
Received 16 November 2023, accepted 27 November 2023, date of publication 7 December 2023,
date of current version 13 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3340441

ByteRCNN: Enhancing File Fragment Type
Identification With Recurrent and
Convolutional Neural Networks
KRISTIAN SKRAČIĆ, (Senior Member, IEEE), JURAJ PETROVIĆ , (Senior Member, IEEE),
AND PREDRAG PALE, (Senior Member, IEEE)
Department of Electronic Systems and Information Processing, Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia

Corresponding author: Juraj Petrović (juraj.petrovic@fer.hr)

This work was supported by the Advanced Computing Service provided by the University of Zagreb University Computing Centre (SRCE).

ABSTRACT File fragment type identification is an important step in file carving and data recovery.
Machine learning techniques, especially neural networks, have been utilized for this problem, some with
very promising results. This paper presents a novel neural network architecture for identifying file fragment
types using a combination of byte embeddings as well as recurrent and convolutional elements. The
corresponding classification model, ByteRCNN, has been trained on the publicly available file fragment
FiFTy dataset and evaluated in closed-set and open-set recognition settings using FiFTy and other available
file fragment datasets. Evaluation results have demonstrated that ByteRCNN can compete with state-of-
the-art models described in literature in terms of classification accuracy, with 71.1% average accuracy on
512-byte fragments and 83.9% average accuracy on 4,096-byte fragments from the FiFTy dataset. When
evaluated on other publicly available datasets in closed-set and open-set recognition settings, ByteRCNN
performs similarly or slightly better than the FiFTy classification model. Obtained results overall suggest that
ByteRCNN is a competitive file fragment classification model, but they also reveal that there is still plenty
of space for further improving file type identification methods using more complex datasets or in open-set
recognition settings. ByteRCNN is publicly available at https://github.com/kristian-fer/ByteRCNN.

INDEX TERMS File fragment type identification, file fragment classification, byte embeddings, recurrent
neural network, convolutional neural network, open-set recognition, memory forensics, carving.

I. INTRODUCTION
With an increase in data storage usage, the need to accu-
rately identify the file type based on file fragments has
become increasingly important in digital forensics and law
enforcement investigations. File fragment type identification
[1], also known as file fragment classification [2], file type
recognition, or file type detection [3], refers to the process of
identifying and categorizing partial or incomplete files found
on digital storagemedia. File fragmentation occurs when files
are stored on a disk in non-contiguous clusters, resulting in
a file being broken down into smaller parts – fragments or
blocks. These fragments can be scattered across the disk,
making it difficult to recover and connect them. However,

The associate editor coordinating the review of this manuscript and

approving it for publication was Kathiravan Srinivasan .

even if an entire file cannot be recovered, the identification
of the file type for individual fragments can provide valuable
information for investigations [4]. The identification of file
fragment types, therefore, is a crucial step in digital forensics
and criminal investigations as it provides valuable insight into
the contents of digital devices and can assist in uncovering
potential evidence.

The goal of file fragment type identification is to classify
an unknown sequence of bytes into one of the predefined
file types, in the absence of any additional side information.
In this context it is important to stress the difference between
file type identification and data type identification. Data type
identification is more granular and encompasses complex
combinations where one data type is embedded into another,
for example, when images are inserted into PDF documents
or base64-encoded images are inserted into HTML textual

138176


 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0002-2335-0287
https://orcid.org/0000-0002-9352-0237


K. Skračić et al.: ByteRCNN: Enhancing File Fragment Type Identification

files. Creating a data type dataset is significantly more com-
plex and requires a specialised carving logic which may
not be supported for most data types currently in use [1].
Therefore, most file fragment type identification research is
focused on file type identification since it relies on the type
of file that the fragment originally belonged to.

The research described in this paper is focused on file frag-
ment type identification and advancing its current state of the
art through several contributions. First, we argue and demon-
strate how competitive results in file fragment type identifica-
tion can be achieved by implementing a neural network with
its architecture inspired by sequence processing models that
are typically used in natural language processing. This way,
we utilize temporal information stored in the sequence of
bytes of a file fragment. A comprehensive comparison of the
proposed model (ByteRCNN) with other state-of-the-art file
type identification models is provided in the paper in terms
of accuracy, but also in terms of the inference time and the
number of parameters. Classification accuracy is evaluated
on the FiFTy scenario #1 dataset [1].

Second, we evaluate the proposed model on other pub-
licly available datasets [2], [3], [4], [5] which have by now
remained ignored by other researchers. Those datasets pro-
vide valuable data for model evaluation. Since the FiFTy clas-
sification model is currently the only publicly available state-
of-the-art file fragment type identification model trained and
evaluated on the FiFTy scenario #1 dataset, we compare
ByteRCNN performance on datasets [2], [3], [4], [5] to the
FiFTy classification model.

Third, we address the issue of open-set recognition [6],
which is most relevant for the file type identification problem,
but also currently unaddressed in related research. We utilize
fragments belonging to file types included in datasets [2],
[3], [4], [5] that are not included in the FiFTy scenario #1
dataset to evaluate our open-set recognition accuracy.Again,
since the FiFTy classification model is currently the only
publicly available state-of-the-art file fragment type identi-
fication model trained and evaluated on the FiFTy scenario
#1 dataset, we compare open-set recognition performance of
ByteRCNN to the FiFTy classification model.

Finally, wemake ourmodel implementation publicly avail-
able at [GitHub, after publication] to facilitate future model
comparisons and advancement of file fragment type identifi-
cation.

The remainder of this paper is organized as follows. The
related research section introduces state-of-the-art datasets
and approaches to file fragment classification. The proposed
model section describes the proposed ByteRCNN model in
terms of its structure, inputs and outputs. In the experimental
evaluation section, ByteRCNN is compared to state-of-the-
art models for file fragment type identification performance
in closed-set and open-set conditions. Finally, in the con-
clusion section we provide concluding remarks on the pro-
posed model, its results as well as possible future research
directions.

II. RELATED RESEARCH
A. FILE FRAGMENT DATASETS
A substantial portion of previously published work related
to file fragment type identification relied on limited private
datasets or the publicly available GovDocs dataset [7], also
referred to as govdocs1. Having a common dataset is critical
to training and comparing performance of different machine
learning models. While the use of private datasets renders
the replication of results impossible, a number of published
file fragment type identification models have employed the
GovDocs corpus [7], [8], [9], [10]. The GovDocs dataset con-
sists of an imbalanced collection of publicly available files of
different types, of which 20 file types constitute 99.3% of the
dataset, while the remaining 0.7% of the dataset is comprised
of 43 file types. This introduces the problem of choosing
the file types and fragments to be included in model training
and evaluation. Researchers using GovDocs typically chose
to include different subsets of file types and different ways
of generating fragments from those files [11], [12]. Since
GovDocs lacks some file types which are prevalent today
(for example, DOCX, PPTX, and XLSX), some authors use
GovDocs-based datasets supplemented with other relevant
file types [10] or they use completely customized datasets
for specialized applications such as video [13] or image [14],
[15], [16], [17] fragment classification and file carving.

