
Received 11 October 2023, accepted 2 December 2023, date of publication 5 December 2023,
date of current version 13 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3339827

A Feasibility Study on Evasion Attacks Against
NLP-Based Macro Malware
Detection Algorithms
MAMORU MIMURA 1 AND RISA YAMAMOTO2
1National Defense Academy of Japan, Yokosuka, Kanagawa 2398686, Japan
2Japan Ground Self-Defense Force, Shinjuku-ku, Tokyo 162-8801, Japan

Corresponding author: Mamoru Mimura (mim@nda.ac.jp)

This work was supported by JSPS KAKENHI under Grant 21K11898.

ABSTRACT Machine learning-based models for malware detection have gained prominence in order to
detect obfuscated malware. These models extract malicious features and endeavor to classify samples as
either malware or benign entities. Conversely, these benign features can be employed to imitate benign
samples. With respect to Android applications, numerous researchers have assessed the hazard and tackled
the problem. This evasive technique can be extended to other malicious scripts, such as macro malware.
In this paper, we investigate the potential for evasive attacks against natural language processing (NLP)-based
macro malware detection algorithms. We assess three language models as methods for feature extraction:
Bag of Words, Latent Semantic Analysis, and Paragraph Vector. Our experimental result demonstrates that
the detection rate declines to 2 percent when benign features are inserted into actual macro malware. This
approach is effective even against advanced language models.

INDEX TERMS Macro malware, machine learning, evasion attack, LSA, paragraph vector.

I. INTRODUCTION
Contemporary antivirus programs predominantly employ a
pattern matching methodology to detect malware [1]. Mali-
cious actors can effortlessly evade detection by employing
obfuscation techniques. Machine learning-based models for
malware detection have gained prominence in order to detect
obfuscated malware. These models extract malicious features
and endeavor to classify samples as either malware or benign
entities. Just as malicious features exist, benign samples
possess their own distinctive characteristics. These benign
features can be employed to imitate benign samples. For
instance, numerous investigations have indicated the vul-
nerabilities of machine learning-based detection techniques,
including adversarial attacks [2], [3], [4], [5], [6], [7], [8].
skillful adversaries can evade machine learning-based mal-
ware detection models by incorporating benign code.
In relation to Android applications, several researchers have

The associate editor coordinating the review of this manuscript and

approving it for publication was Giovanni Pau .

evaluated the associated risks and endeavored to address
this matter. Repackaging attacks represent a frequently
encountered assault type. In this form of attack, assailants
modify widely used applications obtained from application
marketplaces, embed malicious code, and subsequently
distribute the altered applications. One reason behind this
trend is the ease with which attackers can obtain source
code from APK files. This evasion technique can also be
extended to other types of malicious scripts. For example,
macro malware is written in a scripting language, so similar
techniques can be easily applied. Despite this, no evasion
attacks have been attempted against macro malware detection
models.

In this paper, we use a macro malware detection model as
a target for evasion attacks. The purpose of this research is
to attempt evasion attacks against macro malware detection
models and evaluate their feasibility. Existing macro malware
detection models include feature extraction using natural
language processing (NLP) technology. However, in the
existing research on evasion attacks, there are almost no

138336

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-4323-9911
https://orcid.org/0000-0002-5798-398X


M. Mimura, R. Yamamoto: Feasibility Study on Evasion Attacks Against NLP

studies that focus on natural language processing technology.
While conventional machine learning models require fixed
features, these NLP algorithms have the capacity to extract
variable features. The primary focus of previous studies lies
in classifiers [2], [3], [4], [5], [6], [7], [8]. Limited attention
has been given to evasion attacks involving variable features.
Furthermore, some studies focusing on evasion attacks hardly
discuss the feasibility [6]. These attacks may be not feasible
on actual environment. To adequately evaluate the associated
risks, it is imperative that the feasibility of evasion attacks is
duly considered.

Our research questions are as follows.

1) Are evasion attacks possible on macro malware?
2) Are evasion attacks effective to language models for

feature extraction?
3) What is the most resilient language model for feature

extraction?

Our contributions can be summarized as follows:

1) Our evasion attacks demonstrate efficacy even when
confronted with sophisticated language models.

2) The utilization of both Latent Semantic Analysis (LSA)
and Paragraph Vector (PV) resulted in a noteworthy
decline in detection rates, reaching a mere 27 percent.

3) LSA emerges as the most resilient method for feature
extraction.

4) On the other hand, Paragraph Vector exhibits suscep-
tibility to evasion attacks, resulting in an immediate
decrease in the detection rate to 37 percent.

The subsequent sections of this paper are structured as
follows: Section II provides the related works. Section III
describes NLP algorithms. Section IV provides our scheme
and Section V demonstrates the experimental result.
Section VI discusses the result and reveals our findings.
Finally, Section VII concludes this paper.

II. RELATED WORK
This study delves into the realm of exploring the plausibility
of evasion attacks targeting certain natural language pro-
cessing NLP-based algorithms used for malware detection.
This section explains the novelty associated with evasion
attacks, detection of macro malware, and the utilization of
NLP techniques.

A. EVASION ATTACKS
There have been numerous studies into evasion attacks
targeting machine learning-based malware detection tech-
niques. Srndic and Laskov [9] investigated the effectiveness
of evasion attacks against the SVM and Random Forest
classifiers with PDF samples. They assumed that the
adversary knows the features of the detection method
and modified the features to mimic benign PDF samples.
In their experiments, the significant drop in detection
rates was observed. Xu et al. [10] proposed a method to
automatically find variants to evade structural feature-based

