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ABSTRACT Accurate time delay estimation is critical in sound source localization methods that rely on time
difference of arrival. Background noise and reverberation often introduce errors in time delay estimation.
Generalized cross-correlation (GCC) functions, paired with different weighting functions, can adapt to
various sound field environments for time delay estimation. To create a highly accurate time delay estimation
method suitable for universal sound field conditions, this paper proposes a novel approach, which involves
training multi-class weighted generalized cross-correlation features using a convolutional neural network.
Various weighted GCC functions are employed to extract time delay features for the same microphone
pairs. These time delay features from multi-class weighted GCC are fused to create a feature matrix. The
feature matrix is then input into a convolutional neural network composed of convolutional layers and fully
connected layers for training and prediction. In the network, time delay estimation is achieved using two
different methods: regression and classification, with mean squared error and cross-entropy serving as loss
functions, respectively. The proposed method is tested and validated through simulation scenarios featuring
various signal-to-noise ratios and reverberation conditions. Time delay estimation results are compared with
recent state-of-the-art (SOTA) methods, assessing accuracy, root mean square error, and mean absolute error.
The results demonstrate that the proposed method achieves an impressive 3.36% enhancement in overall
delay estimation accuracy (within 10cm), reduces the absolute error by 11.53%, and significantly decreases
the estimated root mean square error by 16.07% compared to existing SOTA methods. Furthermore, the
proposed model offers the advantages of compact size and efficient computational performance when
compared to existing methods. These findings underscore the exceptional comprehensive performance of
the proposed model in sound source localization applications.

INDEX TERMS Sound source localization, time delay estimation, generalized cross-correlation,
convolutional neural network, feature fusion.

I. INTRODUCTION
Time difference of arrival (TDOA) -based sound source
localization algorithms is the most extensively studied
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two-step localization technique. It is evident that accu-
rate time delay estimation (TDE) plays a crucial role in
determining the positioning accuracy. And TDE plays a
crucial role in various acoustic positioning applications, such
as sound source tracking [1], robot localization [2], and
self-calibration [3]. It serves as a fundamental component
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in accurately determining the spatial information of the
sound source in these scenarios. In a typical setup, TDE is
performed by analyzing the signals received by a synchro-
nized array of microphones with known positions. Since the
transmitted waveform and its transmission time are unknown,
direct determination of the time of travel from the sound
source to the microphones is not possible. Instead, the TDE
is measured by correlating the received signals. By collecting
a set of TDE measurements from the microphone array,
it becomes feasible to compute the direction of arrival (DOA)
of the sound signal or even the position of the sound source
using multilateration techniques [4].

The generalized cross-correlation (GCC) has been the
most widely adopted method for TDOA estimation for
many decades.In particular, the GCC with phase trans-
form (GCC-PHAT) [5] filter is commonly used in many
acoustic scenarios, due to its fast implementation and
robustness in adverse environments. GCC-PHAT is based
on a cross-correlation function between filtered versions of
the received signals. The PHAT is a filter that uses the
magnitude information of the cross-correlation to normalize
the narrowband components, increasing the resolution of the
TDOA function if compared to a simple cross-correlation.
The GCC-PHAT is computed in the frequency domain using
the fast Fourier transform (FFT) technique. This involves the
calculation of the cross-spectrum, followed by the application
of the PHAT filter. Finally, the inverse FFT is performed to
obtain the time delay estimation function. The GCC-PHAT
provides good TDE in moderate noisy and reverberation
conditions. However, the estimation performance of the
GCC-PHAT deteriorates significantly when reverberation or
noise is high. Many methods have been proposed to improve
robustness in adverse conditions. A class of TDE methods
is based on the blind system identification [6], [7], [8],
[9], which focuses on impulse responses between a source
and the microphones. These methods require a certain time
for the convergence of the filter to estimate the impulse
responses, and in particular the direct path dominant peak.
Thus, the practical application of this class of methods is
very difficult. Other approaches exploit the use of redundant
information among several microphones [10], [11], [12].
These methods are thus useful when more than a microphone
pair is available.

With the recent advent of deep learning, a wide variety of
methods for sound source localization have been developed.
These methods process the raw waveforms or spectrograms
of the signals without using cross-correlations [13]. And
some of these methods train the neural network models to
directly predict the DOA [14], [15] or sound source coordi-
nates [16]. However, machine learning has also been applied
in various cases to address the TDE problem.Wang et al. [17]
proposed a cross-correlation with time-frequency masking
predicted by a deep neural network based on bidirectional
long short term memory networks. The goal of the deep
learning masking is to emphasize the time-frequency units

