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ABSTRACT The rapid growth of electric vehicle (EV) charging will present challenges to electrical
distribution networks and will affect grid operation and reliability. In order to improve the understanding
of EV charging behaviour, we present the open access EV Charging Profiles and Waveforms (EV-CPW)
dataset for AC charging. The dataset comprises of charging profiles and high-resolution current/voltage AC
waveforms for 12 different EV’s, including popular battery EV’s and plug-in hybrid EV’s. A power quality
analysis is carried out to compare the EV charging behaviours to new standards recommendations proposed
by standards agencies. This includes evaluating power factor, current and voltage distortion, harmonic
content and load behaviour in relation to grid voltage and frequency. The preliminary data analysis presented
reveals that each EV has distinctive charging characteristics and the power quality analysis indicates variation
in the on-board charger circuits employed by the EV’s. The EV-CPW dataset can be used for many more
applications and studies, including EV charging infrastructure planning, demand management, EV charging
coupled with renewable energy studies, power quality analysis, equipment lifetime studies and power
electronics design. The dataset can be accessed at https://doi.org/10.7910/DVN/F81CXW.

INDEX TERMS Electric vehicles, dataset, EV charging, level 2 charging, power quality, AC waveforms,
charging profiles.

I. INTRODUCTION
Over the last few years, there has been a noticeable increase in
electric vehicles (EV’s), representing a total of 14% of new
car sales globally in 2022 [1], including both battery EV’s
(BEV’s) and plug-in hybrid EV’s (PHEV’s). Public electric
charger stock has been increasing globally by 50% each
year since 2015 [1]. This surge in EV charging will directly
impact distribution networks and challenge grid operation
and planning.

Possible impacts from EV charging include:
• Peak loading: EV charging increases the loading in the
grid, which could worsen the peak demand and create
significant energy management challenges.

The associate editor coordinating the review of this manuscript and
approving it for publication was Dinesh Kumar.

• Network overloading: Increased loading results in
distribution lines reachingmaximum current, whichmay
require expensive line upgrades.

• Power quality issues: Harmonics are created due to
the power electronics required for EV charging which
will decrease the distribution network’s power quality
and could damage utility equipment and consumer
loads [2].

• Premature equipment failure: Higher current and
harmonics near EV chargers could lead to premature
failure of utility transformers [3].

• Capacity under-utilisation: Single-phase charging,
such as Level 1 and Level 2 chargers, can lead
to significant phase unbalance, that can results in
capacity under-utilisation when only one phase becomes
overloaded [4].
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Overall, these impacts could lead to reduced grid reliability
and costly network upgrades reflected in higher consumer
rates for everyone.

To accurately study the impact of EV charging, real data
is necessary, however datasets relating to EV charging are
scarce. Some datasets are generated by models such as the
EVI-Pro tool [5], which includes the aggregate charging data
for specific locations in the U.S. Real-world data is published
in the Vehicle Energy Dataset (VED) dataset that includes
fuel, energy and vehicle trajectory data for gasoline and
electric vehicles [6]. Existing EV charging datasets include
charging sessions of existing charger networks, such as
ACN-Data for the network located at CalTech University [7]
and a dataset for a large U.S. workplace in [8]. However,
these datasets contain lumped energy usage for each charging
session, without any EV charging profile resolution.

For EV specific behaviour, including high-resolution
charging data, most researchers rely on EV charger models
and simulations [9], [10], [11], [12], [13], rather than real
measurement datasets. Although Slangen et. al experimen-
tally tested nine BEV’s in order to assess harmonics, the data
is not published and the EV’s tested are not specified [14].
To the authors’ knowledge, EV charging data for spe-

cific EV’s, including charging profiles and current/voltage
waveforms, does not yet exist in the public domain. In this
paper, the EV Charging Profiles and Waveforms (EV-CPW)
dataset is published which contains measurement data from
12 different EV’s charged on an AC Level 2 (L2) charger.
This open access dataset includes 1-minute interval data for
each EV’s charging profiles, including real power, reactive
power, RMS voltage and RMS current. Additionally, high-
resolution AC current and voltage waveforms are captured
hourly and are sampled at 30 kHz. The EV’s tested
include popular EV’s in North America, including the Tesla
Model 3/Y, the Hyundai Ioniq 5 and the Toyota Prius
Prime.

