
Received 19 October 2023, accepted 28 November 2023, date of publication 7 December 2023,
date of current version 13 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3340311

Self-Organizing Multiple Readouts for
Reservoir Computing
YUICHIRO TANAKA 1, (Member, IEEE), AND HAKARU TAMUKOH 1,2, (Member, IEEE)
1Research Center for Neuromorphic AI Hardware, Kyushu Institute of Technology, Wakamatsu, Kitakyushu 808-0196, Japan
2Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Kitakyushu 808-0196, Japan

Corresponding author: Yuichiro Tanaka (tanaka-yuichiro@brain.kyutech.ac.jp)

This work was supported in part by the New Energy and Industrial Technology Development Organization (NEDO) under Project
JPNP16007; and in part by the Japan Society for the Promotion of Science (JSPS) KAKENHI under Grant 22K17968, Grant 23H03468,
and Grant 23K18495.

ABSTRACT With advancements in deep learning (DL), artificial intelligence (AI) technology has become
an indispensable tool. However, the application of DL incurs significant computational costs, making it less
viable for edge AI scenarios. Consequently, the demand for cost-effective AI solutions, other than DL-based
approaches, is increasing. Reservoir computing (RC) has attracted interest owing to its ability to provide low-
cost training alternatives, holding great promise for edge AI applications. However, the training capability
of RC is constrained by its reliance on a single linear layer, while weight connections in the remaining
layers remain static during training. Moreover, accomplishing continuous learning tasks is difficult owing
to the catastrophic forgetting in the linear layer. Therefore, we propose the integration of self-organizing
multiple readouts to enhance RC’s training capability. Our method distributes training data across multiple
readouts, which prevents catastrophic forgetting of readouts and empowers each readout to adeptly assimilate
new data, thereby elevating the overall training performance. The self-organizing function, which assigns
similar data to the same readout, optimizes the memory utilization of these multiple readouts. Experimental
results show that an RC equipped with the proposed multiple readouts successfully solved a continuous
learning task by mitigating catastrophic forgetting because of the data distribution to the multiple readouts.
Additionally, the RC achieved higher accuracy in a sound recognition task compared with the existing RC
paradigm because of ensemble learning in the multiple readouts. Multiple readouts are effective in enhancing
the training capability of RC and can contribute to the realization of RC applications.

INDEX TERMS Catastrophic forgetting, continuous learning, echo state network, edge computing,
ensemble learning, reservoir computing, self-organizing map, sound classification.

I. INTRODUCTION
Deep learning (DL) [1] is a cornerstone of contempo-
rary artificial intelligence (AI) technology and has grown
indispensable across diverse fields [2], [3], [4], [5]. The
potency of DL lies in its capability to achieve cutting-edge
outcomes, facilitated by extensive training data that optimize
its intricate architecture. Consequently, the training phase of
DL demands substantial computational resources. In general,
the computations required for the training and inference of
deep neural networks (DNNs) are often accelerated using
graphics processing units (GPUs) [6], [7], [8].

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.

Among various applications of AI, its utilization in edge
environments, exemplified by service robots [9], [10], [11]
operating within domestic settings, has garnered notable
attention and aspiration. However, current DL-based method-
ologies encounter challenges in catering to edge applications
owing to constraints imposed by limited training data, com-
putational resources, and energy efficiencies. Certain edge
scenarios necessitate AI computation to occur autonomously,
devoid of reliance on cloud servers, a prerequisite driven
by privacy concerns, particularly pertinent when consid-
ering familial data in the context of service robots. This
independence from cloud infrastructure, however, imposes
intrinsic constraints on available computational resources
and processing abilities. Fig. 1 presents a potential solution

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 138839

https://orcid.org/0000-0001-6974-070X
https://orcid.org/0000-0002-3669-1371


Y. Tanaka, H. Tamukoh: Self-Organizing Multiple Readouts for Reservoir Computing

FIGURE 1. One of the solutions for edge AI implementation.

for edge AI implementation, entailing the linking of a
robot to an auxiliary laptop outfitted with GPUs. However,
it is essential to address the significant power consumption
associated with laptop GPUs, as their operation can swiftly
deplete the system’s battery reserves. Consequently, the
drive for AI solutions necessitating minimal training-related
computational expenditure, distinct from the conventional
DL paradigm, has gained momentum.

Reservoir computing (RC) [12], [13], a type of recur-
rent neural network, presents an attractive prospect for
edge AI applications, characterized by minimal training
overhead. Notably, RC exhibits a potential for deployment
on energy-efficient hardware platforms through specialized
circuits [14], [15], [16], [17], [18], [19], as well as leveraging
physical processes for computation [20], [21], [22], [23],
[24], [25]. This distinct characteristic positions RC as an
optimal candidate for edgeAI implementations, aligningwith
considerations of power consumption.

In general, the RC architecture comprises three funda-
mental layers: input, reservoir, and readout layers. Within
the reservoir layer, an intricate nonlinear transformation
transpires, projecting the input data into a high-dimensional
space. This transformation captures intricate spatio-temporal
patterns inherent in the input data, effectively encoding
their complexity. The patterns are then subjected to a linear
conversion process within the readout layer. This linear
conversion yields outputs, wherein a selection of reservoir
layer patterns, pertinent to the tasks at hand, contributes to
the generation of these outputs. A key advantage of RC is its
establishment of fixedweight connections, with the exception
of the readout, as depicted in Fig. 2(a). By contrast, neural
networks optimized via backpropagation [26], such as DNNs,
are capable of updating all weight connections, as shown
in Fig. 2(b). Therefore, RC training demands less data and
incurs lower computational burden compared with DNNs.

