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ABSTRACT System dependability is pivotal for the reliable execution of designated computing functions.
With the emergence of cloud-fog computing and microservices architectures, new challenges and
opportunities arise in evaluating system dependability. Enhancing dependability in microservices often
involves component replication, potentially increasing energy costs. Thus, discerning optimal redundancy
strategies and understanding their energy implications is crucial for both cost efficiency and ecological
sustainability. This paper presents a model-driven approach to evaluate the dependability and energy
consumption of cloud-fog systems, utilizing Kubernetes, a container application orchestration platform.
The developed model considers various determinants affecting system dependability, including hardware
and software reliability, resource accessibility, and support personnel availability. Empirical studies validate
the model’s effectiveness, demonstrating a 22.33% increase in system availability with only a 1.33% rise
in energy consumption. Moreover, this methodology provides a structured framework for understanding
cloud-fog system dependability, serves as a reference for comparing dependability across different systems,
and aids in resource allocation optimization. This research significantly contributes to the efforts to enhance
cloud-fog system dependability.

INDEX TERMS Cloud-fog continuum, dependability, Kubernetes, stochastic modeling.

I. INTRODUCTION
The cloud-fog continuum represents a theoretical model
delineating the various strata of computing resources within
distributed environments [1], [2], [3]. Within this continuum,
the cloud provides centralized management services that
offer high scalability and availability to the systems [4].
Interposed between the cloud and the edge, the fog
layer facilitates edge computing, signifying intermediate
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computing resources in proximity to the edge. These
resources are customarily deployed in applications demand-
ing low latency, encompassing domains such as the Internet
of Things (IoT), augmented reality, virtual reality, and real-
time analytics. The integration of the cloud-fog continuum
has been demonstrated to enhance the overall system’s
performance, reliability, and security, leveraging the virtues
of both cloud and fog computing [1], [5], [6].

Kubernetes, an open-source platform, facilitates the auto-
mated management of containerized applications across
diverse computing environments [7]. It supports various

140826

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-5852-0779
https://orcid.org/0000-0002-9405-6878
https://orcid.org/0000-0002-9743-2437
https://orcid.org/0000-0002-3109-798X
https://orcid.org/0000-0002-8211-6060
https://orcid.org/0000-0002-7221-6279


I. Fé et al.: Model-Driven Dependability and Power Consumption Quantification of Kubernetes

deployment models, including on-premises, cloud, and
hybrid setups, and is instrumental in building and overseeing
large-scale microservices architectures. When integrated
with extensions like KubeEdge, Kubernetes becomes highly
suitable for the cloud-fog spectrum [8]. Microservices-
based systems exhibit growing complexity due to numerous
components and intricate interplay between applications
and the infrastructure [9]. Deployment in Kubernetes
requires detailed configuration, including specific alloca-
tions, infrastructure checks, storage protocols, and more.
Additionally, defining support teams and diverse hardware
configurations becomes crucial, particularly in cloud-fog
integration. Traditional methods mainly enhance reliability
and availability via redundant resources [10]. However,
the potential energy implications of redundancy cannot be
overlooked, especially considering operational costs and
environmental considerations. Information and communica-
tion technology accounts for about 2% of global energy use,
expected to soar to 14% by 2040 without intervention [11],
[12], [13]. Therefore, dependability-enhancing techniques
should be energy-conscious, aiming to judiciously determine
necessary replications with environmental impact in mind.
Achieving desired dependability levels in such complex
systems is challenging [1]. A mere high-level architec-
ture assessment may yield inaccurate results for diverse
applications. A comprehensive evaluation should consider
underlying infrastructure impacts on reliability and energy
consumption, including support capabilities, repair duration,
and the dynamic relationship between microservices and
infrastructure. The primary impetus for this research lies
in addressing the planning challenges of creating reliable,
eco-friendly Kubernetes microservices systems, factoring in
intricate interactions with the foundational cloud and fog
infrastructure.

Improvements through empirical measurements in com-
plex environments can be challenging due to potential
economic limitations or the demand for results that generalize
across diverse scenarios. Model-based methods have shown
their effectiveness in strategizing microservices and cloud
systems [14], [15], [16], facilitating quantitative validation
and adaptability across different situations. Nonetheless,
a standardized approach to dependability modeling, espe-
cially when assessing the energy consumption impacts of
various strategies in cloud-fog systems, is urgently needed.
Quantitative models, particularly those using stochastic
methods, are widely employed to examine the dependability
of Kubernetes-based cloud-fog systems [14], [15], [16], [17],
[18], [19]. These mathematical frameworks, representing
systems’ random behaviors, are instrumental in predicting
impacts on established infrastructures or in designing new
applications. A pivotal aspect of dependability in Kubernetes
systems is managing failures, which requires understanding
Kubernetes’ inherent recovery mechanisms and associated
response times. Given the intricacy and multifaceted com-
ponents of these systems, continued research is vital. This
research should aim to create innovative approaches and tools

to bolster cloud-fog system dependability, while emphasizing
energy conservation and environmental responsibility.

The field of improving dependability and reducing energy
consumption in microservices is extensive and complex [20],
[21], [22]. Major research efforts have been directed towards
implementing fault tolerance techniques. This includes
adopting a hybrid methodology combining both active
and passive approaches to enhance availability [23], and
creating a fault tolerance framework based on replicated
Pods [24]. There has also been a significant focus on
dependability planning using various models [15], [16],
[25], [26] and investigating strategies for dependability
enhancement through experiments [17], algorithmic methods
[27], andmodeling [28]. Simultaneously, several studies have
ventured into utilizing models and frameworks to strategize
and optimize energy consumption [22], [29], [30].

The seminal contribution of the present work resides
in the formulation of comprehensive analytical models
elucidating the infrastructure of systems predicated on
Kubernetes. The adopted hierarchical modeling strategy
encapsulates high-level elements and the underlying low-
level infrastructure, inclusive of hardware configurations
and application and container specifications within Pods.
The high-level constituents depict nodes, processes, Pods,
support structures, and behaviors. This hierarchical paradigm
facilitates the facile generalization of the model across var-
ious infrastructures, enabling the identification of potential
bottlenecks within the sub-components of the systems. The
model is devised to compute availability, reliability, support
utilization, the probability of support scarcity, and energy
consumption, thereby empowering system administrators to
discern the configuration requisite for redundant resources
to attain desired levels of dependability concomitant with a
reduction in electrical consumption.

The specific contributions of this endeavor are delineated
as follows:

• An examination of the impact on energy consump-
tion in strategies deployed to enhance Kubernetes
dependability. This encompasses the replication of
compute nodes or Pods within systems comprising
numerous microservices and compute nodes, with a
concomitant consideration of energy and environmental
costs in delineating dependability-oriented architectural
improvements.

• The introduction of models to facilitate the management
of system support teams, acknowledging that the
potential number of simultaneous repairs will influence
availability and must be congruent with the system’s
scale.

• An analytical evaluation of the behavior of these metrics
under diverse redundancy strategies, enabling the assess-
ment of cost-efficacy in augmenting availability relative
to the escalation in energy consumption, and assisting in
the proper dimensioning of support teams.

• The application of a sensitivity analysis technique
in an incremental fashion to attain predefined levels
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of availability, guiding system managers to identify
pivotal components necessitating improvement, while
concurrently monitoring other metrics.

The implications and findings emanating from this study
are profound:

• The availability and reliability of Kubernetes-based
systems within the cloud/fog continuum are profoundly
influenced by the allocation of Pods, necessitating
demand-proportional Pod redundancy strategies in high-
demand systems.

• The strategy of redundant Pod addition must be
meticulously dimensioned with demand to ensure that
availability benefits are commensurate with the eleva-
tion in energy consumption.

• Concurrent support in larger systems with insufficient
support staff may culminate in extended repair time,
mandating proper sizing of support teams in accordance
with Pod demand.

• The synergistic utilization of models and sensitivity
analysis may facilitate the planning of cloud and
fog Kubernetes systems, delineating the elements that
warrant prioritization to achieve predefined availability
levels.

To our best understanding, this paper introduces, for
the first time, a holistic and exhaustive modeling and
evaluation of dependability and energy consumption within
a Kubernetes-based cloud-fog continuum. This encompasses
a consideration of multifarious fine-grained operational
policies at an incipient stage of contemporary research on
operational planning and efficiency evaluation of cloud-fog
systems.

The structure of this paper is organized as follows:
Section II delineates related works. Section III explicates the
Kubernetes architecture. Section IV presents and elucidates
the generated models and corresponding metrics. Section V
practically illustrates use cases pertinent to system admin-
istration. Finally, Section VI articulates the conclusions and
contemplates potential future work.

II. RELATED WORK
This section delves into the existing literature relevant to
the core subject of this research. The primary focus of
the reviewed literature centers on the orchestration and
optimization of metrics within microservices’ architecture.
Initially, attention was given to studies that strengthen
the dependability planning of these systems, especially
those predicting metric behavior in theoretical frameworks.
Subsequently, we analyzed works aimed at improving system
dependability using different methodologies or model-based
strategies. Finally, we examined research highlighting met-
rics related to the energy consumption attributes of specific
architectural designs or strategies.