PDF malware classifiers. They evaluated the effectiveness of
their system in evading existing PDFmalware classifiers such
as PDFrate [11] and Hidost [12]. Grosse et al. [6] expanded
the method originally proposed by [13] to attack Android
malware detection. They adapted it to handle binary features
while at the same time preserving the malicious functionality.
Abaid et al. [2] presented a statistical analysis of the impact
of adversarial evasion attacks on various linear and non-linear
classifiers with Android malware. They showed non-linear
classifiers such as Random Forest and Neural Network to be
more resilient to these attacks. Hu and Chen [14] proposed
a generative adversarial network (GAN) based algorithm
named MalGAN to generate adversarial malware examples,
which are able to bypass black-box machine learning-based
detection models. Their method used 160-dimensional binary
features based on 160 system level APIs. Chen et al. [4]
explored the feasibility of constructing crafted malware sam-
ples and proposed KuafuDet, a two-phase learning enhancing
approach that learnsmobilemalware by adversarial detection.
They showed that their method can significantly reduce
false negatives on more than 250,000 mobile applications.
Maiorca et al. [8] provided a comprehensive taxonomy of
the different approaches used to generate PDF malware
and of the corresponding learning-based detection systems.
They categorized threats targeted against learning-based
PDF malware detectors using a framework in the field
of adversarial machine learning. Ehteshamifar et al. [5]
presented a method of testing the capability of malware
scanners to cope with evasions. We applied their method
to malicious PDF documents and presented how current
PDF evasions affect 41 malware scanners. Chen et al. [3]
proposed several methods against CNN-based malware
detectors. They used saliency vectors to represent the
features. These saliency vectors can be generated by
using the Gradient-weighted Class Activation Mapping
(Grad-CAM) method [15]. Huang et al. [7] investigated
evasion attacks to an machine learning-based malware
detectors and conducted performance evaluations. In this
study, they extracted 491 API features from log files of
executable files. Their attack can be executed by inserting
benign API calls to the source code. Abusnaina et al. [16]
provided a GEA approach to preserve the functionality and
practicality of the generated adversarial sample through a
careful embedding of a benign sample to a malicious one.
They showed that adversarial attack methods are able to
misclassify IoT malware samples as benign. Chen et al. [17]
proposed a method of applying optimal perturbations
onto Android APK that can successfully deceive the
machine learning detectors. The adversarial examples can
also deceive recent machine learning-based detectors that
rely on semantic features such as control-flow-graph.
Furthermore, Li et al. [18] developed an adversarial-example
attack method based on their bi-objective GAN to
evade both malware detection and adversarial example
detection.

VOLUME 11, 2023 138337



M. Mimura, R. Yamamoto: Feasibility Study on Evasion Attacks Against NLP

Thus, the primary emphasis of evasion attacks against
machine learning-based malware detection methods lies in
the domains of PDF or Android malware. One contributing
factor to this is the ease with which attackers can access the
unencrypted contents or source code of these files. In these
files, attackers can manipulate the unencrypted contents
or source code to evade machine learning-based malware
detection methods. Some alternative studies have endeavored
to apply evasion attacks to executable files or IoT malware.
Nevertheless, macro malware has received limited attention
from researchers. Evasion attacks can indeed be employed
against macro malware, given their straightforward nature
and susceptibility to modifications. Furthermore, numerous
prior studies on evasion attacks have concentrated onmachine
learning models employing fixed features. In contrast, our
focus centered on employing NLP algorithms as feature
extraction methods. These NLP algorithms offer flexibility
and enable the extraction of variable features. However,
there exists a scarcity of studies concerning evasion attacks
utilizing variable features.

B. MACRO MALWARE DETECTION
Some researchers proposed detection methods for macro
malware with machine learning. Bearden and Chia-Tien
Lo [19] proposed amethod of classifyingMSOffice files con-
taining macros as malicious or benign using the K-Nearest
Neighbors machine learning algorithm. They extracted the
features from the p-code opcode with TFIDF and n-grams.
Santos and Torres [20] proposed a method to detect macro
malware with machine learning algorithms. They extracted
several binary features from the source code. Kim et al. [21]
investigated the obfuscation techniques and proposed an
obfuscated macro code detection method using five machine
learning classifiers. They extracted 15 discriminant static fea-
tures of the obfuscated VBAmacros. Constantin et al. present
a study on the detection performance of MSOffice-embedded
malware [22]. Their detection models were trained and tested
using a very large database ofmalicious and benignMSOffice
documents (1.8 million files), collected over a long period of
time (1995-2021). Yan et al. propose DitDetector for macro
malware detection, which leverages bimodal learning based
on deceptive images and text [23]. They extracted preview
images of documents based on an image export SDK of
Oracle and textual information from preview images based
on an open-source OCR engine.

This paper focused onNLP algorithms as feature extraction
methods. NLP algorithms are used to extract the features of
VBA macros. For instance, PV was used to represent VBA
macros [24], [25], [26], [27]. LSA was also used to extract
the features [28], [29], [30].

Thus, several detection methods use NLP algorithms as
feature extraction methods. According to our experimental
result, thesemethods can be vulnerable to our evasion attacks.
However, as far as we know, these methods are not evaluated

against evasion attacks. This study could evaluate the risk of
evasion attacks.

C. NLP-BASED DETECTION
NLP algorithms are also used to extract the features in
other security fields. For instance, PV was used to represent
proxy logs for intrusion detection [31]. This method was
extended to represent network packets with a protocol
analyzer [32], [33]. While these methods detect slight
malicious traffic from massive benign traffic, they did not
deal with the class imbalance problem. To mitigate the
class imabalance problem, the important featuress from both
classes were equally selected [34]. Thus, NLP algorithms can
be applied to represent network traffic.

Furthermore, PV was used to extract the features of
JavaScript snippets [35], [36] Ndichu et al. proposed a
malicious JavaScript detection method with Abstract Syntax
Tree (AST) for code structure representation and PV [37].
Wang et al. proposed an NLP-based memory corruption
detection system [38]. This method identifies memory
operation functions through a semantic-aware source code
analysis automatically. NLP algorithms are also applied to
represent PowerShell source code [39], [40]. Thus, NLP
algorithms are popular to represent the features of source
code.

Another application is extracting printable strings from
executable files [41], [42], [43]. These strings are nonsensical
at first sight, but may be useful for NLP algorithms to detect
malware. Wang et al. provided an anomaly detection based
approach to detect stealthy impersonation malware using OS
level provenance graphs [44]. They used PV to learn the
embedding of the paths of provenance graphs. Thus, NLP
algorithms are used to extract the various features. Therefore,
our evasion attacks may have great effect on many machine
learning based detection systems.

III. NATURAL LANGUAGE PROCESSING ALGORITHMS
In this study, NLP algorithms serve as feature extraction
methods for classification. This section delineates the eval-
uation of three language models conducted in the purview of
this study.