The readout function of RC, typically realized through a
linear model (such as the single-layer perceptron), presents
a limitation in its adaptability to diverse training data.
Moreover, in cases involving continuous learning [27], the

FIGURE 2. Training comparison: Reservoir computing vs.
backpropagation-optimized neural network.

optimized readout weight connections can be overwritten
by subsequent tasks, often leading to the challenge of
catastrophic forgetting [28]. This phenomenon results in the
RC effectively accommodating the new task while losing
competence in the previous task.

To improve RC’s training capabilities and prevent catas-
trophic forgetting, we propose an RC model featuring
multiple readouts [29]. Our approach distributes the training
responsibility among these readouts, thereby enabling each
to specialize in specific categories of training data. Concep-
tually similar to ensemble learning, this method augments
RC’s capacity for generalization. However, simply increasing
the number of readouts is inefficient within edge AI systems,
given their limited memory resources. Consequently, this
study introduces a self-organizing function that allocates the
same readout for similar data and employs different readouts
for dissimilar data.

The contributions of this study are as follows. This study
introduces a novel RC structure and its associated training
method. These enhancements not only boost the performance
of RC but also enable it to tackle continuous learning
tasks, an area where existing RC models often struggle.
Furthermore, the proposed method is applicable to the
physical implementations of RC [20], [21], [22], [23], [24],
[25] without any modification to the reservoir layer, which is
realized by physical phenomena, and therefore the method
is also expected to improve the performance of physical
implementations of RC, which is often constrained by
physical systems. This study can contribute to the realization
of RC applications.

The rest of this paper is organized as follows. Section II
introduces RC, with a specific focus on echo state networks
(ESNs) [12], the RC implementations employed in this study.
Section III describes the proposed method, while Section IV
delineates the experimental settings and ensuing results.

138840 VOLUME 11, 2023



Y. Tanaka, H. Tamukoh: Self-Organizing Multiple Readouts for Reservoir Computing

FIGURE 3. Echo state network.

Finally, Section V concludes the paper with a discussion
that includes a comparative analysis with previous research
endeavors.

II. ECHO STATE NETWORK
To implement the proposed RC model, this study utilizes
ESNs as RC implementations. This section describes the
structure and the information processing of ESNs.

An ESN is one of the RC implementations proposed by
Jaeger [12], which has input, reservoir, and readout layers
with Nin, Nres, and Nout nodes, respectively, as shown in
Fig. 3. The reservoir layer contains weight connections from
the input layer and recurrent connections. The readout layer
linearly maps the states of the reservoir layer to generate
output signals.

When an input signal u(t) ∈ RNin at time t is given, a state
of the reservoir layer x ∈ RNres is updated using Eq. (1):

x(t) = f (Winu(t) +Wresx(t − 1)), (1)

where Win ∈ RNres×Nin and Wres ∈ RNres×Nres are
weight connections between the input and reservoir layers
and recurrent weight connections in the reservoir layer,
respectively. f indicates a nonlinear function, where a
hyperbolic tangent function is often used.

To control the reservoir state updating speed, an RC model
that utilizes leaky integrator models as reservoir nodes was
proposed [30], and the reservoir state update process is
represented as Eq. (2),

x(t) = (1 − α)x(t − 1) + αf (Winu(t) +Wresx(t − 1)), (2)

where α (0 < α < 1) indicates the leak rate of the leaky
integrator models. If α is close to 0, the first-term effect on the
reservoir state update process becomes relatively big, slowing
the update process. Conversely, if α is close to 1, the reservoir
state update process becomes relatively fast.

In general, the reservoir layer is required to satisfy the
echo state property [12] that assures the reproducibility of
reservoirs. As shown in Eqs. (1) and (2), the reservoir state
is uniquely decided by an initial reservoir state x(0) and

FIGURE 4. Reservoir computing model with multiple readouts
(3 × 3 configuration).

time-series input u(t). Suppose that an initial reservoir state
continues to affect the reservoir state update process. The
reservoir state after feeding time-series inputs depends on the
randomized initial state, and therefore different outputs are
obtained in every execution, even if the same inputs are given.
To avoid this, the reservoir state after a significant periodmust
depend only on time-series inputs. If the hyperbolic tangent
function is used as the nonlinear function f , the echo state
property can be satisfied if the spectral radius of the recurrent
weight connectionsWres, which is the maximum value in the
absolute values of eigenvalues ofWres, is smaller than 1.
An output of the network y(t) ∈ RNout is computed by the

readout layer using Eq. (3):

y(t) = Woutx(t), (3)

where Wout ∈ RNout×Nres is the weight connections between
the reservoir and readout layers. Given a target signal z(t) ∈

RNout (1 ≤ t ≤ T ), the weight connections Wout can be
computed by the ridge regression as shown in Eqs. (4), (5),
and (6):

Wout = ZX⊤(XX⊤
+ λI )−1, (4)

X = [x(1), x(2), . . . , x(T )] ∈ RNres×T (5)

Z = [z(1), z(2), . . . , z(T )] ∈ RNout×T (6)

where λ is a coefficient of the regularization term of the ridge
regression that aims to avoid overfitting, and I ∈ RNres×Nres

is an identity matrix.
As mentioned above, only the weight connections between

the reservoir and readout layersWout have synaptic plasticity
and are updated in the training, whereas other weight
connections are fixed. Therefore, ESN’s capability to adapt
training data depends only on the readout layer, which is
usually a single linear model, and adapting complex datasets
is difficult. Moreover, catastrophic forgetting tends to occur
in continuous learning tasks.