dominated by the target speech. Ding et al. [18] processed
the cross correlation sequence by a deep neural network
with an output of 10 dimensional vector for TDE val-
ues. Comanducci et al. [19] proposed a frequency-sliding
GCC with a convolutional neural network (CNN). The
frequency-sliding allows the calculation of sub-band GCC
for an arbitrary frequency band. The CNN serves as a
fully convolutional denoising autoencoder, with its output
representing the complete TDE function. Salvati et al. [20]
introduced a scheme that employs a residual CNN to calculate
TDE directly from the original waveform. This approach is
utilized in the context of joint sound source recognition and
localization tasks. In this approach, the PGCC-PHAT model
is proposed, which entail the computation of parameterized
GCC-PHAT and further processing of the outputs using a
CNN to predict TDE for two signals. While this method
effectively reduces the average error, it faces challenges
when making precise predictions within a few samples,
a critical aspect for achieving high-precision localization.
Berg et al. [21] proposed the NGCC-PHAT model for
TDE by filtering the raw waveforms using SincNet-based
network before computing the GCC-PHAT. This network
can be trained to exploit patterns in the data, e.g. the
acoustic properties of human speech, in order to remove the
effects of noise and reverberation. Furthermore, by using
a shift equivariant CNN (SE-CNN), the network can learn
to find useful representations while preserving the timing
information contained in the signal. The method is able to
consistently improve detection accuracy over the baseline
GCC-PHAT and PGCC-PHAT. But the cost is that more
calculations are required, which has a huge impact on the
real-time performance of TDE. Shi et al. [22] introduced
a dual-branch transformer CNN structure designed for face
super-resolution. This approach leverages multiple neural
networks to extract features, and the integration of features
from different neural network branches is a noteworthy and
valuable concept.

To enhance the performance of GCC for TDOA estimation
in the presence of noise and reverberation, this paper presents
a novel approach using CNN-Based Multi-GCC Feature
fusion (MGCCFF) for TDE in sound source localization.
The proposed method leverages multiple types of weighted
generalized cross-correlation function (WGCCF), each with
distinct delay estimation characteristics, to construct a feature
matrix. By incorporating multiple WGCCFs, the feature
matrix captures diverse time-delay information patterns
derived from the same pair of microphone signals. This
allows the model to exploit a rich set of temporal cues
for more accurate delay estimation. The CNN is then
employed to process the feature matrix, utilizing its ability
to learn complex patterns and relationships in the data.
By training the network on a large dataset, it can effectively
extract discriminative features and estimate the time delay
with improved accuracy. By fusing the multi-class WGCCF
features using the CNN, the proposed method combines
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FIGURE 1. The holistic architecture of the proposed estimation model.

the strengths of different delay estimation characteristics,
enhancing the robustness and accuracy of TED even in chal-
lenging acoustic environments characterized by interference
noise and reverberation.

The main contributions of this paper are as follows:
(1) A novel method of time delay estimation for sound

source localization based on convolutional neural network
and multi-class weighted generalized cross-correlation fea-
ture fusion model is proposed, which is proved to effectively
improving delay estimation accuracy in low signal-to-noise
ratio and high reverberation situations.

(2) Two types of output methods, namely regression output
and regression-via-classification output, were designed for
the proposed method. Under different output methods, the
experiments demonstrated that the proposedmethod achieved
optimal levels of accuracy and robustness respectively for
time delay estimation in complex environments compared to
existing methods.

(3) The model architecture proposed in this paper is metic-
ulously designed, showcasing substantial improvements
compared to existing methods, as it requires only around
1MB of hardware memory and computational resources.
This significant enhancement in resource efficiency makes it
highly valuable for practical engineering applications.

This paper is organized as follows. In Section I the related
work by other scholars are presented. Section II introduces
the proposed method. Section III describes the specific
process of the simulation experiment, including indoor
environment modeling, data processing, model training and
testing. In Section IV the effectiveness of the proposed
method is validated through simulation experiments and
compared with other methods from multiple perspectives.
Finally, Section V draws conclusions.

II. PROPOSED METHOD
A. OVERVIEW
The proposed method in this paper utilizes a feature matrix
obtained by extracting generalized cross-correlation with
different weighting functions from two microphone signals.
The feature matrix is then fed into a CNN to estimate TDE
of the sound source. The overall architecture of the proposed
model is illustrated in Fig.1

B. WEIGHTED GENERALIZED CROSS-CORRELATION
GCC represents the degree of correlation between two
signals. In acoustic field, GCC is commonly used to estimate
the time delay between two microphone signals, which is
received from a sound source by a set of synchronized
microphones. GCC computes the cross-power spectrum
between the two signals. Then the inverse transformation
is performed to obtain the cross-correlation function in
the time domain. The time delay between the two sets of
signals is determined by identifying the time corresponding
to the extreme value of the cross-correlation function. For
the weighted GCC, weighting operations are applied in the
frequency domain, which can achieve specific effects, such
as noise reduction and dereverberation. The flowchart of the
generalized cross-correlation delay estimation algorithm is
illustrated in Fig. 2.

FIGURE 2. The flow of the generalized cross-correlation delay estimation
algorithm.