Within the realm of Dependability Planning, several
notable contributions stand out for their innovative method-
ologies in orchestrating availability and reliability in
microservice ecosystems. Jagadeesan et al. [14] introduce a

microservice modeling framework emphasizing the impact
of individual service failures on the overall system. This is
achieved using Continuous-Time Markov Chains (CTMCs)
and the Probabilistic Symbolic Model Checker (PRISM) to
model inter-service communication, thus addressing poten-
tial cascade failures. Khazaei et al. [15] present an assessment
of capacity provisioning for microservice platforms, utilizing
a model to guide capacity planning. Liu et al. [16] offer a
model focused on enhancing service quality by identifying
and addressing critical microservices, assessing request and
invocation relationship frequency. Pietrantuono et al. [25]
develop a reliability estimation method for microservice
architectures, considering frequent updates, service interac-
tion variations, and usage fluctuations, using monitoring data
and an analytical model to determine failure probabilities.
Notably, Nguyen et al. [18] put forth a model-based
approach for planning availability, performance, and energy
consumption in software-defined networks, delivering key
metrics in these domains.

Efforts to enhance dependability have been manifold.
Liu et al. [31] introduce a reliability model using Predi-
cate Petri net (PrT net) for hospital information systems,
assessing various redundancy and circuit breaker strategies to
improve system reliability. Vayghan et al. [17] outline poten-
tial availability-centric architectures for deploying stateful
microservices on Kubernetes, underscoring the insufficiency
of mere repair actions for high availability. They propose
an integrated state controller on Kubernetes for concurrent
replication and repair. Alwis et al. [27] address challenges
in achieving scalability, availability, and efficiency during
the transition from monolithic to microservice systems,
suggesting a method based on queue theory and business
object relationship analysis. Khatami et al. [28] demonstrate
a high-availability system using Kubernetes and distributed
storage, emphasizing the system’s resilience even during
node failures. In another study, Liu et al. [26] describe a
method for modeling and optimizing cloud-hosted microser-
vice application reliability using a hierarchical model in
Predicate Petri Net (PPN), aiming for maximal reliability
and cost-effectiveness. Lyu et al. [32] compare a monolithic
power generation system with a Kubernetes-based microser-
vices architecture, presenting an algorithm using the Mixed
Integer Linear Programming (MILP) model for resource
management, resulting in enhanced reliability and reduced
costs. Lastly, Jeffery et al. [24] advocate for a newKubernetes
etcd architecture prioritizing performance and availability,
especially for performance-sensitive edge applications.

In the realm of Electric PowerManagement, several pivotal
works stand out. Jazayeri et al. [33] introduce aMarkov-based
analytical model to determine the best module execution
location, balancing performance with energy consumption.
Menouer et al. [22] detail a Kubernetes container scheduling
optimization strategy, leveraging CloudSim Plus for eval-
uations under diverse container loads, emphasizing both
performance and energy efficiency. Xu et al. [30] focus
on reducing carbon footprints by maximizing renewable
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TABLE 1. Related work comparison.

energy usage, using electric consumption models based on
VM resource utilization to achieve performance goals while
minimizing environmental impact. Kistowski et al. [29]
present a tool for rigorous microservice application testing,
facilitating performance modeling, cloud resource manage-
ment, and energy efficiency analyses. Murtaza et al. [19]
propose an optimized fog task allocation method, analyzing
both electric consumption and service quality. Hou et al. [20]
offer a comprehensive method to enhance both latency
and energy metrics in microservices-based systems. Lastly,

Valera et al. [21] develop a simulator designed to reduce
energy consumption in microservices systems without sacri-
ficing quality, providing tools for system planning with these
attributes in mind.

Table 1 contrasts the key features of this research with
related works. While there’s a thematic overlap in the
contexts and metrics between this study and others, the com-
bined examination of dependability and energy consumption
remains unique to this work. Our analysis reveals an inherent
interdependence between these metrics, emphasizing their
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significance for system administrators. Distinctively, our
research provides comprehensive hierarchical models of the
entire infrastructure, allowing for the pinpointing of potential
bottlenecks and offering multiple optimization pathways.
Although we, like other studies, suggest a method for
enhancing dependability, our approach is multidimensional,
considering secondary metrics. Additionally, we introduce
metrics geared towards support team scaling, a crucial aspect
in managing component-rich systems, as highlighted in [17],
but with a distinct focus on metric generation.

III. SYSTEM ARCHITECTURE
Microservice architectures, characterized by an intricate web
of interlinked containers and applications, can dynamically
replicate high-demand components to meet increased system
demand. Figure 1 illustrates a typical microservice archi-
tecture using a Kubernetes cluster. This setup includes both
physical elements and primary processes, collectively hosting
a range of applications. Within Kubernetes, the cluster
divides into the Control Plane and Worker nodes, with the
latter responsible for running containerized applications [34].
Containers are grouped into Pods, cohesive units containing
one or more containers, structured as directed by the
cluster manager. As shown in Figure 1, App 01 has two
sub-applications within two containers, yet together they
form a single Pod. In contrast, App 02 resides entirely within
a container in a Pod.

In a Kubernetes cluster framework, Worker Nodes execute
Pods that encapsulate various applications. Each cluster
requires at least one Worker and one Control Plane node,
withWorker Nodes typically outnumbering their counterparts
and showcasing diverse configurations [34]. For instance,
in a cloud environment, Worker components might possess
superior capacity and reliability than those in a fog layer,
as depicted in Figure 1. Another configuration could involve
partial system provisioning by an external provider, such as
renting virtual machines. In this setup, the cluster manager
solely configures the Kubernetes components within the
public cloud.

Within a Kubernetes cluster, Worker Nodes, as depicted
in Figure 1, include components such as the kubelet, kube-
proxy, and container runtime. The kubelet, aligned with
the cluster manager’s directives, ensures proper container
operation within the Node. The kube-proxy manages inter-
node network regulations, while the container runtime,
with Docker as an example, is responsible for running
containers [34]. Pods assigned to Nodes are also high-
lighted in Figure 1. The Control Plane node, pivotal for
orchestrating processing nodes and Pods, interprets system
blueprints, allocates Pods, and manages system events, such
as Pod or Worker failures. Central components of the
Control Plane are the kube-apiserver, etcd, kube-scheduler,
and kube-controller-manager. The kube-apiserver provides
access to the Kubernetes API, facilitating state queries and
modifications [34]. The etcd, essential for storing cluster
configuration, often operates in a distributed manner for

enhanced availability. The kube-scheduler assigns Pods to
nodes based on constraints and affinities, while the kube-
controller-manager oversees controllers ensuring desired
cluster states. Stateful Pods, relying on persistent external
data, need to maintain data persistence even amid failures.
Data for such Pods is usually stored externally, separate from
their hosting Worker Node, ensuring data recovery during
disruptions [17]. Storage servers, potentially holding data
for stateful Pods and etcd, might use replication to bolster
data availability. For Pod allocation in Kubernetes, it’s vital
to consider resource availability and Pod-node affinities.
Proper resource allocation planning is essential for optimal
Pod placement. To enhance cluster availability, redundancy
for components like Worker nodes, the Control Plane, and
Pods is common, but this can increase energy consumption.
Strategic planning is crucial, balancing component critical-
ity, reliability, and energy implications. Through thorough
assessment, an infrastructure can be designed that achieves
desired availability while also emphasizing energy efficiency
and environmental sustainability.

IV. PROPOSED STOCHASTIC MODELS
In the pursuit of ascertaining the dependability metrics
and electrical consumption characteristics of the system
delineated in Section III, a methodical construction of
a hierarchical model was undertaken. This construction
encompasses a high-level Generalized Stochastic Petri Net
(GSPN) model, imbued with the intricacies of Kubernetes
components, in conjunction with a Dynamic Reliability
Block Diagram (DRBD) model (as illustrated in Figure 8)
designated for the computation of the mean time to failure
(MTTF) of the Control Plane and Worker nodes. Further,
an additional DRBD model was engaged for storage consid-
erations (as portrayed in Figure 9), and a Continuous-Time
Markov Chain (CTMC) model was deployed for the analysis
of Pods (as exhibited in Figure 9).

Within this intricate modeling framework, the GSPN
model serves as a panoramic representation of the entire
system, encapsulating both the overarching structure and
the nuanced components, whilst the complementary DRBD
and CTMC models are strategically utilized to compute
the MTTF of the Control Plane nodes, Worker nodes, and
Pods, respectively. The values gleaned from these DRBD and
CTMC models are subsequently integrated into the GSPN
model, thereby enabling a holistic analysis of the entire
system’s complex behavior.

The adoption of this hierarchical modeling approach
was not merely serendipitous but a deliberate strategy to
engender a facilitation of comprehension and interpretation
of the model. Moreover, it grants the flexibility required
for the facile modification of underlying elements of the
system, an essential attribute in the dynamic environment of
microservices architectures. Analyzing these interconnected
models helps identify how configuration and component
choices affect dependability and power consumption. This
offers valuable insights for creating optimized architectures.
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FIGURE 1. Kubernetes’ architecture.

