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ABSTRACT Anomaly detection within the realm of industrial products seeks to identify regions of
image semantics that deviate from established normal patterns. Given the inherent challenges associated
with collecting anomaly samples, we exclusively extract features from normal semantics. Our proposed
solution involves a Semantic CopyPaste based Generative Adversarial Network (SCGAN) for unsupervised
anomaly detection. To enable the comprehensive acquisition of semantic features within intricate real-
world images, we embrace an encoder-decoder-encoder as the fundamental network structure. In practical
terms, our approach commences with the input image being subjected to the CopyPaste augmentation
module. Here, we strategically copy N patches, each constituting 1% of the image’s area, from normal
samples. These patches are then randomly pasted into different regions of the original image. Subsequently,
a generative adversarial network is trained to facilitate sample reconstruction. A noteworthy augmentation
to the network’s channel attention capabilities entails the incorporation of a multi-scale channel attention
module within the first encoder. This module serves to emphasize contextual features across varying scales
within the image. During the test, we detect anomalous regions bymeticulously comparing residuals between
the input image and its reconstructed counterpart. Our methodology is rigorously validated through diverse
experiments conducted on challenging MVTec and BTAD public datasets. The results conclusively affirm
the state-of-the-art performance achieved by our proposed method in the domain of anomaly detection.

INDEX TERMS Anomaly detection, generative adversarial networks, channel attention, multi-scale channel
attention module.

I. INTRODUCTION
Industrial image anomaly detection is a widely used tech-
nique for identifying product defects throughout the manu-
facturing and production processes. These methods facilitate
real-time identification and localization of surface anoma-
lies in products. By effectively filtering out anomalies, they
decrease the incidence of defective products. Furthermore,
in daily operations, anomaly detection can play a pivotal role
in forecasting equipment failures. This, subsequently, reduces
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maintenance costs by issuing timely alerts to enterprises,
enabling them to take proactive preventive measures.

In the realm of manufacturing, an anomaly refers to the
presence of abnormal semantic pixels within a product’s sur-
face image, which could manifest in any part of the image.
Anomaly detection [1] is the process of identifying image
data that significantly deviates from typical instances. Cur-
rently, the scope of anomaly detection encompasses a variety
of applications, including defect detection [2], medical diag-
nosis [3], [4], video surveillance [5], [6], financial transaction
monitoring [7], and network security [8]. Of particular note,
anomaly detection finds extensive utility within the industrial
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FIGURE 1. The first row is the ground truth, where the red boundary
indicates the anomalous contours in the real world. The second row is the
heat map of the segmentation result of SCGAN.

sector, spanning applications such as detecting conductive
particles in glass chips [9] and inspecting steel surfaces [10].

Anomalies can stem from various factors, including defects
in raw materials, equipment malfunctions, or process imma-
turity. Within the manufacturing industry, anomaly detection
serves as a crucial tool for product monitoring. Its operation
has two functions: firstly, by effectively averting defec-
tive products from entering the market, thereby elevating
product quality; secondly, by providing enterprises with
timely insights through test results. Consequently, anomaly
detection emerges as a pivotal step within industrial pro-
duction. There are currently four important challenges in
this detection task [11]: i) The data of various samples is
unbalanced. ii) Ambiguities in defining decision boundaries.
iii) Abnormal metric. iv) Acquiring knowledge pertaining to
out-of-distribution (OOD) anomalies.

Our proposal introduces an unsupervised anomaly detec-
tion method grounded in semantic CopyPaste. This method
only extracts features from normal semantics, with a primary
focus on the semantic links and constraints existing among
image pixels. Our assertion is that networks exhibiting poor
image recovery capabilities should theoretically be consid-
ered indicative of anomalies.

With this objective in mind, we introduce an unsupervised
anomaly detection network named SCGAN, founded on gen-
erative adversarial networks. SCGAN operates by executing
reconstruction through the acquisition of feature semantics
from normal samples. Notably, the network places a greater
emphasis on discerning the intrinsic semantic links intercon-
necting object contexts. The outcomes of our method are
vividly depicted in Figure 1, showcasing detection results
on a public dataset. As observed, our method’s detection
outcomes closely align with the ground truth. By attuning
itself to the semantics of contextual features, SCGAN aptly
identifies and pinpoints anomalies within industrial settings.
In the operational procedure, a normal sample serves as input,
initiating its journey through the CopyPaste image enhance-
ment module. This step deliberately introduces anomalies,
with the anomaly’s appearance randomized to simulate
its possible occurrence anywhere on the product’s sur-
face. The augmented image subsequently traverses through

a generative adversarial network for image reconstruction.
Notably, we conducted experiments encompassing four dis-
tinct artificial anomaly enhancement scenarios, all aimed at
nudging the network to grasp the normal semantics inherent
in the image.