Although developing standards exist for electric vehicle
supply equipment (EVSE), these do not apply to EV’s
and their on-board chargers. A need for new studies is
highlighted in [15], in order to recommend best practices
and improve standards to help ensure bulk power system
reliability, resilience, and security. In this paper, a preliminary
power quality analysis of the EV-CPW dataset is carried out
and compared with the recommended standards by proposed
by standards agencies [15], [16].
The contributions of this paper are summarised as follows:

1) The EV Charging Profiles and Waveforms (EV-CPW)
dataset is presented and made publicly available.
It includes charging profiles and high-resolution tran-
sient current/voltage waveforms for 12 EV’s.

2) A power quality analysis, including power factor,
distortion, harmonic analysis, and load behaviour
is carried out on the 12 EV’s and compared to
EV standard recommendations proposed by standards
agencies.

II. DATASET USAGE
The dataset published can be used by researchers for a
wide range of studies. Potential applications of the 1-minute
charging profiles include but are not limited to:

• Power flow analysis: High time-resolution three-phase
power flow can be studied to facilitate EV charger infras-
tructure planning. This includes grid compliance studies,
and optimal siting and sizing of EV chargers [17]. This
also facilitates the integration of EV chargers coupled
with renewable energy sources (RES), as studied in [18]
for solar PV.

• Energy management studies: Demand side manage-
ment of EV chargers can be studied, for example smart
charging algorithms for scheduling and control [19],
vehicle-to-grid (V2G) techniques [20], peak shaving
strategies and the impact of time-of-use pricing [2].

• Electric mobility patterns: By coupling EV-CPW
with other existing datasets such as VED [6], and
ACN-data [7], EV charging patterns alongside EV
driving patterns and trajectories can be studied to
assess the overall EV usage, improve the siting of EV
chargers, study consumer behaviour and the impact on
transportation emissions.

Potential applications for the current/voltage AC wave-
forms in the EV-CPW include but are not limited to:

• Power quality analysis: Harmonic analysis, distortion,
power factor of distribution networks as a result of
EV charging can be analysed. Moreover, equipment
lifetime assessments can be carried out, specifically for
transformers that are known to be poorly affected by
harmonics [3].

• Equipment design: The transient waveforms can be
used to study power electronics and controller design.
This includes the design of on-board and off-board
chargers, RES converters located near EV chargers, and
converters used for grid services such as such as active
power filters used to filter out harmonics.

• EV battery lifetime assessment: The impact that
different charging profiles and on-board charger power
quality has on battery health and lifetime can be
analysed [21].

III. EV CHARGER TYPES
EV chargers can be categorised as either AC or DC charging.
AC chargers include Level 1 (L1) and Level 2 (L2) chargers,
which are single-phase connected to the grid, as seen in Fig. 1.
L2 and L1 chargers are similar, but L2 chargers operate at
a higher voltage than the L1 chargers, allowing for faster
charging. These charger types rely on the EV’s on-board
charger, as seen in Fig. 1, to convert AC to the DC voltage
required at the battery. In North America, the AC connector
used is SAE J1772 [22] but different connectors are used in
Europe and China although similar voltage ranges are used
for AC charging (208-240 V) [2].
DC chargers, also known as Level 3 (L3), comprise of a

AC-DC three-phase converter within the charger itself which
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is known as an off-board charger, as seen Fig. 1. Therefore,
the grid impact due to L3 charging is dictated by the charger
design, whereas for L2 charging it is dictated by the EV’s
on-board charger design, for which many topologies and
controllers exist [21].

Both BEV’s and PHEV’s are compatible withAC charging,
whereas a smaller fraction of EV’s, typically BEV’s only,
can use DC charging. Level 2 charging has so far been more
popular for public charging [1] which may also be due to the
lower cost compared to Level 3 chargers. In this paper, the
EV charging data from AC charging is collected, by charging
EV’s on Level 2 chargers.

FIGURE 1. Simplified diagram of L2 and L3 charger connections. The L2
(AC) charger is a direct connection to the grid and requires an on-board
charger before the battery management system (BMS).

IV. STANDARDS AND RECOMMENDATIONS
The developing standards for EV chargers include the
international standard IEC 61851-1 [23] and CSA C22.2 No.
280 which is tri-national standard with NMX-J-677-ANCE
and UL 2594, for Canada, U.S. and Mexico [24].

