
Received 22 September 2023, accepted 27 November 2023, date of publication 5 December 2023,
date of current version 22 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3340140

Improving Software Effort Estimation Models
Using Grey Wolf Optimization Algorithm
NADA MOHAMMED ALSHEIKH AND NABIL MOHAMMED MUNASSAR
Faculty of Computers and Information Technology, University of Science and Technology, Aden, Yemen

Corresponding author: Nada Mohammed Alsheikh (nadaalsheikh3@gmail.com)

ABSTRACT One of the Software Development Life Cycle phases is planning the software project.
Estimating the software effort is another task in this project planning phase. Software effort estimation is the
method of determining how many workers are required to create a software project. Many researchers have
focused on this field to increase the precision of software effort estimation and used both algorithmic and
non-algorithmic techniques. The most widely used method is the Constructive Cost Model (COCOMO).
However, the COCOMO model has a limitation related to the precision of the software effort estimation.
Meta-heuristic algorithms are preferred with parameter optimization because they can provide nearly optimal
solutions at a reasonable cost. This study aims to enhance the precision of effort estimation by modifying the
three COCOMO-based models’ coefficients and assess the efficiency of Grey Wolf Optimization (GWO)
in finding the optimal value of effort estimation through applying four other algorithms, including Zebra
Optimization (ZOA), Moth-Flame Optimization (MFO), Prairie Dog Optimization (PDO), and White Shark
Optimization (WSO) with NASA18 dataset. These models include the basic COCOMO model, and another
two models were also suggested in the published research as a modification of the basic COCOMO model.
The six most used software effort estimation metrics are used to assess the performance of the proposed
models. The results show high accuracy and significant error minimization of the GWOover other algorithms
involving ZOA, MFO, PDO, WSO, and other existing models.

INDEX TERMS COCOMO, Grey Wolf Optimization, software effort estimation, software cost estimation,
Moth-Flame Optimization, NASA18 dataset, Prairie Dog Optimization, White Shark Optimization, Zebra
Optimization.

I. INTRODUCTION
The early stage of software cost estimation of software
project development is the most challenging and least
accurate task [1]. Software cost estimation is a hot topic and
gained attention through continuous research. Researchers
concentrate on developing a helpful model that accurately
estimates software cost estimation. This has, in turn, led to the
development of numerous software cost-estimating models.
In general, these techniques are divided into algorithmic
and non-algorithmic techniques. The algorithmic methods
depend on mathematic formalities to estimate the effort,
such as COCOMO, SLM (Software Life Cycle), Function
Point, Use Case Point analysis, and Putnam’s Model [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Liu .

Non-algorithmic techniques, on the other hand, depend on
computation from previous similar project experiences, such
as Analog Techniques, Expert Judgment, Parkinson’s Law,
and Pricing to Win [3].

Software has become a system’s primary expense due
to the increasing cost or effort associated with software
development. The National Aeronautics and Space Admin-
istration (NASA) and the Air Force have estimated that
the cost of software development can exceed 50% of the
overall expenditure due to the highly developed systems
used in NASA software projects, both in terms of hardware
and software [4]. This has contributed considerably to
designing a new model to estimate software effort. There
are several precise models for estimating software effort;
however, there is still a dire need for more accurate
models.

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 143549

https://orcid.org/0009-0007-5471-3777
https://orcid.org/0000-0002-8161-0518
https://orcid.org/0000-0001-7300-9215

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

The Constructive Cost Model (COCOMO) is one of
the effective methods that measures a project’s early-stage
effort. This may help reduce the project’s overall cost [5].
It has gained considerable popularity, and its flexibility
covers a wide range of factors and may be applied in
various environments. However, the COCOMO model has
a limitation related to the precision of the software effort
estimation due to the problem’s deterministic nature, and
it has coefficients that affect its accuracy. The coefficients’
values are fixed for projects of the same kind, but these
parameters differ between organizations.

Therefore, fine-tuning the coefficients is required to
achieve accurate estimation. Additionally, the meta-heuristic
algorithms improve the COCOMO’s parameters, which are
regarded as successful in accurately estimating the effort
of software projects because they rely on population-based
search. They also include some equations that use local
search to converge to the solution rather than global search to
prevent local optimum. Thismakes it successful in optimizing
parameters and feature selection, such as GWO, ZOA, MFO,
PDO, and WSO.

By referring to the advantages of GWO, this study
suggests that the Grey Wolf Optimization (GWO) algorithm
optimizes the parameter values for the three COCOMO-
based models, including the basic COCOMO model, Sheta’s
Model 1 (also called Model I), and Sheta’s Model 2 (also
called Model II). To assess the efficiency of GWO in
finding the optimal value of effort estimation, four other
algorithms are applied, including Zebra Optimization (ZOA),
Moth-Flame Optimization (MFO), Prairie Dog Optimization
(PDO), White Shark Optimization (WSO), and other existing
models.