Specifically, let’s consider a reverberant three-dimensional
room where two microphones are positioned at locations
r1, r2 ∈ R3 and a single sound source positioned at
rs ∈ R3 emitting an unknown acoustic signals. Assuming a
time-window of N samples, the received signals x1, x2 ∈ RN

from the two microphones can be written as

x1[n] = h1[n] ∗ s[n] + w1[n] (1)

x2[n] = h2[n] ∗ s[n] + w2[n] (2)

where h1[n], h2[n] and w1[n], w2[n] represent the channel
impulse responses from the source to the microphones and
additive white noise respectively. s[n] is the time signal of
sound source. n = 0, 1, · · · ,N − 1.

Taking the discrete Fourier transform (DFT) of both sides
of equation (1),(2) yields

X1[k] = H1[k]S[k] +W1[k] (3)

X2[k] = H2[k]S[k] +W2[k] (4)

where k = 0, 1, · · · ,N − 1.
Then, the weighted generalized cross-correlation is

defined as

R(τ, k) = F−1

[
N−1∑
k=0

ϕ(k)X1(k)X∗

2 (k)

]
(5)

where R(τ, k) is the result of the weighted generalized
cross-correlation. ϕ(k) represents the weighting function.
X1(k)X∗

2 (k ) is the cross-power spectral density of signals x1
and x2, and F−1[•] represents the inverse discrete Fourier
transformation.
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TABLE 1. GCC weighting functions.

In equation (5), τ ∈ [−τmax , τmax]. τmax is the maximal
delay for a microphone pair, which is typically taken as

τmax = ∥r1 − r2∥Fs/c (6)

where c is the speed of sound and Fs is the sample rate.
∥r1 − r2∥ represents the Euclidean distance between the
microphone positions r1 and r2. So the maximum time delay
τmax is measured in terms of the number of samples.
Theoretically, the significant peaks in Equation (5) repre-

sent sound sources, and the number of peaks is equal to the
number of sound sources. The abscissa corresponding to the
effective peak is the estimated value of TDE. The estimated
time delay is then obtained as

τ̂ = argmax R(τ, k) (7)

In the cross-correlation calculations, the introduction of a
weighting function ϕ(k) in the frequency domain is crucial.
The reason is that reverberation and noise can significantly
affect the estimation accuracy. Different weighting functions
can help suppressing noise and reverberation, leading to
more prominent peaks in the time delay calculation. As a
result, various weighting functions with different sensitivities
to different environments have been developed. One widely
used example is the PHAT weighting function in the general-
ized cross-correlation algorithm, known for its robustness in
adverse environments and its simplicity of implementation.
Typical weighting functions from articles [5], [23], [24], [25],
[26] are summarized in Table 1.
Supplement: G11(k) and G22(k) are the autopower spec-

trum functions of signals x1 and x2 respectively. G12(k) is the
cross power spectral density function of signals x1 and x2.
Then the related expressions are as follows:

G11(k) = X1(k)X∗

1 (k) (8)

G22(k) = X2(k)X∗

2 (k) (9)

G12(k) = X1(k)X∗

2 (k) (10)

γ (k) =
G12(k)

√
G11(k)G22(k)

(11)

Table 1 provides an overview of various weighting func-
tions commonly used in TDE. The Roth weighting function,
which is equivalent toWiener filtering, effectively suppresses
frequency bands with high noise but may result in a broader
correlation function peak. The SCOT weighting function

incorporates the influence of noise and the interplay between
two channels to emphasize coherent signal components while
suppressing incoherent noise components, without neces-
sarily leading to a discernible attenuation effect on signal
frequencies with low signal-to-noise ratios. The improved
SCOT weighting function addresses the issue of false peak
detection caused by environmental reverberation and exhibits
inhibitory effects on reverberation. The PHAT weighting
function is widely employed and demonstrates strong noise
suppression capabilities. The parameterized PHATweighting
function achieves improved estimation performance for both
narrowband and wideband signals when the parameter β is
within the range of [0.5, 0.7]. For this paper, a value of β =

0.55 is selected. The Maximum Likelihood (ML) weighting
function employs an adaptive filter that assigns different
weights to signals with varying signal-to-noise ratios, thereby
effectively suppressing noise.

Different weighting functions exhibit distinct effects on
environmental noise and reverberation. However, traditional
methods based on theoretical mathematics often encounter
challenges in achieving the optimal fusion of weighting
function performance. In this paper, a novel approach is
proposed to address this issue. The approach involves
constructing a feature matrix by utilizing multiple weighting
functions. Subsequently, targeted weighting and integration
are performed through a neural network. The objective
of this approach is to integrate an estimation model that
effectively suppresses and eliminates environmental noise
and reverberation.