In contrast to GovDocs, the FiFTy dataset [1] contains
pre-extracted fragments divided into several subsets or sce-
narios (see TABLE 1), thereby facilitating a fair compari-
son between file fragment type identification outcomes. The
FiFTy main dataset (scenario #1) offers a publicly available
dataset comprising 75 distinct file types. This dataset is,
to the best of the authors’ knowledge, the most comprehen-
sive and extensive labelled set of file fragments available to
the public. The authors compiled the dataset by collecting
public files from Internet sources as well as their own col-
lections. To ensure a balanced dataset suitable for classifica-
tion, the authors sampled 102,400 fragments, both 512-byte
and 4,096-byte, for each file type. The fragments were then
randomly shuffled to distribute the file types evenly among
the training (80%), validation (10%), and hold-out testing
(10%) subsets. Aside from the main dataset (scenario #1),
the FiFTy dataset includes five additional specialized sce-
narios that focus on a specific subset of included file types.
TABLE 1 outlines the details of each scenario. Most of the
five additional scenarios are use-case specific and focus on
various multimedia file types. Scenario #1, which comprises
all 75 file types, is currently the most comprehensive publicly
available file fragment dataset. The FiFTy dataset was utilized
in training the ByteRCNN model, which was subsequently
evaluated against state-of-the-art approaches.

Four other file fragment datasets have recently been
published to assist in file fragment classification research.
They are focused on the classification of audio file for-
mats [2], video file formats [3], textual file formats [4], and
image file formats [5]. All four of those datasets contain

VOLUME 11, 2023 138177



K. Skračić et al.: ByteRCNN: Enhancing File Fragment Type Identification

1,024-byte fragments belonging to a variety of included file
types. A summary of those four datasets is provided in
Table 2.

TABLE 1. FiFTy - file fragment datasets and scenarios (adapted from [1]).

TABLE 2. File fragment datasets [2], [3], [4], [5].

While some of the datasets [2], [3], [4], [5] have been
used in validating file fragment classification models [18],
most state-of-the-art research seems not to be utilizing their
potential and is focused only on using the FiFTy dataset [19],
[20], [21], [22].

B. APPROACHES TO FILE FRAGMENT TYPE
IDENTIFICATION
In recent years, the field of file fragment type identifica-
tion has received significant attention due to its increasing
importance for digital forensics, cybersecurity and content-
based file analysis. Different approaches utilizing machine
learning algorithms have been applied to this problem in order
to automate the process and increase identification accuracy.

Early approaches to file fragment type identification
mostly relied on hand-engineered features including sta-
tistical measures, byte frequency distribution and n-grams.
N-Grams refer to frequencies of occurrence of different com-
binations of n bytes in the file fragment. The use of byte
frequency distribution was initially proposed in [23] where
the average classification accuracy reported was 27.5%. The
same research describes experiments with byte frequency
cross-correlation which achieves 45.83% average classifica-
tion accuracy on a private dataset of 30 file types used to train
the models. Veenman [24] used linear discriminant analysis
to classify 28 file type fragments using byte frequency distri-
bution and the Kolmogorov complexity measure. The model
achieved 45% average accuracy. Li et al. [25] used support
vector machines to address the challenging task of classifying
file fragments belonging to high entropy file types. Their
approach also relied on byte histograms and achieved promis-
ing results of 81.50% average accuracy, yet only focused on
4,096-byte fragments belonging to one of four file types:
DLL, PDF, JPG and MP3.
Sceadan [26] is one of the first significant milestones in file

fragment type identification. Its authors used support vector
machines (SVM) to classify file fragments using unigram
and bigram (1-gram and 2-gram) features and achieved the
classification accuracy of 73.8% across 38 different file types.
N-Grams or n-gram-derived features remain frequently used
in the newer approaches [27], [28] and can also be used
to perform a detailed comparison of different classification
approaches. For example, Seste et al. [29] perform a detailed
comparison of support-vector machines and neural networks
applied for identifying file fragment types, by focusing on the
n-gram analysis as a feature for the two different classifiers.

More recently, Wang et al. [10] used the sparse coding
approach to extract features from 512-byte fragments belong-
ing to a total of 18 most common file types. Their dataset
was based on the GovDocs dataset and supplemented with
OOXML file types (DOCX, XLSX, PPTX) due to their rele-
vance today. Using a combination of unigrams, bigrams and
sparse n-gram features, they achieved a maximum average
accuracy of 61.31%.

Another recent milestone in identifying file fragment
types, FiFTy [1], has achieved excellent results without the
need to rely on hand-engineered fragment features. The cor-
responding model is capable of classifying file fragments
belonging to any of the 75 different file types with average
accuracy of 65.6% when using 512-byte blocks, and 77.5%
when using 4,096-byte blocks. As already mentioned, FiFTy
provides six separate datasets or scenarios with a different

138178 VOLUME 11, 2023



K. Skračić et al.: ByteRCNN: Enhancing File Fragment Type Identification

number of included file types. Each scenario is classified
with a different model. However, all six models share a
similar architecture which is based on 1-D convolutional
neural networks (CNNs) which take blocks of raw bytes as
input and embed them into a trainable latent space. Shifting
individual bytes into a latent space was inspired by the current
state-of-the-art natural language processing models where
words, or sub-words, are embedded into a common latent
space before being sent through a neural network [30], [31],
[32], [33], [34]. The use of byte embeddings instead of 1-hot
encoding or hand-crafted features such as input is, arguably,
one of the key insights offered by the FiFTy research paper.
This allows the original input sequence to be captured in a
latent space. Overall, FiFTy has achieved the best classifica-
tion results in the field on the most comprehensive reported
dataset and has also provided future research with a dataset
to allow for fair and relevant comparisons.

Other researchers have sometimes reported higher classi-
fication accuracy scores compared to FiFTy, yet usually on
significantly smaller datasets. Innovative approaches to file
fragment type identification described in such research have
made valuable contributions to the field, yet they have made
the comparison of results more difficult. Haque and Tozal
[9], for example, explored using the word2vec algorithm on
byte sequences. Word2vec is another prominent algorithm
used in natural language processing for transforming words
into comparable vectors based on their co-occurrence. The
authors achieved 72% classification accuracy only by using
the averaged byte embedding vectors and a kNN classifier
on a dataset of 35 file types. Chen et al. [7] converted
4,096-byte file fragments into 64×64 pixel greyscale images.
A deep 2-D convolutional neural network (CNN) was trained
to distinguish between 16 different file types that were sam-
pled from the GovDocs dataset. The model achieved 70.9%
accuracy. Interestingly, the same model achieved very high
accuracy (92%) on the compressed GZ file type which is
usually classified quite poorly by most existing models, even
FiFTy (13.2%). However, the model ignored other popular
compressed archive files such as 7Z and ZIP, which could
explain its high score, and achieved rather low accuracy for
textual files and office documents (DOC, DOCX and PPT).
Hiester [35] explored the usage of feedforward, recurrent and
convolutional networks as file fragment classifiers. While
using only 4 different file types, he obtained the classifica-
tion accuracy of 98%, thus revealing potentially promising
research directions that should be further explored.