A. BAG OF WORDS
Bag of Words (BoW) is a fundamental approach used to
transform a document into a feature vector. When working
with a corpus of documents, distinct words are extracted
from the entire collection. This method essentially converts
a document into a feature vector, where each unique word
corresponds to an element in the vector, sharing the same
index. As the number of unique words increases, the number
of elements in the feature vector also grows. However, certain
insignificant words may not significantly contribute to the
document classification process. To efficiently represent a
document, it becomes necessary to reduce the dimensionality
of the feature space. This simplistic model solely captures

138338 VOLUME 11, 2023



M. Mimura, R. Yamamoto: Feasibility Study on Evasion Attacks Against NLP

word frequencies. It is important to note that this model fails
to encapsulate the contextual importance of words.

B. LATENT SEMANTIC ANALYSIS
Latent Semantic Analysis (LSA) or Latent Semantic
Indexing (LSI) is a method employed to diminish the
dimensionality. This model generates topics consisting of
interconnected words in a given document. To identify these
interconnected words, Term Frequency-Inverse Document
Frequency (TF-IDF) is commonly utilized. TF represents
the frequency of a word in the documents and is
defined as (1.1).

TF =
frecuancy of word x in document A

sum of frequency of all words in document A
(1.1)

IDF indicates the inverse document frequency and is
defined as (1.2).

IDF= log
(

the number of all documents
the number of documents that contain word x

)
(1.2)

TF-IDF is defined as (1.3).

TFIDF = TF × IDF (1.3)

As a word exhibits infrequent occurrences across the
entire corpus but appears frequently in a specific document,
its TF-IDF value escalates. In this context, a matrix T
incorporating TF-IDF is denoted as (1.4).

T =

 t1,1 · · · t1,m
...

. . .
...

tn,1 · · · tn,m

 (1.4)

n indicates the number of documents. m indicates the
number of unique words in all documents. The matrix T can
be transformed with singular value decomposition as (1.5).

T = USV T (1.5)

The matrices U and V consist of eigenvectors of the
matrix T , with m rows and n columns respectively. These
eigenvectors exhibit orthogonality to one another. Matrix U
represents the topic weights of each word, while matrix V
represents the topic weights of each document. The matrix
S is a diagonal matrix with n rows and m columns. Except
for the main diagonal elements, all other elements in the
matrix are zero. These non-zero elements are referred to as
singular values. By selecting the k largest singular values
and their corresponding singular vectors from matrices U
and V , we can obtain a rank-k approximation of matrix T
withminimal error. In this model, the dimensionality, denoted
by k , can be arbitrarily chosen. Hence, this model enables the
reduction of dimensionality, facilitating practical analysis in
a feasible timeframe.

C. PARAGRAPH VECTOR
Paragraph Vector (PV), also known as Doc2vec, presents
an alternative approach to address the limitations of Bag of
Words (BoW). PV extends the Word2Vec framework and
aims to generate a vector representation for a document.
Word2Vec employs a straightforward neural network with
a singular hidden layer to learn the associated weights.
In this framework, these weights correspond to the word
embeddings being learned. The Skip-Gram model and the
Continuous Bag of Words model (CBOW) stand out as
the most renowned algorithms for creating these repre-
sentations. In the Skip-Gram model, the objective of the
neural network is as follows: Given a particular word in
a sentence, the network predicts the likelihood of each
vocabulary word being the adjacent word. Conversely, the
CBOW model’s neural network task is inverted: Given
a context of words in a sentence, the network predicts
the likelihood of each vocabulary word being the word
itself. Consequently, the simple neural network can be
trained, enabling the acquisition of word embeddings. While
this model adequately represents individual words, it falls
short in representing paragraphs or sentences. To overcome
this limitation, PV builds upon Word2Vec and introduces
an additional vector as input. This vector, known as the
paragraph vector, is responsible for representing a para-
graph. In this extension, the weights signify the paragraph
embeddings being learned. Similar to Word2Vec, PV offers
two prominent algorithms: the Distributed Bag of Words
version of Paragraph Vector (PV-DBOW) and the Distributed
Memory version of Paragraph Vector (PV-DM). PV-DBOW
and PV-DM correspondingly align with the Skip-Gram and
CBOWmodels. As a result, this framework becomes capable
of representing paragraphs or sentences in a corpus.

IV. EVASION ATTACK
A. OUTLINE
This study delves into the potentiality of evasion attacks
targeting NLP-based macro malware detection algorithms.
Given the need for consistent features in conventional
models, these NLP algorithms extract mutable features.
In our framework, NLP algorithms serve as feature extrac-
tion methodologies for classification purposes. This study
assesses the resilience of feature extraction methodologies
against evasion attacks. Figure 1 illustrates our evasion attack
scheme.

Our methodology comprises two components: the training
process and the evasion process.

The training process mirrors a conventional supervised
machine learning procedure. Language models are generated
and employ feature extraction from labeled training samples.
The classifier is then trained using the labeled features and is
capable of classifying unknown samples.

The evasion process encompasses the parsing of two types
of samples: evasion samples and original samples. Evasion
samples serve as the basis for identifying benign features for

VOLUME 11, 2023 138339



M. Mimura, R. Yamamoto: Feasibility Study on Evasion Attacks Against NLP

FIGURE 1. The scheme of evasion attacks.

evasion attacks. It should be noted that the evasion samples
encompass both benign and malicious samples. To extract
effective benign features, an analysis of the malicious
samples is required. This is because frequent features may
be shared between both sample types. The original samples,
which are malicious in nature, act as the recipients of the
inserted benign features. During this process, benign features
are selected from the corpus of evasion samples. The chosen
benign features are then inserted into the original samples.
The resulting modified original samples are subsequently
employed in conjunction with the trained classifier.