In summary, our contributions can be outlined as follows:
• We propose a novel unsupervised anomaly detection
network called SCGAN, specifically designed to extract
sample features from normal semantics only.

• We have developed an image enhancement module
named CopyPaste, which serves the dual purpose of
simulating anomalies in an artificial yet representative
manner and assisting in semantic reconstruction for
network.

• The experimental results demonstrate the remarkable
performance of our method on two prominent public
datasets, namely MVTec and BTAD.

II. RELATED WORKS
Deep learning-based approaches have gained significant
traction in the field of anomaly detection, encompassing tech-
niques like auto-encoders (AE) [12], convolutional neural
networks (CNN) [13], and generative adversarial networks
(GAN) [14]. Given the widespread adoption of GAN for
anomaly detection [3], a plethora of network models charac-
terized by exceptional performance have emerged over recent
years.

Unsupervised deep anomaly detection entails the identi-
fication of anomalies solely based on the feature semantics
derived from normal samples. Unsupervised methods hold
an inherent advantage in this domain due to the challeng-
ing nature of acquiring labeled anomaly data. In recent
years, the widespread adoption of unsupervised methods has
established their superiority over traditional approaches. For
instance, CBiGAN [15] represents an improvement upon
BiGAN [16], addressing issues related to sample recon-
struction. Notably, this enhancement introduces consistency
constraints within the encoder and decoder of BiGAN, thus
enhancing themodeling capability and precision of the recon-
struction process. Yan et al. [17] contribute with a semantic
context-based anomaly detection network named SCADN.
This distinctive network incorporates random strip masks
of varying widths and orientations into the input image,
serving to encompass a broader context. Subsequently, net-
work reconstruction is conducted. Zhang et al. [18] introduce
DeSTSeg, a network architecture hinged on the student-
teacher framework. This innovation amalgamates the teacher
network, student network, and segmentation network, yield-
ing optimal average accuracy across multiple levels - from
image to pixel to instance. Zaheer et al. [19] present OGNet,
a two-stage anomaly detection framework. This framework
constructs a network based on an encoder-decoder paradigm,
effectively transforming the anomaly detection task into a
pursuit of both low and high-quality sample reconstruction.
DAGAN [20] employs a fusion of skip connections and dual
autoencoders to successfully achieve industrial detection.
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FIGURE 2. Network architecture of SCGAN. The training flow is shown as the green solid line. The
network aims to randomly cut N masks with an area ratio of 1% from the input samples and then
randomly paste them into the original image to obtain a CopyPaste image. The SCGAN is then trained to
restore the image to its normal semantics. The flow of the testing is shown in the red solid line. The
network uses the residuals between the input and output images to determine anomalies.

This strategic combination amplifies the network’s capabil-
ities in handling complex scenarios.

In parallel, self-supervised learning techniques find fre-
quent application within detection tasks. Self-supervised
learning capitalizes on extracting context-supervised infor-
mation from the data itself, obviating the need for explicit
labeling. Amid the array of self-supervised methods, the
innovative approach of RIAD [21] transforms anomaly detec-
tion into a restoration reconstruction challenge for images.
It achieves this by systematically removing content from
specific regions within a partial grid and subsequently restor-
ing the missing content based on the surrounding context.
Furthermore, this study introduces a gradient similarity-based
metric coupled with the loss strategy MSGMS. The effi-
cacy of CutPaste [22] as a high-performance defect detection
model hinges on its skillful data enhancement strategy. This
strategy involves the random cropping of rectangular images
of varying dimensions, which are then artfully inserted into
different positions within the original image. Pirnay et al. [23]
reframe anomaly detection as a patch-inpainting issue,
proposing a method that leverages discarding convolutions
and a self-attentive approach called InTra for effective recon-
struction. The central concept revolves around repairing
patches concealed by the network through the amalgamation
of additional image information within a broader context.
Ye et al. [24] introduce the attribute recovery framework
ARNet, reshaping anomaly detection into an image recovery
task. ARNet adeptly extracts semantic features by selectively
erasing sample attributes like color and orientation during the
training.