VOLUME 11, 2023 138841



Y. Tanaka, H. Tamukoh: Self-Organizing Multiple Readouts for Reservoir Computing

FIGURE 5. Online training with multiple readouts (the number of readouts is three).

III. PROPOSED METHOD
This study proposes an RC model with self-organizing
multiple readouts and its two types of training methods. The
first one is an online training method, which is effective for
continuous learning tasks, and the other is a batch training
method. This section includes subsections explaining the RC
model structure and the training methods.

A. MODEL STRUCTURE
Fig. 4 shows the structure of the proposed RC model
[29], which has an input layer, a reservoir layer, multiple
readouts, and an input similarity map that is implemented
by a self-organizing map (SOM) [31]. The SOM consists of
nodes aligned on a two-dimensional grid (3×3 in the figure).
Although the two-dimensional grid is adopted in this study,
the grid dimension is not restricted to two. The number of
SOM nodes corresponds to the number of multiple readouts,
and each SOM node is associated with each readout.

The similarity map is used for input data classification
to distribute the readout training. For this data classifica-
tion, an unsupervised learning method is desired to avoid
additional data labeling for the similarity map, which is
highly time-consuming. This study adopted the SOM for
the similarity map as one of the unsupervised learning
methods. Note that other unsupervised learning methods
like principal component analysis (PCA) and t-distributed
stochastic neighbor embedding (t-SNE) [32] can be utilized
(however, we did not adopt it because t-SNE requires
considerable computational costs).

The SOM receives an input signal and classifies it to decide
a winner node c using Eq. (7):

c = argmin
i

∥v−mi∥ (7)

where i is an index of the SOM node, and mi ∈ RM is a
reference vector of i-th SOM node. The winner node of the
SOM that has the nearest reference vector to v is selected
in this process. Here, v ∈ RM is a vector representing the

feature of the given task. The simplest way to represent the
task feature is concatenating the input vectors of all time steps
if they are already known using Eq. (8):

v = [u(1)⊤,u(2)⊤, . . . ,u(T )⊤]⊤ ∈ RNinT (8)

In addition to concatenation, an alternative approach
involves utilizing a spectrogram obtained through the Fourier
transform of the input vectors as v. In some cases, employing
the spectrogram yields superior outcomes compared to con-
catenation. This is attributed to the fact that the concatenated
vector derived from Eq. (8) lacks robustness against phase
shifts present in the time-series inputs. For similar reasons,
there is potential in utilizing the reservoir state x(t) as
v. However, in this setup, the winner node c dynamically
changes while the input vector is provided, and the batch
training method described in Section III-C cannot be utilized.

The reference vectors of the SOM are optimized via
unsupervised competitive learning using Eqs. (9) and (10):

mnew
i = mi + γ hi(v−mi) (9)

hi = exp(−d2i /2σ
2) (10)

where mnew
i is the updated reference vector generated after

this process. γ is the learning rate, and hi is a neighborhood
coefficient depending on the distance di between the i-th node
and the winner node on the SOM grid. σ indicates the width
of the neighborhood coefficient affection.

The reservoir layer of the model is the same as the reservoir
of the ESNs, and therefore the layer receives input signals
and updates its state using Eq. (1) or (2). Each multiple
readout with weight connections from the reservoir layer
Wout,i generates an output as shown in Eq. (11):

yi(t) = Wout,ix(t) (11)

where yi(t) is the i-th readout output at time t . Finally,
a readout output associated with the winner node (winner
readout) yc(t) is adopted as the network output.

138842 VOLUME 11, 2023



Y. Tanaka, H. Tamukoh: Self-Organizing Multiple Readouts for Reservoir Computing

FIGURE 6. Batch training with multiple readouts (the number of readouts is three).

FIGURE 7. Variations in training data quantity during batch training.

B. ONLINE TRAINING
For the self-organizing function of the multiple readouts, we
propose a training method where weight connections of the
winner readout and its neighboring readouts are updated. This
training methodology is strategically devised to enhance the
winning readout’s adjustment to the data responsible for the
activation of the corresponding SOM node. Concurrently,
it encourages a coarse alignment of the neighboring readouts
with the same data source. As a result, this approach offers a
twofold advantage: first, the winning readout becomes adept
at specializing in data originating from a particular domain,
and second, the neighboring readouts acquire the capability
to generalize across data from diverse domains.