B. THEORY
The formula of our evasion attack can be defined as a function
y = F(x), which maps the input x to the corresponding output
y. Attackers can modify a sample x ′, and the differences
between x ′ and x are small. The modified sample x ′ from the
original sample x can be formalized as below:

x ′
= x + δx = x + min∥z∥s.t.F(x + z) ̸= F(x) (1)

where δx is the minimal perturbation z contributing to mis-
classification, according to a norm ∥ • ∥ which is suitable for
the input domain. In the field macro malware detection, the
input x of F(x) is usually a VBA script, and the output y is
the corresponding label. The goal of the attacker is to turn the
output of a macro malware detection model frommalicious to
benign. In this study, the attacker simply adds benign features
in the original sample to deceive the machine learning model
without changing its original functions.

C. TRAINING PROCESS
The initial step in the training process entails the extraction
of all lexemes from the training samples. The source code of
each training sample is partitioned into individual lexemes.
Thereafter, our method replaces some random hexadecimal
patterns, strings, digits, and arrays. Because many malicious
macros are obfuscated with these patterns. If our method
does not replace these patterns, each word is handled as each

FIGURE 2. Illustration of the replacing and inserting methods.

feature respectively. These words, however, have a common
context or meaning. Thus, our method replaces these patterns
into single words to improve accuracy. These lexemes,
combined from all samples, give rise to a corpus. This
corpus serves as the foundation for constructing three distinct
language models: Bag-of-Words (BoW), Latent Semantic
Analysis (LSA), and Doc2vec. These language models are
leveraged to extract the features inherent in the samples. The
extracted features, accompanied by their respective labels, are
then utilized to train a classifier. Thus, the training process
embodies a fundamental amalgamation of feature extraction
and classifier training. In this study, the primary focus lies
on feature extraction, rather than the classifiers themselves.
We undertake a comparative analysis of the three models
for feature extraction. In a prior investigation, our research
scrutinized various classifiers, ultimately demonstrating that
Support Vector Machines (SVM) yielded the most optimal
performance [30]. To evaluate the efficacy of the three feature
extraction models, we employ an SVM classifier.

D. EVASION PROCESS
The evasion process endeavors to evade detection by the
trained classifier. Evasion samples encompass a mixture
of benign and malicious instances. The source code of an
evasion sample is partitioned into lexemes. These lexemes,
extracted from all samples, generate a corpus. This corpus
serves as the foundation for selecting benign features. The
chosen benign features are subsequently inserted into the
original samples. To insert the benign features, we explore
two methodologies: replacing and inserting. Figure 2 exem-
plifies instances of the replacing and inserting techniques.

In the replacing method, variable names in the source code
are substituted with benign features. In VBA macros, users
can arbitrarily define variable names as many programing
languages. Even if we change variable names in the source
code, the function would remain the same. Because users can
arbitrarily define all variable names. In fact, dis-assemblers
and de-compilers generate code with arbitrarily determined
variable names. Consequently, we can substitute these names
with benign features. In Figure 2, the variables ‘‘dseIwr’’
and ‘‘eBnwmUq’’ are replaced with ‘‘wsm’’ and ‘‘mydca,’’
respectively, which have been selected from the evasion
samples. The benign features are chosen sequentially from
the feature list. In this approach, the maximum number of
words replaced is contingent upon the source code.

138340 VOLUME 11, 2023



M. Mimura, R. Yamamoto: Feasibility Study on Evasion Attacks Against NLP

FIGURE 3. The modified approach for selecting effective features utilizing
LSA topics.

TABLE 1. Environment.

In the inserting method, the benign features are incor-
porated as arguments in some functions, such as ‘‘Asc’’,
‘‘AscB’’, ‘‘AscW’’, ‘‘LCase’’, ‘‘LTrim’’, ‘‘Trim’’, ‘‘StrRe-
verse’’, ‘‘Ucase’’, or ‘‘Split’’. Even if arbitrary values
are assigned to these arguments, these functions operate
independently and do not alter their behavior. Thus, users
can arbitrarily define function arguments in these functions.
This means we can insert arbitral benign features as function
arguments. The benign features are selected individually from
the feature list. In this approach, the insertion of benign terms
can be performed irrespective of the source code.

To generate the feature list, we employ twomethodologies.
One straightforward approach involves extracting frequently
occurring words from benign samples. In this method, the
frequent words are sequentially appended to the list, starting
from the most prevalent. To represent more effective features,
it is imperative to exclude common features shared by both
sample types. Figure 3 illustrates the modified approach.

In this approach, two additional LSA models are con-
structed, one from benign samples and the other from
malicious samples. The LSA model serves to reduce dimen-
sionality and generate multiple topics. A comparison between
the benign and malicious topics allows for the selection of
words exclusively present in the benign topics. These selected
topics are then segmented into words and appended to the
feature list.

E. ENVIRONMENT
Our scheme was implemented using Python 3.6. The
environmental details are presented in Table 1. For the
implementation of the LSAmodel, we utilized gensim 3.6.0,1

whereas sckit-learn 0.22.12 was employed for the SVM
model.

V. EVALUATION
A. DATASET
To assess the risk associated with evasion attacks,
we employed genuine benign and malicious macros. The

1https://radimrehurek.com/gensim/
2https://scikit-learn.org/stable/

TABLE 2. Samples in chronological order.

TABLE 3. Confusion matrix.

chronological order of these samples is presented in Table 2.
These samples were sourced from VirusTotal.3 Our selection
criterion encompassed samples that were initially uploaded
between 2016 and 2017, with file extensions of doc, docs, xls,
xlsx, ppt, or pptx. For the designation of malicious samples,
we identified macros that were flagged as malware by over
half of the 58 anti-virus programs. Benign samples, on the
other hand, were consistently identified as benign by all anti-
virus programs. No sample duplication was observed.

B. METRICS
To gauge the accuracy of the models, precision, recall, and
F1 score were utilized as evaluation metrics. The confusion
matrix is presented in Table 3.
These metrics are defined as follows.

Accuracy =
TP+ TN

TP+ FP+ FN + TN
(2.1)

Precision =
TP

TP+ FP
(2.2)

Recall =
TP

TP+ FN
(2.3)

F1 =
2Recall × Precision
Recall + Precision

(2.4)

Our objective is to evaluate the risk associated with evasion
attacks on macro malware. If our assumption holds true, the
detection rate will decrease through the application of our
method. Therefore, our primary focus lies on the detection
rate (recall).