C. DEFINITION OF FEATURE MATRIX
The key contribution of this method is the introduction of a
feature matrix, which serves as the input to the CNN. The
featurematrix is constructed by combining different weighted
generalized cross-correlation functions. The feature matrix is
defined as

R(k) =


R(ϕ1, τ1, k) R(ϕ1, τ2, k) · · · R(ϕ1, τd , k)
R(ϕ2, τ1, k) R(ϕ2, τ2, k) · · · R(ϕ2, τd , k)

...
...

...
...

R(ϕb, τ1, k) R(ϕb, τ2, k) · · · R(ϕb, τd , k)


(12)

where ϕ1, ϕ2, · · · , ϕb represent the weighting functions in
Table 1. τ1 = −τmax , τ2 = −τmax + 1, · · · , τd = τmax ,

d = 2τmax +1. The characteristic matrix
−

R(k) is of size b∗d ,
and each row of the matrix is a generalized cross-correlation
function with a specific weighting function. In theory, the
corresponding τ values at the maximum value in each row
are the TDE values estimated by the respective generalized
cross-correlation functions.

D. DEFINING NONLINEAR MAPS: F (•, α)

To establish amapping between the characteristic matrix
−

R(k)
of the signal received by the two microphones (with a length
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of N) and the time delay information of the signal received by
a single microphone, a neural network is employed to design
a nonlinear mapping denoted as F(•, α). Here, α represents
parameters that is learned through the training process of the
network.

The neural network architecture comprises several convo-
lutional layers followed by fully connected layers. The TDE
information is then obtained through the output layer. Data
undergoes a filtering and activation detection step within the
convolutional layer, as represented by the equation:

H l
= σ

(
W l

∗ H l−1
+ bl

)
(13)

where, H l and H l−1 denote feature maps in consecutive
layers, W l is a trained kernel, bl is a bias parameter, σ (·)
is the activation function, and ∗ represents convolution. The
rectified linear unit (ReLU) is commonly used to generate
the output of the convolutional layer. The bias ensures that
each node has a trainable constant value. The output of the
convolutional layers is then flattened to create a single feature
vector, serving as the input for one or more fully connected
layers. In a fully connected layer, each neuron is connected
to all neurons of the preceding layer. A fully connected layer
multiplies the input by a weight matrix and then adds a bias
vector. The operation is defined as:

hlfc = σ
(
W l
fch

l−1
fc + bl

)
(14)

where hlfc represents the output of the fully connected layer
at a specific layer l of the neural network. W l

fc is the weight
matrix associated with the fully connected layer at layer l.
hl−1
fc represents the input to the fully connected layer, which
comes from the previous layer l−1. bl denotes the bias vector
associated with the fully connected layer at layer l. σ is the
ReLU activation function applied element-wise to the linear
transformation result.

In the proposed method, two different output methods,
namely the regression-based methods and the regression-
via-classification (RvC) methods, are designed as the output
components of the nonlinear function F(·, α).
The regression method tries to estimate

−
τ directly and the

model is trained to minimize the mean squared error (MSE).
For a single training example, the final predictions and MSE
are defined as

−
τ = F

(
−

R(k), α
)

(15)

MSE =
1
2

∑
m

(
−
τ − τ

)2
(16)

where
−
τ represents the output of the network, which

corresponds to the estimated time delay of MGCCFF model.
τ represents the correct time delay,m is the input sample size.
−

R(k) is the feature matrix.
The RvC method utilizes softmax normalization in the last

layer to generate a probability distribution over time delays.

This approach aims to consolidate information from various
correlations and transform it into a probability distribution
that reflects the likelihood of a sound source occurring at
each specific time delay. By applying softmax normalization,
the probabilities are constrained to sum up to 1, enabling a
meaningful representation of the distribution. Consequently,
the final predictions are obtained as

P(τ |x1, x2) = F
(

−

R(k), α
)

(17)

−
τ = argmax P(τ |x1, x2) (18)

where P(τ |x1, x2) contains the probabilities for each time
delay

−
τ = −τmax , · · · τmax considered in the correlation.

The networks F(•, α) can be trained by minimizing the
cross-entropy (CE) loss function, which for a single training
example becomes:

CE = −

∑
m

tmLog (P (τm|x1, x2)) (19)

where
∑
m

is summation over all possible values of time

delay. tm is the true label value, encoded using one-hot
encoding where only one element is 1, indicating the correct
time delay, and others are 0. P(τm|x1, x2) is the predicted
probability assigned by the model to the time delay τm given
inputs x1 and x2. The equation calculates the logarithm of
the predicted probability for the correct τ and multiplies
it by the corresponding true label value. This is done for
all possible τ values, and the results are summed together,
yielding the overall Cross-Entropy Loss. The objective of
this loss function is to minimize the discrepancy between the
predicted probabilities and the true labels, thereby enhancing
the accuracy of τ prediction.