To control the readouts’ adaptation, the online training
algorithm adjusts the learning rate of the weight connection
update process as shown in Fig. 5. When input and target
signals are given to the model, optimal weight connections
for the taskWopt can be computed using the ridge regression
of Eq. (4). Here, the readout weight connections Wout,i are
updated to be close to the optimal weight connections. This is
achieved by utilizing the neighboring coefficient of the SOM
hi, with the aim of enhancing the extent of updates in the

winning readout among the multiple readouts. The update
process is conducted using Eq. (12):

W new
out,i = βhiWopt + (1 − βhi)Wout,i (12)

where W new
out,i is the updated readout weight connections after

this process and β is a learning coefficient.
Note that the learning coefficient β and the width of the

neighborhood coefficient affection σ are recommended to
be monotonously decreased during the training because the
updating effect of a newly given task tends to overwrite that
of previous ones if the learning coefficient is constant.

C. BATCH TRAINING
The online training algorithm requires the parameters to
be scheduled to achieve good results. The batch training
algorithm overcomes this problem at the sacrifice of memory
usage.

To control the readouts’ adaptation, the batch training
algorithm adjusts the amount of training data based on the
neighborhood coefficient of the SOM as shown in Fig. 6.
This method prepares memories associated with readouts and
stocks the training data in the memories. When T steps input

VOLUME 11, 2023 138843



Y. Tanaka, H. Tamukoh: Self-Organizing Multiple Readouts for Reservoir Computing

FIGURE 8. Task A: Three-bit parity check.

FIGURE 9. Task B: Sinusoidal wave prediction.

signals and T steps target signals are given to the model,
T steps reservoir states [x(1), x(2), . . . , x(T )] are obtained.
Here, all reservoir states [x(1), x(2), . . . , x(T )] and target
signals [z(1), z(2), . . . , z(T )] are stocked in the memory for
the winner readout, whereas ⌊hiT ⌋ steps reservoir states
and the target signals are stocked in the memories for the
remaining readouts.

Fig. 7 shows three methods to adjust the amount of
training data in the batch training investigated in this
study. In the method shown in Fig. 7(a), first ⌊hiT ⌋ steps
reservoir states [x(1), . . . , x(⌊hiT ⌋)] and the target signals
[z(1), . . . , z(⌊hiT ⌋)] are stocked in thememory. In themethod
shown in Fig. 7(b), the middle of reservoir states [x(⌊ 1

2 (1 −

hi)T ⌋), . . . , x(⌊ 1
2 (1 + hi)T ⌋)] and target signals [z(⌊ 1

2 (1 −

hi)T ⌋), . . . , z(⌊ 1
2 (1 + hi)T ⌋)] are cropped and stocked in the

memory. In the method shown in Fig. 7(c), the reservoir states
and target signals are decimated to get ⌊hiT ⌋ step samples.
Here, one reservoir state and its target signal in every Tdec
time step is picked up and stored in the memory. Tdec is
computed using Eq. (13).

Tdec =

{
⌊1/hi⌋ (hi ≥ 1/T )
T (hi < 1/T )

(13)

After feeding the training data to the model, each weight
connection is computed by the ridge regression shown in
Eq. (4) using each stocked data. Because this algorithm

FIGURE 10. SOM reference vectors after training for Tasks A and B.

FIGURE 11. Output of Task A using the normal ESN.

FIGURE 12. Output of Task B using the normal ESN.

updates the readout weight connections once, the parameters
need not be scheduled.

IV. EXPERIMENT
A. EVALUATION OF ONLINE TRAINING
We conducted an experiment to evaluate the proposed RC
model’s performance with the online training algorithm.

138844 VOLUME 11, 2023



Y. Tanaka, H. Tamukoh: Self-Organizing Multiple Readouts for Reservoir Computing

FIGURE 13. Output of Task A using the proposed method.

FIGURE 14. Output of Task B using the proposed method.

Here, we prepared two sets of input and target data that
were inspired by a continuous learning task in [33], in which
16-step time-series inputs were given to the RC model.

One of them was a three-bit parity check task (named
Task A), as shown in Fig. 8, where the input value u(t) (drawn
as a black line) was randomly selected from {0, 1} and the
target value z(t) (drawn as a red line) was computed using
Eq. (14):

z(t) = {

2∑
i=0

u(t − i)} mod 2 (14)

such that Nin = 1, Nout = 1, and T = 16. Note that the
target signals at t = 1, 2 is not plotted in the figure because
they cannot be defined. The other task was a sinusoidal wave
prediction task (named Task B), as shown in Fig. 9, where
the input value u(t) (drawn as a black line) and the target
value z(t) (drawn as a red line) were computed using Eqs. (15)
and (16):

u(t) = sin(π t/17) (15)

z(t) = u(t + 1) (16)

where Nin, Nout , and T were the same as Task A.
In this experiment, we first fed the time-series data

of Task A into the RC model. Here, as a vector rep-
resenting the task feature, a concatenated vector v =

[u(1), u(2), . . . , u(16)]⊤ was fed to the SOM such that M =

FIGURE 15. Input signal example from FSDD.