Standards required for on-board chargers tend to be cus-
tomer load and small home appliances standards, for example
IEEE 519 [25], IEC 61000-3-2 [26] and IEC 61000-3-12
[27]. IEC 61851-21-1 is the only on-board charger specific
standard and has the same harmonic limits as the IEC
61000 series.

Standards are still developing for both on-board and off-
board charging, but so far power quality standards specific
to EV charging do not exist [13]. Regulatory and standards
organisations have recently formed working groups in order
to provide recommendations for best practices for EV
charging, in order to improve the standards [15], [16].
California Mobility Center (CMC), the North American
Electric Reliability Corporation (NERC) and the Western

Electricity Coordinating Council (WECC) recommended
‘‘grid-friendly’’ EV charging behaviour [15]. Additionally,
the Society of Automotive Engineers (SAE) produced a rec-
ommended practice document for power quality requirements
for plug-in EV chargers [16].

A. LOAD BEHAVIOUR
Loads connected to the grid can be categorised as con-
stant impedance, constant current, or constant power.
Electronically-coupled loads, such as the power electronic
converters found in chargers, tend to maintain either constant
power or constant current level regardless of voltage and
frequency [28]. Constant power loads exacerbate system
instability because during events when the voltage reduces,
the load draws more current in order to maintain constant
power [15]. Moreover, if the utility requires a decrease
in loading they cannot conveniently decrease the system
voltage to achieve this. In contrast, constant current loads
reduce in power when the system voltage decreases. The
NERC/CMC/WECC working group suggests that EV charg-
ers and EVSE’s should employ a steady-state control strategy
that use constant current control rather than constant power
level control during normal operations [15].
Moreover, the NERC/CMC/WECC working group sug-

gests that EV’s and EVSE’s should support reliability by
actively contributing to the system’s frequency response [15].
They recommend that EV/EVSE’s should employ a control
strategy to ensure that active power consumption is propor-
tional to the frequency measured at the EV charger [15], [28].

B. HARMONICS
In the grid, the AC voltage and current waveforms should
ideally be pure sinusoidal waveforms at the fundamental
frequency (60 Hz). However, higher frequencies typically
exist due to non-linear loading. These higher frequencies
are integer multiples of the fundamental frequency and are
known as harmonics [16].

1) CURRENT HARMONICS
Current harmonics are undesired, as only the fundamental
frequency contributes to power delivery, whereas harmonics
only result in losses such cable heat [16]. Moreover, current
harmonics can lead to voltage distortion which may cause
damage to other equipment and appliances connected to
the grid. To assess the current harmonics, the current total
harmonic distortion can be measured as,

THDi =

√∑
∞

h=2 I
2
h

I1
(1)

where I1 is the rms of the fundamental harmonic, and Ih the
rms of the harmonics. THDi becomes high for small currents,
therefore total demand distortion is more commonly used,

TDD =

√∑
∞

h=2 I
2
h

IL
(2)

where IL is the maximum circuit current.
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FIGURE 2. Experimental test setup diagram showing the EV connection to charger via the sensor. The sensor data collected
includes charging profiles and voltage/current waveforms.

The recommended limit by the SAE for each current
harmonic is outlined in Table 1, with a total TDD limit of
10% for all current ranges [16].

TABLE 1. SAE Recommended individual hamonic limits and TDD limit for
AC Level 2 current ranges [16].

2) VOLTAGE HARMONICS
The SAE recommendation for voltage harmonics, refers to
the IEEE 519 standards for utilities [16], [25]. Similarly to
current distortion, total harmonic distortion for voltage is
given by,

THDv =

√∑
∞

h=2 V
2
h

V1
(3)

IEEE 519 states that the THDv should not exceed 5%, and no
individual voltage harmonic should exceed 3% [25].

C. POWER FACTOR
Although reactive power control is beneficial to system
stability and operation, the presence of unintended reactive

TABLE 2. Properties for each EV in the EV-CPW dataset, including year,
type and maximum L2 charging power.

power loading in distribution networks leads to higher
currents and losses in the lines, and minimises the capacity
for real power delivery. Therefore, restricting power factor
in passive loads improves system efficiency. Power factor is
calculated as,

PF =
P
S

(4)

where P is real power and S apparent power.
The NERC/CMC/WECC working group suggests a power

factor limit of 0.985 or higher (leading or lagging) for EV
chargers [15], whereas the SAE recommendation suggests a
power factor limit of 0.95 or higher [16].