FIGURE 2. GSPN Block model overview.

Figure 2 delineates an encompassing overview of the
system, inclusive of its multifaceted high-level components.
Each constituent block encapsulates a high-level Generalized
Stochastic Petri Net (GSPN) model of the Kubernetes
structure within the cloud-fog paradigm. The nuanced details
of the GSPN models will be explicated in the subsequent
section.

The components labeled as Control Plane, Worker nodes,
PodSF/SL (Stateful/Stateless), Support, and Storage are emb-
lematic of the models portrayed in Figures 3, 4, 5, 6, and 7,
respectively. It is imperative to note that both Worker Nodes
and Pods necessitate replication congruent with the precise
specifications of each individual node within the intricate
system structure.

Within the architecture of the Stochastic Petri Net (SPN)
models, timed transitions are employed, adhering to an
exponential distribution (indicated by white rectangles),
a selection congruent with conventional practices inmodeling
within the domain of availability and dependability [35],
[36], [37]. This modeling option was deliberately chosen to
facilitate the numerical analysis essential for the extraction

of pertinent metrics. Nevertheless, flexibility exists for
the substitution of this distribution with an alternative
more apposite to a specific component. Such a transition
may be supplanted by a phase-type distribution,as used
in [38], or potentially through simulation, thereby permitting
the direct insertion of distribution parameters within the
transition itself. Moreover, simulation may serve as a viable
approach if the model’s application culminates in a large
model with an extensive state space, thereby precluding
conventional stationary analysis.

The modeling approach embodied in Figure 2 was
meticulously conceived to accommodate the extensive spec-
trum of configurations conceivable within a microservice
architecture.Manifesting amodular design, the systemmodel
inherently possesses the adaptability requisite for alignment
with the diverse scenarios and exigencies encountered within
a real-world context.

In pursuit of a representation that encapsulates the
complexity and variability inherent to such systems, Worker
nodes were imbued with additional configurable options.
These include, but are not limited to, the provision for
variable capacities, the reliability of constituent physical
components, and the precision calibration of the Pods
executable on each respective node. Such granularity within
the model serves to mirror significantly heterogeneous
physical architectures, exemplified by the one depicted in
Figure 1, encompassing nodes distributed across both cloud
and fog computing layers.

Furthermore, the model incorporates intricate configura-
tion options pertinent to the state persistence of Pods and
introduces a dedicated block to symbolize the available
support teams, a critical element in a system characterized by
a plethora of components that may concurrently vie for repair
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FIGURE 3. GSPN Control Plane Block.

and maintenance. This amalgamation of details within the
model manifests a sophisticated and nuanced representation,
reflective of the intricate and multifaceted nature of modern
microservice architectures, thereby providing a robust foun-
dation for analytical exploration and optimization.

A. CONTROL PLANE
The Control Plane is modelled at a high level in the GSPN
shown in the Control Plane block of Figure 3. The model
considers the state of the node’s processes and its underlying
system, which includes the hardware and software necessary
to keep the node active. The meanings and firing semantics
of the transitions are available in Table 2, while the guard
expressions are outlined in Table 3.
The number of Control Plane nodes in the infrastructure

can be adjusted by changing the CP_N variable. For the
system to be active, at least one token must be present in each
place ending with _ON . The failure of the underlying com-
ponent occurs when the CP_UN_MTTF transition is fired.
This transition receives its value from the DRBD analysis
in Figure 8, in which the designer can carefully define the
components of this node and identify the resulting MTTF.
Alternatively, when leveraging a public cloud environment,
the MTTF of the Virtual Machine (VM) in such a setting can
be directly employed, obviating the necessity of relying on
values derived from the DRBD.

The firing of CP_UN_MTTF results in the removal of
a token from CP_UN_ON and the insertion of a token
into CP_UN_FAIL, which represents the failure of one
of the Control Plane nodes. The underlying system will
remain failed until at least one support team is available
to start repairing the system, that is, if there is a token in
TEAM_AVAILABLE in the support team model Figure 6,
as defined by the expression [g1]. If a support team is
available, the immediate transition CP_UN_R is fired, and
the underlying system will enter maintenance for the time
defined by timed transition distribution CP_UN_MTTR.

In addition to the failure of the component itself,
the firing of CP_UN_MTTF also enables the transitions
CP_etcd_SD, CP_SCD_SD, CP_CM_SD and CP_API_SD,

as can be seen from their respective guard expressions ([g2]
in Table 3). Firing these transitions also puts the Control
Plane processes on the failed node in a failed state. The
failure in these processes is different because it does not
require support, only the Kubernetes processes restart time,
which is given by the distributions inserted in the transi-
tions CP_ETCD_RST , CP_SCD_RST , CP_CM_RST and
CP_API_RST . The restart only occurs when the underlying
system is recovered and with the subsequent enablement
given by the guard conditions of these transitions.

The designer can add storage for etcd data. In the model,
this is done using the full expression of [g2] and [g3], that
is, with the underlined part of the expression, if they are not
added, etcd can only fail in case of failure of the underlying
system like the other processes. Failure of the storage
environment results in the satisfaction of expression [g2] and
the firing ofCP_etcd_SD. Repairing the storage environment
leads to restoring this process, that is, by enabling the
expression [g3] and transition CP_etcd_RST .
The phenomena of failures and restorations pertaining to

Control Plane processes transpire in a manner analogous to
those described for the Underlying System. A discernible
deviation lies in the omission of explicit modeling of
the interdependence of the control manager processes.
The initialization time of dependent processes must be
integrated into the repair dynamics of the failed process.
Furthermore, it is observable that the restoration of simul-
taneous component failures is governed by the expression
[g1], a circumstance solely transpiring in the presence of
available teams. An additional consideration pertains to the
augmentation in both availability and electrical consumption
concomitant with the incorporation of new Control Plane
nodes, reflecting the intricate balance and considerations
involved in optimizing microservice architectures.

B. WORKER NODES
Worker nodes exhibit structural characteristics analogous to
those foundwithin the control plane, encompassingmodels of
the underlying system, as well as the requisite processes for
their operation, namely, kubelet, kube-proxy, and container
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TABLE 2. Control plane transitions meaning.

TABLE 3. Control plane guard expression.

runtime. Extending beyond these foundational components,
the model also portrays the total capacity designated for the
allocation of Pods within the node, in conjunction with both
the allocated and allocatable Pods. This configuration can be
discerned in Figure 4, where the upper section, labeled as
the infrastructure sub-block, delineates the amalgamation of
physical and logical components requisite for the efficacious
operation of Kubernetes. Conversely, the lower section,
identified as the Pods sub-block, illustrates the available
capacity in tandem with the allocated Pods.

The intricate composition of the worker nodes can be
further elucidated through an examination of Table 4, which
offers a detailed exposition of the transitions pertaining to
the worker nodes. This tabulation elucidates not only the
functional transitions but also the underlying characteristics
that govern their operation. Complementing this, Table 5
presents an enumeration of the guard expressions associated
with these transitions, thereby providing a comprehensive
insight into the conditions that dictate the activation or
inhibition of specific transitionswithin themodel. The formu-
lation of worker nodes in this manner serves to encapsulate

the complex interplay between various components and
processes within the node, reflecting the inherent sophis-
tication of microservice architectures. By delineating both
the infrastructure and Pod-related aspects within a unified
framework, the model facilitates an intricate understanding
of the worker nodes’ dynamics.

The node is considered functional when there is a token
in each place Nn_UN_ON , Nn_CR_ON , Nn_KP_ON , and
Nn_KL_ON , that is, the underlying system, the container
runtime, the kube-proxy, and the kubelet must be operational.
The MTTF (mean time to failure) of the underlying system
depends on the characteristics of the hardware and software
components of the node, and its value can be obtained for
each worker node based on the input of the hardware data
and software components of the DRBD model in Figure 8.
Another possibility is to directly insert the resulting MTTF
of the underlying system being used, whether from a third
party or a component with a known final MTTF.

The failure of the underlying system occurs when the
Nn_UN_MTTF is fired, removing a token from Nn_UN_ON
and creating one in Nn_UN_FAIL. Consequently, all of the
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FIGURE 4. GSPN Worker Nodes Block.

TABLE 4. Worker node transitions meaning.

Kubernetes processes on the node also become unavailable,
which is represented by the subsequent evaluation of the
expression [g10] of the model as ‘‘true’’, which results in the
firing of Nn_CR_SD, Nn_KP_SD, and Nn_KL_SD, causing
these processes to become non-operational. As mentioned
earlier, for the control plane, the recovery from a failure can
only start when there is available support, which is ensured
by the expression [g1] in Nn_UN_R. [g1] also is used in the
control node block (Figure 6), so if simultaneous failures

occur in both nodes, they will compete for the available
support teams.