E. CNN ARCHITECTURE
In this study, a valid frame length of 2048 samples (128 ms) is
usedwith a sampling rate of 16 kHz. The distance between the
microphones is 0.5m, and the speed of sound is assumed to be
343m/s. Based on these parameters, the theoretical maximum
delay represented by the number of sampling points can be
calculated by equation (6), which is 23. Since the value range
of τ in GCC calculation is from −τmax to τmax, inclusive, the
number of columns in the feature matrix can be determined
as: d = 2τmax + 1 = 47. This means that the feature matrix
will have 47 columns, and each corresponding to a specific
time delay value within the range of −τmax to τmax. For six
types of WGCCFs, the dimentions of resulting feature matrix
is b×d = 6×47, namely 6 rows and 47 columns. Considering
that the convolution operation of the first layer reduces the
number of columns of the feature matrix by 2, the range of
possible delays is reduced. In order to avoid this situation,
when taking the WGCCF value to form the feature matrix,
this paper reasonably takes two more values corresponding
to the nearest delay range(p=2). Therefore, the final feature
matrix is b× (d + 2) = 6 × 49, shown as Fig.3.
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The architecture of the CNN in this study consists of
2 two-dimensional convolutional layers and 3 fully connected
layers. After each convolutional layer, batch normalization is
applied. In the first convolutional layer, there are 32 filters,
and this number is doubled for the subsequent convolutional
layer. The kernel size for the first convolutional layer is
1 × 3 for TDE feature extraction, while for the second
convolutional layer, it is 6 × 1 TDE feature extraction.
To enhance nonlinearity and reduce overfitting, three fully
connected layers are used, with two dropout layers inserted
between them. The dropout layer has a probability of 0.2.
The first and second fully connected layers have 64 neurons
each. The last fully connected layer has 1 or 47 neurons
for regression output or classification output respectively.
Fig.3 illustrates the architecture of the CNN for the RvC and
regression output.

FIGURE 3. CNN architecture.

III. SIMULATIONS
In order to evaluate the performance of the method proposed
in this paper, the flow chart of the simulation experiment
shown as Fig.4

FIGURE 4. The flow chart of the simulation experiment.

A. INDOOR ENVIRONMENT MODELING
To simulate realistic sound propagation and capture
the effects of reverberation in indoor environments, the
Pyroomacoustics [27] library is utilized. Pyroomacoustics
offers a comprehensive set of tools and algorithms for
modeling and simulating acoustic environments based on the
image source method [28].

B. DATASET SELECTION AND PREPROCESSING
The audio signals were collected from the LibriSpeech
dataset [29], which contains speech recordings from read
audiobooks in English, sampled at Fs = 16 kHz. The data
split based on speakers, such that 40 speakers were used for
training, 3 for validation and 3 for testing. For each recording,
silent parts removed by using a voice activity detector and
then a 2 second long snippet from each recording extracted.
This results in 1892 snippets for training (corresponding to
roughly one hour of audio), 188 for validation and 216 for
testing. During training, a frame of N = 2048 samples is
randomly sampled for each snippet, while each of 15 non-
overlapping windows are evaluated during testing, for a total
of 216 ∗ 15 = 3240 time delay estimates.
By using the LibriSpeech dataset and following the

described data processing steps, the study obtained a
diverse and representative set of audio snippets for training,
validation, and testing, allowing for robust evaluation of the
proposed method.

C. TRAINING NETWORK
Network training was done inside a simulated room of
dimension 7 ∗ 5 ∗ 3 m, with microphones placed roughly
in the middle of the room at r1 = [3.5, 2.25, 1.5]T m
and r2 = [3.5, 2.75, 1.5]T m from the origin. This setup
results in a maximum delay of τmax = 23 samples. The
source positions rs were sampled randomly from a uniform
distribution over the entire room for each training sample.
Furthermore, random reverberation times T60 and SNR were
sampled in the ranges [0.2, 1.0] s and [0, 30] dB respectively.
TheAdam optimizer is usedwith a batch size of 32, a learning
rate of 0.001 with a cosine decay schedule and train the
network for 50 epochs.

By training the network with data generated in the
simulated room environment, the model learns to effectively
handle various room configurations, reverberation times,
and signal-to-noise ratios, improving its generalization
capabilities for real-world scenarios.

D. TESTING NETWORK
The trained models were evaluated in a different room with
dimensions 6 ∗ 4 ∗ 2.5 m and with the microphones placed
at r1 = [3, 1.75, 1.25]T and r2 = [3, 2.25, 1.25]T m respec-
tively, and the source positions were again sampled randomly
across the whole room. Each recording was evaluated for
SNR ∈ [0, 6, 12, 18, 24, 30] dB and reverberation times
T60 ∈ [0.2, 0.4, 0.6, 0.8, 1]s.

By evaluating the trained models in this different room
environment with varying SNR and reverberation conditions,
the performance and generalization capabilities of the models
can be assessed in more realistic and diverse scenarios.