V. DATA COLLECTION
The 12 EV’s tested as part of this dataset are outlined in
Table 2, alongside their properties and the abbreviation used
to refer to them in the remainder of the paper. Both BEV’s and
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TABLE 3. Description of charging profile data provided for each EV in files called Charging_Profile.csv.

PHEV’s are tested, with varying L2 charging power dictated
by their on-board chargers.

FIGURE 3. Experimental test setup showing the L2 charger, the cable
extension and sensor - Toyota Prius Prime under-test.

During the data collection, the EV under-test is connected
to a 6.6 kW Level 2 charger as seen in Fig. 2. A PQube3®

AC analyzer is placed within the charger cable to measure
the voltage and current into the EV. The physical test setup
is seen in Fig. 3 for the Toyota Prius Prime under-test, and a
close up of the sensor and extension is seen in Fig. 4.

FIGURE 4. Close up of extension cord and built-in sensor, comprising of
the PQube 3 AC analyzer, a circuit breaker and a battery pack.

The data collection mostly took place in the same location,
Station A, shown in Fig. 3, over several weeks. This location
is in a parking lot connected to an urban grid in Surrey,
Canada. Only the Mitsubishi Outlander was tested elsewhere

in a suburban grid at Station B. The two stations’ parameters
are outlined in Table 4.

TABLE 4. Stations’ parameters.

From the data collected by the PQube3® the EV-CPW
dataset is formed comprising of:

1) The EV charging profile of each vehicle in 1-minute
interval data, which includes rms voltage and current,
real and reactive power and grid frequency, as seen in
Table 3. The data includes the minimum, average and
maximum values of these measurements during each
1-minute interval.

2) The EV high-resolution current/voltage ACwaveforms
are collected hourly and at a higher rate during the
end-of-charge period. The waveforms include eight
waveform cycles, and the current and voltage measured
are sampled with 512 data points per cycle (60 Hz),
hence 32.6 µs intervals. The waveform data is outlined
in Table 5.

TABLE 5. Description of waveform snapshot data provided in files called
Waveform_x.csv.

The file structure of the EV-CPW dataset is represented in
Fig. 5.

VI. DATA ANALYSIS
In this section, the data collected is analysed for both the
charging profiles and the waveforms, comparing the findings
to the standard recommendations outlined in Section IV.

A. CHARGING PROFILES
All charging profiles include the maximum, minimum and
average real power measured in each 1-minute interval,
as seen for the Toyota Prius Prime in Fig. 6. The blue dots
indicate the times at which the AC waveform snapshots are
recorded.
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FIGURE 5. File structure of the EV-CPW Dataset.

For the Toyota Prius Prime, the real power profile is seen
to regularly drop to zero, around every 15 minutes, and even
more frequently at the start of charging. This same periodic
turn-off behaviour is seen for the Lexus NX 450h+, in Fig. 7.
Lexus is owned by Toyota, so these EV’s most likely use
similar on-board chargers. None of the other EV’s tested had
this periodic turn-off behaviour. In their end-of-charge phase,
both EV’s drop to a lower charging power of around 1 kW in
the last 15 minutes or so of charging.

FIGURE 6. Charging Profile for the Toyota Prius Prime.

FIGURE 7. Charging Profile for the Lexus NX 450h+.

The Tesla Model Y, Fig. 8, shows constant charging
behaviour but drops down to a lower charging power at 12:50
pm due to shared charging with another EV connected during
that period. The Tesla Model 3, seen in Fig. 9, charged at full
charger power, but drops to zero after the first 20 minutes
of charging and returns to full power 5 minutes later. The

Tesla Model Y and 3, did not reach full charge during the data
collection, so the end-of-charge behaviours are not available.

Table 6, shows the charger station used for each charging
session, the duration of each session andwhether the charging
stopped by the end of the session. The EV’s with a lower
battery capacity stopped charging indicating a full charge.
However, due to the time constraint and the slower rate of
charging provided by L2 charging, the EV’s with high battery
capacity were not fully charged by the end of testing. Due to a
data accessibility constraint the state-of-charge (SOC) of each
vehicle before and after the charging session is not available.