In the semi-supervised learning -based approach,
GANomaly [25] introduced an encoder-decoder-encoder
sub-network paradigm. This design involved mapping
the image into low-dimensional vectors, followed by

reconstruction to generate the final image, ultimately leading
to mapping the generated image into the potential represen-
tation. Nevertheless, GANomaly’s performance falls short in
terms of adequately reconstructing intricate image details,
posing challenges in handling realistic high-dimensional
complex images. In a different vein, Mishra et al. [26]
proposed a transformer-based image anomaly detection
and localization network named VT-ADL. This innovative
approach employs a Gaussian mixture density network to
accurately pinpoint anomalies subsequent to the encoder’s
output.

One class of novelty detection also belongs to anomaly
detection. An example of this is OCGAN [27], which is
employed to ascertain whether a given sample originates from
the same class as the training samples. The underlying prin-
ciple of this model posits that in-class samples can be aptly
represented, whereas out-of-class samples exhibit inferior
representations.

III. PROPOSED METHOD
The method we propose hinges upon an encoder-decoder-
encoder network, meticulously trained exclusively on normal
samples for the extraction of normal semantic features. In the
following section, we provide an initial introduction to the
overarching model we have devised. Subsequently, we delve
into an in-depth exploration of the constituent sub-modules
within the model. This detailed breakdown predominantly
encompasses the multi-scale channel attention module and
the CopyPaste.

A. SCGAN
The structure of SCGAN is shown in Fig. 2. Throughout the
training, the network exclusively processes normal samples.
Subsequently, these samples are subjected to enhancement
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via the CopyPaste technique before being fed into the
SCGAN. Finally the network undergoes adversarial recon-
struction to get the output samples. Within the SCGAN,
we adopt the foundational encoder-decoder-encoder. Upon
completion of the comprehensive training regimen, the net-
work acquires a trio of pivotal capabilities. First, it attains
proficiency in mapping the original image into the latent
space. Second, it gains the ability to translate latent vectors
back into the image space. Lastly, the network develops the
acumen to discern between normal and abnormal images.

In the testing, samples containing anomalies are input
into the trained generator, yielding reconstructed outputs.
Given that the network exclusively learns semantic fea-
tures from normal samples, its reconstruction ability for
abnormal pixels is limited. Consequently, a notable dis-
crepancy emerges between the pre-reconstruction and post-
reconstruction states, manifested as a substantial residual
difference. This residual image is derived from the differ-
ence between the input and output images. Subsequently,
a heat map is derived from this residual image. Moreover,
the corresponding anomaly thermogram is generated utilizing
this residual image. This involves overlaying the 0.7x heat
map onto the 0.3x input image to facilitate observation. The
generation of the heat map is contingent upon the probability
matrix generated by the network model upon analyzing the
test image. Different probabilities correspond to diverse heat
colors within the map, spanning a gradient from blue to red.
The extent of abnormality is proportionally reflected by the
degree of red hue, with a stronger deviation from normalcy
resulting in a more pronounced red coloring of the pixel
region.

Figure 3 illustrates the detailed structure of the SCGAN.
The generator’s architecture commences with seven convolu-
tional blocks, which extract feature maps via down-sampling.
Subsequently, seven transposed convolutional blocks are

FIGURE 3. Detailed network structure of SCGAN, including network
composition, feature map size and channel information.

employed to restore the feature maps to their original dimen-
sions through up-sampling. Of particular significance is
the incorporation of a multi-scale channel attention module
within the down-sampling convolutional blocks. This module
is strategically introduced to enable an attentional fusion of
features across varying scales. The structure of the appended
encoder aligns with that of the discriminator, except for the
final layer. This additional decoder plays a pivotal role in
diminishing the gap between the bottleneck features of both
components, thereby significantly influencing the quality of
image reconstruction.

B. MULTI-SCALE CHANNEL ATTENTION MODULE
The attention module has demonstrated its unique advantages
in a wide range of deep learning studies. We have applied the
attention mechanism to the industrial image anomaly detec-
tion task in order to further improve the model’s extraction of
feature semantics, inspired by Dai et al. [28]. The attention
module can correlate global and local information and plays
a key role in the transmission of image. The network uses the
attention module to bring the distance between the pixels of
training image and the generated image closer. The image is
reconstructed based on the horizontal and vertical correlation
between the pixels and then the residuals of both are used to
determine whether it is anomalous or not.