The proposed models are trained with the Nasa18 projects
dataset, which represents 70% of the dataset for training
and 30% for testing. To assess the performance of the
proposed models, the six most employed software effort
estimation metrics are used, including VAF, MSE, MMRE,
MAE, RMSE, and R2.
The motivation for this work is that in software project

management, approximately 65% of projects fail because
of management factors. In addition, the most important
one of these factors is inaccurate estimation. To get an
accurate software effort estimation, it is necessary to obtain
an accurate prediction method. It is highly expected to get
an accurate effort estimation. Still, no such model can predict
the effort to develop software projects due to the uncertainties
and imprecision associated with the software development
process. Due to this real-life optimization problem and
because of its importance in successful or unsuccessful
software projects.

Most researchers focus their work on COCOMO to
develop software effort estimation. Even though many
researchers have done software effort estimation, none of
them can achieve a satisfactory result that can help the
software product deliver on time, on budget, and as per the
requested quality. This research aims to improve the accuracy

of software effort estimation by optimizing the coefficients
of three COCOMO-based models. These models include the
basic COCOMO model and another two models that have
been suggested in the literature as extensions of the basic
COCOMO model, which are called Sheta’s Model I, and
Sheta’s Model II using meta-heuristic algorithms, including
(GWO), (ZOA), (MFO), (PDO), and (WSO).

The limitation of this study is that the estimation process
is not beyond the system level. In other words, a software
project in the COCOMO is considered a homogeneous entity
composed of a single sub-system. However, in reality, a soft-
ware system may composed of smaller and heterogeneous
sub-systems. Moreover, the study had a limited sample size,
but it could improved by increasing it. Also, the study does
not consider certain factors for software cost estimation, such
as hardware, personal quality, experiences, and tools.

This work explores a study of how the Gray Wolf
Optimization algorithm (GWO) enhances the software effort
estimation process overall. Where the significant contribu-
tions are:

• Proofing the convenience of the Gray Wolf Optimization
algorithm can generate general prediction models in the field
of software effort estimation.

• The significant improvement in performance over the
pre-existing models.

• The machine learning approach is a convenient software
effort prediction using a small number of dataset projects and
input variables.

This paper is organized as follows: section II describes
some related works, section III presents the dataset and
the evaluation metrics, section IV explains software effort
estimation models, section V interprets the utilized meta-
heuristic algorithms, section VI introduces the proposed
method, section VII provides the finding, section VIII
provides the conclusion and future work.

II. RELATED WORK
The most critical task in developing software is to estimate
the cost correctly because any estimation error might result
in either an overestimate or an underestimate, which could
impact the project’s resources. This section presents previous
studies and methods previously used for effort estimation and
improving the existing models’ coefficients in a similar field.
Examples of these techniques are GA [6], HACO-BA [7],
HWA [8], FPA [9], and eDTO [10].

Almost three decades ago, when Boehm introduced
COCOMO [11], several academics presented various
cost-estimating models to address a variety of optimization
problems. The extensive spread may be noticed in the field
of optimizing the basic COCOMOModel [4], [5], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35],
[36], [37], [38].

In 2006, Sheta introduced two models, Sheta’s Model I
and Sheta’s Model II, as extensions of the basic COCOMO
Model. Researchers moved to develop models because the

143550 VOLUME 11, 2023

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

parameters proposed by Sheta improved the accuracy and
quality of the basic model [39], [40], [41], [42], [43], [44],
[45], [46], [47], [48], [49], [50]. However, those researches
were excluded form comparison with our study because those
researches were not under equal conditions; the differences
in the kind of datasets and how to divide the dataset into
training and testing, the evaluation metrics, fitness functions,
the platforms that were used, and the set of parameters, such
as the number of iterations, population size. . . etc.

Verma et al. employed GA to optimize the intermediate
COCOMO model’s coefficients and used the NASA dataset
to achieve the results. They carried out their study by utilizing
the model’s organic mode. The fitness function is Manhattan
Distance (MD). The applied methodology yielded better
results than the intermediate COCOMO coefficients [6].

Khan et al. analyzed the algorithms from two angles.
The first is to compare the efficiency of the Ant Colony
Optimization (ACO), the Bat Algorithm (BA), and the Hybrid
of Ant Colony Optimization with the Bat Algorithm (HACO-
BA) in improving COCOMO II’s parameters. The second
is that the authors used HACO-BA to enhance the deep
learning training process to minimize the training delays.
The results confirmed the superiority of the HACO-BA
over BA and ACO. Moreover, HACO-BA performed more
effectivelywhenDNNwas optimized for execution speed and
precision [7].
Chhabra et al. suggested two models. Firstly, the fuzzy

techniques create a fuzzy technique for each cost driver, and
secondly, they use a Genetic Algorithm to select parameters,
characterizing fuzzy sets for the proposed fuzzy technique.
COCOMO NASA and COCOMO NASA 2 datasets are used
to validate the proposed model. The results are compared to
the values that match the COCOMOmodel, and the proposed
GA-optimized fuzzy COCOMO provided the best result with
reduced MMRE and increased Pred (25%) level [51].
Fadhil and Alsarraj applied the Humpback Whale Algo-

rithm on COCOMO II to find the optimal coefficient values.
The authors used NASA93. For performance evaluation, they
used MRE and MMRE. A comparison is also conducted
between the proposed model and previous similar completed
models, including Hybrid Cuckoo Optimization, Harmony
Search Algorithm, and CSHS. The results showed that the
Whale Algorithm outperformed COCOMO II and CSHS,
whereby MMRE is 57.40 for COCOMO II, 54.04 for CSHS,
and 50.6122 for the Whale Algorithm [8].