C. THREAT MODEL
The training and evasion samples consist of benign and
malicious samples from 2016. However, the original samples
are exclusively malicious samples from 2017. Hence, there
exists a distinction between the training samples and the
original samples. This scenario implies that the adversary
possesses knowledge of the training data used for the clas-
sifier, but lacks information about the correct classifier [45].
In this study, our focus lies on feature extraction rather than
classifiers. It is essential to take the practical situation into
consideration. During the evaluation, the training and evasion

3https://www.virustotal.com/

VOLUME 11, 2023 138341



M. Mimura, R. Yamamoto: Feasibility Study on Evasion Attacks Against NLP

TABLE 4. The performance of the replacing method for the BoW model.

processes are performed independently. In other words, both
models are completely distinct. Consequently, the adversary
remains unaware of the correct feature extraction method and
classifier.

D. REPLACING METHOD
Prior to conducting evasion attacks, we conducted parameter
optimization through grid search. We opted for the linear
kernel in SVM. The dimension of LSAwas set to 400. For PV,
the iteration count was adjusted to 30, with a vector size of
100 and learning rate of 0.025. These parameter settings align
with previous studies [28], [29].

Evasion attacks were carried out using the replacement
method. The target model employed is a simple BoW model.
Table 4 presents the performance results of the replacement
method.

Without the evasion attack, this straightforward BoW
model achieved a recall of 0.78. Upon comparing the
results, it is evident that this basic evasion attack led to
a mere 3 percent decrease in the detection rate. In this
evasion attack, the maximum number of replaced words is
determined by the number of variables present in the source
code. Consequently, we cannot increase the number of words
to insert. Hence, even in the case of a simple feature extraction
method, the replacing method proves to be ineffective.

E. SIMPLE INSERTING METHOD
We conducted evasion attacks using the simple inserting
method. In this approach, we simply selected frequent
words from benign samples and randomly insert them. The
number of inserted words is gradually increased. The target
feature extraction methods include BoW, LSA, and PV.
Figures 4, 5, and 6 illustrate the transition of accuracy.

The vertical axis represents the accuracy, precision, recall,
or F1 score. The horizontal axis represents the number of
inserted words. The recall score of the BoWmodel ultimately
experienced a decrease of only 2 percent. In contrast, the
detection rate of the LSAmodel was scarcely affected. As for
the PV model, the detection rate immediately dropped to
37 percent and remained constant. Thus, the simple inserting
method proves to be highly effective in the case of the simple
feature extraction method using BoW.Moreover, this method
also demonstrates effectiveness in the feature extraction
method employing PV. LSA emerges as the most resilient
model against this simple inserting method. To mitigate the
impact of the feature extraction method with LSA, more
sophisticated approaches are necessary.

FIGURE 4. Transition of the accuracy by the simple inserting method
(BoW model).

FIGURE 5. Transition of the accuracy by the simple inserting method (LSA
model).

FIGURE 6. Transition of the accuracy by the simple inserting method (PV
model).

F. MODIFIED INSERTING METHOD
We performed evasion attacks using the modified inserting
method. In this approach, we excluded the common features
between the samples. We carefully selectd impactful words
from both sets and insert them at random positions. The
number of inserted words gradually increased. The target
feature extraction methods are LSA and PV. Figures 7 and 8
illustrate the accuracy progression.

138342 VOLUME 11, 2023



M. Mimura, R. Yamamoto: Feasibility Study on Evasion Attacks Against NLP

FIGURE 7. Transition of the accuracy with the modified inserting method
(LSA model).

FIGURE 8. Transition of the accuracy with the modified inserting method
(PV model).

The vertical axis represents the accuracy, precision, recall,
or F1 score. The horizontal axis represents the number
of inserted words. In the LSA model, the detection rate
eventually decreased to 27 percent. As for the PV model, the
detection rate experienced a sudden decrease to 27 percent.
Thus, the modified inserting method proves effective in both
LSA and PV feature extraction methods.

PV, which aims to predict the words surrounding the given
context, might exhibit sensitivity to word order. To validate
this hypothesis, we conducted an additional experiment.
We carefully selected sophisticated words and inserted
them at the end position. Figure 9 displays the accuracy
progression.

As expected, the detection rate decreased to 37 percent.
Hence, inserting benign features at random positions proves
effective for PV.

VI. DISCUSSION
A. METHODOLOGY
In this study, we conducted evasion attacks using the
replacing method and inserting method.

The primary contribution of our research lies in assess-
ing the potential for evasion attacks against NLP-based
macro malware detection algorithms. Previous studies have

FIGURE 9. Inserting benign features at the end position (PV model).

predominantly evaluated the risk using fixed features [2],
[3], [4], [5], [6], [7], [8]. These studies primarily focused on
classifiers with constant features, while few researchers have
addressed the evasion attack problem with variable features.
In contrast, our study emphasizes feature extraction rather
than classifiers.

For this proposed application, we devised the evasion
process involving replacing and inserting methods. This
process leverages the characteristics of variable names and
function arguments in the source code. These elements can
be arbitrarily defined by the user, thereby ensuring that
the modifications remain independent and do not alter the
behavior. Some studies that primarily focus on evasion
attacks often neglect to discuss the original behavior [6].
To appropriately evaluate the risk, it is crucial to ensure the
feasibility of the evasion attacks.

B. EFFECTIVENESS
In the replacement method, the maximum number of words
to be substituted is contingent upon the number of variables
present in the source code. Hence, wewere unable to augment
the number of words to be inserted. Consequently, this
method proved ineffective even in the case of a simple feature
extraction method using BoW.

On the other hand, the insertion method offers greater
flexibility. With this approach, we have the ability to increase
the number of words to be inserted. We simply selected
frequently occurring words from benign samples and inserted
them randomly. The detection rate using BoW decreased
to a mere 2 percent. Thus, the straightforward feature
extraction method using BoW appears to be vulnerable to
evasion attacks. The detection rate with LSA showedminimal
decrease. In the case of the PV model, however, the detection
rate immediately dropped to 37 percent. Therefore, LSA
stands out as the most robust model against this simple
insertion method.