E. COMPARISON MODEL
In order to provide a comprehensive comparison, the
GCC-PHAT, PGCC-PHAT, and NGCC-PHAT methods were
implemented and evaluated alongside the proposed method
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in this paper. The GCC-PHAT is a widely used TDE
method that calculates the cross-correlation between two
microphone signals after applying the phase transform. The
PGCC-PHAT method extends the GCC-PHAT method by
using a CNN to predict the time delay. It takes multiple
differently weighted GCC-PHAT as input and combines
them into a single time delay prediction. Each correlation
has a different weighting filter parameter β in the range
of [0, 0.1, . . . , 1]. The network is trained to minimize the
MSE loss. The NGCC-PHAT method utilizes a SincNet
network to filter the received signals, applies the GCC-PHAT
method to calculate the delay for each filtered signal, and
then uses a neural network for probability estimation of each
possible TDE value through classification. The network is
trained to minimize CE loss. According to our research,
the NGCC-PHAT method introduced by Berg et al. [21]
represents the recent SOTA method.

In the subsequent experimental study of themixing feature,
the paper demonstrates that the MGCCFF method uses
different loss functions (MSE for regression, CE for RvC)
to train the model, emphasizing different evaluation metrics.
To ensure a fair comparison, the MGCCFF method in this
paper employs the same loss functions as the comparison
models during training and evaluation. This allows for a
consistent evaluation of the accuracy, root mean square error
(RMSE), and mean absolute error (MAE) metrics for TDE.
In comparison to the PGCC-PHAT model, this paper evalu-
ates the accuracy, root mean square error, and absolute error
of the estimated time delay of the MGCCFF model using
mean square error as the loss function(MGCCFF-MSE).
And, in comparison to the NGCC-PHAT model, this paper
evaluates the accuracy, mean square error, and absolute error
metrics for TDE of the MGCCFF model using cross entropy
as the loss function(MGCCFF-CE).

IV. SIMULATION RESULTS AND ANALYSIS
To evaluate the performance of the proposed MGCCFF
model, a series of group experiments were conducted in
this paper. And all models underwent training, testing, and
evaluation within the same simulation environment using
the same dataset. This standardized approach ensures a fair
comparison among the models and allows for a reliable
assessment of their performance. By utilizing a consistent
simulation environment and dataset, any discrepancies in
results can be attributed to the differences in model archi-
tectures, input features, or other experimental factors, rather
than variations in the experimental setup. The experiments
were conducted to evaluate theMAE, RMSE, andAcc of each
model under different SNR and reverberation times. It should
be noted that all estimated delays, initially represented in
terms of the number of samples, have been converted to
their corresponding delays in millisecond. This conversion
allows for a more meaningful interpretation and analysis of
the results in real-world units of measurement. To assess
accuracy, the metric used is the probability P(|

−
τ − τ | < η/c),

where η represents a threshold distance error of 10 cm.

This threshold is commonly employed to gauge the average
accuracy achievable by acoustic localization systems [30],
[31]. The threshold provides a criterion for assessing the
precision of the model’s TDE. By analyzing the percentage of
accurate estimations within the specified level of precision,
one can evaluate the performance and effectiveness of the
model in estimating time delays.

A. FEATURE FUSION EXPERIMENT
The ‘‘Feature Fusion Experiment’’ depicted in Fig. 5 is
designed to investigate the impact of the network model,
the number of fused features, and the choice of model loss
function on the overall performance of the model.

Fig. 5 presents a comparison of the chosen fused features
in four different cases: one type, two types, four types,
and six types. These cases refer to the selection and
combination of different types of features for fusion. In the
‘‘1-MSE(CE)’’ group experiment, a single GCC-PHAT
was chosen as the feature matrix training model. In the
‘‘2-MSE(CE)’’ group experiment, the feature matrix was
constructed using both GCC-PHAT and GCC-ML. In the
‘‘4-MSE(CE)’’ group experiment, the feature matrix was
constructed using GCC-Roth, GCC-ML, GCC-SCOT, and
GCC-PHAT. Finally, in the ‘‘6-MSE(CE)’’ group experiment,
all available weight-GCC functions were used to construct
the feature matrix. For each group, the suffix ‘‘MSE’’
indicates that the training model minimizes the root mean
square error and utilizes regression output as the output
method. Conversely, the suffix ‘‘CE’’ indicates that the
model is trained to minimize cross-entropy and utilizes
regression-via-classification as the output method.

From Fig. 5, the following conclusions can be
drawn:

1) The comparison between the GCC-PHAT model and
the 1-MSE(CE) model demonstrates that the neural
network model proposed in this paper is capable
of continuously improving estimation accuracy and
reducing estimation errors.

2) Comparing models with the same neural network
architecture, but different input features (represented
by the same line type in the Fig.5), there is convincing
evidence that the mixed feature model outperforms
the single GCC-PHAT feature model in terms of
estimation accuracy and robustness. And the more
features fused, the better the estimation accuracy
and the lower the estimation error. These findings
underscore the importance of combining different
features in models, as it captures various aspects of the
data and provides more comprehensive information for
precise estimation.