When support team is available, the token is removed from
Nn_UN_FAIL and deposited in Nn_UN_REPAIR, effectively
initiating the repair. The repair time is defined by the
transition time distribution of Nn_UN_MTTR. At the end
of the repair, the token is removed from Nn_UN_REPAIR,
and a new one is created in Nn_UN_ON . The return
of the operation of the Underlying system leads to the

140834 VOLUME 11, 2023



I. Fé et al.: Model-Driven Dependability and Power Consumption Quantification of Kubernetes

TABLE 5. Worker node guard expressions.

restart of the Kubernetes processes that are initiated as a
result of the evaluation of expression [g11], which becomes
‘‘true’’, enabling transitions Nn_CR_RST , Nn_KP_RST , and
Nn_KL_RST . The Firing of transitions with expression [g11]
represents the restart of Kubernetes processes on the node,
making it active and able to allocate Pods.

The failure of the other processes, Container Runtime,
Kube-proxy, and kubelet, follows a similar flow to that
presented in the Underlying System, reaching a failure state
and subsequently competing for some support team to initiate
the repair and then returning to normal activity without
causing the failure of any other Kubernetes process. However,
the failure of any of the components in the Infrastructure
sub-block of the node leads to the failure of the Pods hosted
on that node.

The Pods sub-block of the node in Figure 4 represents
the total allocation capacity and the allocated amount of
Pods on the node. The available capacity of the node is
given by the number of tokens in place Nn_CAP, and
the initially available capacity is given by the variable
Nn_AV . The capacity must be computed as the total amount
of the node reduced by the amount of Pods initially
allocated on the node (Equation 1). The # character in the
Equation represents the number of tokens in the place. Each
possible pod allocated on the node should be represented
in this block. A Pod m on node n is represented by the
places Nn_POD_APPm_TO_INST , Nn_POD_APPm_INST
and the associated transitions Nn_POD_APPm_REMOVE ,
Nn_POD_APPm_IDT , and Nn_POD_APPm_INST_T .

T = {y | y are the indexes of Pods enabled to run in node n}

Nn_CAP = Nn_CAP_TOTAL

−

∑
y∈T

(#Nn_POD_APPy_TO_INST

+ #Nn_POD_APPy_INST ) (1)

Often, the micro-services infrastructure has many different
APPs with different hardware, software, or network require-
ments, which should only be allocated on certain nodes.
Therefore, if a particular Pod should not be included in the
node, the designer simply does not include the set of places
and transitions on that node, and in any event, that node will
not be eligible to start that Pod.

The number of Pods of type m on node n at a given time is
given by the number of tokens inNn_POD_APPm_INST . The
initial amount is configured in the variable Nn_POD_APPm.
As previously mentioned, if the node or Kubernetes processes
fail, all Pods allocated on the node also fail. In the

model, this failure leads to the enabling of transitions
Nn_POD_APPm_REMOVE (guard expression [g12] for the
failed node), with m representing the entire set of Pods
eligible for execution on that node. The immediate enabling
of this transition leads to the removal of all the instantiated
capacity for the available capacity of the node.

On the other hand, if another node in the infrastructure with
allocated Pods fails, Kubernetes will try to bring the system
to the state with the minimum number of Pods configured by
the designer. To do this, Kubernetes will try to allocate the
failed Pods from the failed node to other nodes. In the model,
the identification of the failure of some nodes is given by the
guard expression [g13]. The expression [g13] considers the
presence of failed Pods in the models presented in the blocks
in Figure 5 and all the eligible existing nodes for allocating
the failed Pods.

The expression [g13] will be ‘‘true’’ on nodes capable of
instantiating the failed Pod if the infrastructure sub-block
of the node is operational and if the total number of failed
Pods is not yet instantiated on all nodes enabled for the type
of Pod. In addition, the node must have available capacity
for Pod allocation, a precondition for firing the transition
Nn_POD_APPm_IDT .
If expression [g13] is evaluated as ‘‘true’’ and the time

that Kubernetes takes to identify the failure and propagate
it in its system, represented by the time assigned to
transition Nn_POD_APPm_IDT , the instantiation of the Pod
on the node is initiated. A token is removed from the
total capacity of the node (Nn_CAP), and one is created
in Nn_POD_APPm_TO_INST representing the start of the
instantiation of the Pod. The expression [g13] after this
change may change its evaluation to ‘‘false’’ if all the
failed nodes have started their instantiation. The time of
the instantiation of the Pod is given by the transition
Nn_POD_APPm_INST_T , with the firing of this transition,
the token is removed from Nn_POD_APPm_TO_INST and
deposited in Nn_POD_APPm_INST . As will be seen in the
next sections, this change also affects the allocated Pods
presented in the Pods model in Figure 5.
S = {x | x are the worker nodes indexes enabled to run the
Pod m}

(#UN_POD_APPm_FAIL>
∑
x∈S

#Nx_POD_APPm_TO_INST )

and (#Nn_UN_ON == 1) and (#Nn_CR_ON == 1)

and (#Nn_KP_ON == 1) and (#Nn_KL_ON == 1)

(2)
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FIGURE 5. GSPN High level Pods Block.

Each Worker Node block represents a specific node in the
system. Another block must be created to add new nodes (see
Figure 2). The node worker individualization allows for a
higher level of infrastructure detail, such as nodes with higher
capacity, nodes with Pods allocation restrictions, or initial
allocation state with more or fewer Pods of each type.

C. PODS
Figure 5 presents the blocks of the model that represent the
Pods of the system. The block of subfigure 5a models the
stateful Pods and those of subfigure 5b the stateless ones,
as many of these blocks should be added as the types of
Pods present in the system. Each added block should have
its allocation using the resources of one or more Worker
Nodes from Figure 4 as commented. The descriptions of the
transitions of this block can be found in Table 6 and the guard
expressions in Table 7.
S = {x | x are the worker nodes indexes enabled to run the

Pod m}

#APPm_ON >
∑
x∈S

(#Nx_POD_APPm_TO_INST

+ #Nx_POD_APPm_INST ) (3)

#APPm_ON <
∑
x∈S

(#Nx_POD_APPm_TO_INST

+ #Nx_POD_APPm_INST ) (4)

The total number of active Pods at a given time is
represented by the number of tokens in place APPm_ON ,
m representing the type of Pod. The variable PODm_NUM
defines the initial number of active Pods the initial value of
this variable is equal to the sum of all Pods m distributed
throughout theWorkerNodes infrastructure (Equation 5), that

is, in all existing blocks in Figure 2. The number of Pods
instantiated on theWorker nodes may be less than the number
of Pods in the different states of the models in Figure 5, which
may occur due to the failure of a Worker Node. Whenever a
worker node fail, the model will seek to maintain the initial
amount equal to the Pods instantiated on the Worker nodes.
U = {x | x are the nodes indexes enabled to run the Pod m}

PODm_NUM =

∑
x∈U

(#Nx_POD_APPm_TO_INST

+ #Nx_POD_APPm_INST ) (5)

Active Pods have the failure time given by the MTTF
time distribution of the APPm_MTTF transition. The value
of this MTTF is obtained by the model that represents the
set of containers of the Pod represented by the CTMC model
in Figure 10. After the fire of APPm_MTTF , a token is
removed from APPm_ON and inserted into APPm_FAIL.
Similarly to the previous blocks, the fire of the immediate
transition responsible for initiating the repair depends on the
guard expression [g1], which checks for the availability of
the support team (Model in Figure 6). Therefore, Pods also
compete for support along with other system elements.

After the fire of APPm_R, the repair of the Pod is initiated
with removing the token from APPm_FAIL and creating a
token in APPm_REPAIR. The repair takes the time defined by
the time distribution of the APPm_MTTR transition. After the
repair, the token is removed from APPm_REPAIR and returns
to its operational state in place APPm_ON .

n_podsm = #APPm_ON + #APPm_FAIL

+ #APPm_REPAIR+ #APPm_OFF

W_UN_APPm_F01 =
#APPm_ON
n_podsm
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TABLE 6. Pods transitions meaning.

TABLE 7. PODs guard expressions.

W_UN_APPm_F02 =
#APPm_FAIL
n_podsm

W_UN_APPm_F03 =
#APPm_REPAIR

n_podsm

W_UN_APPm_F04 =
#APPm_OFF
n_podsm

(6)

In addition to the flaws inherent in the internal components
of the Pods, these can also fail due to the failures of the
worker nodes that maintain the Pods (as presented in the
subsection IV-B). If a Worker node fails, all allocated Pods
must also become inoperable. The failure of the Pods is
modelled by the guard expression [g14] and the transitions
UN_APPm_F01, UN_APPm_F02, UN_APPm_F03, and
UN_APPm_F04 (the last only in stateful Pods), which
removes the Pods allocated by the node in all states of the
block.

The probability of failed Pods being removed from a given
location depends on the number of Pods at each location in the
model. The failure probability of each location is modelled
using transition weights UN_APPm_F01, UN_APPm_F02,
UN_APPm_F03, and UN_APPm_F04 seen in Equation 6.
If there are more Pods in the place APPm_ON , it is expected
that with the failure of a node, the Pods of that place are more
likely to be in the failed node and consequently be removed
by firing the failure transitions of Worker Nodes.