16, and the winner node and readout were determined by
Eq. (7). Based on the determined winner, we executed the
online training algorithm of Eq. (12). We also executed the
unsupervised competitive learning of the SOM of Eq. (9).
After the training of Task A, we fed the data for Task B and
executed the training algorithm in the same way as Task A.
Here, the number of nodes in the reservoir layer Nres was
100 and the grid size of the SOM was 3 × 3. The weight
connections between the input and reservoir layers Win were
randomly generated from a uniform distribution of [−1, 1].
The recurrent connections in the reservoir layer Wres were
generated from a uniform distribution of [−1.5, 1.5], and
then 50% of the connections were randomly selected and
set to zero. The hyperbolic tangent function was used as
the nonlinear function f . The leak rate of the reservoir layer
α was 0.95, and the regularization term coefficient of the
ridge regression λ was 0.01. The learning rate of the SOM
γ was 0.5, the width of the neighborhood coefficient σ was
0.8, and the learning coefficient of the multiple readouts
β was 0.95, which were fixed (not scheduled) at this time
because the tasks were simple.We repeated this procedure ten
times. Additionally, we conducted the same evaluation using
a normal ESN with 100 reservoir nodes.

Fig. 10 shows the reference vectors of the SOM after
training, which are aligned on the 3× 3 grid. Figs. 11 and 12
show the outputs (drawn as a black line) and targets (drawn as
a red line) of Tasks A and B for the normal ESN, respectively.
Because of the catastrophic forgetting, the outputs did not
follow the target signals in both tasks. Conversely, the
proposed RC model predicted the outputs with smaller loss
compared with the normal ESN in both tasks, as shown in
Figs. 13 and 14. This result reveals that the proposed model
and algorithm can avoid catastrophic forgetting to complete
the continuous learning task.

B. EVALUATION OF BATCH TRAINING
We also conducted an experiment to evaluate the proposed
RC model’s performance with the batch training algorithm

VOLUME 11, 2023 138845



Y. Tanaka, H. Tamukoh: Self-Organizing Multiple Readouts for Reservoir Computing

FIGURE 16. Cochleagram of the signal depicted in Fig. 15.

TABLE 1. Accuracy comparison: ESN with a single readout vs. ESN with
multiple readouts in a speaker classification task.

TABLE 2. Accuracy comparison: ESN with a single readout vs. ESN with
multiple readouts in a digit classification task.

using the free-spoken digit dataset (FSDD) [34]. This dataset
comprises 3,000 audio files of English digits (‘‘zero’’ to
‘‘nine’’) pronounced by six persons and recorded at 8 kHz (50
audio files of each digit per person is included). We divided
the dataset into training and test data, with 90% of the data
being used for training and 10% for testing. Although the
audio data time step length of FSDD varies (its mean is
3499.5 samples and its standard deviation is 1180.9 samples),
all utterance sections are within the first 8,000 samples, and
therefore the first 8,000 samples of audio data were used
in this experiment. It should be noted that if the length of
the audio data was less than 8,000 samples, the remaining
sections were zero-filled to contain 8,000 samples.

Before feeding audio data from the FSDD to the model,
we used Lyon’s auditory model [35] to convert it into a
cochleagram, which is a time series of intensities of quantized
frequency channels. In this experiment, each cochleagram
had 64 frequency channels and 100 time steps. The sampling
rate of the cochleagram was 100.0 sample/s (with every
79 samples decimated out of every 80 samples), resulting in
Nin = 64, T = 100. Figs. 15 and 16 show an example of a
FSDD input signal and its cochleagram, respectively. Note
that because the utterance section of the input signal ends

FIGURE 17. Trained SOM reference vectors for cochleagrams.

approximately at the 2,500 th step, the remaining section is
zero-filled, as shown in Fig. 15.

Here, we constructed a SOM with a grid size of 8 × 8 and
fed training data from the FSDD to the SOM for pretraining.
The input signals obtained from the FSDDwere concatenated
using Eq. (8), with the specific purpose of aligning the
dimensionality, resulting in M = NinT , equaling 6,400. The
SOM’s learning rate γ and neighborhood coefficient width σ

varied in time during the SOM training: the learning rate γ

started from 0.1 and decreased monotonously to 0.001, and
the width σ started from 3.0 and decreased monotonously to
0.1. Fig. 17 shows the SOM’s reference vectors after training,
which are aligned on the 8 × 8 grid.
We conducted two sound classification tasks using the

FSDD: a speaker and a digit classification. We fed training
data from the FSDD to the reservoir layer and stocked
the reservoir states with the target signals based on the
neighborhood coefficient hi in the memories. Here, we used
the pretrained SOM shown in Fig. 17 to determine hi and
set the parameter σ as 1.0. The weight connections between
the input and reservoir layers Win were randomly generated
from a uniform distribution of [−30, 30]. The recurrent
connections in the reservoir layer Wres were generated from
a uniform distribution of [−0.999, 0.999], and then 50%
of the connections were randomly selected and set to zero.
The hyperbolic tangent function was used as the nonlinear
function f . The reservoir’s leak rate α was 0.5. After feeding
the training data, we computed the weight connections of
the multiple readouts by the ridge regression setting λ as
0.1. In this experiment, we investigated the test accuracy
when the number of reservoir nodes Nres was set to 100,
250, and 500, and compared the accuracy between an ESN
with a single readout and an ESN with multiple readouts.
We also investigated and compared the effectiveness of the

138846 VOLUME 11, 2023



Y. Tanaka, H. Tamukoh: Self-Organizing Multiple Readouts for Reservoir Computing

TABLE 3. Accuracy rates of the SVM and the LSTM-based network in the
speaker and digit classification tasks.

three methods to adjust the amount of training data, shown in
Fig. 7.