The file fragment classification issue has gained a lot of
attention in recent years. Some of the research based on
convolutional neural networks managed to obtain results bet-
ter than the original FiFTy classification models using the
FiFTy dataset. Saaim et al. [19] succeeded in that task by
using depthwise separable convolutions (DSCNN) for file
fragment type identification and achieved excellent results
of 78.45% and 65.89% average accuracy on scenario #1 of
the FiFTy dataset for 4,096-byte and 512-byte fragment size
respectively. Ghaleb et al. [20] experimented with several

convolutional neural network architectures and managed to
outperform the original FiFTy classifiers in 4 out of 6 FiFTy
scenarios for 512-byte fragments, and in 1 out of 6 FiFTy
scenarios for 4,096 byte fragments (DSC-SE model [20]).
Zhu et al. [21] managed to obtain results that are similar to
or in some cases better than the results of the original FiFTy
scenario #1 classifier by using convolutional neural networks
to learn higher level representations of file fragments as well
as by using a long short-term memory network (LSTM) to
classify them. Finally, Liu et al. [22] managed to outperform
FiFTy classifiers in nearly all FiFTY scenarios by interpreting
file fragments as 2-dimensional grey-scale images. Currently,
to the best of the authors’ knowledge, these results are the
highest in the field.

C. OPEN-SET RECOGNITION
To the best of our knowledge, all published results related to
the issue of file fragment classification pertain to the problem
of closed-set recognition, where the unknown fragment is
assumed to belong to one of the known classes. In open-set
recognition, on the other hand, no such assumption is made,
and the classifier has to be able to infer whether a fragment
belongs to one of the known classes or to an unknown class
[6]. In forensic practice or data recovery this situation is
significantly more realistic due to a variety of file types used
in practice.

There are many open-set recognition approaches, often
tailored to a specific context of classification problems they
are used for [36]. Among them, OpenMax (Open set Recog-
nition with Maximum Softmax Probability) [37] is one of the
more commonly used ones. OpenMax is used for detecting
data instances that lie beyond the confines of the training
data distribution. It operates as a post-processing step fol-
lowing the traditional softmax classification layer in a neural
network model and it introduces several critical parameters,
including the alpha parameter, thresholds, and the definition
of unknown classes. The alpha parameter (α) controls the
distribution of OpenMax scores for known classes, impact-
ing the decision boundary between the known and unknown
classes. A higher alpha value makes it more challenging for
an input to be classified as a known class. Thresholds are
employed to determine the likelihood at which an input is
classified as a known or unknown class. Additionally, the
model requires the softmax scores generated by the neural
network, which represent the model’s confidence in class
assignments. OpenMax has been used in this paper to evaluate
the developed classification model in open-set classification
conditions.

III. PROPOSED MODEL – ByteRCNN
A. MODEL DESIGN
The file fragment type identification model proposed in this
paper, ByteRCNN (Figure 1), draws inspiration from recent
breakthroughs in natural language processing that incorpo-
rate a combination of recurrent and convolutional neural

VOLUME 11, 2023 138179



K. Skračić et al.: ByteRCNN: Enhancing File Fragment Type Identification

FIGURE 1. ByteRCNN model.

networks. Such networks have shown great potential for
advancing text classification. Convolutional neural networks,
renowned for their success in computer vision, have demon-
strated considerable efficacy in text classification, notably
exemplified by the FiFTy model discussed in the previous
section. Nonetheless, they are incapable of capturing the
temporal dynamics of sequential data. To address this short-
coming, recurrent neural networks (RNNs) were designed
to encode temporal information in sequential data, such as
sentences.

The proposed model concept involves, in the first place,
utilizing an RNN to extract significant sequences from the
input, followed by employing a CNN to eliminate the bias
arising from later elements in the sequence overshadow-
ing the earlier ones, thus extracting the most meaningful
sequences. In the context of file fragment type identification,
meaningful sequences could correspond to a particular com-
bination of bytes that frequently occur in specific file types.

However, some elements in the sequence, such as padding or
null bytes, may negatively impact the classification outcome
since they are shared across multiple file types and do not
contribute to differentiation. Furthermore, due to a substantial
number of distinct file types, it is conceivable that the relevant
sequences that uniquely identify a fragment may vary in
length. Consequently, using only one type of CNN may not
suffice to identify the relevant sequences across all file types.
Therefore, we posit that model width may be more significant
than its depth.

In contrast to manually crafted features such as byte
n-grams, which merely capture the frequency of byte occur-
rences without considering their sequence relative to other
file types, an RNN possesses the capacity to discern sig-
nificant sequences from file fragment bytes. This feature
extraction capability significantly enhances the discrimina-
tory power of the model, allowing for superior classification
performance.

138180 VOLUME 11, 2023



K. Skračić et al.: ByteRCNN: Enhancing File Fragment Type Identification

TABLE 3. Comparison of classification accuracy of ByteRCNN with other research using FiFTy dataset scenarios.

B. MODEL ARCHITECTURE
The architecture of our proposed model is illustrated in
FIG. 1. The ensuing section describes its components, param-
eter search space, and the parameter combination leading to
the optimal model performance.

The model comprises an embedding layer that is situated
immediately after the input layer, which translates each byte
into a high-dimensional latent space. The dimensions of the
embedding layer are contingent on the sequence length and
the number of unique values. In this case it is the number of
distinct bytes, which is a constant value of 256. The sequence
length is determined by the length of the fragment and prior
research typically employs sequences of 512 bytes or 4,096
bytes. Finally, the embedding layer is characterized by the
length of the vector in the resulting latent space. The FiFTy
model explores various embedding dimensions, including 16,
32, 48 and 64. In FiFTy, different scenarios were established
using distinct embedding dimensions. Our investigation sug-
gests that modifying the embedding dimensions does not
significantly impact the performance of the proposed model.
Therefore, we opt for the smallest embedding dimension,
namely a length of 16, which reduces the model size and
enhances its processing speed.

After the embedding layer we place a dropout layer which
helps reduce overfitting [38], [39]. We conducted simple
parameter tuning for the best dropout probability value. The
optimal value was 10%.

Following the dropout layer, we place two consecutive
bidirectional recurrent blocks. For the recurrent block we
chose the gated recurrent unit (GRU) [40]. In our experi-
ments we tried using the Long Short-Term Memory (LSTM)
cells, but the results were slightly lower when compared to
using GRU as the recurrent cell. The use of the bidirec-
tional recurrent block was motivated by recent NLP advances
[41] which used separate inputs as right and left context
embedders. In essence, processing each word in our model
entailed analysing its surrounding context on both left and
right. To simplify this input procedure, we employed a bidi-
rectional recurrent block, which duplicates the recurrent layer
within the network, resulting in two parallel layers that pro-
cess the input sequence from left to right and right to left.
The GRU cell, which reconstructs the sequence, was evalu-
ated with different values for the number of units, ranging
from 32 to 128. Our experimental findings indicate that the

optimal number of units for the GRU cells is 64. Further
increasing of the number of units did not appear to improve
model performance. Parameter tuning was performed using
the HyperBand approach [42]. The optimization objective
was set to increase the overall accuracy, and the maximum
number of epochs was set to 100 with a reduction factor of
three.

