to use the shape
parameter (β) as another reliability index in the form of the
total factor deterioration index (TFDI) to prioritize risk.

Finally, the end of the infant period (TInfan) and the begin-
ning of the wear-out period (TWear−out) are 2 and 31 years,
respectively, which can lead to component and system sup-
port planning, including burns in the test, warranty period,
replacement, and reallocation. In addition, the bathtub curves
can be used to set operational targets more sensibly than to
make predictions based solely on past assessment results.

The proposed strategy is designed for a reliability analysis
using the outage datasets in a distribution system with the
multimodal or seasonal shape of an empirical distribution. If
the proposed strategy is applied with the other time-to-failure
datasets, the multimodal distribution of datasets should be
confirmed before performing analysis.

This is a summary of the main points that this study
presents.
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1) The finding of multimodal patterns in the empirical
distribution of power outage data is due to the high
influence of external factors. The proposed method can
isolate those factors and can find the true trend of the
failure rate function. This leads to the decision to plan
work to deal with external factors that come with the
season.

2) Component clustering to accord the bathtub curve con-
dition with shape parameters (β) for electrical distribu-
tion system components is difficult because their values
vary greatly due to the influence of external factors.
The log scale analysis method is the preferred choice.
This study is the first to present the use of the factor
deterioration index (TFDI) with shape parameters (β)
as a predictive reliability index for a power distribution
system.

3) The bathtub curve representing the power distribution
system is estimated by forecasting the failure rate func-
tion of the three periods over the actual lifetime. It can
be used to manage lifecycle risk with condition-based
reliability management strategies.

4) The results of the Weibull analysis were confirmed in
accordance with the histogram and the results of the
regression analysis were tested with R2, confirming
the correctness of the bisection algorithm’s optimality
with good convergence to a single solution. A simple
bathtub curve construction method is proposed for use
with the condition that high tolerances of the results can
be achieved.

After the development of the proposed strategy, the predic-
tive reliability analysis may be enhanced by machine learning
methods with more complicated datasets. Studying other fac-
tors, such as trees, animals, or storms, which influence the
results of reliability assessment is an interesting issue and is
useful for system planning in practice. Furthermore, devel-
oping an advance forecasting model for reliability analysis
in long-term planning may achieve more efficient modern
system operation in smart grid environments.

APPENDIX
The experimental dataset can be downloaded at

https://shorturl.asia/b7tH6.
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