Tables 1 and 2 show the accuracy achieved by the ESN
with a single readout and the ESN with multiple readouts in
the speaker and digit classification tasks, respectively. Each
accuracy is an average of five trials. The ESN with multiple
readouts outperformed the ESN with a single readout.

We also investigated the performance of a support
vector machine (SVM) [36] and a long short-term memory
(LSTM)-based neural network [4] for both tasks. The
LSTM-based network consisted of an LSTM layer and a
linear layer and we set the number of nodes in the LSTM
layer as 100, 250, or 500. The training of the LSTM-based
networkwas conducted for 5,000 epochs and the optimization
algorithm was Adam. The accuracy rates of the SVM and the
LSTM-based network, which are averages of five trials, are
shown in Table 3.

V. CONCLUSION
This study presents an innovative approach to enhance the
training capabilities of an RC model through the integration
of multiple readouts for distributed readout training. The
effectiveness of this approach was demonstrated through
a continuous learning task in which the proposed model
successfully avoided catastrophic forgetting, a challenge that
conventional ESNs struggled with. Experiment A showed
that the proposed model distributed tasks using the SOM,
as shown in Fig. 10, to avoid catastrophic forgetting and
accomplished the task as shown in Figs. 13 and 14, while
the conventional ESN was unable to accomplish the task as
shown in Figs. 11 and 12. Additionally, a sound classification
task utilizing the FSDD was performed. Experiment B
showed that the proposed model distributed training data
from FSDD using the SOM, as shown in Fig. 17, to make
readouts easily adapt data and outperformed conventional
ESN as shown in Tables 1 and 2.
A key advantage of the proposed method is its low training

cost. While Kawai et al. also proposed a reservoir-based
approach [33] for continuous learning, their method
employed a genetic algorithm for network optimization,
necessitating extensive training repetition. Conversely, the
proposed method required ten iterations for training in the
case of the task shown in Figs. 8 and 9.

In our experiment, we employed a 3×3 SOMconfiguration
for both Tasks A and B, which may seem redundant for
solving two distinct tasks. However, it led to the observation
of an intriguing property within the neighborhoods of the
winner readouts. Despite the absence of explicit data input,

FIGURE 18. Task A readout responses.

FIGURE 19. Task B readout responses.

the SOM nodes displayed intermediate reference vectors
between the inputs of the given tasks, as depicted in Fig. 10.
Moreover, the responses of the neighborhood readouts
demonstrated an intermediate nature between the outputs of
the given tasks. Figs. 18 and 19 show responses from all
readouts aligned on the 3 × 3 grid during the execution of
Tasks A and B, respectively. The graph, delineated by a red
line, serves to indicate the response generated by the winner
readout. Examining these figures reveals that the neighboring
readouts displayed a discernible degree of alignment with
the characteristics of the given tasks. These results can be
regarded as the neighboring readouts virtually learned tasks,
except for Tasks A and B. Therefore, transfer learning may be

VOLUME 11, 2023 138847



Y. Tanaka, H. Tamukoh: Self-Organizing Multiple Readouts for Reservoir Computing

possible with a few adjustments using the weight connections
of the neighborhood readouts as initial values.

Tables 1 and 2 show that Method (c) showed the best
performance among the three methods in adjusting the
amount of training data during batch training. By using
Methods (b) and (c), the readouts could learn various time
steps of reservoir states, whereas Method (a) focused only on
the first parts of reservoir states. Thus, the performances of
Methods (b) and (c) were superior to that ofMethod (a). Inter-
estingly, the performance improvements achieved through the
introduction of the proposed method further improved when
the number of reservoir nodes Nres reduced. We therefore
conclude that the proposed method is effective for RCs with
few reservoir nodes.

Tables 1, 2, and 3 show that the proposed network was infe-
rior to the LSTM-based network in the speaker classification
task. However, the LSTM-based network required at least
900 epochs to achieve more than an accuracy rate of 95% in
the experiment, whereas the proposed network was optimized
with one epoch, and therefore, the proposed network is more
suitable for training in edge computing than the LSTM-based
network. A possible reason for the performance of the
LSTM-based network with 100 nodes was better than that
with 250 and 500 nodes in the speaker classification task is
overfitting which happened as the complexity of the network
increased.

The versatility of the proposed RC model extends beyond
sound recognition tasks, making it applicable to other
domains, including reinforcement learning [37]. Integrating
the proposed structure in a reservoir-based reinforcement
learning model [38] could enhance its performance by avoid-
ing catastrophic forgetting and enabling transfer learning
from previously acquired knowledge.

Although our implementation of the proposed RC model
was based on ESNs, the method is not exclusive to
this architecture and can be adapted to other reservoir
implementations. This versatility is particularly promising for
enhancing the training capabilities of physical RCs, such as
nanomaterial-based RCs [25].

REFERENCES
[1] G. E. Hinton, S. Osindero, and Y.-W. Teh, ‘‘A fast learning algorithm for

deep belief nets,’’Neural Comput., vol. 18, no. 7, pp. 1527–1554, Jul. 2006.
[2] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based

learning applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. 25th Int. Conf. Neural
Inf. Process. Syst., vol. 1, 2012, pp. 1097–1105.