The model has two consecutive bidirectional GRU layers,
as shown in FIG. 1, which share the same number of GRU
cells. Addingmultiple bidirectional GRU layers to a sequence
classification model can improve its accuracy by allowing the
model to capture more complex patterns and dependencies in
the input sequence data. Each layer of a bidirectional GRU
captures different abstraction levels in the input sequence.
The first layer might capture low-level features, while subse-
quent layers may capture higher-level patterns and dependen-
cies. This hierarchical feature extraction enables the model
to learn more informative representations of the data, which
can improve classification performance. Stacking multiple
layers of the bidirectional GRU introduces non-linearity to
the model. Complex patterns in sequence data are often non-
linear, and by addingmore layers the model can learn increas-
ingly complex mappings from input to output, which can lead
to better classification performance. Additionally, stacking
bidirectional GRU layers can help capture these long-term
dependencies by allowing information to flow bidirectionally
through multiple layers. In general, increasing the number
of layers in a neural network boosts its capacity to fit the
training data. By adding more layers, we effectively create an
ensemble of models within a single architecture. Each layer
provides a different perspective on the data, and combining
these perspectives can improve the overall performance.

Once the recurrent blocks had extracted crucial sequences
from the input, we concatenated the embedding layer and the
output of the second recurrent block to create a combined
vector. This approach was used to augment the correlation
between the original input sequence and the recurrent lay-
ers’ interpretation of it. To identify the relevant patterns that
may exist in certain file types, we explored the concatenated
vector using various processing parameters to account for
the differences in the pattern length. This approach involved
constructing several parallel channels with a one-dimensional
convolutional layer followed by a max pooling layer and
another one-dimensional convolutional layer. To optimize the

VOLUME 11, 2023 138181



K. Skračić et al.: ByteRCNN: Enhancing File Fragment Type Identification

performance of each convolutional layer, we tested different
filter values, ultimately determining that 64 filters produced
the best results.

We used four parallel channels with different kernel sizes
for the convolutional layers in each channel. By using dif-
ferent kernel sizes, the model extracts patterns of different
length. This approach was used in NLP for text classification
[43]. The model was fine-tuned based on evaluating its per-
formance using different kernel sizes in the parallel channels,
and the best performance was achieved by using the kernel
sizes of 9, 27, 40 and 65.

The output of each of the parallel channels is processed
using global max and average pooling. The resulting vec-
tors are concatenated together to create one vector which is
the input to the fully connected layer. The configuration of
the layer was achieved through a straightforward parameter
optimization process, wherein we experimented with varying
numbers of layers and dense units. Ultimately, the optimal
architecture was determined to be a two-layer dense neural
network, comprising 1,024 units in the first layer, followed
by 512 units in the second layer. Adding more layers did
not improve the overall classification accuracy. In order to
prevent overfitting, a dropout layer with a probability of 10%
was introduced between the dense layers. The final output
layer is a softmax function with dimensions equal to the
number of classes.

IV. EXPERIMENTAL EVALUATION
A. PERFORMANCE EVALUATION ON FIFTY DATASET
The proposed model was implemented in the Tensorflow
framework version 2.10 and all evaluation experiments were
run on NVIDIA A100 with 40GB of memory running CUDA
version 11.6. The evaluation of the model was performed
using the FiFTy dataset for all six defined scenarios. In each
of the six FiFTy scenarios, the corresponding dataset was
split into the 80:10:10 ratio for training, testing and validation
respectively. The classification results were compared with
the results reported in [1], [19], [20], [21], and [22] since
those models provide currently the best published results, and
they were trained and evaluated on the FiFTy dataset, thereby
enabling a fair comparison as well as reproducibility.

As shown in Table 3, the ByteRCNN model outperforms
models [1], [19], [20], [21] in all FiFTy scenarios except in
two cases: in scenario #5 for 4,096-byte fragments, in which
all five compared models perform within the 99.3±0.1%
accuracy range, and in scenario #6 for 4,096-byte frag-
ments, in which all five compared models perform within
the 99.5±0.1% accuracy range. The ByteRCNN performance
is second only to ResNet18 [22],which generally performs
better than ByteRCNN, except in case of scenario #1 and
scenario #6. ByteRCNN achieves the best average accuracy
among all compared models in scenario #1 (71.1% for
512-byte fragments and 83.9% for 4,096-byte fragments) and
scenario #5 (99.5% for 512-byte fragments). It is worth noting
that the ByteRCNN model performs very well across all six

scenarios, thus avoiding the need to train or use multiple
models, and that it has the highest performance among all
compared models in case of scenario #1 which consist of the
highest number of classes (75) among all scenarios.

Table 4 shows accuracy breakdown for each of the
75 classes included in FiFTy scenario #1 for ByteRCNN,
CNN-LSTM [21], and FiFTy [1], as researchers in [19],
[20], and [22] did not disclose per-class classification accu-
racies of their models. When compared to FiFTy and CNN-
LSTM, ByteRCNN provides the best classification accuracy
for 65 out of 75 classes for 512-byte and 46 out of 75 classes
for 4,096-byte fragments. As it was expected, the longer input
proved to have more data which the recurrent elements could
use to extract deeper patterns of the file type. By looking
at Table 4 we also notice that certain file types consis-
tently achieve lower accuracy scores. Those are typically file
archives (BZ2, XZ), executable binaries (EXE), and video
files (MOV, MP4, AVI), all achieving accuracy below 20%.
We still see improvements in classifying some of these file
types using ByteRCNN.

The difficulty in classifying archives is that they often
contain other file types. For example, given that we have
several images and textual documents compressed in a single
archive, when we attempt to extract their fragments from the
compressed archive, we are effectively taking the compressed
versions of the original files - images and text. In most cases
image file formats already have some type of compression,
so that traditional compression methods such as ZIP, 7Z, and
BZ2 will not have much effect on the overall file fragment
byte sequence compared to the original. Text, on the other
hand, will be compressed much more efficiently, thereby sig-
nificantly changing the underlying fragment byte sequence.
In addition, due to the fact that compression archives work
similarly, they are often confused for one another or for the
file types they contain. Most notably, the ZIP file type is most
often confused for the GZ file type and for the DOCX file
type. ZIP and GZ file types work in a very similar way, so it
is not surprising that they are confused for one another. The
DOCX file type is part of the Microsoft OOXML standard,
which is a compressed archive itself and very similar to the
ZIP archive.

Executable binaries from various platforms, including
EXE, RPM, PKG, DEB, andMSI, also exhibit low classifica-
tion accuracy. These file types, commonly found onWindows
and Linux operating systems, contain executable code as well
as other file formats such as images and text. Due to their
embedding of various file types, they are often mistaken for
both executable files and compressed archives.