In the modified insertion method, we excluded the
common features shared by both samples and instead selected
effective words. Both detection rates using LSA and PV
were reduced to 27 percent. Hence, the modified insertion

VOLUME 11, 2023 138343



M. Mimura, R. Yamamoto: Feasibility Study on Evasion Attacks Against NLP

method proves effective in both feature extraction methods,
employing LSA and PV. In the replacing method, the
maximum number of the replaced words depends on the
numbers of variables in the source code. Therefore, we could
not increase the words to insert. As a result, this method was
not effective even in the simple feature extraction method
with BoW.

C. FEASIBILITY
In summary, these feature extraction methods appear to
exhibit susceptibility to evasion attacks. Specifically, the
simple feature extraction method utilizing BoW proves to
be highly vulnerable. Even sophisticated feature extraction
methods employing LSA and PV can be circumvented
by evasion attacks. The most notable outcome of the
experiment is the sensitivity of PV to such attacks. In this
feature extraction method, the detection rate experienced an
immediate decrease with the inclusion of just a few words.
Furthermore, these words could be inserted at any position
in the source code, rendering evasion attacks undetectable.
Hence, these feature extraction methods are susceptible to
evasion attacks.

Based on the results, LSA emerges as the most resilient
feature extraction method. The detection rate ultimately
decreased to 27 percent. However, achieving this requires the
insertion of a significant number of words. Considering that
the original samples contain an average of 3300 words per
file, the detection of evasion attacks may be comparatively
easier.

In this experiment, the time required to train the model
ranges from 1 second to 5 seconds at most. The overhead
of the modification process is less than 1 second. The time
required for classification is less than 1 second. Therefore,
the time constraints for this attack method are considered to
be minor.

D. COUNTERMEASURES
One approach to mitigate these evasion attacks is the
exclusion of words that users can define arbitrarily. The
feature extraction methods employed in this study extracted
features from the entirety of the source code. The inserted
benign features were meticulously chosen to ensure they
did not alter the behavior. In essence, these selected words
hold no significant importance for classification. Hence,
their exclusion can serve as a countermeasure. Another
approach involves retraining the model with the knowledge
gained from evasion attacks. However, this method can only
be applied post-evasion attacks. Therefore, both of these
countermeasures should be implemented simultaneously.

E. LIMITATIONS
Our study has certain limitations. This study specifically
focuses on selected NLP algorithms as feature extraction
methods, which extract variable features. However, it does
not consider machine learning-based methods with con-
stant features or conventional detection methods based on

pattern matching. To obtain a more comprehensive evalu-
ation of performance, it is necessary to incorporate these
conventional methods. Unfortunately, due to implementation
constraints, this approach was not feasible. While in theory,
these evasion attacks can preserve the behavior of malware,
we did not confirm this behavior through dynamic analysis.
However, this is a challenging task and beyond the scope of
this study. In this study, an SVM classifier was chosen as
the main target was feature extraction rather than classifiers.
However, it is important to evaluate the performance of other
classifiers as well. Ourmethodwas evaluated using thousands
of benign and malicious samples. However, there is a scarcity
of available malicious VBA macros, limiting the sample size
for evaluation. Nevertheless, NLP algorithms have the ability
to extract variable features and can be applied to diverse
inputs. To enhance the validity of our experiments, a larger-
scale dataset with recent malware samples should be utilized.

F. ETHICS
Ethics were given due consideration in this study. Ourmethod
does not require specific resources and can be easily imple-
mented. As a consequence, potential attackers might attempt
to replicate our method in order to evade detection. However,
the successful implementation of our method relies on the
availability of an attack dataset. urthermore, our method
does not take into account conventional detection methods
that employ pattern matching. These factors collectively
restrict the brief utilization of our method by attackers. The
primary objective of our study is to raise awareness about
the risks associated with evasion attacks targeting feature
extraction. We firmly believe that this study contributes to
the advancement of detection methods that exhibit resilience
against evasion attacks.

VII. CONCLUSION
In this study, we have elucidated the potential for evasion
attacks against specific NLP-based macro malware detection
algorithms. The experimental findings, utilizing actual macro
malware, demonstrate a decrease in the detection rate to a
mere 2 percent when employing the simple feature extraction
method. Both advanced language models exhibit a reduction
in their detection rates to 27 percent. Notably, the PV
model exhibits a susceptibility to evasion attacks. Despite the
average file size of the original samples being approximately
3300 words, the detection rate experiences an immediate
decline with the insertion of just a fewwords.Moreover, these
words can be inserted at any position in the source code.
Among the feature extraction methods employed, the LSA
model emerges as the most robust. To achieve a decreased
detection rate, the insertion of hundreds of words is necessary.
As a conclusion, we propose two countermeasures against
evasion attacks.

This study primarily focused on three NLP algorithms
as feature extraction methods and utilized an SVM clas-
sifier. It is essential to evaluate other models as well.
Malware analysis that combines multiple detectors and

138344 VOLUME 11, 2023



M. Mimura, R. Yamamoto: Feasibility Study on Evasion Attacks Against NLP

observation windows, proposing an approach based on
ensemble detection is a popular topic in this field and should
also be discussed in macro malware detection. While these
evasion attacks can maintain the malware’s behavior, the
confirmation of such behavior through dynamic analysis
is imperative. Our evaluation process involved thousands
of benign and malicious samples. To enhance the validity
of our findings, a more extensive dataset or a publicly
available dataset should be considered. Further studies
are warranted to implement and assess the effectiveness
of the proposed countermeasures. Additionally, it is cru-
cial to evaluate evasion attacks using adversarial learning
techniques.

REFERENCES
[1] F. Biondi, T. Given-Wilson, A. Legay, C. Puodzius, and J. Quilbeuf,

‘‘Tutorial: An overview of malware detection and evasion techniques,’’ in
Proc. 8th Int. Symp. Leveraging Appl. Formal Methods (ISoLA), Limassol,
Cyprus, Nov. 2018, pp. 565–586, 2018.

[2] Z. Abaid, M. A. Kaafar, and S. Jha, ‘‘Quantifying the impact of adversarial
evasion attacks on machine learning based Android malware classifiers,’’
in Proc. IEEE 16th Int. Symp. Netw. Comput. Appl. (NCA), Cambridge,
MA, USA, Oct. 2017, pp. 1–10.