[4] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, ‘‘Playing atari with deep reinforcement
learning,’’ in Proc. NIPS Deep Learning Workshop, 2013.

[6] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang,
Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,
J. Bai, and S. Chintala, ‘‘PyTorch: An imperative style, high-performance
deep learning library,’’ in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 8024–8035.

[7] M. Abadi et al., ‘‘TensorFlow: A system for large-scale machine learning,’’
in Proc. 12th USENIX Symp. Oper. Syst. Design Implement. (OSDI), 2016,
pp. 265–283.

[8] R. Okuta, Y. Unno, D. Nishino, S. Hido, and C. Loomis, ‘‘CuPy: A numpy-
compatible library for NVIDIA GPU calculations,’’ in Proc. ML Syst.
Workshop NIPS, 2017.

[9] L. Iocchi, D. Holz, J. Ruiz-del-Solar, K. Sugiura, and T. van der Zant,
‘‘RoboCup@home: Analysis and results of evolving competitions for
domestic and service robots,’’ Artif. Intell., vol. 229, pp. 258–281,
Dec. 2015.

[10] T. Yamamoto, K. Terada, A. Ochiai, F. Saito, Y. Asahara, and K. Murase,
‘‘Development of human support robot as the research platform of a
domestic mobile manipulator,’’ ROBOMECH J., vol. 6, no. 1, Dec. 2019.

[11] T. Ono, D. Kanaoka, T. Shiba, S. Tokuno, Y. Yano, A. Mizutani,
I. Matsumoto, H. Amano, and H. Tamukoh, ‘‘Solution of world robot
challenge 2020 partner robot challenge (real space),’’ Adv. Robot., vol. 36,
nos. 17–18, pp. 870–889, Sep. 2022.

[12] H. Jaeger, ‘‘The ‘echo state’ approach to analysing and training recurrent
neural networks-with an erratum note,’’ German Nat. Res. Center Inf.
Technol. GMD, Bonn, Germany, Tech. Rep., 2001, vol. 148, no. 34.

[13] W. Maass, T. Natschläger, and H. Markram, ‘‘Real-time computing
without stable states: A new framework for neural computation based
on perturbations,’’ Neural Comput., vol. 14, no. 11, pp. 2531–2560,
Nov. 2002.

[14] M. L. Alomar, V. Canals, N. Perez-Mora, V. Martínez-Moll, and
J. L. Rosselló, ‘‘FPGA-based stochastic echo state networks for time-
series forecasting,’’ Comput. Intell. Neurosci., vol. 2016, pp. 1–14,
Jan. 2016.

[15] L. Loomis, N. McDonald, and C. Merkel, ‘‘An FPGA implementation of
a time delay reservoir using stochastic logic,’’ ACM J. Emerg. Technol.
Comput. Syst., vol. 14, no. 4, pp. 1–15, Oct. 2018.

[16] N.-S. Huang, J.-M. Braun, J. C. Larsen, and P. Manoonpong, ‘‘A scalable
echo state networks hardware generator for embedded systems using high-
level synthesis,’’ in Proc. 8th Medit. Conf. Embedded Comput. (MECO),
Jun. 2019, pp. 1–6.

[17] M. L. Alomar, E. S. Skibinsky-Gitlin, C. F. Frasser, V. Canals, E. Isern,
M. Roca, and J. L. Rosselló, ‘‘Efficient parallel implementation of
reservoir computing systems,’’ Neural Comput. Appl., vol. 32, no. 7,
pp. 2299–2313, Apr. 2020.

[18] K. Honda and H. Tamukoh, ‘‘A hardware-oriented echo state network
and its FPGA implementation,’’ J. Robot., Netw. Artif. Life, vol. 7, no. 1,
pp. 58–62, 2020.

[19] I. Kawashima, Y. Katori, T. Morie, and H. Tamukoh, ‘‘An area-efficient
multiply-accumulation architecture and implementations for time-domain
neural processing,’’ in Proc. Int. Conf. Field-Program. Technol. (ICFPT),
Dec. 2021, pp. 1–4.

[20] K. Nakajima, H. Hauser, T. Li, and R. Pfeifer, ‘‘Information processing via
physical soft body,’’ Sci. Rep., vol. 5, no. 1, pp. 1–11, May 2015.

[21] G. Van der Sande, D. Brunner, and M. C. Soriano, ‘‘Advances in
photonic reservoir computing,’’ Nanophotonics, vol. 6, no. 3, pp. 561–576,
May 2017.

[22] J. Torrejon, M. Riou, F. A. Araujo, S. Tsunegi, G. Khalsa, D. Querlioz,
P. Bortolotti, V. Cros, K. Yakushiji, A. Fukushima, H. Kubota,
S. Yuasa, M. D. Stiles, and J. Grollier, ‘‘Neuromorphic computing with
nanoscale spintronic oscillators,’’ Nature, vol. 547, no. 7664, pp. 428–431,
Jul. 2017.

[23] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa, S. Takeda,
H. Numata, D. Nakano, and A. Hirose, ‘‘Recent advances in physical
reservoir computing: A review,’’ Neural Netw., vol. 115, pp. 100–123,
Jul. 2019.