Video files contain long segments of compressed data.
Different video containers can support same codecs making
it difficult to correctly predict a codec based on a fragment
of a video file’s content. Additionally, data compression can
make it difficult to differentiate that fragment from fragments
belonging to other compressed file types like images com-
pressed archives. Among video files, MOV and MP4 file
types have the lowest classification accuracy among all three

138182 VOLUME 11, 2023



K. Skračić et al.: ByteRCNN: Enhancing File Fragment Type Identification

TABLE 4. Classification results per file type for FiFTy [1], CNN-LSTM [21], and our model (ByteRCNN).

classification models compared in the Table 4. The MOV file
type only achieves 6.1% and 18.5% accuracy when using the
FiFTy model for 512-byte and 4,096-byte fragments respec-
tively, while CNN-LSTMperforms slightly better with 15.2%
and 16.5% accuracy for 512-byte and 4,096-byte fragments
respectively. In ByteRCNN the MOV file type is frequently
confused for HEIC and DJVU file types which are used to
store images, as well as for compressed archives that likely
contained multimedia data that could not be compressed effi-
ciently, thus introducing a bias into the training dataset. Inter-
estingly, the MP4 file type displays considerable improve-
ments when switching from 512-byte to 4,096-byte frag-
ments as input to the classifiers. The FiFTy model achieves
1.6% and 71.8% accuracy, CNN_LSTM achieves 12.3% and
68.5% accuracy, whereas ByteRCNN achieves 5.6% and
98.9% accuracy, all on 512-byte and 4,096-byte fragments,

respectively. All three models exhibit significant improve-
ments when using the longer 4,096-byte fragments. It is evi-
dent across all tests that the longer sequences of 4,096-bytes
yield better results, as more patterns emerge and are learned
by the model.

What is also notable across all models, including ByteR-
CNN, is that there is a lot of semantic overlap between several
classes, which ultimately lowers the classifiers’ ability to
produce good results. As described earlier in this section,
compressed archives contain any combination of file types
possible. Most multimedia file types cannot be compressed
further as they already have their own compression (such
as PNG and JPEG). Therefore, producing very similar byte
sequences for compressed archives (such as ZIP and GZ) and
multimedia files (such as MOV, JPEG, and PNG). There is
currently no way of knowing which file type the compressed

VOLUME 11, 2023 138183



K. Skračić et al.: ByteRCNN: Enhancing File Fragment Type Identification

TABLE 5. Performance of ByteRCNN (ours) and FiFTy scenario #1 model on 512-byte fragments from datasets [2], [3], [4], [5] closed-set recognition.

TABLE 6. Comparison between FiFTy and our model in terms of inference time and model Parameters.

fragment contained since the FiFTy dataset does notmake this
information available. A similar case can be made for other
complex file types such as DOCX and PDF. Those files may
also contain images and text and they are compressed.

B. PERFORMANCE EVALUATION ON OTHER DATASETS
The ByteRCNNmodel was also validated on datasets [2], [3],
[4], [5]. Since those datasets contain 1,024-byte fragments,
each of those fragments was randomly subsampled to obtain
a 512-byte sub-fragment. This validation was performed only
on fragments belonging to classes from datasets [2], [3], [4],
[5] that ByteRCNN was trained on, i.e. file types that are
among the 75 file types included in the FiFTy scenario #1
dataset. The classification results for the file types in closed-
set recognition settings are presented in Table 5 and are
compared to the classification results of the same data using
the FiFTymodel trained on scenario #1. This comparison was
performed only by using the FiFTy scenario #1 model since
the models described in related research [19], [20], [21], [22]
are not publicly available.

The results presented in Table 5 suggest that datasets [2],
[3], [4], [5] provide fragment examples that both FiFty and
ByteRCNN find challenging to classify, even though they
have been trained on those file types. ByteRCNN performs,
on average, very similar to FiFTy classifier on each of the four
datasets. Classification accuracy for each of those datasets
is between 11.8% and 26.5%, which is significantly lower
than the results achieved on the FiFTy scenario #1 dataset
in Table 3. Both models achieve the worst results on video
file formats, which is likely due to the high entropy of video
compression codecs, but also due to the fact that different
video file types can support the same codecs. As indicated

TABLE 7. Average accuracy for open-set recognition of FiFTy and
ByteRCNN models on the FiFTY scenario #1 dataset.

in the results and discussion related to Table 3, these results
overall suggest that classification accuracy is significantly
lower when there is greater diversity in the properties of
sampled files’ content, even if they belong to known file
types. This diversity is, in this case, introduced by using
different codecs and compression settings in video and audio
files, by using different compression settings in image files
as well as different languages and scripts in textual files.

C. INFERENCE TIME EVALUATION
The comparison between the FiFTy classifier for scenario #1
and ByteRCNN in terms of inference time and the number of
model parameters is presented inTable 6. The results suggest
that ByteRCNN has an approximately 10 to 20 times higher
number of parameters and approximately 10 to 40 times
slower inference time. This is not surprising since as the
number of layers increases, the number of parameters in CNN
models increases exponentially, which negatively affects the
training and inference time [19]. While a direct comparison
would require running experiments on the same hardware,

138184 VOLUME 11, 2023



K. Skračić et al.: ByteRCNN: Enhancing File Fragment Type Identification

TABLE 8. Performance of ByteRCNN (ours) and FiFTy scenario #1 model on 512-byte fragments from datasets [2], [3], [4], [5] open-set recognition.

ByteRCNN is significantly slower that the FiFTy scenario #1
model and is therefore also slower than [19] and [20].

D. OPEN-SET RECOGNITION
ByteRCNN was next validated in open-set recognition set-
tings on the FiFTy dataset for scenario #1 and on datasets
[2], [3], [4], [5]. This comparison was performed only by
using the FiFTy scenario #1 model since models described
in related research [19], [20], [21], [22] are not publicly
available.

To use those two models in the open-set recognition con-
text, we conducted a detailed study of parameter optimiza-
tion in the OpenMax framework, specifically to improve
accuracy when recognizing fragments belonging to unknown
classes. This involved carefully adjusting alpha and threshold
parameters for each model. By making these adjustments,
our goal was to fully utilize the OpenMax framework and
to enhance the classifiers’ ability to distinguish fragments
belonging to unknown classes. Every model has a different
probability distribution on the final softmax layer, so the
confidence scores on which the OpenMax is based will vary
for each model. Alpha coefficient values were examined in
the range from 0.1 to 1 with 0.1 resolution and in the range
from 1 to 75 (the number of classes) with the resolution
of 1. The best results were achieved for α = 1. Increasing α

from 1 to 75 did not provide an improvement in classification
outcomes, as already noted in [37]. The threshold values were
examined in the range from 0.1 to 1with 0.1 resolution. Based
on the analysis results, we finally used the alpha coefficient
α = 1 and the threshold of 0.2 for the FiFTy model as well
as the alpha coefficient α = 0.8 and the threshold of 0.8 for
ByteRCNN.

The classification results of open-set recognition of FiFTy
scenario #1 dataset for FiFTy scenario #1 model and ByteR-
CNN are presented in Table 7. As expected, the average
accuracy of bothmodels is now slightly lower than the closed-
set recognition results presented inTable 3. This difference in

average accuracy is the result of classifiers wrongly assigning
the unknown class to some fragments in the FiFTy scenario
#1 dataset.

The classification results for open-set recognition of the
FiFTy scenario #1 model and ByteRCNN achieved on
datasets [2], [3], [4], [5] are presented in Table 8. Over-
all, the average accuracy for recognizing the unknown class
ranges from 3.3 to 37.2% for ByteRCNN and from 4.5% to
14.4% for the FiFTy scenario #1 model. Still, those results
are achieved on datasets that proved to be challenging for
classification, even in closed-set conditions (see Table 5).
The challenge here remains to both improve classification
accuracy for known classes as well as to improve the accuracy
of detecting samples belonging to the unknown class.