3) Comparing models with the same input features but
different loss functions (represented by the same line
color model in Fig. 5), it becomes apparent that
the cross-entropy loss function is more effective in
enhancing the Acc of the model, while the mean square
error loss function leads to smaller RMSE values.
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FIGURE 5. RMSE/Acc/MAE for different SNR and reverberation time.

B. MGCCFF-MSE MODEL VS. PGCC-PHAT MODEL
The PGCC-PHAT model, which employs the MSE as its
loss function, has been established as a robust method
that effectively minimizes the RMSE for delay estimation.
In this paper, the proposed MGCCFF method is evaluated
by comparing its performance in terms of Acc, RMSE, and
MAEwith the PGCC-PHATmodel, using the sameMSE loss
function(MGCCFF-MSE).

The results in Fig. 6 to 10 clearly demonstrate that
the robustness of the MGCCFF-MSE method consistently
outperforms the GCC-PHAT and PGCC-PHAT methods
across different signal-to-noise ratios and reverberation
times. It achieves the lowest values for both RMSE and MAE
for the overall estimate, indicating superior accuracy (within
10cm) in time delay estimation. Furthermore, it can be seen
from Fig.9 that the proposed method exhibits exceptional
performance in challenging scenarios characterized by high

reverberation (T60 > 0.4 s) and high SNR (SNR > 7 dB).
In these conditions, the proposed method achieves the highest
level of accuracy among all the evaluated models. However,
in the case of low echo, the model exhibits lower estimation
accuracy and higher Mean Absolute Error (MAE) compared
to GCC-PHAT. This discrepancy can be attributed to potential
overfitting during the model training process. A comparison
of error distributions for the different methods in a high
SNR environment can be seen in Fig.10. Because both the
PGCC-PHAT and MGCCFF-MSE models are trained to
minimize the MSE, their error distributions tend to have
smaller tails compared to GCC-PHAT. Additionally, the
MGCCFF-MSE model exhibits even smaller tails in its error
distribution. This observation further demonstrates the effec-
tiveness of the MGCCFF model, which leverages Multi-class
GCC features, in improving the overall performance and
reducing the occurrence of large errors.

In summary, theMGCCFFmethod withMSE loss function
consistently achieves the lowest RMSE values across various
conditions, surpassing the performance of the GCC-PHAT
and PGCC-PHAT methods. Additionally, it excels in accu-
rately estimating time delays in high reverberation and high
signal-to-noise ratio environments.

FIGURE 6. RMSE/MAE/Acc for different SNR and reverberation time.

C. MGCCFF-CE MODEL VS. NGCC-PHAT MODEL
The NGCC-PHAT model uses cross-entropy(CE) as the
loss function, which can continuously improve the model
estimation accuracy and reduce the absolute error. In this
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FIGURE 7. MAE under each set of SNR and T60.

FIGURE 8. RMSE under each set of SNR and T60.

paper, the proposed MGCCFF method is evaluated by
comparing its performance in terms of Acc, RMSE, and
MAE with the PGCC-PHAT model, using the same CE loss
function(MGCCFF-CE).

Based on the results presented in Fig. 11 to 15, the
following conclusions can be drawn from this study. The
MGCCFF-CE method proposed in this paper consistently
achieves the highest localization accuracy across various
SNR and reverberation levels. Additionally, the proposed
method exhibits lower absolute error in time delay estimation.
In Fig. 15, the error distributions of various methods are
compared in an environment with a reverberation time of
T60 = 0.4 s and a SNR of 30 dB. It is observed that the
MGCCFF-CE model exhibits fewer incorrect predictions at
0 delay compared to the other methods. This implies that the

FIGURE 9. Acc under each set of SNR and T60.

FIGURE 10. Scatter plots of ground truth and predicted time delays for
reverberation time T60 = 0.4s and SNR = 30dB.

MGCCFF-CEmodel performs better in accurately estimating
the time delay under these specific conditions.

However, in scenarios with high signal-to-noise ratio and
low reverberation, the performance of the MGCCFF-CE
model is not exceptional. Specifically, the estimated RMSE
and MAE are a little larger compared to the NGCC-PHAT
model but consistently smaller than those of the GCC-PHAT
model. This performance difference can be attributed to
the unique advantages of the SincNet network employed
by the NGCC-PHAT model. In contrast, the MGCCFF
model directly extracts GCC features from the original
signal, simplifying the processing pipeline. While this
approach offers simplicity, it may result in a limited set of
features compared to the Sincnet network. This limitation
becomes more pronounced in scenes with high SNR and
low reverberation. This is due to the fact that the application
of SincNet preprocessing enhances the quality of the signal
by reducing noise and improving the representation of the
underlying signal. Consequently, the improved signal quality
results in enhanced performance, particularly in terms of
higher SNR and lower T60 values.