TABLE 6. Properties for each EV charging session including EV battery
size, station used, duration of charging and whether or not charging
stopped by the end of the charging session.

FIGURE 8. Charging Profile for the Tesla Model Y.

FIGURE 9. Charging Profile for the Tesla Model 3.

The Volvo XC-40, Fig. 10, shows constant charging
behaviour for the first four hours of charging, but shows
very unsettled behaviour for the last two hours before it is
unplugged. In this second period, the real power is seen to
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fluctuate between maximum charger power and zero power
within each 1-minute interval.

The Nissan Leaf, Fig. 11, shows a mostly constant
charging behaviour, with some short sections where the
power fluctuates between two levels. The end-of-charge
behaviour starts at 14:00, with a smooth decrease, followed
by a few pulses in the last 30 minutes.

FIGURE 10. Charging Profile for the Volvo XC-40.

FIGURE 11. Charging Profile for the Nissan Leaf SV.

The Mitsubishi Outlander, Fig. 12, shows a constant
charging behaviour, although the power drops to 250 W after
the first 10 minutes of charging, then shortly returns to full
power charging. This behaviour was repeated in subsequent
charging sessions carried out to ensure that this was not an
experimental error. The end-of-charge phase begins at 23:45,
with a smooth decrease down to 250 W and a sharp decrease
to zero.

FIGURE 12. Charging Profile for the Mitsubishi Outlander.

The Hyundai’s, Fig. 13-14, both charged at a constant rate,
and reached full charge. The Hyundai Ioniq 5, Fig. 13, has
a straight cut-off when fully charged unlike other EV’s that
gradually drop to lower powers in the end-of-charge phase.

Most EV’s have a small amount of negative reactive power,
i.e. capacitive loading behaviour, as seen for the Toyota Prius
Prime in Fig. 15, but only the Tesla’s have a positive reactive
power i.e. inductive loading behaviour.

FIGURE 13. Charging Profile for the Hyundai Ioniq 5.

FIGURE 14. Charging Profile for the Hyundai Ioniq Electric.

FIGURE 15. Reactive power charging profile for the Toyota Prius Prime.

B. VOLTAGE WAVEFORMS
The high-resolution AC voltage and current waveforms were
recorded on an hourly basis, with additional snapshots used to
capture the end-of-charge behaviour. The urban grid voltage
(Station A), ranged from 195-210 V during all charging
sessions, which is slightly lower than the expected 208-240 V
required for Level 2 charging. However, this would not cause
any issues for the EV charging since the minimum voltage
required is 120 V as used in Level 1 chargers. An example
voltage waveform, taken for the Toyota Prius Prime charging
data, is shown in Fig. 16.

FIGURE 16. Voltage waveform taken during the Toyota Prius Prime
charging session in the urban grid.

The Mitsubishi Outlander, however, was charged in a
different location (Station B), connected to a suburban grid,
which has higher voltages of around 240 V and much more
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distortion, as seen in Fig. 17. This is also clear from the
THDv box plot, Fig. 18, where the Mitsubishi Outlander is
seen to have experienced a much worse THDv than the other
EV’s. The THDv is seen to be high for the suburban grid,
evenwhen theMitsubishi Outlander is not charging, therefore
indicating that this is a grid issue and not an issue caused by
EV charging.

In Fig. 18, none of the THDv values exceed the IEEE
519 limit of 5%. However, from the Fast-Fourier Transform
(FFT) of the suburban grid, Fig. 19, it is seen that the third
harmonic does exceed the 3% individual harmonic limit,
imposed by IEEE 519 and recommended by SAE [16], [25].
Once more, this is a reflection on the grid’s power quality
rather than the effect of EV charging.

FIGURE 17. Voltage waveform taken during the Mitsubishi Outlander
charging session in the suburban grid.

FIGURE 18. Voltage THD for all EV waveforms, in comparison to the IEEE
519 limit shown in the dashed red line.

FIGURE 19. FFT of a voltage waveform from the Mitsubishi Outlander
data compared to the recommended harmonic limits set by IEEE519.