E. ABLATION STUDY
As stated in Section III/B MODEL ARCHITECTURE,
we used the HyperBand tuner to find the optimal parameters
for the model. Interestingly, we found that a larger size for the
embedding dimension neither greatly improved nor degraded
model performance. We hypothesized that this was due to
the relatively low cardinality of the input vocabulary which
consists of only 256 possible values for bytes. Given that
each byte can, in theory, be seen close to any other byte,
a larger embedding space would not necessarily bring better
representations on the single byte level. While increasing the
vector size may lead to better representation, there are dimin-
ishing returns. Once the vector size has become sufficiently
large, the additional benefit in performance starts to plateau
or even decrease. Instead, the main gain is achieved by using
the entire sequence utilizing bidirectional GRU blocks and
subsequent CNN blocks. To verify that these elements truly
bring the highest gains, an ablation study was performed.

Table 9 summarises the results obtained by the study
and confirms that using two consecutive, bidirectional GRU
blocks achieves higher accuracy, while higher embedding
dimensions do not bring any significant gains. The table

VOLUME 11, 2023 138185



K. Skračić et al.: ByteRCNN: Enhancing File Fragment Type Identification

TABLE 9. Ablation study results.

shows results for the 4,096-byte model since it has the highest
likelihood of leveraging the increased parameter space given
the longer inputs.

V. CONCLUSION
This paper describes a novel machine learning model, ByteR-
CNN, which is based on byte embeddings as well as con-
volutional and recurrent elements for file fragment type
identification. Through training and evaluation on the FiFTy
scenario #1 dataset, we demonstrate that ByteRCNN per-
forms similarly and in some cases better than state-of-the-
art models in terms of classification accuracy (71.1% average
accuracy on 512-byte fragments and 83.9% average accuracy
on 4,096-byte fragments from the FiFTy scenario #1 dataset),
while consisting of more parameters and being slower than
some of them [1], [19], [20]. Notably, we achieved this result
with a single model across different settings, whereas other
relevant research relied on different models.

ByteRCNNevaluation on other datasets, however, revealed
that there is still a lot of room for improving classification
accuracy in the field of file fragment type identification, in the
context of both open-set and closed-set recognition. Since
no other state-of-the-art classification models are publicly
available, we support this conclusion by evaluating the FiFTy
scenario #1 model on the same datasets, showing that the
classification results on datasets [2], [3], [4], [5] are signif-
icantly lower compared to the classification results on the
FiFTy scenario #1 dataset. Fragments coming from media
files with different codec and compression settings seem to
be challenging for classification in closed-set and open-set
conditions.

The obtained results suggest possible directions for future
research. Since a number of efficient file fragment type iden-
tification models have been described in literature, it would
be wasteful if their implementations were not published. Pub-
lishing their implementations would enable the obtaining of
their per-class accuracies to identify their individual strengths
and weaknesses, and even using them in parallel to increase
the overall classification results. Open-set recognition also
needs to be addressed in future research to take into account
more challenging, yet more realistic file fragment type identi-
fication settings. Finally, more research should be dedicated

to the available or new datasets containing fragments from
diverse files belonging to the same file type. We hope that
ByteRCNN and the results published in this paper will help
direct that research.

REFERENCES
[1] G. Mittal, P. Korus, and N. Memon, ‘‘FiFTy: Large-scale file

fragment type identification using convolutional neural networks,’’
IEEE Trans. Inf. Forensics Security, vol. 16, pp. 28–41, 2021, doi:
10.1109/TIFS.2020.3004266.

[2] A. Khodadadi and M. Teimouri, ‘‘Dataset for file fragment classification
of audio file formats,’’ BMC Res. Notes, vol. 12, no. 1, p. 819, Dec. 2019,
doi: 10.1186/s13104-019-4856-1.

[3] N. Sadeghi, M. Fahiminia, and M. Teimouri, ‘‘Dataset for file fragment
classification of video file formats,’’BMCRes. Notes, vol. 13, no. 1, p. 213,
Apr. 2020, doi: 10.1186/s13104-020-05037-x.

[4] F. Mansouri Hanis and M. Teimouri, ‘‘Dataset for file fragment classifi-
cation of textual file formats,’’ BMC Res. Notes, vol. 12, no. 1, p. 801,
Dec. 2019, doi: 10.1186/s13104-019-4837-4.

[5] R. Fakouri and M. Teimouri, ‘‘Dataset for file fragment classification of
image file formats,’’ BMC Res. Notes, vol. 12, no. 1, p. 774, Nov. 2019,
doi: 10.1186/s13104-019-4812-0.

[6] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult, ‘‘Toward
open set recognition,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 35,
no. 7, pp. 1757–1772, Jul. 2013, doi: 10.1109/TPAMI.2012.256.

[7] Q. Chen, Q. Liao, Z. L. Jiang, J. Fang, S. Yiu, G. Xi, R. Li, Z. Yi, X. Wang,
L. C. K. Hui, D. Liu, and E. Zhang, ‘‘File fragment classification using
grayscale image conversion and deep learning in digital forensics,’’ in
Proc. IEEE Secur. PrivacyWorkshops (SPW), May 2018, pp. 140–147, doi:
10.1109/SPW.2018.00029.

[8] S. Garfinkel, P. Farrell, V. Roussev, and G. Dinolt, ‘‘Bringing science to
digital forensics with standardized forensic corpora,’’ Digit. Invest., vol. 6,
pp. 2–11, Sep. 2009, doi: 10.1016/j.diin.2009.06.016.

[9] M. E. Haque and M. E. Tozal, ‘‘Byte embeddings for file fragment classi-
fication,’’ Future Gener. Comput. Syst., vol. 127, pp. 448–461, Feb. 2022,
doi: 10.1016/j.future.2021.09.019.

[10] F. Wang, T.-T. Quach, J. Wheeler, J. B. Aimone, and C. D. James,
‘‘Sparse coding for n-Gram feature extraction and training for file frag-
ment classification,’’ IEEE Trans. Inf. Forensics Security, vol. 13, no. 10,
pp. 2553–2562, Oct. 2018, doi: 10.1109/TIFS.2018.2823697.

[11] E. Mina and S. Jalili, ‘‘File fragment type classification by bag-of-visual-
words,’’ ISC Int. J. Inf. Secur., vol. 13, no. 2, pp. 101–116, 2021, doi:
10.22042/isecure.2021.243876.570.

[12] M. Masoumi, A. Keshavarz, and R. Fotohi, ‘‘File fragment recognition
based on content and statistical features,’’Multimedia Tools Appl., vol. 80,
no. 12, pp. 18859–18874, May 2021, doi: 10.1007/s11042-021-10681-x.

[13] E. Altinisik and H. T. Sencar, ‘‘Automatic generation of H.264 parameter
sets to recover video file fragments,’’ IEEE Trans. Inf. Forensics Security,
vol. 16, pp. 4857–4868, 2021, doi: 10.1109/TIFS.2021.3118876.