[24] K. Nakajima, ‘‘Physical reservoir computing—An introductory perspec-
tive,’’ Jpn. J. Appl. Phys., vol. 59, no. 6, May 2020, Art. no. 060501.

[25] Y. Usami, B. van de Ven, D. G. Mathew, T. Chen, T. Kotooka,
Y. Kawashima, Y. Tanaka, Y. Otsuka, H. Ohoyama, H. Tamukoh,
H. Tanaka, W. G. van der Wiel, and T. Matsumoto, ‘‘In-materio reservoir
computing in a sulfonated polyaniline network,’’ Adv. Mater., vol. 33,
no. 48, Dec. 2021, Art. no. 2102688.

[26] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning representa-
tions by back-propagating errors,’’Nature, vol. 323, no. 6088, pp. 533–536,
Oct. 1986.

[27] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, ‘‘Continual
lifelong learning with neural networks: A review,’’ Neural Netw., vol. 113,
pp. 54–71, May 2019.

138848 VOLUME 11, 2023



Y. Tanaka, H. Tamukoh: Self-Organizing Multiple Readouts for Reservoir Computing

[28] M. McCloskey and N. J. Cohen, ‘‘Catastrophic interference in connection-
ist networks: The sequential learning problem,’’ in Psychology of Learning
andMotivation, vol. 24, G. H. Bower, Ed. NewYork, NY, USA: Academic,
1989, pp. 109–165.

[29] Y. Tanaka and H. Tamukoh, ‘‘Ensemble learning of multiple readouts
for reservoir computing,’’ in Proc. Int. Symp. Nonlinear Theory Appl.
(NOLTA), 2023, pp. 509–512. [Online]. Available: https://www.ieice.org/
publications/proceedings/summary.php?expandable=13&iconf=NOLTA&
session_num=C3L-1&number=C3L-11&year=2023

[30] H. Jaeger, M. Lukoševičius, D. Popovici, and U. Siewert, ‘‘Optimization
and applications of echo state networks with leaky- integrator neurons,’’
Neural Netw., vol. 20, no. 3, pp. 335–352, Apr. 2007.

[31] T. Kohonen, ‘‘Self-organized formation of topologically correct feature
maps,’’ Biol. Cybern., vol. 43, no. 1, pp. 59–69, 1982.

[32] L. van derMaaten andG.Hinton, ‘‘Visualizing data using t-SNE,’’ J.Mach.
Learn. Res., vol. 9, no. 86, pp. 2579–2605, 2008.

[33] Y. Kawai, Y. Ozasa, J. Park, and M. Asada, ‘‘Avoiding catastrophic
forgetting in echo state networks by minimizing the connection cost,’’ in
Proc. 33rd Annu. Conf. Jpn. Sociery Artif. Intell., 2019.

[34] Z. Jackson, C. Souza, J. Flaks, Y. Pan, H. Nicolas, and A. Thite,
‘‘Jakobovski/free-spoken-digit-dataset,’’ Tech. Rep., 2018, doi:
10.5281/zenodo.1342401.

[35] R. Lyon, ‘‘A computational model of filtering, detection, and compression
in the cochlea,’’ in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
vol. 7, May 1982, pp. 1282–1285.

[36] C. Cortes and V. Vapnik, ‘‘Support-vector networks,’’ Mach. Learn.,
vol. 20, no. 3, pp. 273–297, Jan. 1995.

[37] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 2018.

[38] M. Inada, Y. Tanaka, H. Tamukoh, K. Tateno, T. Morie, and Y. Katori,
‘‘A reservoir based Q-learning model for autonomous mobile robots,’’ in
Proc. Int. Symp. Nonlinear Theory Appl. (NOLTA), 2020, pp. 213–216.

YUICHIRO TANAKA (Member, IEEE) received
the B.E., M.E., and Ph.D. degrees from the
Kyushu Institute of Technology, in 2016, 2018,
and 2021, respectively. He was a Research Fellow
with the Japan Society for the Promotion of
Science (JSPS), from 2019 to 2021. He has
been an Assistant Professor with the Research
Center for Neuromorphic AI Hardware, Kyushu
Institute of Technology, since 2021. His research
interests include neural networks, digital hardware

implementation, and home service robots. He is a member of IEICE and
JNNS.

HAKARU TAMUKOH (Member, IEEE) received
the B.Eng. degree from Miyazaki University,
Japan, in 2001, and the M.Eng. and Ph.D. degrees
from the Kyushu Institute of Technology, Japan,
in 2003 and 2006, respectively. He was a Post-
doctoral Research Fellow with the 21st Century
Center of Excellent Program, Kyushu Institute of
Technology, from April 2006 to September 2007.
He was an Assistant Professor with the Tokyo
University of Agriculture and Technology, from

October 2007 to January 2013. He is currently a Professor with the
Graduate School of Life Science and Systems Engineering, Kyushu Institute
of Technology. His research interests include hardware/software complex
systems, digital hardware design, neural networks, soft computing, and home
service robots. He is a member of IEICE, SOFT, JNNS, JSAI, and RSJ.

VOLUME 11, 2023 138849

http://dx.doi.org/10.5281/zenodo.1342401