[3] B. Chen, Z. Ren, C. Yu, I. Hussain, and J. Liu, ‘‘Adversarial
examples for CNN-based malware detectors,’’ IEEE Access, vol. 7,
pp. 54360–54371, 2019.

[4] S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and B. Li,
‘‘Automated poisoning attacks and defenses in malware detection systems:
An adversarial machine learning approach,’’ Comput. Secur., vol. 73,
pp. 326–344, Mar. 2018.

[5] S. Ehteshamifar, A. Barresi, T. R. Gross, and M. Pradel, ‘‘Easy to fool?
Testing the anti-evasion capabilities of PDF malware scanners,’’ 2019,
arXiv:1901.05674.

[6] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. D. McDaniel,
‘‘Adversarial examples for malware detection,’’ in Proc. 22nd Eur.
Symp. Res. Comput. Secur. (ESORICS), in Lecture Notes in Computer
Science, vol. 10493, S. N. Foley, D. Gollmann, E. Snekkenes,
Eds., Oslo, Norway. Cham, Switzerland: Springer, Sep. 2017,
pp. 62–79.

[7] Y. Huang, U. Verma, C. Fralick, G. Infantec-Lopez, B. Kumar, and
C. Woodward, ‘‘Malware evasion attack and defense,’’ in Proc. 49th
Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. Workshops (DSN-W),
Portland, OR, USA, Jun. 2019, pp. 34–38.

[8] D. Maiorca, B. Biggio, and G. Giacinto, ‘‘Towards adversarial malware
detection: Lessons learned from PDF-based attacks,’’ ACM Comput. Surv.,
vol. 52, no. 4, pp. 1–36, Jul. 2020.

[9] N. Šrndic and P. Laskov, ‘‘Practical evasion of a learning-based classifier:
A case study,’’ in Proc. IEEE Symp. Secur. Privacy, Berkeley, CA, USA,
May 2014, pp. 197–211.

[10] W. Xu, Y. Qi, and D. Evans, ‘‘Automatically evading classifiers: A case
study on PDFmalware classifiers,’’ inProc. 23rd Annu. Netw. Distrib. Syst.
Secur. Symp. (NDSS), San Diego, CA, USA, Feb. 2016.

[11] N. Srndic and P. Laskov, ‘‘Detection of malicious PDF files based on
hierarchical document structure,’’ in Proc. 20th Annu. Netw. Distrib. Syst.
Secur. Symp. (NDSS), San Diego, CA, USA, Feb. 2013.

[12] N. Šrndić and P. Laskov, ‘‘Hidost: A static machine-learning-based
detector of malicious files,’’ EURASIP J. Inf. Secur., vol. 2016, no. 1,
pp. 1–20, Dec. 2016.

[13] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, ‘‘The limitations of deep learning in adversarial settings,’’ in
Proc. IEEE Eur. Symp. Secur. Privacy (EuroS&P), Saarbrücken, Germany,
Mar. 2016, pp. 372–387.

[14] W. Hu and Y. Tan, ‘‘Generating adversarial malware examples for black-
box attacks based on GAN,’’ 2017, arXiv:1702.05983.

[15] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, ‘‘Grad-CAM: Visual explanations from deep networks via
gradient-based localization,’’ Int. J. Comput. Vis., vol. 128, no. 2,
pp. 336–359, Feb. 2020.

[16] A. Abusnaina, A. Khormali, H. Alasmary, J. Park, A. Anwar, and
A. Mohaisen, ‘‘Adversarial learning attacks on graph-based IoT malware
detection systems,’’ in Proc. IEEE 39th Int. Conf. Distrib. Comput. Syst.
(ICDCS), Dallas, TX, USA, Jul. 2019, pp. 1296–1305.

[17] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and
K. Ren, ‘‘Android HIV: A study of repackaging malware for evading
machine-learning detection,’’ IEEE Trans. Inf. Forensics Security, vol. 15,
pp. 987–1001, 2020.

[18] H. Li, S. Zhou,W. Yuan, J. Li, and H. Leung, ‘‘Adversarial-example attacks
toward Android malware detection system,’’ IEEE Syst. J., vol. 14, no. 1,
pp. 653–656, Mar. 2020.

[19] R. Bearden and D. C. Lo, ‘‘Automated Microsoft office macro malware
detection using machine learning,’’ in Proc. IEEE Int. Conf. Big Data (Big
Data), Boston, MA, USA, Dec. 2017, pp. 4448–4452.

[20] S. de los Santos and J. Torres, ‘‘Macro malware detection using machine
learning techniques—A new approach,’’ in Proc. 3rd Int. Conf. Inf. Syst.
Secur. Privacy (ICISSP), P. Mori, S. Furnell, and O. Camp, Eds., Porto,
Portugal, Feb. 2017, pp. 295–302.

[21] S. Kim, S. Hong, J. Oh, and H. Lee, ‘‘Obfuscated VBA
macro detection using machine learning,’’ in Proc. 48th Annu.
IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), Jun. 2018,
pp. 490–501.

[22] S. C. Vitel, M. Lupascu, D. T. Gavrilut, and H. Luchian, ‘‘Detection of
MSOffice-embedded malware: Feature mining and short- vs. long-term
performance,’’ in Proc. 17th Int. Conf. Inf. Secur. Pract. Exper. (ISPEC),
in Lecture Notes in Computer Science, vol. 13620, C. Su, D. Gritzalis,
V. Piuri, Eds., Taipei, Taiwan. Cham, Switzerland: Springer, Nov. 2022,
pp. 287–305.

[23] J. Yan, M. Wan, X. Jia, L. Ying, P. Su, and Z. Wang, ‘‘DitDetector:
Bimodal learning based on deceptive image and text for macro malware
detection,’’ in Proc. 38th Annu. Comput. Secur. Appl. Conf., Austin, TX,
USA, Dec. 2022, pp. 227–239.

[24] H. Miura, M. Mimura, and H. Tanaka, ‘‘Macros finder: Do you remember
loveletter?’’ in Proc. 14th Int. Conf. Inf. Secur. Pract. Exper. (ISPEC),
Tokyo, Japan, Sep. 2018, pp. 3–18.