FIGURE 4. Structure of the multi-scale channel attention module.

In a specific, we introduce aMulti-Scale Channel Attention
Module (MS-CAM) to every layer within the first encoder.
This integrativemodule systematically extracts channel atten-
tion from the image across various scales. Distinguished by
its capacity to establish meaningful relationships between
global and local information, the attention module adeptly
orchestrates suitable dependencies.

As shown in Fig. 4, MS-CAM focuses on the scaling
problem of the channel through point-wise convolution,
which is generally divided into global and local features.
As far as global features are concerned, an input feature
map X of size H×W with C channels undergoes ini-
tial processing. After global average pooling is applied to
reduce feature dimensions, a feature map of size C×1 × 1
is obtained. Subsequently, a point-wise convolution (PWC1)
with a convolution kernel size of 1 × 1 is employed for chan-
nel reduction, effectively decreasing the number of channels
in the feature map to 1/r of the original count. Following
the Batch Normalization (BN ) layer and activation func-
tion, another point-wise convolution, PWC2, is employed for
channel recovery, restoring the number of channels to the
original C . The result, X1, is obtained after the BN layer.
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Here, r represents the channel reduction ratio. We set r to 4 in
our experiments. The channel attention calculation formula
for its global feature is shown in equation (1):

X1 = BN (PWC2(ReLU (PWC1(GAP(X ))))) (1)

where GAP denotes Global Average Pooling, PWC1,2
denotes point-wise convolution of different sizes, ReLU
denotes activation function, and BN denotes batch normal-
ization.

The process is similar to the previous one as far as local
features are concerned, but the global average pooling oper-
ation is eliminated. The resulting feature map sizes after two
point-wise convolutions are (C/r)×H ×W and C × H×W ,
respectively. The formula for calculating the channel atten-
tion of its local features is shown in equation (2):

X2 = BN (PWC4(ReLU (PWC3(X )))) (2)

Finally, the result of attention calculation of global and
local features is broadcasted addition and sigmoid activa-
tion function, and then fused features with the original
image X to get X’. Its fusion calculation formula is shown in
equation (3):

X ′
= X ⊗ (Sigmoid(X1⊕X2)) (3)

Where ⊗ denotes the element-wise multiplication, and ⊕

denotes the broadcasting addition.

C. COPYPASTE MODULE
To mitigate the risk of model overfitting, the network ini-
tiates image enhancement procedures before engaging in
training using the designated dataset. In contemporary prac-
tice, image enhancement stands as an effective strategy to
augment dataset diversity, and a multitude of enhancement
methods are currently available. One prevalent enhancement
approach is the application of Random Erasing [29], which
encompasses random variation in the length and width of
the mask region, along with the pixel substitution values.
This technique confers the ability to impart diverse levels of
masking to images, thereby engendering robustness across
classification, detection, and facial recognition tasks. Another
widely employed strategy, known as Cutout [30], functions as
a CNN-based regularization technique. It strategically intro-
duces random masking of contiguous image content using
square regions, facilitating enhanced model generalization.
Confetti [31] serves as an ingenious method for generat-
ing synthetic anomalies. It entails the insertion of colored
speckles into samples, thereby accentuating the depiction of
anomalous local properties. Noteworthy in its specialization,
SCADN [17], [18] adopts multi-scale striped masks that
span both vertical and horizontal orientations, fostering the
aggregation of semantic context to refine detection accuracy.
RIAD [21] opts for a distinct approach, selecting to randomly
excise sections of the rectangular grid regionwithin the image
prior to inputting the sample into the reconstruction network.
This technique contributes to the enhancement of anomaly
detection by way of restoration-oriented reconstruction.

Anomalies manifest on the surfaces of industrial prod-
ucts due to inherent disparities in the product’s properties.
We have discerned that overlaying the surface of normal
samples with their own minute pixel patches yields an
enhancement in network performance. Our aim is to devise
an image enhancement strategy by artificially simulating
anomalies through this approach. In pursuit of this objective,
we introduce a strategy termed CopyPaste, which serves as a
mechanism to aid the network in acquiring a deeper under-
standing of normal semantics.