Suherman et al. attempted to verify whether the tuning
parameters, which utilize machine learning, such as Random
Forest Regression, can outperform the constant parameters
of COCOMO II with accurate results or vice versa. The
proposed method is implemented on NASA 93. Their results
showed that Random Forest Regression outperformed SVR
and Bee Colony [52].
Puspaningrum et al. applied the Flower Pollination Algo-

rithm in several iterations: 500, 1000, 1500, 2000, and
2500. The authors used 500 iterations to compare with

COCOMO II, Cuckoo Search Algorithm, and PSO. Besides,
they used NASA 93, and the results showed the superiority
of the Flower Pollination Algorithm versus other algorithms,
obtaining 5248% [9].
Shweta et al. applied the Ensemble Duck Traveler

Optimization Algorithm (eDTO) to enhance COCOMO II’s
accuracy in estimating the time and effort required to develop
software and assess the performance of the proposed model.
The authors used NASA93 and evaluation metrics ACC,
VAR, BRE, MRE, and MMRE to compare the results with
the existing COCOMO II model, Neural Network, and
Strawberry Algorithm. The results verified the superiority of
eDTO over other algorithms in all evaluation metrics [10].
Two models are proposed by Fadhil et al. to optimize the

parameters of COCOMO II: firstly, by using the Dolphin
Algorithm, and secondly, by employing the hybrid Dolphin
and Bat Algorithm (DOLBAT) on two datasets, NASA93
and NASA60. To carry out the performance evaluation, the
authors used MRE and MMRE. The results showed that
DOLBAT outperformed GA, CSHS, Bat, and Dolphin. For
NASA93, the MMRE of the DOLBAT is 50.27, while for
the Dolphin, it is 51.8755. Moreover, for NASA60, the
MMRE of the DOLBAT is 14.57, while for the Dolphin, it
is 16.65 [53].
Fadhil and Bahnam proposed a hybrid model of the Ant-

Lion Optimization and Cuttlefish Algorithms (HALOCF) to
improve the COCOMO II’s parameters. The authors used two
datasets, including NASA 93 and NASA 60. For evaluation,
they used the MMRE metric. They compared the results
with several algorithms, such as COCOMO II, CSHS, Bat,
ALO, and CF. The results demonstrated that the HALOCF
outperformed compared with other algorithms in MMRE in
two datasets [54].

Saleem et al. proposed a systematic review to discuss
several software cost estimation techniques and identified
their strengths and weaknesses. The authors focused on
understanding issues that cause cost estimation problems
in software projects. They concluded that some models
performed better in large projects, others in small projects,
and some on global software. Therefore, to obtain the best
efficiency, the authors recommended using the collaborative
methods [55].
Khan et al. proposed the Flower Pollination Algorithm

(FPA) to optimize intermediate COCOMO’s coefficients.
They usedNASA93, NASA 63, andNASA 60 datasets. It was
found that the FPA has effectively solved this optimization
problem and obtained the best results when compared to the
normal value of COCOMO’s parameters. The results showed
that the improvement on NASA93 is 10.17%, NASA 63 is
77.38%, and NASA 60 is 22.96% [56].

Sethy et al. employed the TLBO algorithm to increase
the precision of the COCOMO model by refining the
COCOMO’s coefficients. They used the IVR dataset, which
includes 47 projects. The authors compared the results with
previous models, such as Bailey, COCOMO 2, Hastead, SEl,

VOLUME 11, 2023 143551

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

and BCO. The TLBO algorithm provided high accuracy by
obtaining the lowest value of MMRE [57].
Ullah et al. suggested a Biogeography-Based Optimiza-

tion (BBO) model to improve the existing coefficients
of COCOMO II. They used two datasets, NASA93 and
Turkish industry software projects evaluated by MD and
MMRE. The results demonstrated that the proposed model
has significant precision and reduces error compared to
COCOMO II, PSO, FPA, GA, and other high-cost estimation
models [58].

Sunindyo and Rudiyanto suggested combining
COCOMO II and the K-Means clustering approach to
increase the precision of the COCOMO II by determining
new values of a and b. They used the COCOMO NASA2
dataset and the Turkish Software Industry. The results showed
that the proposed model could reduce the amount of MRE
COCOMO II from 1.32 to 0.85 and improve the amount of
PRED (0.3) from 32% to 54% [59].

Singal et al. applied the Differential Evolution Algorithms
to optimize the COCOMO and COCOMO II parameter
values. The parameter values are obtained by using three
mutation techniques in Differential Evolution. The proposed
model is tested on the COCOMO 81 and NASA93 datasets.
The test results showed the proposed model’s superiority on
the COCOMO and COCOMO II while obtaining the lowest
MMRE for the two datasets [60].
Singh et al. suggested an Enhance-Based Differential

Evaluation Algorithm (EABMO) to tune the parameters of
the semidetached model. The performance of the developed
model was tested on NASA and compared to other modern
DE algorithms, PSO, and GA. The result showed that the
proposed EABMO algorithm outperformed DE, PSO, and
GA [61].