After the failure of a worker node, if there is available
capacity on the other servers or if the failed node is recovered,
the number of Pods that failed due to the failure of the
underlying system can be recreated on another active node,
or the old node after recovery, as discussed in the behaviour
of transitions with the expression [g14] in Subsection IV-B.
In the general identification of Pods of the model, the
recovery is made by the transition UN_APPm_R and guard
expression [g15] that removes the failed tokens from
UN_APPm_FAIL and makes them active again.
In addition to the failure methods mentioned previously,

stateful Pods can also become inoperable due to the failure

of the respective storage system. Failure due to storage
is represented in the model by the evaluation of guard
expression [g16] and the immediate firing of transition
APPm_SD. On the other hand, the recovery of the storage
environment of stateful Pods leads to the evaluation of guard
expression [g17] to be true, which restarts the stateful Pods.

The number of Pods the system needs to be functional is
configurable through a variable MIN_PODm, so the system
manager can add redundant Pods by adding more initial Pods
than this value variable. However, the energy consumption
that adding additional Pods will have on the system should
also be considered.

The number of Pods the system needs to be functional is
configurable through a variable MIN_PODm, so the system
manager can add redundant Pods by adding more initial Pods
than this value variable. However, the energy consumption
that adding additional Pods will have on the system should
also be considered.

D. SUPPORT
In complex system architectures, a specialized support team
with technical expertise is essential for effective diagnosis
and rectification of malfunctioning components. Such teams
are tasked with identifying and addressing system anomalies.
If a single support team is employed, a sequential intervention
approach is adopted, ensuring each issue receives dedicated
attention, thus optimizing the repair process. Figure 6
provides a schematic of the support element, while Table 8
offers detailed transition specifications. Additionally, Table 9

FIGURE 6. GSPN Support Block.
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TABLE 8. Transitions for the support model.

TABLE 9. Guard expressions for the support model.

outlines the guard conditions governing the support mech-
anism’s operations. Together, these representations offer
a holistic understanding of the support subsystem, aiding
system architects in enhancing system dependability.

The TEAM_QT variable defines the initial number of
available support teams. The start of a component repair
occurs after the REPAIR_SEND transition is fired, which is
enabled by the [g19] condition, which compares the number
of repairs being carried out in the system (Equation 7)
with the number of absent support teams in the support
environment (Equation 8). If the number of repairs is
higher (Equation 10), the transition should fire, removing
the token from place TEAM_AVAILABLE , which represents
the removal of a support team from availability because it
is repairing the failed component. We must note that the
REPAIR_SEND transition is immediate and occurs as a result
of the immediate transitions of the components related to the
place representing a failure in one of themodel’s components.

Once the repair on the component is completed, the team
carrying out the support must return to availability. This
behaviour is fired by theREPAIR_RETURN transition, which
the g[18] condition enables. This condition compares the
number of repairs on all system components (Equation 7)
with the number of absent teams (Equation 8). When
the number of absent teams is greater than the repairs
(Equation 9), a team must return and wait for their return
time to be able to attend to the new support. The return
time is defined by the time distribution defined by the
RETURN_TIME transition. The use of the guard conditions
[g18] and [g19] is due to the option of modelling the removal
of arcs that could be used between the REPAIR_SEND
and REPAIR_RETURN transitions and the start and end of
support for each component. Removing these arcs made the
model more easily adaptable and extensible for large systems,
as expected in systems with multiple nodes and different
types of Pods. Furthermore, also facilitates understanding of
the model in very large systems.
U = {x | x are the worker nodes},
T = {y | y are the indexes of Pods}

away_teams = TEAM_QT − (#TEAM_RETURN

+ #TEAM_AVAILABLE) (7)

repair_comp =

∑
x∈U

(#Nn_UN_REPAIR

+ #Nn_CR_REPAIR

+ #Nn_KP_REPAIR

+ #Nn_KL_REPAIR)

+

∑
y∈T

(#APPy_REPAIR)

+ #CP_UN_REPAIR

+ #CP_etcd_REPAIR

+ #CP_SCD_REPAIR

+ #CP_CM_REPAIR

+ #CP_API_REPAIR (8)

repair_comp < away_teams (9)

repair_comp > away_teams (10)

E. STORAGE
The storage block represents the high-level storage system
in the SPN model. This component can store the Kubernetes
Control Plane’s etcd and the data of stateful Pods. The
Storage model is shown in Figure 7. The description of the
model’s transitions can be seen in Table 10.

FIGURE 7. GSPN Storage Block.

The number of replicas of this component is given by the
value of the variable ST_N , the higher the component is less
likely to be unavailable, but there will also be a higher energy
cost. The failure of a Storage happens by firing the transition
STORAGE_MTTF . The time value of this MTTF can be
obtained by the DRBD model shown in Figure 9 in cases of
private infrastructure, as well as it can also be obtained by the
contractor in some cloud storage services.
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TABLE 10. Storage transitions.

After the failure, a token is removed from STORAGE_ON
and deposited in STORAGE_FAIL. If there are no tokens
in STORAGE_ON , the component will be unavailable,
making all dependent components unavailable. With a failed
storage, if there is any support team available (guard
expression [g1]), the STORAGE_R transition fires and the
token from STORAGE_FAIL are removed and deposited
in STORAGE_REPAIR, representing the start of the repair,
which will take the time defined by the STORAGE_MTTR
transition.

F. DRBD - PHYSICAL NODE
The Mean Time to Failure (MTTF) for both the Control
Plane and Worker nodes is derived from the Distributed
Replicated Block Device (DRBD) model, as shown in
Figure 8. This model facilitates comprehensive configuration
of the system’s numerous sub-components. The adoption
of DRBD stems from its ability to depict intricate inter-
dependencies among RDB blocks. As a result, hardware
issues might lead to cascading failures in associated software
components, represented by the gray SDEP block. For
instance, a CPU malfunction can cause subsequent failures
in the Hypervisor, leading to Virtual Machine (VM) and
systemic failures. Similar cascades are observable in other
core components like memory, disk, and power supply. Thus,
the DRBDmodel provides a detailed insight into the potential
failure trajectories and intricate dependencies, enhancing our
understanding of the system’s dependability.

Furthermore, this model also allows for the inclusion
of redundant hardware, as commonly found in actual
servers, such as RAID disks or backup components, such
as additional power supplies and network interfaces. The
behaviour of hardware redundancy is represented by defining
theminimumnumber of functional components (K ) out of the
total number of components (N ). In Figure 8, the minimum
and the total number of disks are represented by the variables
DK and NK , the number of network interfaces by NK and
NN , and the power supply is represented by PK and PN .
For a node to function properly in this model, each block

must be functional and at least K out of the total N blocks
must work (known as KooN in RBDs [39]). The user of
this model must input the MTTF values of each block based
on the values provided by the hardware manufacturers used
in their computational park. Once input, it will be possible
to obtain the MTTFs of the nodes used in the model as
depicted in Figure 2. It’s worth noting that if only one type of
hardware is used, this calculation can only be done once and
applied to all nodes in the model. On the other hand, if mixed
configurations are used, each variation must be added to
the corresponding node. For example, if Fog Worker nodes

have different hardware from cloud nodes, this may result in
different MTTF values. Additionally, hierarchical modelling
makes it possible to evaluate the impact of changing a
hardware component on the entire system.

G. DRBD - STORAGE NODE
Similarly to the nodes, the underlying storage was also
modelled with DRBD. The model can be seen in Figure 9.
It has as subcomponents the CPU, Memory, Disk, Network
Interfaces, Power Supply, and System. The System block is
the difference between the underlying component models, the
software component responsible for managing the protocols
and storage offered by the server. The dependency between
the blocks was also modelled so that the failure of the CPU,
Memory, Disk, NIC, or Power supply leads to the system’s
failure. The model user must provide the MTTFs and the
KooN configuration of the subcomponents to compute the
MTTF of the system that will be used in themodel in Figure 7.

H. CTMC - PODS
The system’s Pods are represented by the CTMC model
shown in Figure 10. The model aims to generate the MTTF
used in the respective Pod’s SPN model found in Figure 5.
The model considers that a Pod can contain one or more
containers, and each container comprises the application,
libraries, and elements necessary for its execution. In the
model, we have the initial state UU ..UU containing all
containers and applications functioning properly. From this
state, the failure of an application or the failure of the
container can occur, and the failure of the applications occurs
through the rates of the arcs λ_APPn, such that n can be any
of the applications in the Pod. On the other hand, the failure
of the container occurs due to the rate of the arcs with the
pattern λ_CONTn.

The failure of one of these arcs leads the Pod to the
state containing the respective failed container. In the case
of Figure 10a, assuming the failure of λ_APP_A, we would
have DU ..UU . From this state, the Pod can recover this
application through the arc µ_APP_A, which leads to the
state in which there are no failures again. These failures can
occur successively until the state is reached in which all
are failed DD..DDD. Another possibility is that successive
failures occur in other containers or applications through the
rate of any arc started by λ.
In many applications, not all Pod containers are essential

for the proper functioning of the application; some may
only be used to capture metrics, and the designer of the
microservice system may not wish for the failure of these
containers to be counted as a failure of the Pod. In this
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FIGURE 8. Node underlying system.