CopyPaste operates through a process involving the ran-
dom duplication of small pixel patches, each occupying an
area ratio of 1%, within a normal sample. Subsequently, these
patches are randomly integrated back into the same normal
sample. Notably, the design of CopyPaste hinges on two sig-
nificant considerations: i) The placement of these small pixel
patches onto various areas of the image is rendered equally
probable. Given the inherent unpredictability of authentic
anomalies, the act of selecting sampling and pasting locations
remains arbitrary within this framework. ii) Each individual
pixel patch has the capacity to coexist and overlapwith others.
In this context, we refrain from imposing limitations on the
exclusivity of coverage for individual pixels. By embrac-
ing these principles, our approach underscores a flexible
and unconstrained methodology for enhancing the learning
process.

FIGURE 5. The enhancement effect on two types of datasets in MVTec are
shown. The number of patches is of size N ∈ {10, 30, 50, 100}. Note that
we have added additional color dithering to our treatment of texture-like
data.

Figure 5 illustrates the outcomes of applying the CopyPaste
strategy to diverse objects. Here, N signifies the count of strat-
egy repetitions. Evidently, as N increases, the patch coverage
on the normal image expands correspondingly. Consequently,
the network’s ability to restore the image becomes increas-
ingly challenging. This deliberate augmentation enhances the
unpredictability of image content and augments the informa-
tional richness of the image. By training on these enhanced
images, the network’s capacity for interpreting and recogniz-
ing image features is significantly fortified.
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Given the uniform distribution of texture class samples,
we are focusing our attention on two specific scenarios inher-
ent in texture class images. As demonstrated in Figure 6,
we present visualization results exemplifying these scenarios
using wood as an illustrative example. The first scenario
entails a straightforward application of CopyPaste, without
any supplementary operations. In contrast, the second sce-
nario involves the introduction of color dithering to each
patch before pasting.

FIGURE 6. CopyPaste enhancement on wood. The first row is direct. The
second row is dithered for color.

D. TRAINING OBJECTIVES
To compel the network into a comprehensive grasp of the nor-
mal semantics inherent within the training images, we employ
a quartet of distinct loss functions: Encoder loss, Content loss,
Adversarial loss, and Structural Similarity loss.

1) ENCODER LOSS
Since the outliers for detection are actual data, we train the
network model by using the MSE error between the potential
vector results Z1 and Z2 obtained from two encodings as a
supervised signal. Also, to minimise the distance between the
bottleneck features of the input image and the reconstructed
image, the network uses an encoder loss to force the network
to generate reasonable bottleneck features. Its coding loss can
be expressed as:

Lenc =
1
n

∑n

i=1
||GiE1 − GiE2||2 (4)

Where GiE1 denotes the encoding result of the ith image after
encoder, and GiE2 denotes the encoding vector of the i-th
image after additional encoder.

2) CONTENT LOSS
In order to improve the network’s ability to focus on image
content and texture features, the network defines a content
loss. The content loss is mainly used to measure the degree of
difference and association between the generated image and
the real content image. In order to reduce the gap between the
two, so that the distribution of the generated image is closer
to the distribution of the original image, the loss is expressed
as follows:

Lcon =
1
n

∑n

i=1
||xi − G(xi)||1 (5)

Where xi denotes the ith input image, and G(xi) denotes the
ith generated image.

3) ADVERSARIAL LOSS
The network progressively improves its learning ability
through adversarial training. In order to extract essential fea-
tures from normal samples, the network uses equation (6) as
the adversarial loss of the network. This function is based on
a modification of the log-likelihood loss and is mainly used
to punish very confident miscalculations in the network. Its
loss function is represented as follows:

Ladv = −
1
n

∑n

i=1
[logD(G(xi))] (6)

Where xi denotes the i-th input image.

4) STRUCTURAL SIMILARITY LOSS
The model built on the above loss function ignores visual
inconsistencies, and a Structural Similarity (SSIM) [32] Loss
is introduced in order to better measure the visual similarity
between two images. SSIM is based on the three aspects of
luminance, contrast and structure of the two images to com-
pensate for the visual errors and to comprehensively assess
the degree of similarity between image x and y. The quality of
the generated image is improved by calculating the structural
similarity between the test and the generated image. For given
two images x and y, the loss of SSIM can be derived by the
following equation:

SSIM (x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ 2
x + σ 2

y + c2)
(7)

c1 = (k1L)2, c2=(k2L)2 (8)

LSSIM = 1 − SSIM (x, y) (9)

Where µ∗ denotes the mean of ∗, and σ 2
∗ denotes the variance

of ∗, and σxy denotes the covariance. c1 and c2 are constants
used to maintain stability, and L denotes the dynamic range
of the pixel value. k1 = 0.01 and k2 = 0.03 The advantage
of SSIM is that it accelerates the convergence and captures
the structural information of the image in a shorter period of
time. The value of takes between [0,1], x->1 means the more
similar the two are. For better gradient descent and to make
the loss function smaller and smaller, the structural similarity
loss is defined here as shown in equation (9).
In summary, the total loss of the SCGAN can be expressed

as:

Ltotal = α1Lenc + α2Lcon + α3Ladv + α4LSSIM (10)

Among them. α1, α2, α3 and α4 are the hyperparameters of
the corresponding loss function.