[14] E. Uzun and H. T. Sencar, ‘‘JPG Scraper : An advanced carver for JPEG
files,’’ IEEE Trans. Inf. Forensics Security, vol. 15, pp. 1846–1857, 2020,
doi: 10.1109/TIFS.2019.2953382.

[15] E. Durmus, P. Korus, and N. Memon, ‘‘Every shred helps: Assem-
bling evidence from orphaned JPEG fragments,’’ IEEE Trans. Inf.
Forensics Security, vol. 14, no. 9, pp. 2372–2386, Sep. 2019, doi:
10.1109/TIFS.2019.2897912.

[16] J. De Bock and P. De Smet, ‘‘JPGcarve: An advanced tool for automated
recovery of fragmented JPEG files,’’ IEEE Trans. Inf. Forensics Security,
vol. 11, no. 1, pp. 19–34, Jan. 2016, doi: 10.1109/TIFS.2015.2475238.

[17] Z. Seyedghorban and M. Teimouri, ‘‘Anomaly detection in file
fragment classification of image file formats,’’ in Proc. 11th Int.
Conf. Comput. Eng. Knowl. (ICCKE), Oct. 2021, pp. 248–253, doi:
10.1109/ICCKE54056.2021.9721457.

[18] K. Skračić, J. Petrović, and P. Pale, ‘‘Classification of low- and
high-entropy file fragments using randomness measures and discrete
Fourier transform coefficients,’’ Vietnam J. Comput. Sci., pp. 1–30,
Jul. 202. [Online]. Available: https://www.worldscientific.com/doi/10.
1142/S2196888823500070, doi: 10.1142/s2196888823500070.

[19] K. M. Saaim, M. Felemban, S. Alsaleh, and A. Almulhem, ‘‘Light-weight
file fragments classification using depthwise separable convolutions,’’
IFIP Adv. Inf. Commun. Technol., vol. 648, pp. 196–211, Jun. 2022, doi:
10.1007/978-3-031-06975-8_12.

138186 VOLUME 11, 2023

http://dx.doi.org/10.1109/TIFS.2020.3004266
http://dx.doi.org/10.1186/s13104-019-4856-1
http://dx.doi.org/10.1186/s13104-020-05037-x
http://dx.doi.org/10.1186/s13104-019-4837-4
http://dx.doi.org/10.1186/s13104-019-4812-0
http://dx.doi.org/10.1109/TPAMI.2012.256
http://dx.doi.org/10.1109/SPW.2018.00029
http://dx.doi.org/10.1016/j.diin.2009.06.016
http://dx.doi.org/10.1016/j.future.2021.09.019
http://dx.doi.org/10.1109/TIFS.2018.2823697
http://dx.doi.org/10.22042/isecure.2021.243876.570
http://dx.doi.org/10.1007/s11042-021-10681-x
http://dx.doi.org/10.1109/TIFS.2021.3118876
http://dx.doi.org/10.1109/TIFS.2019.2953382
http://dx.doi.org/10.1109/TIFS.2019.2897912
http://dx.doi.org/10.1109/TIFS.2015.2475238
http://dx.doi.org/10.1109/ICCKE54056.2021.9721457
http://dx.doi.org/10.1142/s2196888823500070
http://dx.doi.org/10.1007/978-3-031-06975-8_12


K. Skračić et al.: ByteRCNN: Enhancing File Fragment Type Identification

[20] M. Ghaleb, K. Saaim,M. Felemban, S. Al-Saleh, and A. Al-Mulhem, ‘‘File
fragment classification using light-weight convolutional neural networks,’’
2023, arXiv:2305.00656.

[21] N. Zhu, Y. Liu, K. Wang, and C. Ma, ‘‘File fragment type identification
based on CNN and LSTM,’’ in Proc. 7th Int. Conf. Digit. Signal Process.
New York, NY, USA: Association for Computing Machinery, Jun. 2023,
pp. 16–22, doi: 10.1145/3585542.3585545.

[22] W. Liu, Y. Wang, K. Wu, K.-H. Yap, and L.-P. Chau, ‘‘A byte sequence is
worth an image: CNN for file fragment classification using bit shift and n-
Gram embeddings,’’ in Proc. IEEE 5th Int. Conf. Artif. Intell. Circuits Syst.
(AICAS), Jun. 2023, pp. 1–5, doi: 10.1109/AICAS57966.2023.10168636.

[23] M. McDaniel and M. H. Heydari, ‘‘Content based file type detection
algorithms,’’ in Proc. 36th Annu. Hawaii Int. Conf. Syst. Sci.,
Jan. 2003. [Online]. Available: https://www.researchgate.net/publication/
221182341_Content_Based_File_Type_Detection_Algorithms, doi: 10.
1109/hicss.2003.1174905.

[24] C. J. Veenman, ‘‘Statistical disk cluster classification for file carving,’’ in
Proc. 3rd Int. Symp. Inf. Assurance Secur., Aug. 2007, pp. 393–398, doi:
10.1109/ias.2007.75.

[25] Q. Li, A. Ong, P. Suganthan, and V. Thing, ‘‘A novel support vector
machine approach to high entropy data fragment classification,’’ in Proc.
South Afr. Inf. Secur. Multi-Conf. (SAISMC), Jan. 2010, pp. 236–247.

[26] N. L. Beebe, L. A. Maddox, L. Liu, andM. Sun, ‘‘Sceadan: Using concate-
nated n-Gram vectors for improved file and data type classification,’’ IEEE
Trans. Inf. Forensics Security, vol. 8, no. 9, pp. 1519–1530, Sep. 2013, doi:
10.1109/TIFS.2013.2274728.

[27] M. Teimouri, Z. Seyedghorban, and F. Amirjani, ‘‘Fragments-Expert:
A graphical user interface MATLAB toolbox for classification of file
fragments,’’ Concurrency Comput., Pract. Exper., vol. 33, no. 9, p. e6154,
May 2021, doi: 10.1002/cpe.6154.

[28] K. Vulinovic, L. Ivkovic, J. Petrovic, K. Skracic, and P. Pale, ‘‘Neu-
ral networks for file fragment classification,’’ in Proc. 42nd Int. Conv.
Inf. Commun. Technol., Electron. Microelectron. (MIPRO), May 2019,
pp. 1194–1198, doi: 10.23919/MIPRO.2019.8756878.

[29] J. Sester, D. Hayes, M. Scanlon, and N.-A. Le-Khac, ‘‘A compar-
ative study of support vector machine and neural networks for file
type identification using n-Gram analysis,’’ Forensic Sci. Int., Digit.
Invest., vol. 36, Apr. 2021, Art. no. 301121, doi: 10.1016/j.fsidi.2021.30
1121.

[30] M. R. Vivek and P. Chandran, ‘‘Analysis of subword based word rep-
resentations case study: Fasttext Malayalam,’’ in Proc. IEEE 19th India
Council Int. Conf. (INDICON), Nov. 2022, pp. 1–6, doi: 10.1109/INDI-
CON56171.2022.10040147.

[31] S. Nazir, M. Asif, S. A. Sahi, S. Ahmad, Y. Y. Ghadi, and M. H. Aziz,
‘‘Toward the development of large-scale word embedding for low-
resourced language,’’ IEEE Access, vol. 10, pp. 54091–54097, 2022, doi:
10.1109/ACCESS.2022.3173259.