FIGURE 9. Storage underlying system.

FIGURE 10. Underlying Pods.

case, the failure of this container or APP should also not be
counted as a failure for calculating the Pod’s MTTF. This
behaviour is modelled in the absorbing state model shown
in Figure 10b used for calculating the MTTA, which also
represents the MTTF for the Pod. The reliability model is
obtained by modifying the model in Figure 10a to contain
absorbing states as shown in Figure 10b. Red states represent
the absorbing states; from them, there are no recovery rate
arcs (starting with the letter µ).
The model in Figure 10 must be generated for each Pod

in the model and inserted into the corresponding transitions
in the APP_MTTF_m transition of the Pod SPN models.
The presented model represents a generic version of a Pod.
In the case of having only one container and application
per Pod, we have a simpler version, which can be seen in
Figure 11. In this model, it is enough to insert the application
and container failure rates. If a Pod only has one container
and one APP, any failure of that container or APP will cause
the entire Pod to fail, in CTMC, reaching states UD or DU .

FIGURE 11. One container per Pod underlying model.

I. SYSTEM METRICS
Themodel is designed to evaluate dependability, repairability,
and energy costs of a given configuration by generating
metrics such as availability, number of accessible containers,
Pod instantiation rate, support team utilization, and energy
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expenditure. The system’s availability is ascertained through
Equation 11. It takes into account the likelihood of having
at least one operational control plane and storage (when
relevant), and maintaining a minimum required number of
functional Pods. While the availability of Worker Nodes
is crucial, their specific location is not considered for
determining the minimum expected quantity of each Pod
type due to the flexibility of Pod allocation. Hence, the
minimum requirement for each Pod type, represented by
min_num_app_m (where m signifies different Pod sets),
should be at least the system’s initial count. In the metrics
notation, P{(#CP_UN_ON > 0)} evaluates the probability
of the enclosed expression, where the symbol # denotes the
token count in the place CP_UN_ON .

A = P{(#CP_UN_ON > 0) ∧ (#CP_etcd_ON )∧

#CP_SCD_ON > 0) ∧ (#CP_CM_ON )∧

(#CP_API_ON > 0) ∧ (#CP_STORAGE_ON )∧

(#APP_01_ON ≥ min_num_app_01) ∧ . . .

(#APP_m_ON ≥ min_num_app_m)} (11)

A metric was also included to identify the average number
of Pods in the system. The N_PODS metric is important to
verify situations of under-provisioning or over-provisioning.
The metric can be observed in Equation 12. This equation
adds the expected value of each type of Pod in the system.
The notation E{(#APP_m_ON )} represents the statistical
expectation of the number of tokens in place #APP_m_ON ,
that is, E{(#APP_m_ON )} = (

∑n
i=1 P(#APP_m_ONi) × i),

where iwill vary from 1 to the maximum possible quantity of
tokens for the evaluated place n.

C = {m|m are Pods indexes}

N_PODS =

∑
m∈C

E{(#APP_m_ON )} (12)

To gauge the necessity for system support and
maintenance, metrics pertaining to availability have been
formulated. In the complex environment of microservice
architectures, replete with diverse components, worker
nodes, and Pods, these metrics are vital for performance
assessment. A system devoid of adequate support might
grapple with disruptions from unrepaired components,
while an excessively staffed support team might squander
resources. To address this, two metrics have been introduced:
Support Utilization (SU ) and Lack of Support (LS), aiming
to appraise the efficiency of the support team. The SU
metric, depicted in Equation 13, quantifies the fraction of
the support team that is actively engaged, calculated by
the ratio of the utilized support teams to the total system
support. Conversely, the LS metric, as defined in Equation
14, computes the likelihood of a component being in need
of support when none is accessible. Elevated values of this
metric flag potential inadequacies in support team allocation,
which can precipitate prolonged component repair durations.

SU =
team_number − E{#TEAM_AVAILABLE}

team_number

U = {n|nare the worker nodes},

T = {m|mare the indexes of Pods}, (13)

LS = P{(#TEAM_AVAILABLE = 0) ∧ ((#CP_etcd_FAIL)∨

(#CP_UN_FAIL > 0) ∨ (#CP_SCD_FAIL > 0)∨

(#CP_CM_FAIL) ∨ (#CP_API_FAIL > 0)∨

(#CP_STORAGE_FAIL) ∨ (#Nn_UN_FAIL > 0)∨

(#Nn_CR_FAIL) ∨ (#Nn_KP_FAIL > 0)∨

(#Nn_KL_FAIL) ∨ (#APP_m_ON ))} (14)

The Electrical Power (P) metric, as represented in
Equation 15, allows determining the energy consumption
of the system in Watts (W). The equation considers the
different configurations, the dependability metrics, and their
corresponding energy consumption. To calculate this metric,
it is necessary to provide the average power consumption
of various system components, such as the power consumed
by the Control Planes (pw_cp), Storage (pw_storage),
Worker Nodes (pw_nn), Pods on each Node (pw_nn_appm),
as well as the power used to instantiate a Pod on a Node
(pw_up_nn_appm). The Electrical Power metric is important
as it allows for evaluating the system’s energy efficiency and
identifying areas for optimization.
F=(m, n) | m are the indices of the Pods, n are the indexes of
Nodes eligible for Pod m allocation,

P = E{(#CP_UN_ON )} × pw_cp

+ E{#STORAGE_ON } × pw_storage

+

∑
(m,n)∈F

(E{#Nn_UN_ON } × pw_nn

+ E{#Nn_INST_APPm} × pw_nn_appm
+ E{#Nn_TO_INST_APPm} × pw_up_nn_appm)

(15)

Accurately quantifying energy output from physical nodes
requires precise instrumentation, while assessing energy
consumption of Pods demands a rigorous computational
methodology. This involves leveraging mathematical mod-
els tailored to the unique characteristics and operational
requirements of each container. Such models often find their
roots in empirically validated energy studies from scholarly
sources, such as those presented by Fieni et al. [40] and
Zhang et al. [41]. Energy consumption, as consolidated from
these comprehensive analyses, is calculated using Equation
(16). This equation is structured to holistically capture
temporal dynamics, ensuring a precise representation of
energy usage over time.

E = P× Time (16)

Ultimately, we have the metric outlined in Equation (17),
which enables the identification of the rate of Pod instan-
tiation within the system, denoted as POD_IR. This metric
facilitates the identification of potential issues with the
Worker nodes, which may result in the constant restarting of
Pods within the system. High values of this metric also imply
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increased energy expenditure associated with initiating Pods
without actual execution of requests. The equation correlates
the expected value of tokens representing instantiated Pods
with the average transition time of their instantiation, denoted
as ttu_appm.
F=(m, n) | m are the indices of the Pods, n are the indexes of
Nodes eligible for Pod m allocation,

POD_IR =

∑
(m,n)∈F

E{#Nn_TO_INST_APPm} × ttu_appm

(17)

V. CASE STUDIES
This section presents three case studies to critically examine
the dynamics of key metrics: availability, reliability, and
power consumption across various scenarios. These studies
illustrate the model’s responsiveness to parameter variations,
highlighting scenarios that might be challenging or costly to
implement in real systems. Such challenges might emerge
when the system operates in a production environment
where experimental changes could negatively impact end-
users, or when the system is still in its planning phase.
The models were executed using the Mercury tool [39].
Across the case studies, the architectural components remain
consistent, differentiated only by the number of Nodes,
Pods, or support teams. Both control plane and worker node
components within the cloud are based on the same hardware
configuration, adopting the MTTF values listed in Table (11).
These values were derived from the works of Rosendo et al.
[42], Torquato et al. [43], and Melo et al. [44], combined
with data from hardware manufacturers. A separate set of
values was designated for edge nodes, with cloud-based
values detailed in Table (11). As previously described, these
values were used to populate the DRBD model shown in
Figure (8), which determined the MTTF of the base system
and informed the SPN model for the nodes. Additionally, the
storage components, as illustrated in Figure (9), align with
the Underlying System’s attributes, with specific components
detailed in Table (11).

TABLE 11. Underlying system parameters.

To provide input to the CTMCs that will produce the
MTTF values of the Pods, the values from Table (12) were

TABLE 12. Microservices parameters.

utilized. These values represent application failure rates, with
Pod 01 containing a MongoDB database, Pod 02 containing
a NodeJs application, and Pod 03 containing a frontend
application. The values of these rates were obtained from the
studies of Melo et al. ([44]).

To finalize the foundation models, one must ascertain the
Mean Time to Failure (MTTF) values, and subsequently
integrate these values into the timed transitions of the
Stochastic Petri Net (SPN) models. For timed transitions
not addressed by the foundational models, values should be
sourced from either the academic literature or the historical
records of the organization in question. For the Control
Plane and Storage components, we adopt values from
Table 13. The selection of these MTTFs and Mean Time
to Repair (MTTRs) aims to mirror software configurations,
as delineated in studies by Melo et al. and Kharchenko
[44], [45]. Rather than being arbitrary, these choices stem
from a careful examination of comparable systems, ensuring
the values are emblematic of the nuances and behaviors
typical of similar microservice architectures. This precision
underscores our dedication to devising a model that is
both academically rigorous and pragmatically relevant to
contemporary computing landscapes.