C. CURRENT WAVEFORMS
The distortion in the current waveforms increases as the
charging power decreases, for all the EV’s, as seen in

Figs. 20-24, which show higher power and lower power
current waveforms. The lower power waveform snapshots are
taken during the end-of-charge phase when the power reduces
as it decreases to zero, and also during the reduced power
phase of the Tesla Model Y.

The current waveforms greatly differ for each EV, indi-
cating that different on-board charging circuits are used for
rectification. For the Toyota Prius Prime, the third harmonic
is visible in the lower current waveform, Fig. 20. For the
TeslaModel Y, Fig. 21, significant distortion is visible in both
higher and lower power current waveforms, including a high
7th harmonic, as well as zero-crossing distortion where the
current is seen to flatten out.

FIGURE 20. Current waveforms for higher power and lower power
charging for the Toyota Prius Prime.

FIGURE 21. Current waveforms for higher power and lower power
charging for the Tesla Model Y, with a zoom window showing the AC
current zero-crossing.

The Nissan Leaf current waveforms, Fig. 22, has little
distortion but some periodic notches are visible in the
higher power waveform. The Lexus NX 450h+ current
waveform, Fig. 23, has little distortion at higher power,
however resembles a triangular wave at lower power. The
Mitsubishi Outlander current waveform, Fig. 24, had the least
distortion of all EV’s tested.

FIGURE 22. Current waveforms for higher power and lower power
charging for the Nissan Leaf SV.
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FIGURE 23. Current waveforms for higher power and lower power
charging for the Lexus NX 450h+.

FIGURE 24. Current waveforms for higher power and lower power
charging for the Mitsubishi Outlander.

FIGURE 25. Current TDD for all EV current waveforms, in comparison to
the recommended limit proposed by SAE shown in the dashed red
line [16].

The TDD from all the current waveforms is represented
in Fig. 25. This shows that all EV’s are below the 10%
recommended limit set by SAE [16], except for the Hyundai
Ioniq 5 which has the highest TDD. This is reflected in its
current waveforms, for example the one in Fig. 26, and its
associated FFT, Fig. 27.
Despite the Mitsubishi Outlander being connected to the

grid with the highest THDv of almost 5%, it has the lowest
TDD out of all the EV’s. It has a lower charging power
than the other EV’s which was was taken into account in
the TDD by setting IL to the EV’s maximum current rather
than the charger’s maximum current (2). In comparison to the
Hyundai Ioniq 5 current FFT, Fig. 27, the current harmonics
of the Mitsubishi Outlander are very small, as seen in
Fig. 28.

D. POWER FACTOR
The power factor from all current/voltage waveforms of each
EV is represented in a box plot in Fig. 29. Generally, all EV’s

FIGURE 26. Current waveform from the Hyundai Ioniq 5.

FIGURE 27. FFT of a current waveform from the Hyundai Ioniq 5,
compared to the recommended harmonic limits proposed by the SAE.

FIGURE 28. FFT of a current waveform from the Mitsubishi Outlander,
compared to the recommended harmonic limits proposed by the
SAE.

are within the NERC/CMC/WECC recommended limit of
0.985 [15] and the 0.95 limit recommended by SAE [16].
Several EV’s have one instance where the power factor

FIGURE 29. Power factor for each EV current/voltage waveforms in
comparison to recommended limit proposed by NERC/CMC/WECC shown
in the dashed red line [15].
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is below 0.985, which occurred during their end-of-charge
phase.

FIGURE 30. Performance curves for voltage sensitivity compared to the
recommended behaviour proposed by Quint et al. [28].

E. LOAD BEHAVIOUR
As discussed in Section IV-A, it is desirable from a
grid perspective for EV’s to behave as constant current
loads rather than constant power loads. Fig. 30 shows
the power/voltage and current/voltage relationships for all
the EV’s. The average current, voltage and power values
from the 1-minute interval data are used, filtering out
the data points from the controlled end-of-charge period,
and the periodic turn-off behaviours. The recommended
performance curves established byQuint et al. [28], shows the
recommended constant current and power behaviour, as seen
in Fig. 30. Although the range of voltages for the tested
EV’s is narrow, the existing data shows a constant current
behaviour within this range, but further data is required to
conclude on the load behaviours of EV’s. The few lower
power data points from the Tesla Model Y are due to its lower
power charging period when another EV charged next it.