E. ANOMALY DETECTION
To enhance the effectiveness of the detection task, it is imper-
ative to establish well-defined detection criteria.We adopt the
approach outlined in [25] to define the anomaly score (AS)
for our model. This anomaly score serves as the yardstick
for detecting anomalies by evaluating the disparity between
the input sample and its reconstructed counterpart within
the discriminator’s feature space. The subsequent equation
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demonstrates that the anomaly score is principally composed
of a weighted summation of content loss and encoder loss.
Tailored thresholds should be set for distinct datasets, with
anomalies being identified when the calculated AS surpasses
the designated threshold.

AS = βLcon+(1−β)Lenc (11)

Where β denotes the weight parameter in the range 0 - 1, and
Lcon and Lenc denote the content loss and encoder loss of the
network model, respectively.

To facilitate meaningful comparisons, we standardized the
computed anomaly scores to fit within the [0,1] interval.
A greater normalized value indicates an increased probability
of the image exhibiting anomalies. The ultimate formulation
of the anomaly score is presented below:

AS ′
=

AS − min(AS)
max(AS)−min(AS)

(12)

IV. EXPERIMENTS
A. DATASETS
MVTec [33] serves as an anomaly detection dataset metic-
ulously crafted to emulate authentic industrial inspection
settings. It encompasses a total of 5354 high-resolution
color images, spanning across 5 distinct texture categories
and 10 object categories. Within this dataset, 3629 images
are designated for training and validation purposes, while
the remaining 1725 images are allocated for testing. The
dataset meticulously annotates 73 distinct types of anoma-
lies, encompassing diverse structural variations such as
scratches and dents. Notably, MVTec stands out for its faith-
ful emulation of real-world industrial inspection scenarios,
accompanied by pixel-level precise annotations of image
anomalies. This meticulous labeling serves as a valuable
reference point for subsequent anomaly localization inves-
tigations. Figure 7 visually showcases several examples of
anomaly images within the MVTec.

FIGURE 7. Schematic diagram of part of the MVTec dataset.

The Bean Tech Anomaly Detection dataset (BTAD) [26]
encompasses a collection of 2830 authentic images depicting
various industrial products, capturing both body and surface
defects. Comprising RGB images of three distinct industrial
products, Product 1 boasts dimensions of 1600× 1600 pixels,
Product 2 measures 600 × 600 pixels, and Product 3 spans
800 × 600 pixels. To harmonize the data, all training images
are initially rescaled to 512 pixels before being fed into the
model. Each anomaly image is accompanied by a meticu-
lously annotated pixel-level ground truth mask. Illustrated in
Figure 8 is a representative sample from the BTAD dataset,
showcasing two columns that juxtapose normal and anoma-
lous images for each of the three industrial product types.

FIGURE 8. Schematic diagram of part of the BTAD dataset.

B. IMPLEMENTATION DETAILS
In this paper, we use the pytorch deep learning frame-
work for anomaly detection and train it using an NVIDIA
GTX 3090 GPU with 24 GB of graphics memory. In addi-
tion, we use the Adam optimizer [34] to train the network
to accelerate network convergence with a learning rate of
0.0002. where β1 = 0.5 and β2 = 0.999. the number of
network training rounds is set to 400 and the batch size is
64. the weights of the loss function are chosen to be α1 = 1.
α2 = 40. α3 = 1. α4 = 40.

C. EXPERIMENTAL RESULTS
This paper evaluates network models based on MVTec and
BTAD industrial anomaly detection datasets. The evaluation
method chooses AUC [35] as a measure, which is a more
objective evaluation index of binary classification model, and
can comprehensively consider the prediction accuracy and
recall of the model. The AUC value tends to be between 0-1,
and the larger its value is, the better the classification effect
of the network is. Where AUC = 1 indicates a perfect model,
and AUC = 0 indicates an invalid model.