TABLE 13. Node parameters.
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Utilizing Dynamic Reliability Block Diagrams (DRBDs)
for both cloud and fog frameworks enabled the determination
of the Worker nodes’ Mean Time to Failure (MTTF).
Concurrently, the allocation of values for other time-bound
transitions is vital, as detailed in Table (12) for Kubernetes
processes and utilized Pods. The node status update value
aligns with Kubernetes’ default settings, though adjustments
can provide insights into the repercussions of such changes.
Pod initiation times can vary based on hardware and the
Pods, especially in environments with resource constraints
and lightweight Kubernetes iterations like KubeEdge, k3s,
or MicroK8s ( [8], [46], [47]). Additionally, the model
recognizes potential variations in Pod hosting capacity due
to hardware differences between cloud and fog computing.
Thus, the model offers flexibility, capturing the nuanced
dynamics of microservice architectures across diverse con-
figurations.

Pods were hierarchically modeled, incorporating values
derived from the CTMC’s absorbing state. Alongside these,
values for other transitions and the number of each Pod type
are essential, as outlined in Table (12). Of note, only the
App 01 Pod possesses the APP1_RST timed transition, being
the unique stateful Pod, specifically a database. The remain-
ing Pods are storage-independent, exempt from failure due to
condition [g16]. The initial distribution of Pod types among
worker nodes, as determined by Equation (5), is another
pivotal consideration. In conclusion, the RETURN_TIME
timed transition for the support block depicted in Figure (6)
is designated as 0.1 hours. This timeframe, however, can
vary based on organizational and system specifics. All time
distributions are presumed exponential. Post configuration,
power values of system components, detailed in Table (14),
are integrated to determine overall power consumption across
diverse system setups.

TABLE 14. Power consumption parameters.

A. SCENARIO ONE - CHANGING THE FAILURE
REQUIREMENT
The primary focus of the initial case study is to analyze
the system’s dynamic behavior as the number of Required

FIGURE 12. Use Case 01 - Physical Infrastructure.

FIGURE 13. Use Case 01 - Configuration.

Pods increases, shedding light on the system’s capacity to
handle more demanding Service Level Agreements (SLAs)
related to Pod count. An expansion in system size might
exacerbate the negative impacts of failures. This model aids
strategic planning by offering a comparison of key metrics
across different SLAs and approaches. The configuration
presented in Figures 12 and 13 was adopted for this purpose.
The system comprises a Control Plane, dedicated Storage,
two cloud-based Worker nodes, and a fog-based Worker
node. Designed to support various Pods, each falls into
one of three application categories. Each Pod contains a
single container with its respective application, as shown in
Figure 13. Database and back-end Pods are confined to the
cloud, whereas frontend Pods can operate in both cloud and
fog layers. The system also incorporates a singular support
team, depicted in Figure 13. This configuration represents
a typical microservices system, offering insights into its
dependability and performance. Beyond theoretical insights,
this model provides actionable guidance for optimizing real-
world systems, considering performance, dependability, and
architectural nuances.
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The analytical examination commences with the deploy-
ment of four Pods of type 1, four Pods of type 2, and
two Pods of type 3. In each successive iteration, the count
of type 1 and type 2 Pods is augmented by 2, while the
quantity of type 3 Pods is incremented by 1. This progressive
escalation in the number of Pods perpetuates until the
configuration encompasses 58 Pods each of types 1 and 2,
concomitant with 29 Pods of type 3, culminating in an
aggregate of 145 Pods. This model captures the growth in
demand and the necessary increase in the minimum Pod
count required to meet this demand. Figure 14 plots system
availability against the growing number of Pods. Starting at
96.73% availability with 10 Pods, it decreases to 72.23%
with 145 Pods. This drop is expected since adding more
components raises the likelihood of system failures. These
results correspond to a system with only the essential number
of Pods without redundancy. However, the model allows
for redundancy beyond the basic demand. Table 15 outlines
various redundancy strategies. Strategy A shows a notable
rise in system availability: from 98.08% with 10 Pods to
88.37% with 145 Pods—an improvement of 1.4% and 22.3%
over the non-redundant system. Yet, the benefits of adding
more Pods diminishwith each increase. For instance, Strategy
B achieves 98.46% availability with 10 Pods and 91.67%
with 145 Pods—only a slight enhancement compared to
Strategy A. Figure 14b portrays the power consumption
against the Pod count across different redundancy strategies.
Unsurprisingly, the non-redundant configuration is the most
energy-efficient. Strategy A consumes 3.1% more power
with 10 Pods and 1.3% more with 145 Pods than the
non-redundant setup. Increased redundancy levels, as seen
in strategies B through F, correspondingly raise power
consumption.

There’s a notable disparity between the increases in system
availability and the associated energy costs from infrastruc-
tural changes. This dynamic is tied to redundancy strategies
and the number of Pods in the system. To delve deeper
into the relationship between these metrics, we recommend
analyzing the percentage increase in both availability and
energy consumption across different redundancy strategies
and Pod counts. These percentage increases can be compared
using Figure 15. In this figure, the x-axis lists the redundancy
strategies, while the left y-axis highlights the increase in
availability, and the right y-axis indicates the rise in energy
consumption.

TABLE 15. Pods added in each redundancy strategy.

In Figure 15a, analyzing a system with 40 Pods, the
availability percentage increase from no redundancy to

Strategy A (denoted NR − A) is around 5.81%. However,
the shift from Strategy E to F only registers a minor
0.07% growth. Contrarily, the energy consumption across
strategies fluctuates between 1.99% and 3.51%, attributable
to varying Pod increments per strategy, as detailed in
Table 15. Notably, Strategy A yields a favorable availability-
to-power consumption ratio, unlike subsequent strategies
where availability gains diminish relative to power costs. For
a system with 145 Pods, Figure 15b depicts a significant 22%
availability hike versus a modest 1.3% power increase from
no redundancy to Strategy A. Transitioning from Strategy A
to B yields a 3.74% growth in availability contrasted with
a 1.9% rise in power. Later strategies exhibit diminishing
availability gains in relation to power surges. These insights
can guide stakeholders in assessing the merits of redundancy,
balancing availability benefits against power consumption
costs.

A supplementary metric pivotal to system assessment is
the anticipated number of Pods supported by the system,
illustrated in Figure (14c). Typically, the expected number of
Pods is less than the total set for system execution, resulting
from Pod and related system component failures. This metric
determines if the redundancy in Pods meets the demand.
Without redundancy, a 10-Pod requirement yields about
9.97 Pods, while a 145-Pod requirement results in roughly
143.11 Pods. In the latter case, the system faces potential
performance challenges due to the anticipated shortfall of
1.89 Pods, alongside existing availability issues. Implement-
ing Redundancy Strategy A reveals a notable rise in the
projected Pod count: 11.96 Pods for a 10-Pod requirement
and 144.89 Pods for a 145-Pod requirement. For the 10-Pod
scenario, Strategy A alone meets the desired Pod count.
However, for the 145-Pod demand, the expected number falls
short. Meeting the 145-Pod demand necessitates combining
Strategies A and B, yielding an estimated 147.91 Pods.
This highlights that even with orchestrator configurations to
maintain a certain Pod count, system imperfections can lead
to lower realized values. Hence, to fulfill a Service Level
Agreement (SLA), more Pods than stipulated by the SLA
might be required. Additionally, the choice of redundancy
strategy for Pods depends on system size, requiring a tailored,
nuanced evaluation.

Figure 14d portrays the Pod instantiation rate, a metric
capturing the frequency of Pod reinitialization due to
perturbations in infrastructure. Specifically, Worker node
failures cause the removal of associated Pods, denoted by
guard condition [g12]. Should resources on other nodes
be available, affected Pods are reallocated. This metric
assists administrators in detecting reduced node capacity,
which might result from excessive instantiations and energy
inefficiencies. For instance, without redundancy and a 10-Pod
requirement, the rate is 0.062 (Pods/h), but it rises to
1.89 (Pods/h) for 145 Pods. Redundancy Strategy A slightly
elevates these rates, while Strategy F, which maximally
utilizes infrastructure, significantly increases them. A surge
in Pod numbers naturally elevates the instantiation rate,
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FIGURE 14. Use Case 01 - Results.

TABLE 16. Transitions to CP and storage reliability models.

due to increased Worker node capacities and more frequent
instantiations following node failures. Figure 14e then
delineates the correlation between support utilization and
requisite Pod numbers. Increasing Pod numbers enhances
support utilization across all strategies. For instance, without
redundancy and with 10 Pods, support utilization probability

is 4.79%, but this rises to 25.25% for 145 Pods. Even
with maximal redundancy (Strategy F), the increase in
support utilization remains modest. Figure 14f delves into the
probability of support personnel shortages, providing insights
for optimizing staffing. A heightened shortage probability
suggests potential delays in system recovery post-failure,
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FIGURE 15. Use case 01 - Percentage increase.