Vats et al. proposed a Genetic Algorithm to develop a cost
estimation framework using an object-oriented perspective
and a prediction model using regression techniques and
GA. The evaluation metrics used RMSE and MAE. The
result showed that GA outperformed on regression in the
RMSE 96.31 for regression, GA is 61.66, MAE 0.17188, and
0.098818 for GA [62].
Reddy and Behera surveyed to study the benefit of PSO

in software estimation. They analyzed the previous works.
They concluded that the datasets most frequently used are
COCOMO81, NASA, Maxwell, and ISBSG. They used the
evaluation metrics that most frequently applied MMRE,
PRED, MARE, and MDMRE [63].
Kumar and Behera proposed several machine learning

methods, such as KNN, SVM, Neural Networks, Random
Forests, and Backpropagation Algorithms, for estimating
software effort estimation. They used COCOMO81 and
Desharnais. They divided the dataset into 80% for training
and 20% for testing. The orange tool for comparing. The
results, it is found that the software effort estimation using
KNN is better than other models [64].

The research gaps that were found in previous works:
• Lack of estimation accuracy.
• Their focus was on improving one model.
• They did not use unseen data in the testing phase, which

makes the models unable to generalize.
• Use one or at most two metrics to measure the model’s

performance.
• The experimental result could improve the original

COCOMO. However, there are higher relative errors to the
actual effort of projects.

• They didn’t consider the effect of methodology.

III. DATASET DESCRIPTION AND EVALUATION METRICS
This research examines a famous and public dataset to
produce comparable results with [76] under equal conditions,
namely the NASA projects’ effort dataset. The dataset is
challenging due to the few cases and the small number of
variables. However, the dataset is considered sufficient for
this study’s objectives. The dataset for this study is taken from
NASA software project data, which is collected by Bailey
dataset and Basili [65].

The dataset has 18 software projects; each project has three
variables. First, the Kilo Line Of Code (KLOC), which is
presented in Kilo Line of Code and chiefly determines the
effort of a software project. Second, the Methodology (ME)
has a real effect on the cost of a particular software project.
The last one is themeasured effort, which is described inman-
months. It is worth mentioning that 70% of the dataset is used
for estimating the model’s parameters and 30% for testing
their performance. The utilized dataset in this study has been
used by many researchers. Table 2 presents the dataset in this
study.

In this study, the first 13 projects’ data were used
to optimize the parameter values, while the remaining
5 projects’ data were used to test the models. The evaluation
metrics, which are used for calculating the differences, are as
follows:

‘‘Variance− Accounted − For (VAF) as in (1)′′ [5]

VAF = [1 −
var(act − est)
var(act)

] ∗ 100 % (1)

‘‘Mean Squared Error (MSE) as in (2)′′ [28]

MSE = 1/n
n∑
i=1

(act − est)2 (2)

‘‘Mean of Absolute Error (MAE) as in (3)′′ [39]

MAE = 1/n
n∑
i=1

|act − est| (3)

‘‘Mean Magnitude Relative Error(MMRE)as in(4)′′ [5]

MMRE = 1/n
n∑
i=1

|act − est|
act

(4)

Root Mean Squared Error (RMSE) as in (5)′′ [66]

143552 VOLUME 11, 2023

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

TABLE 1. Summary of related works.

RMSE =

√√√√ n∑
i=1

(act − est)2 (5)

‘‘R− Squared (R2) as in (6)′′ [28]

R2 =

∑n
i=1(act − mean(act))2 −

∑n
i=1(act − est)2∑n

i=1(act − mean(act))2
(6)

IV. SOFTWARE EFFORT ESTIMATION MODELS
Software effort estimation is the method of determining
how many workers are required to create a software
project. The Constructive Cost Models COCOMO and its
modification COCOMO II are well-known and often-used
effort estimation models. COCOMO, sometimes known as
COCOMO 81, is used as a cost, effort, and schedule

VOLUME 11, 2023 143553

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

TABLE 2. NASA 18 software projects.

estimation model for planning new software development
activities. The COCOMO was defined in 1981 [11].
Meanwhile, COCOMO II is a later extension of the

model that was initially established. In this study, the three
COCOMO-based model coefficients are being optimized.
The first is the basic COCOMO, represented in Equation (7).
The other two models are modifications of the basic
COCOMO model, which are the proposed models by Sheta
[67], which are based on the Boehm Constructive Cost
Model(COCOMO), are tuned in this work. Sheta made
some adjustments to Boehm’s basic model for software
cost estimation to obtain a generalized model for estimating
the effort for all types of projects. He applied a Genetic
Algorithm to tune the parameters of the proposed models to
forecast the precise estimation of effort.

Sheta has also added methodology to the COCOMO to
increase the prediction accuracy and quality of the COCOMO
model. He has also discovered that adding a bias term
comparable to the regression model classes stabilizes the
model and lessons the impact of measurement noise. The
models created by Sheta [67] were successful in enhancing
the estimated effort’s performance relative to the VAF
criteria.

A and B are parameters in the basic model in Equation (7).
Other parameters, i.e., C andD,were added to the basicmodel
to improve the prediction accuracy, as shown in Equations
(8,9). Sheta’s Model 1, which is called Model I, and Sheta’s
Model 2, which is called Model II, are given below:

E = A(KLOC)B (7)

E = A(KLOC)B + C(ME) (8)

E = A(KLOC)B + C(ME) + D (9)

Here, E denotes the estimated effort, A and B denote
multiplicative and exponential constant, respectively, KLOC
is the software project’s size, and ME is the methodology.