Table 1 presents the testing outcomes of AnoGAN [3],
GANomaly [25], Skip-GANomaly [36], DAGAN [20], CBi-
GAN [15], Dual-AttentionGAN [37], and SCGAN on the
MVTec dataset. AUC data for AnoGAN, GANomaly, Skip-
GANomaly, andDAGANare sourced from the literature [20].
The data analysis within the table highlights that our proposed
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TABLE 1. Surface defect detection performance based on the MVTec open source dataset. For comparison, we report the AUC of seven networks. Data
underlined and bolded in the table are the optimal values for each type of test result.

FIGURE 9. Visualization of the anomaly detection results for some MVTec. Rows 1 to 4 mainly show the experimental results for the anomaly images and
their thermograms. Row 5 represents the normal image and row 6 shows the abnormal thermogram corresponding to the normal image.

method achieves the highest combined average. Notably,
in comparison to Dual-AttentionGAN, our model demon-
strates a noteworthy improvement of 4.9 percentage points in
the average AUC value. Specifically, SCGAN shows a 6.1%
enhancement on the texture class and a 4.1% improvement on
the object class. Of significant importance, our model attains
a perfect 100% AUC for test results across the wood, screw,
and toothbrush.

Figure 9 illustrates select visualization outcomes from the
experiments. The experiments were conducted on a dataset
categorized into texture and object. Rows 1 through 4 display
the abnormal images and their respective localizations. Rows
5 and 6 depict the original image alongside its localized

version. From Figure 9, it is evident that SCGAN accurately
discerns normal images even without explicit annotation of
abnormal areas. Notably, SCGAN not only identifies abnor-
malities in product images with surface defects but also
precisely pinpoints the anomaly locations based on the cal-
culated abnormality probability. These experimental findings
underscore the efficacy of SCGAN in detecting surface qual-
ity issues in industrial product images. Furthermore, these
results offer valuable insights for real-world production qual-
ity assessment.

To showcase the robustness of our proposed network,
we conducted similar tests using the BTAD dataset.
The results of the tests for AE(MSE), AE(MSE+SSIM),
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VT-ADL, and SCGAN are presented in Table 2. Among
these, the experimental data for AE (MSE), AE(MSE+SSIM),
and VT-ADL were acquired from the referenced literature
[26]. Upon reviewing the table data, it is evident that VT-ADL
exhibits a relatively favorable detection performance, achiev-
ing an accuracy of 90%. However, our SCGAN model
surpasses VT-ADL by further enhancing the detection accu-
racy by 6.9 percentage points.

TABLE 2. Detection performance based on the BTAD datasets.
For comparison, we report the AUC% for the four networks.
Data underlined and bolded in the table are the optimal
values for each type of test result.

V. ABLATION STUDY
To showcase the effectiveness of our proposed method,
we conducted ablation experiments across three distinct sce-
narios. Firstly, we investigate the effect of hyper-parameters
on detection performance. Secondly, we empirically demon-
strated the influence of the number of CopyPaste patches
on detection performance. Thirdly, we delved into the
impact of MS-CAM and SSIM within the network. Lastly,
we conducted a comprehensive comparative analysis between
CopyPaste and various other enhancement strategies.

A. HYPERPARAMETERS
In order to optimize the model’s hyperparameters, we con-
ducted an exploration of the influence of various hyper-
parameters, as defined in Equation (10), on the model’s
overall performance. Figure 10 provides a visual repre-
sentation of the experimental results for these different
hyperparameters on the MVTec dataset. It is observed that

FIGURE 10. Hyper-parameter tuning for the model. The model achieves
the most optimum performance when α1= 1, α2= 40, α3= 1, and α4= 40.

when α1 = 1, α2 = 40, α3 = 1 and α4 = 40, the model attains
the highest AUC score. Under these settings, the model effec-
tively captures the semantic characteristics of the samples,
thereby enhancing its capability for accurate image anomaly
detection.

To examine the impact of hyper-parameters on anomaly
scores (AS) in the experiment, we initiate a discussion
regarding the value of β. The anomaly score is defined in
Equation (11), with the value of β chosen from the 0-1
interval to represent its magnitude in the experiment. Fig. 11
illustrates the experimental line chart of anomaly scores on
MVTec. The findings indicate that the network achieves opti-
mal performance and effectiveness when β is set to 0.8.

FIGURE 11. Results of the anomaly score experiment. When β = 0.8, the
network performance is optimal.