[25] H. Miura, M. Mimura, and H. Tanaka, ‘‘Discovering new malware
families using a linguistic-based macros detection method,’’ in Proc.
6th Int. Symp. Comput. Netw. Workshops (CANDARW), Nov. 2018,
pp. 431–437.

[26] M. Mimura and H. Miura, ‘‘Detecting unseen malicious VBAmacros with
NLP techniques,’’ J. Inf. Process., vol. 27, pp. 555–563, Sep. 2019.

[27] M.Mimura, ‘‘Using fake text vectors to improve the sensitivity of minority
class for macro malware detection,’’ J. Inf. Secur. Appl., vol. 54, Oct. 2020,
Art. no. 102600.

[28] M. Mimura and T. Ohminami, ‘‘Towards efficient detection of malicious
VBA macros with LSI,’’ in Proc. 14th Int. Workshop Secur. (IWSEC),
Tokyo, Japan, Aug. 2019, pp. 168–185.

[29] M. Mimura and T. Ohminami, ‘‘Using LSI to detect unknown
malicious VBA macros,’’ J. Inf. Process., vol. 28, pp. 493–501,
Sep. 2020.

[30] M. Mimura, ‘‘An improved method of detecting macro malware on
an imbalanced dataset,’’ IEEE Access, vol. 8, pp. 204709–204717,
2020.

[31] M. Mimura and H. Tanaka, ‘‘Leaving all proxy server logs to paragraph
vector,’’ J. Inf. Process., vol. 26, pp. 804–812, Dec. 2018.

[32] M. Mimura and H. Tanaka, ‘‘Reading network packets as a natural
language for intrusion detection,’’ in Proc. 20th Int. Conf. Inf. Secur.
Cryptol. (ICISC), Seoul, South Korea, Nov. 2017, pp. 339–350.

[33] M. Mimura, ‘‘An attempt to read network traffic with Doc2vec,’’ J. Inf.
Process., vol. 27, pp. 711–719, Nov. 2019.

[34] M. Mimura, ‘‘Adjusting lexical features of actual proxy logs for intrusion
detection,’’ J. Inf. Secur. Appl., vol. 50, Feb. 2020, Art. no. 102408.

[35] M. Mimura and Y. Suga, ‘‘Filtering malicious Javascript code with
Doc2Vec on an imbalanced dataset,’’ in Proc. 14th Asia Joint Conf. Inf.
Secur. (AsiaJCIS), Aug. 2019, pp. 24–31.

[36] N. M. Phung and M. Mimura, ‘‘Detection of malicious Javascript
on an imbalanced dataset,’’ Internet Things, vol. 13, Mar. 2021,
Art. no. 100357.

[37] S. Ndichu, S. Kim, S. Ozawa, T. Misu, and K. Makishima, ‘‘A machine
learning approach to detection of JavaScript-based attacks using AST
features and paragraph vectors,’’ Appl. Soft Comput., vol. 84, Nov. 2019,
Art. no. 105721.

VOLUME 11, 2023 138345



M. Mimura, R. Yamamoto: Feasibility Study on Evasion Attacks Against NLP

[38] J. Wang, S. Ma, Y. Zhang, J. Li, Z. Ma, L. Mai, T. Chen, and
D. Gu, ‘‘NLP-EYE: Detecting memory corruptions via semantic-aware
memory operation function identification,’’ in Proc. 22nd Int. Symp.
Res. Attacks, Intrusions Defenses (RAID), Beijing, China, Sep. 2019,
pp. 309–321.

[39] Y. Tajiri and M. Mimura, ‘‘Detection of malicious PowerShell using word-
level language models,’’ in Proc. 15th Int. Workshop Secur. (IWSEC),
in Lecture Notes in Computer Science, vol. 12231, K. Aoki and A.
Kanaoka, Eds., Fukui, Japan. Cham, Switzerland: Springer, Sep. 2020,
pp. 39–56.

[40] M. Mimura and Y. Tajiri, ‘‘Static detection of malicious PowerShell
based on word embeddings,’’ Internet Things, vol. 15, Sep. 2021,
Art. no. 100404.

[41] M. Mimura and R. Ito, ‘‘Applying NLP techniques to malware detection
in a practical environment,’’ Int. J. Inf. Secur., vol. 21, no. 2, pp. 279–291,
Apr. 2022.

[42] M. Mimura, ‘‘Evaluation of printable character-based malicious PE file-
detection method,’’ Internet Things, vol. 19, Aug. 2022, Art. no. 100521.

[43] M. Mimura, ‘‘Impact of benign sample size on binary
classification accuracy,’’ Expert Syst. Appl., vol. 211, Jan. 2023,
Art. no. 118630.

[44] Q. Wang, W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, J. Rhee, Z. Chen,
W. Cheng, C. A. Gunter, and H. Chen, ‘‘You are what you do: Hunting
stealthy malware via data provenance analysis,’’ in Proc. Netw. Distrib.
Syst. Secur. Symp., San Diego, CA, USA, 2020.

[45] L. Muñoz-González, B. Biggio, A. Demontis, A. Paudice,
V. Wongrassamee, E. C. Lupu, and F. Roli, ‘‘Towards poisoning of
deep learning algorithms with back-gradient optimization,’’ in Proc. 10th
ACM Workshop Artif. Intell. Secur., New York, NY, USA, Nov. 2017,
pp. 27–38.

MAMORU MIMURA received the B.E. and
M.E. degrees in engineering from the National
Defense Academy of Japan, in 2001 and 2008,
respectively, the Ph.D. degree in informatics from
the Institute of Information Security, in 2011, and
theM.B.A. degree from Hosei University, in 2014.
From 2001 to 2017, he was a member of the Japan
Maritime Self-Defense Force. From 2011 to 2013,
he was with the National Information Security
Center. Since 2014, he has been a Researcher with

the Institute of Information Security. Since 2015, he has also been with the
National Center of Incident Readiness and Strategy for Cybersecurity. He is
currently an Associate Professor with the Department of Computer Science,
National Defense Academy of Japan.

RISA YAMAMOTO received the B.E. degree in
engineering from the National Defense Academy
of Japan, in 2020. She is currently a member of the
Japanese Ground Self-Defense Force.

138346 VOLUME 11, 2023