FIGURE 16. Reliability high-level Pods model.

emphasizing the necessity for strategic resource planning in
microservice architectures.

In evaluating system dependability, it’s paramount to
consider the likelihood of support unavailability. For a con-
figuration with 10 non-redundant Pods, this probability is a
mere 0.1%, but it surges to 5.71% for a systemwith 145 Pods.
Implementing Strategy F, the highest redundancy level, sees
this probability reduce to 0.4% for 10 Pods but increase to
6.81% for 145 Pods. While redundancy overhead is modest
for this metric, potential delays in repair due to accumulated
maintenance requests might arise. In cases where repair
time is contractually set, adding more support teams could
mitigate repair delays. Enhancing this dependability analysis
is a deep dive into system reliability, which assesses
the system’s consistent functionality over a set period.
Specific model components, including the Control Plane

models (Figure 3), SPN Pods (Figure 5), and the Storage
subsystem (Figure 7), underwent targeted modifications to
enable transient simulations, capturing system unavailability
probabilities at specific times, especially when recovery isn’t
possible. The nuances of these changes will be discussed
subsequently.

Both the Control Plane and Storage models had alterations
in their immediate transition guard expressions (specifically,
index expressions [g1]) vital for repairs. With their crit-
ical role, their downtime equates to system failure. The
modified guard expressions ensure the presence of at least
one operational token for each component. These updated
expressions can be found in Table 16. Besides the support
team’s availability, components must be active for mainte-
nance; otherwise, repairs don’t proceed, affecting reliability
determination. Moreover, to be considered operational, the
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TABLE 17. Reliability pods transitions.

TABLE 18. Reliability pods guard expressions.

FIGURE 17. Use Case 01 - Reliability results.

system must sustain a minimum number of each Pod type.
Given the Pod’s mobility across Worker Nodes, only their
overall operational count verifies their system status. The
SPN Pods model was adapted to discard Pods if their count
drops below the requisite number. New transitions were
introduced to the SPN Pods model for removing failed or
operational Pods and an added place for discarded tokens,
depicted in Figure 16. The descriptions for these additions
are in Tables 17 and 18. Aimed at discarding Pods when
the system or its components fail, these changes apply to all
system Pods.

The reliability analysis for the given configuration is
visually represented in Figure 17, which showcases the
system under varying Pod requirements: specifically, 25, 65,
105, and 145 Pods, reflecting counts without redundancy.
Each sub-figure in 17 offers insights into the system’s

reliability across different redundancy strategies, starting
from an initial operational probability of 100% at time zero.
Taking Figure 17a as a case in point, a system without redun-
dancy exhibits the lowest reliability values over the studied
duration. After 100 hours of operation, its reliability dwindles
to 6.44%, plummeting further to 0.84% after 500 hours.
In contrast, under Redundancy Strategy A, the system dis-
plays slightly improved reliability. After 100 hours, it stands
at 33.27%, decreasing to 6.03% by the 500-hour mark. This
underscores the incremental benefits of redundancy but also
highlights the need for more robust strategies to sustain
reliability over extended periods.

Figure 17a reveals that Strategy B yields reliabilities
of 38.59% and 7.34% at the 100 and 500-hour junc-
tures, respectively. Subsequent strategies offer marginal
improvements over Strategy B, with the transition from no
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FIGURE 18. Use Case 02 - Sensitivity analysis.

redundancy to Strategy A marking the most pronounced
reliability enhancement: 416% at 100 hours and 610% at
500 hours. A subsequent transition from Strategy A to
B results in reliability gains of 16% and 22% at these
respective timeframes. This figure underscores a diminishing
return on reliability as redundancy levels increase. Yet,
as the availability analysis indicated, redundancy accrual
has concomitant power implications. Hence, decision-makers
must judiciously evaluate the marginal benefits of each
redundancy tier against its costs. A comparative analysis
across Figures 17a, 17b, 17c, and 17d offers insights into
reliability shifts with escalating system demand. As Pod
requirements rise, there’s a notable reliability degradation.
For a non-redundant system at 100 hours, reliabilities are
6.44%, 2.15%, 1.10%, and 0.06% for Pod requirements of
25, 65, 105, and 145 respectively. This reliability decay is
visually evident, with steeper declines for each increment
in Pod demand. Conversely, under Strategy A across the
same period, the reliability figures remain relatively stable:
33.27%, 33.00%, 29.79%, and 25.94% for Pod requirements
of 25, 65, 105, and 145 respectively. These subtler reductions,

juxtaposed with the non-redundant scenario, underscore the
resilience imparted by redundancy. The data suggests that
optimal deployment strategies hinge on both the desired Pod
count and the chosen redundancy level.

B. SCENARIO TWO - CHANGES GUIDED BY SENSITIVITY
ANALYSIS
Designing microservices in hybrid cloud-fog environments
demands meticulous selection and configuration of myriad
components, often complicating the achievement of specific
Service Level Agreements (SLAs). The intricacy of infras-
tructure planning stems from not only the abundance of
potential configurations but also the unpredictable impact
of these configurations on key metrics. This use case
demonstrates how incremental sensitivity analysis in the
model can guide the identification of pivotal changes,
optimizing system availability.

Sθ {Y } =
max{Y (θ )}−min{Y (θ )}

max{Y (θ )}
(18)
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FIGURE 19. Use Case 02 - results.

The sensitivity analysis technique employed was the per-
centage difference [39], which involves varying a parameter
within a specific range and then identifying its highest and
lowest values, as outlined in Equation 18. The variables
max Y(θ ) and min Y(θ) represent the highest and lowest
values found in the metric of interest for the parameter within
the range. This technique was applied to the parameters of
the model components. As a result, the values of MTTF
and MTTR of the components and processes, the number
of worker nodes, the number of support teams, and the
number of Pods of each type, were among the varied model
parameters. A variation range 10%was used, with aminimum
of 1 variation when the parameter is an integer. With each

application of this technique, a modification was made to the
component with the greatest impact until a 97.5% availability
rate was achieved. The nature of the alteration to be made
to the element with the highest impact is contingent upon its
type. Configuration variables can have their value modified
in the direction of the increasing availability, while elements
that are not amenable to change, such as the MTTF of
the container, had their number of components increased to
achieve a redundancy effect.

In evaluating the system’s dependability, understanding
support unavailability is pivotal. For a base configuration
comprising 32 Pods each for types 1 and 2, and 16 for type 3,
with a single control plane, two cloud-based Worker nodes,
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one Fog-basedWorker node, and one support team, the initial
system availability is 85.11%. Sensitivity analysis, shown in
Figure 18a, highlighted APP02_NUM as the most impactful
element. Adding six redundant Pods of this type improved
availability to 91.32%. Subsequent analyses, as detailed
in Figures 18b, 18c, and 18d, led to changes resulting
in availabilities of 96.37%, 97.24%, and finally 97.50%,
meeting desired thresholds. In Figure 17a, Strategy B yielded
reliabilities of 38.59% and 7.34% at 100 and 500 hours.
Comparatively, Strategy B’s improvements were marginal
to other strategies, but significant relative to non-redundant
systems. The reliability increased by 416% and 610% at
100 and 500 hours, respectively, when transitioning from
no redundancy to Strategy A, and by 16% and 22% when
comparing Strategies A and B.

As observed in Figure 17a, increasing redundancy layers
marginally improves reliability but incurs additional energy
costs. Hence, system managers must judiciously assess
the cost-benefit dynamics of each enhancement. Analyzing
redundancy strategies’ reliability against system demand,
as depicted across Figures 17a to 17d, reveals decreasing
reliability with increased Pod requirements. For a non-
redundant system, 100-hour reliabilities for 25, 65, 105,
and 145 Pods are 06.44%, 02.15%, 01.10%, and 00.06%,
respectively. In contrast, with Redundancy Strategy A, these
values are 33.27%, 33.00%, 29.79%, and 25.94%. The study
underscores that reliability assessments are contingent upon
the Pod count and chosen redundancy strategy.

VI. CONCLUSION
This study presents a sophisticated methodology for evalu-
ating the reliability and energy characteristics of cloud-fog
systems based on the Kubernetes framework. The developed
model covers essential determinants affecting system reli-
ability and provides a detailed analysis of how parameter
changes impact key metrics, such as availability, reliability,
Pod quantities, instantiation speed, and system failure risks.
Two case studies demonstrated the model’s efficacy. The first
revealed that increasing theminimal Pod requirement reduces
system availability and reliability. The second utilized the
model to guide improvements toward achieving a specific
availability target. Adopting this model-driven approach
offers multiple benefits, including a structured method for
understanding cloud-fog system reliability, a benchmark for
comparing dependability metrics across systems, and opti-
mizing computational resource allocation. Future research
avenues include examining system performance issues and
resource variability with auto-scaling, assessing both reliabil-
ity and energy consumption concerning demand variability,
and incorporating advanced optimization techniques for
resource allocation in cloud-fog systems. In essence, this
research significantly advances our understanding of the
reliability and energy dynamics in cloud-fog computing
and establishes a foundation for future studies on system
optimization and performance evaluation.
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