B. NUMBER OF COPYPASTE
While CopyPaste exhibited promising performance in our
experiments, the impact of the number of patches on the
experimental outcomes remains unclear. To address this,
we conducted ablation experiments on the MVTec dataset
using CopyPaste with varying numbers of patches. Specifi-
cally, we conducted experiments with N values of 10, 30, 50,
and 100. The corresponding results are presented in Table 3.

TABLE 3. CopyPaste ablation experiments on the MVTec covering
different number of patches. Data underlined and bolded in the table
indicate the optimal values for each type of case.
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The table data highlights that the model’s detection perfor-
mance suffers when N=100. This is attributed to excessive
enhancement, causing the patches to obscure the original
semantic features of the image. Essentially, the network loses
grasp of half the image’s dimensions, hindering comprehen-
sive feature learning. A comparison of the remaining three
cases indicates similar detection outcomes for N=10 and
N=50, registering at 94.2% and 93.6% respectively. Notably,
our model’s performance peaks at N=30, achieving an aver-
age AUC value of 95.1%. This is because when N=30, the
promotion and inhibition effects of CopyPaste on the network
reach a balance.

C. MS-CAM & SSIM
This section elucidates the impact of individual structures
on the experimental outcomes through ablation experiments.
We devised four distinct structures by manipulating the atten-
tion module and SSIM loss function within the network.
The specific choices for MS-CAM and SSIM are outlined in
Table 4.

TABLE 4. Options for four different network architectures.

As can be seen in Table 5, different network structures
achieved different detection results. Struc4 achieved the best
average AUC for a single class and the best in the combined
evaluation. Struc2 achieved the second best. The experimen-
tal results of the four different structures on MVTec illustrate

TABLE 5. AUC values on the MVTec with different sub-modules removed
as an indication of the effectiveness of the network improvements. Data
underlined and bolded in the table indicate the optimal values for each
type of test result.

the importance and effectiveness of the combined action of
MS-CAM and SSIM.

Figure 12 depicts the schematic of surface anomaly detec-
tion on bottles and grids under four different structures. The
first column of the figure displays the input test image, while
the second column showcases the ground truth of the anoma-
lies. Subsequent columns from the third to the last exhibit the
heat maps of the detection outcomes produced by the four
networks. The heat map provides visualization of the abnor-
mal location and size within the test image. Evidently, from
Figure 12, the detection effectiveness gradually increases
from left to right. The experimental findings indicate that
Struc4 yields the most accurate and finely detailed detection
results, closely approximating the ground truth.

FIGURE 12. Heatmap of some of the detection results. The colors in the
graph from blue to red indicate the degree of anomalies in the image
from small to large.

FIGURE 13. Enhancement results for different methods. The first row is
lens. The second row is the wood. The square patches in the figure are
small pixel areas used for enhancement.

D. ENHANCEMENT METHODS
To compare the various enhancement methods, Figure 13
visualizes five enhancement scenarios for the three methods
CopyPaste, Cutout and Confetti: Cutout (Standard) enhances
only the black patches; Cutout (Random Color) patches use
random color blocks; Confetti inserts colored patches; Copy-
Paste(Color Jitter) is a color jitter superimposed on a normal
object block.

Table 6 shows the experimental results of the above three
methods with different enhancement strategies. It can be seen
that Cutout’s detection is very poor for both black fill and
color fill. Confetti synthetic anomaly improves the detection
performance. Most importantly, the CopyPaste enhancement
strategy resulted in a significant improvement in network per-
formance in this task. It is worth mentioning that CopyPaste
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TABLE 6. Ablation experiments with different data enhancements.

with color dithering attached performs well on texture-like
data.

VI. CONCLUSION
Our objective is to extract features solely from normal
semantics to facilitate unsupervised anomaly detection.
To enable the network to comprehensively capture the nor-
mal semantics of industrial product images, we introduce a
novel enhancement technique termed CopyPaste. By lever-
aging the randomness of copy-paste, CopyPaste enhances
the model’s robustness effectively. Moreover, we incor-
porate a multi-scale channel attention module into the
encoder-decoder-encoder-based generative adversarial net-
work. Experimental results using two real-world datasets
underscore the superior anomaly detection performance of
our proposed method. In our future work, we plan to inte-
grate CopyPaste as an image augmentation module into a
wider array of models to enhance their feature extraction
capabilities. Furthermore, we are dedicated to expanding the
methodology presented in this paper to encompass anomaly
detection in diverse application scenarios.
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