A. SOFTWARE COST ESTIMATION STEPS
According to software engineering economics, estimating the
cost of a software project includes four steps [11]. Each step
gives an input to the next one. Software size is used as an input
in effort estimation along with other attributes that influence
the software effort needed to develop software. The software
size and effort estimation are used to determine the calendar
time or schedule that was required to construct the software.
The steps to determine the cost of a particular software project
are as follows:

• Software size estimation.
• Software effort estimation.
• Software time estimation.
• Software dollar cost estimation.

1) SOFTWARE SIZE ESTIMATION
The most crucial software management task is size estima-
tion, the first step in software engineering economics that
calculates the software project effort. Due to subsequent
work, estimating effort and time depends on software size.
The project manager must be aware of the project size of a
particular software project to calculate the software cost and
identify how many people should be allocated.

Lawrence H. Putnam LOC, the Line Of Code and Function
Point Analysis was used to estimate the line of code.

a: LAWERECE H.PUTNAM LOC ESTIMATION
In this method, the Line Of Code is estimated by dividing the
system into smaller parts and calculating the SLOC of each
one. In this approach, for each part of the software system,
the smallest piece SLOC, most likely SLOC, and the largest
possible SLOC estimates are made by up to three to four
specialists for part of a software system. Then, the predicted
SLOC is calculated for each part of the software system using
Equation (10).

Ei =
a+ 4m+ b

6
(10)

where a represents the smallest possible SLOC, b represents
the largest possible SLOC, and m is most likely SLOC,
respectively. Then, the expected software size for the
SOLC of the entire system and computed by the following
Equation (11).

Ei =
∑n

i=1
Ei (11)

where n, represents the total number of parts in the whole
system.

b: FUNCTION POINT ANALYSIS
According to this method, the software size is cal-
culated using units. Counting the number of external

143554 VOLUME 11, 2023

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

components(such as inputs, outputs, inquiries, and interfaces)
that the system is made up. The system’s input files,
tables, forms, screens, and messages will be counted as a
component of software size from the external inputs. External
I/O inquiries that demand a response, such as prompts,
interruptions, calls, etc. . . ., are counted. Software size is also
affected by libraries or programs that are passed through and
out of the system. The following steps are being taken to
assess the software size of a project:

1. Estimate or count each external type’s occurrences
(inputs, outputs, inquiries, and interfaces).

2. Each occurrence should be given a complexity weight.
3. To calculate the function count, multiply each occur-

rence by its complexity weight, then add the results.
4. To determine the function point count, multiply the

function count by a value adjustment multiplier (VAM).

VAM =

∑
vi ∗ 0.01 + 0.065 (12)

The following table can multiply each occurrence by its
complexity weight.

TABLE 3. Complexity weight.

2) SOFTWARE EFFORT ESTIMATION TECHNIQUES
Software effort and cost estimation techniques are divided
into algorithmic and non-algorithmic techniques. The algo-
rithmic methods depend on mathematical formalities to
estimate the effort, such as the Constructive Cost Model
(COCOMO), SLM (software life cycle), Function Point, Use
Case Point analysis, and Putnam’s Model [2].

a: CONSTRUCTIVE COST MODEL (COCOMO)
The Constructive Cost Model (COCOMO), which Barry
Boehm proposed in 1981 based on an analysis of 63 projects,
is one of the most significant, well-documented, commonly
used algorithmic models [11]. Using the software’s size and
other cost drivers, this model calculates the cost and effort
of the software. The basic COCOMO Model, intermediate
COCOMO Model, and advanced COCOMO Model are the
three basic variations of the model. The COCOMO model
measures effort in terms of person-months andmeasures code
size in lines of code (LOC) or thousand lines of code (KLOC).

i) BASIC COCOMO MODEL
The basic Constructve Cost Model needs the software

size estimated by Line Of Code or Function Point Analysis.
The project types in this model are organic, semidetached,

and embedded. Its classification is mainly based on the
project’s size, which is the organic less than 50 KLOC, the
semidetached is 50-300 for KLOC, and the embedded is over
300 KLOC, represented by Equation (7).

TABLE 4. Coefficients value in basic COCOMO model.

ii) INTERMEDIATE-COCOMO MODEL
The intermediate-COCOMO model includes cost drives

and the line of code used in the basic COCOMO model.
Cost drives consist of products, personnel, hardware, and
projects. So, the estimated cost and effort combine the line
of code and the cost drives. In the intermediate-COCOMO
model, nominal effort estimation is calculated using the
power function of A and B, with the value slightly different
from the basic COCOMO model. The cost factors range
from 0.7 to 1.66, and the estimated effort is calculated using
Equation (7).

E = A(KLOC)B × EMF (13)

where EMF, is the product of all the cost factors.

TABLE 5. Coefficients value in intermediate COCOMO model.

iii) DETAILED COCOMO MODEL
The intermediate-COCOMO version’s features are

included in the detailed COCOMO, along with an evaluation
of how the cost driver affects each phase of the software
engineering process. The detailed COCOMO uses various
effort multipliers, and we use COCOMO in each module to
estimate work before adding it all up.