FIGURE 31. Performance curves for frequency sensitivity compared to the
recommended behaviour proposed by Quint et al. [28].

For the frequency sensitivity, Fig. 31, Quint et. al recom-
mend a frequency droop, as seen in Fig. 31. For the data
collected, there seems to be no droop control present in the
on-board chargers of the EV’s tested, as the power varied
largely in the narrow frequency range measured, as seen

in Fig. 31, however a larger frequency range is needed to
validate this.

VII. DISCUSSION
By comparing the EV charging data of the EV-CPW dataset,
it is clear that the 12 EV’s studied have greatly varying
charging behaviour and power quality, indicating that there
is no common consensus on on-board charger design and
charging control. This increases the challenge in studying the
effect of EV charging on the grid through using models and
clearly demonstrates the benefits of using real measurement
data.

From the EV charging profiles, seen Figs. 6-12, it is seen
that different charging protocols are implemented by the
different EVmanufacturers. Some unexpected behaviours are
observed, such as the periodic turn-off behaviours seen in
the Toyota Prius Prime and Lexus NX 450h+, Fig. 6 and
Fig. 7, and the fluctuating power seen in the Volvo XC-40,
Fig. 10. These behaviours could lead to challenges for energy
management systems (EMS) which would have to rapidly
control energy flow during these short pulses. This could
become even more challenging as more non-dispatchable
renewable energy resources become a larger part of the power
supply.

In terms of power quality, most EV’s in the EV-CPW
dataset were found to be within the recommended limits
set by SAE and NERC/CMC/WECC [15], [16], however
the combined effect of EV charging must be considered.
For example, cluster charging in parking lots, may lead to
superposition of harmonics and a deteriorating grid power
quality. On the other hand, since the EV’s are seen to produce
varying harmonic content with varying phase then cluster
charging may actually lead to cancelling out of harmonics
and a smoothing behaviour. Due to the variable nature of
EV charging, remedying variable power quality issues may
require dedicated equipment such as active power filters to
filter out the harmonics [29].
Moreover, Level 2 charging is single-phase charging,

which can lead to significant levels of phase unbalance [18],
specifically in the case of cluster charging. Having access
to real charging profiles facilitates the grid analysis of
phase unbalance at higher resolution. Based on such studies,
dedicated equipment to tackle phase unbalance may be
required such as power redistributing converters [30], [31].
EV charging is predicted to increase the loading of

the grid, and therefore various methods of peak shaving
are being explored such as V2G, time-of-use pricing and
even smart charging algorithms which restrict the flow
of power through the EV chargers. It was seen in the
EV-CPW current waveforms, that reduced power leads to
increased current distortion. Although TDD decreases at
lower powers, since the charging current is lower, the
combined currents in a cluster charging setup could lead to
significant current harmonics through the utility transformer.
Therefore, restricting power through EV chargers may lead to
a trade-off between loading and power quality, and also may
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become a frustration to EV owners who prefer to charge at full
power. The relationship between power quality and charging
current is also observed in [14].

VIII. CONCLUSION
To improve the understanding of EV charging behaviour,
the open access EV-CPW dataset for AC charging is pub-
lished, comprising of charging profiles and current/voltage
waveforms for 12 different EV’s. From the charging profiles,
a wide variation in charging behaviour is observed, with
unexpected periodic turn-off pulses for the Toyota Prius
Prime and Lexus NX 450h+, and rapid power fluctuations
in the Volvo XC-40.

The AC current waveforms reveal variations in harmonic
content, distortion and general waveform shape, indicating
variations in on-board charger circuit and control designs.
The power quality analysis and comparison to recent
standards recommendations, shows that all EV’s remain
within the 10% TDD limit, except from the Hyundai Ioniq
5. The power factor recommended limit of 0.985 is met by all
EV’s, however it is seen to be violated in the lower charging
powers, such as the end-of-charge phase, where the current
distortion is also seen to increase.

This preliminary power quality analysis reveals important
insights into the EV charging behaviour. The EV-CPW
dataset can be used for many more applications and studies,
by researchers and industry alike, in order to guide the
electrification of transportation without compromising the
reliability and operation of the grid.

IX. DOWNLOADING EV-CPW
EV-CPW is a free publicly available dataset, available in the
Harvard Dataverse: https://doi.org/10.7910/DVN/F81CXW
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