[32] S. Dlamini, E. Jembere, and A. Pillay, ‘‘Evaluation of word and sub-
word embeddings for isiZulu on semantic relatedness and word sense
disambiguation tasks,’’ in Proc. Int. Conf. Artif. Intell., Big Data,
Comput. Data Commun. Syst. (icABCD), Aug. 2020, pp. 1–6, doi:
10.1109/icABCD49160.2020.9183836.

[33] A. Akdemir, T. Shibuya, and T. Güngör, ‘‘Subword contextual embed-
dings for languages with rich morphology,’’ in Proc. 19th IEEE Int.
Conf. Mach. Learn. Appl. (ICMLA), Dec. 2020, pp. 994–1001, doi:
10.1109/ICMLA51294.2020.00161.

[34] S. Wang, W. Zhou, and C. Jiang, ‘‘A survey of word embeddings based on
deep learning,’’ Computing, vol. 102, no. 3, pp. 717–740, Mar. 2020, doi:
10.1007/s00607-019-00768-7.

[35] L. Hiester. (May 2018). File Fragment Classification Using Neural Net-
works with Lossless Representations. Honors Theses, Undergrad. [Online].
Available: https://dc.etsu.edu/honors/454

[36] A. Mahdavi and M. Carvalho, ‘‘A survey on open set recogni-
tion,’’ in Proc. IEEE 4th Int. Conf. Artif. Intell. Knowl. Eng. (AIKE).
Washington, DC, USA: IEEE Computer Society, Dec. 2021, pp. 37–44,
doi: 10.1109/AIKE52691.2021.00013.

[37] A. Bendale and T. E. Boult, ‘‘Towards open set deep networks,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 1563–1572, doi: 10.1109/CVPR.2016.173.

[38] B. Ko, H.-G. Kim, and H.-J. Choi, ‘‘Controlled dropout: A different
dropout for improving training speed on deep neural network,’’ in Proc.
IEEE Int. Conf. Syst., Man, Cybern. (SMC), Oct. 2017, pp. 972–977, doi:
10.1109/SMC.2017.8122736.

[39] K. Sanjar, A. Rehman, A. Paul, and K. JeongHong, ‘‘Weight
dropout for preventing neural networks from overfitting,’’ in Proc.
8th Int. Conf. Orange Technol. (ICOT), Dec. 2020, pp. 1–4, doi:
10.1109/ICOT51877.2020.9468799.

[40] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using
RNN encoder–decoder for statistical machine translation,’’ in Proc. Conf.
Empirical Methods Natural Lang. Process. (EMNLP). Doha, Qatar: Asso-
ciation for Computational Linguistics, Oct. 2014, pp. 1724–1734, doi:
10.3115/v1/d14-1179.

[41] S. Lai, L. Xu, K. Liu, and J. Zhao, ‘‘Recurrent convolutional neural
networks for text classification,’’ in Proc. 29th AAAI Conf. Artif. Intell.
Austin, TX, USA: AAAI Press, Jan. 2015, pp. 2267–2273.

[42] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
‘‘Hyperband: A novel bandit-based approach to hyperparameter optimiza-
tion,’’ J. Mach. Learn. Res., vol. 18, no. 185, pp. 1–52, Apr. 2018.

[43] Y. Kim, ‘‘Convolutional neural networks for sentence classification,’’
in Proc. Conf. Empirical Methods Natural Lang. Process. (EMNLP).
Doha, Qatar: Association for Computational Linguistics, Oct. 2014,
pp. 1746–1751, doi: 10.3115/v1/d14-1181.

KRISTIAN SKRAČIĆ (SeniorMember, IEEE) was
born in Zagreb, Croatia, in 1988. He received
the B.S., M.S., and Ph.D. degrees in computing
from the Faculty of Electrical Engineering and
Computing (FER), University of Zagreb, Croatia,
in 2018.

He is currently a Research Associate with the
FER, University of Zagreb. He is the author of
several scientific articles. His research interests
include computer forensics and the application of

computer science and machine learning in industrial applications.

JURAJ PETROVIĆ (Senior Member, IEEE) was
born in Zagreb, Croatia, in 1986. He received
the B.S. degree in computing, the M.S. degree in
information and communication technology, and
the Ph.D. degree in computing from the Faculty
of Electrical Engineering and Computing (FER),
University of Zagreb, in 2017.

He is currently an Assistant Professor with the
FER, University of Zagreb. He is the coauthor
of more than 25 scientific articles. His research

interests include the application of technology in learning and assessment,
information security, computer forensics, and digital signal processing.

Dr. Petrović is an active IEEE volunteer and the Vice President of the E25
Education Chapter of the IEEE Croatia.

PREDRAG PALE (Senior Member, IEEE)
received the B.S. and M.S. degrees in electronic
engineering and the Ph.D. degree in computer
science from the Faculty of Electrical Engineering
and Computing (FER), University of Zagreb.

He is currently an Associate Professor with
the FER, University of Zagreb, and among other
subjects teaches computer forensics and digital
file forensics. In addition, he creates and runs
courses on cybersecurity topics for national and

international ICT experts, middle and top management, educators, parents,
and the general public.

Dr. Pale is a member of the American Academy of Forensic Science and
an expert court witness. He received the Distinguished Chapter Leadership
Award from the IEEE Education Society. He also received the medal of The
Order of Croatian Star with the Effigy of Ruer Bošković, the State Award
for Science, and the Croatian IEEE Chapter Outstanding Engineering
Contribution Award. He is listed in the Croatian Encyclopedia. He was a
keynote speaker on information warfare for NATO’s top generals at the
‘‘Open Road 99’’ Conference. He is often teaching at NATO and RACVIAC
workshops.

VOLUME 11, 2023 138187

http://dx.doi.org/10.1145/3585542.3585545
http://dx.doi.org/10.1109/AICAS57966.2023.10168636
http://dx.doi.org/10.1109/hicss.2003.1174905
http://dx.doi.org/10.1109/hicss.2003.1174905
http://dx.doi.org/10.1109/ias.2007.75
http://dx.doi.org/10.1109/TIFS.2013.2274728
http://dx.doi.org/10.1002/cpe.6154
http://dx.doi.org/10.23919/MIPRO.2019.8756878
http://dx.doi.org/10.1016/j.fsidi.2021.301121
http://dx.doi.org/10.1016/j.fsidi.2021.301121
http://dx.doi.org/10.1109/INDICON56171.2022.10040147
http://dx.doi.org/10.1109/INDICON56171.2022.10040147
http://dx.doi.org/10.1109/ACCESS.2022.3173259
http://dx.doi.org/10.1109/icABCD49160.2020.9183836
http://dx.doi.org/10.1109/ICMLA51294.2020.00161
http://dx.doi.org/10.1007/s00607-019-00768-7
http://dx.doi.org/10.1109/AIKE52691.2021.00013
http://dx.doi.org/10.1109/CVPR.2016.173
http://dx.doi.org/10.1109/SMC.2017.8122736
http://dx.doi.org/10.1109/ICOT51877.2020.9468799
http://dx.doi.org/10.3115/v1/d14-1179
http://dx.doi.org/10.3115/v1/d14-1181