D. DETAILED COMPARISON OF SELECTED MODELS
Table 2 presents a comprehensive comparison of the models
discussed. In the PGCC-PHAT model, the feature matrix
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FIGURE 11. RMSE/MAE/Acc for different SNR and reverberation time.

FIGURE 12. MAE under each set of SNR and T60.

is constructed using the parameterized phase transformation
weighted generalized cross-correlation function. The model
employs a 3 × 3 convolution kernel and consists of
5 convolutional layers. The number of convolution kernels
in each layer is twice that of the previous layer, starting with
32 kernels in the first layer. This design choice results in a
more complex model with a larger number of parameters.

FIGURE 13. RMSE under each set of SNR and T60.

FIGURE 14. Acc under each set of SNR and T60.

The NGCC-PHAT model incorporates the Sincnet model in
the first convolutional layer to filter the original signal. This
process creates 128 independent filtering channels, resulting
in 128 different versions of the filtered signal. Parallel convo-
lution calculations and classification are then performed. Due
to this additional complexity and the need for more extensive
calculations and memory space, the NGCC-PHAT model
is relatively complex. In contrast, the MGCCFF method
proposed in this paper adopts a simpler approach. It utilizes
only 6 different weighting functions and incorporates two
convolutional layers with smaller convolution kernels (1 × 3
and 6 × 1, respectively). Consequently, the model is
relatively lightweight with a reduced number of parameters.
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FIGURE 15. Scatter plots of ground truth and predicted time delays for
reverberation time T60 = 0.4s and SNR = 30dB.

TABLE 2. Detailed comparison of models.

In summary, the PGCC-PHAT, NGCC-PHAT and MGCCFF
models differ in terms of complexity, parameterization, and
computational requirements. The PGCC-PHAT model is the
most complex, while the method proposed in this paper offers
a simpler alternative with fewer parameters.

The table results demonstrate that the MGCCFF-MSE
method proposed in this paper exhibits optimal robustness
and improved estimation accuracy. The overall RMSE for
time delay estimation is approximately 31.93% lower than
that of the traditional GCC-PHATmethod, and about 16.07%
lower than the PGCC-PHAT method. Furthermore, the
MGCCFF-CE model in this paper demonstrates the best
accuracy and good robustness in TDE. The overall estimation
accuracy (within 10cm) is approximately 11.08% higher
than that of GCC-PHAT and about 3.36% higher than
NGCC-PHAT. Additionally, the average absolute error in
overall time delay estimation is the lowest, with a reduction of
approximately 25.65% compared to GCC-PHAT, and about
11.53% compared to NGCC-PHAT.

Moreover, the computational requirements of the method
proposed in this paper are significantly lower than the
other two models. The MGCCFF-MSE (CE) model in
this paper only requires approximately 0.81 (0.82) MB of
calculation, whereas the PGCC-PHAT and NGCC-PHAT
demand 109MB and 2.39GB respectively. This indicates that
the proposed method has a smaller computational load and a
simpler model structure. Additionally, the memory footprint
of the proposed model is only approximately 1.05 (1.06) MB,
while the PGCC-PHAT and NGCC-PHAT occupy 47.89 MB
and 37.95 MB respectively. Therefore, the model proposed
provides significant advantages for engineering applications.

V. CONCLUSION
This paper presents a novel method for time delay esti-
mation in the field of sound source localization with a
microphone array. The proposed method leverages a fusion

feature matrix obtained by combining multiple weighted
generalized cross-correlation functions with distinct char-
acteristics. The time difference between the sound source
and microphone pairs is then estimated using a CNN.
By employing MGCCFF, the proposed method achieves
substantial improvements in the accuracy, root mean square
error, and average absolute error levels of time delay esti-
mation. The experimental results demonstrate the excellent
overall performance of the proposed model, highlighting its
effectiveness in accurately estimating time delays in sound
source localization tasks.

For the proposed MGCCFF model, the MGCCFF-CE
method significantly improves estimation accuracy and
reduces estimation error compared to the GCC-PHAT
and NGCC-PHAT methods, and exhibits better robustness
and achieves optimal accuracy in time delay estimation.
On the other hand, the MGCCFF-MSE method effectively
reduces the error in time delay estimation in indoor environ-
ments compared to the GCC-PHAT and PGCC-PHAT meth-
ods. The proposed method demonstrates superior robustness
and maintains good detection accuracy across various levels
of noise ratio and reverberation. Meanwhile, the MGCCFF
model is able to achieve accurate results while minimizing
computational resource requirements, providing a promising
solution for real-world implementation and deployment.

In future work, we aim to enhance the performance
of MGCCFF model by integrating cutting-edge deep
learning concepts and implementing suitable preprocessing
techniques on the original signal.
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