The stages of software development used in the detailed
COCOMO Model to calculate software effort are detailed
design (DD), code and unit testing (CUT), requirement
design and product design (RPD), and integration and test
(IT). Each software module’s estimated effort determines the
effort of the entire system. Table 7 shows the rating scale for
each cost driver in the four phases of the detailed COCOMO
Model.

3) COCOMO II MODEL
The COCOMO Model was created based on the waterfall
software development process paradigm. COCOMO II was
designed to incorporate the most recent model for the

VOLUME 11, 2023 143555

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

TABLE 6. Cost factor and their weight in intermediate COCOMO.

software development process. The COCOMO II model can
be used to determine the effort of a software project when
the development process is incremental, iterative, or spiral or
when re-engineering is necessary. Equation (14) determines
a project’s effort during either the early design phase or post-
architecture. The unit of measurement for effort is Person-
Month (PM). Person Month is the time that one person works

on the software project development for one month.

PM = A× SizeE ×

n∏
i=2

×EMF (14)

E = B+ 0.01 ×

5∑
j=0

×SF (15)

143556 VOLUME 11, 2023

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

TABLE 7. Effort multiplier rating scale and its value for detailed COCOMO
model.

where n, represents the number of effort multiplier in the
early design or post-architecture, n is 17 for post-architecture,
and 7 for the early design model. SF represents the five
scale factors in COCOMO II. A and B are constants whose
value is derived from 161 software projects. EM is the
product of 17 effort multipliers. The five scale factors in
the COCOMO II are precedentedness (PREC), development
flexibility (FLEX), risk resolution (RESL), team cohesion
(TEAM), and process maturity (PMAT), and there are 17 of
them. The COCOMO II effort multipliers are represented in
Table 8, along with their corresponding values.

B. SLIM MODEL
Software Life Cycle Management is one algorithmic model
used for large projects. It is sometimes referred to as a
macro estimation model. It was one of the first models
of empirical and algorithmic software cost estimation. The
method describes the time and software effort required
to construct a software project. Using Equation (16), the
software effort is estimated.

Effort = [
Size

(productivity× Time)(43)
] × B (16)

where Size, is the estimated size of the software prod-
uct, productivity is the productivity of the organizational
process.

C. EXPERIENCE BASED ESTIMATION
The estimation technique for software projects is commonly
utilized when gathering requirements and data is challenging.
The estimation is calculated using residents’ experiences.

D. ESTIMATION BY ANALOGY
The technique of developing a solution using similar tasks
that have already been done and applying that answer to
a new problem area is known as estimation measurement.
The analogy technique is identical to experience-based
estimation, except it only uses prior projects’ knowledge and
experience. While estimating by analogy is a data-intensive
strategy based on one or more identified prospective similar
projects, experience-based estimation is a human-intensive
approach.

E. TOP DOWN AND BOTTOM UP APPROACH
The estimated total effort is either determined as the
sum of the project activity estimates or is based on the
characteristics of the project as a whole. The accuracy with
which algorithmic methods and experience-based estimation
techniques may estimate the effort value of software projects
is limited. The use of meta-heuristic algorithms in estimating
the time and cost of software projects is currently prevalent
and results in better estimates.

V. THE META-HEURISTIC ALGORITHMS
A. GREY WOLF OPTIMIZATION ALGORITHM
The GWO algorithm is mainly motivated by the gray wolves’
social hierarchy and hunting method. The social hierarchy is
separated into four levels. The alpha (α), beta (β), delta (δ),
and omega (ω).
The alphas are leaders who may be females or males. They

are not necessarily the strongest, but they can best manage
the herd. They are responsible for making orders regarding
hunting, where to sleep, when to wake up, and so on. The
alpha wolf is known as the dominant wolf because the rest of
the herd must follow the orders it gives.

The beta is the second level of the hierarchy; it is an advisor
to the alpha and helps the alpha make decisions, and it takes
orders from the alpha and gives orders to the rest of the herd.
If the alpha wolf dies, it becomes the first candidate to be the
herd leader.

The third level is the delta wolf; it obeys the alpha and
beta commands and controls the omega. They are the scouts,
elders, and caretakers who look after the herd’s injured and
weak wolves.

The lowest rank is the omega wolf, which plays the role of
a scapegoat and must obey all orders of the alpha and beta,
and it is the last wolf allowed to eat [73].

The main phases of gray wolves’ hunting are as follows:
• Chasing, pursing, and closing in on the prey.
• Chasing the victim until it stops moving, then surround-

ing and pestering it.
• Attacking the victim.
The computation complexity of the GWO algorithm is

defined as follows:

O(m(dn+ n+ nlogn+ n) (17)

1) THE REASONS FOR CHOOSING THE GWO ALGORITHM
ARE
The first reason is that the GWO has proven its efficiency in
studies similar to the nature of our research problem, such as
in [74], where they proposed a model to predict rainfall based
on the input time-series weather data using GWO in India,
Jammu, and Kashmir. They used four datasets. The result
demonstrated that it outperformed the proposed Accuracy,
MSE, and PRD methods.

The second reason is that this study [75] demonstrated that
the GWO algorithm has attracted from several sources and
is being used in a variety of fields, including job scheduling,

VOLUME 11, 2023 143557

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

TABLE 8. COCOMO II effort multipliers.

Surface Waves, Unmanned Combat Ariel Vehicles (UCAVs),
Optimum Reactive Power Dispatch (ORPD), Bankruptcy
Prediction, and Smart Green House. According to results
from applications of the GWO, The GWO performed better
than other bio-inspired algorithms, including BA, GA, FA,
PSO, and others.

The third reason is that our research problem is a
single-objective optimization problem, and the GWO solves

single-objective and multi-objective optimization problems.
The fourth reason is that according to the advantages of the
GWO, which are:

• Ease of implementation.
• Its simplicity because it has the two primary parameters

to be adjusted (a and C).
• The social hierarchy assists GWO in saving the fittest

solutions obtained so far developed throughout the iteration.

143558 VOLUME 11, 2023

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

• The encircling mechanism establishes a hyper-spherical
neighborhood in higher dimensions around the solutions.

•Candidate solutions are helped to have hyperspheres with
various random radii by the random parameters A and C.

• The hunting technique enables possible solutions to
identify the likely location of the prey.

• The a and A adaptive values ensure exploration and
exploitation.

• The smooth transition between exploration and exploita-
tion is made possible by GWO’s values for the parameters a
and A.

• As A decreases, exploration takes up half of the
iterations, and exploitation takes up the other half.

TABLE 9. Setting the parameters for the GWO algorithm.

Algorithm 1 Pseudo-code of GWO
Initialization of grey wolves Wn where n=1,2,. . . ,N
According to given upper bound(UB) and lower
bound (LB) values.
Initialize a, A and C.
Evaluation the fitness of all search agents
Select alpha, beta and delta as:
Wα = best search agent
Wβ = second best search agent
W δ = third best search agent
Initialize i = 0 and Max-it = Maximum number of
iterations allowed.
while i < Max − it do

for each search agent do
Update the position of the current search agent

end
Update a, A and C.
Evaluate the fitness of all search agents.
If any better solution then updateWα,Wβ, and
W δ

i=i+1.

end
Stop the process and visualize the first best agentWα

B. ZEBRA OPTIMIZATION ALGORITHM
The ZOA algorithm was primarily inspired by the social
behavior of herds of zebras in the wild. In particular, this
mimics zebras’ twomost important social behaviors: foraging
and defense strategies. The ZOA is a population-based
algorithm, whereas the population is zebras. Each zebra

is a candidate solution in the search space. Zebra can be
represented as a vector, and the values inside this vector are
the variables of the problem, i.e., the fitness function values.
In contrast, the population of zebras is represented as ametric.

The location of every zebra in the search space determines
the values of the parameters for the optimization problem; the
initial position is assigned randomly. The zebras is compared
based on the zebra’s fitness function value in the population,
and it can represent the best one based on the type of fitness
function, whether maximum or minimum.

In ZOA, the population’s best member is the pioneer zebra,
representing the global best and leading other zebras toward
its position.

In each iteration, the location of all zebras is updated, and
the best solution is generated each time. The update is carried
out depending on two phases: 1) Foraging and 2) Defense
strategies.

In the first phase, the members update their position based
on simulating the behaviors of zebras when searching for
food, and the best member is the pioneer zebra, which leads
other zebras to their position in the search space.

In the second phase, the behavior of zebras in defense
against predators is used to update the position of zebras in
search space. It depends on the type of predator; if it is a lion,
then the strategy they use is to escape in a zigzag pattern. If
it were a smaller animal like a dog, zebras would gather to
confuse and scare it [68].

The computation complexity of the ZOA algorithm is
defined as follows:

O(N .m.(1 + 2.T)) (18)

1) THE REASONS FOR CHOOSING THE ZOA ALGORITHM
ARE
The first reason is that sixty-eight benchmark functions,
which include unimodal, high-dimensional multimodal,
fixed-dimensional multimodal, CEC2015, and CEC2017
kinds, were used to assess ZOA’s performance in solving
optimization problems. The optimization findings demon-
strated that ZOA can offer the best solutions for cost functions
by achieving the proper balance between exploitation and
exploration.

Moreover, four engineering design problems were used
to examine ZOA’s capacity to optimize real-world issues:
welded beam, tension/compression spring, pressure vessel,
and speed reducer. It was proven that the ZOA algorithm out-
performed other known algorithms in most cases, including
GWO, TLBO, GA, MPA, PSO, TSA WOA, and GSA [68].

The second reason is that the ZOA algorithmwas proposed
in 2022, so it was interesting to use it in optimizing
parameters for the old models, such as the basic COCOMO
model, which was offered in 1981, and the two Sheta’s
models, which were proposed in 2006.

The third reason is that we searched in ACM, Scholar,
IEEE, and Science Direct databases, and this algorithm has
yet to be used to estimate software effort.

VOLUME 11, 2023 143559

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

TABLE 10. Setting the parameters for the ZOA.

C. MOTH-FLAME OPTIMIZATION ALGORITHM
The MFO is a meta-heuristic algorithm, which is a
population-based algorithm. It was created by Sayedali in
2015 [69]. TheMFO algorithm imitates the behavior ofmoths
naturally through the moths’ crosswise movements.

Real moths use a clever way of flying through the darkness
to cover large distances in a straight line by keeping a steady
and specific degree toward the moon’s position as a light
source. However, as soon as the moths see the artificial light
nearer than the moonlight, they finally converge on it. They
keep the same degree before becoming caught in a spiraling
motion around it.

The MFO algorithm consists of two elements: moths and
flames. Each moth in theMFO algorithm indicates a solution,
and the variables in each problem are determined by the
positions of the moths in the search space. The moth is
regarded as a search agent that gets the search. By updating
their position, the moths could be searched in multiterminal
spaces.

The moths’ number and flames’ dimensions are stored in
an array to keep each moth’s best position. Both moths and
flames metrics allow each moth to search the area and update
the flame, which is the best position if a better solution is
discovered.

The following can be used to present the MFO algorithm
generally: MFO is (I, P, T). There are three-tuple estimation
methods in the MFO algorithm: the method I randomly
initializes the population, and P describes a method for
searching for nearby moth solutions until the termination
condition is satisfied, where T is a procedure that returns
whether or not the termination condition has been met.

The computation complexity of the MFO algorithm is
defined as follows:

O(t(n2 + n× d)) = O(tn2 + tnd) (19)

1) THE REASONS FOR CHOOSING THE MFO ALGORITHM
ARE
The first reason is that we searched in ACM, Scholar,
IEEE, and Science Direct databases, and this algorithm
has yet to be used to estimate software effort. The second
reason is that the MFO algorithm has been proven efficient
against several algorithms such as SOS, GA, PSO, ABC,
and more when used in various fields, including engineering,
chemical andmedical research, machine Learning, and image
processing. . . etc [70].

The third reason is due to its advantages, which are:
• It is a mechanism for primarily enhancing exploitation;

updating positions enables gathering nearby solutions around
the flames.

Algorithm 2 Pseudo-code of ZOA
Input: the optimization problem information
Set the number of iterations(T) and the number of
zebras’ population(N).
Initialization of the position of zebras and evaluation
of the objective function.
Evaluation the fitness of all search agents
for t=1:T do

Update pioneer zebra(PZ)
for i=1:N do

Phase 1: Foraging behavior
Calculate new status of ith zebra by
xnew,P1
ij = xij + r .(PZj − I .xij) Update the ith
zebra by

Xi =

{
xnew,P1
ij , Fnew,P1

i < Fi;

Xi, else,

Phase 2: Defense strategies against
predators
if Ps < 0.5,Ps = rand then

Strategy1: against lion (exploitation
phase)
Calculate new status of the zebra using
mode S1

end

Xi =


S1 : xij + R.(2r − 1)

.(1 −
t
T
).xij, Ps < 0.5;

S2 : xnew,P1
ij = xij + r

.(AZj − I .xij), else,

else
Strategy2:against other predator
(exploration phase)
Calculate new status of the zebra using
mode S(2)

end
Update the ith zebra by

Xi =

{
xnew,P2
ij , Fnew,P2

i < Fi;

Xi, else,

end
Save best candidate solution so far

end
Return the best solution obtained by ZOA for given
optimization problem

• Over several iterations, the adaptive convergence param-
eter (r) towards the flame leads to increased exploitation
surrounding the flames.

• Due to the use of a population of moths by MFO for
optimization, local optimal avoidance is highly effective.

143560 VOLUME 11, 2023

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

• Each moth is given a flame, leading to search space
exploration and lowering the possibility that local optima
would stop.

• The search space balances exploitation and exploration
by reducing the flame count.

• Using the most recent and successful solution so far as
the flames, moths might use the promising solutions as their
guides.

• To ensure their preservation, only the fittest solutions are
saved.

• Because moths constantly update their positions about
flames, representing the most promising solutions so far
throughout iterations, the convergence of the MFO algorithm
is ensured.

• The MFO method can handle complex real-world issues
with uncertain and limited search spaces. [69]

Algorithm 3 Pseudo-Code of MFO
Initialization parameters of Moth-Flame
Initialization Moth positionMi randomly
for i = 1 : n do

Calculate the fitness function
end
while iteration < Max − iteration do

Update the position ofMi Calculate the number of
flames Evaluate the fitness function if
iteration == 1 then

F=sort(M) and OF=sort(OM)
end
else

F = sort(Mt−1,Mt)andOF = sort(Mt−1,Mt)
end
for i = 1 : n do

for j = 1 : d do
Update the values of r and t Calculate the
value of D respect to its corresponding
moth UpdateM (i, j) respect to
corresponding moth

end
end

end
Print the best solution

TABLE 11. Setting the parameters for MFO algorithm.

D. PRAIRIE DOG OPTIMIZATION ALGORITHM
The PDO algorithm is primarily inspired by the movements
of a type of American rodent known as prairie dog (PD) [71].
The PDO algorithm mimics four prairie dog behaviors for

the exploration and exploitation stages. The PDO is given
exploratory behavior through the PDs’ foraging and nest-
building activities.

The PDs build their nests around a plentiful food resource.
When a food source is exhausted, they search for a new one
and construct new nests around it, thereby motivating the
PDOs’ exploration phase.

On the other hand, they respond to two different commu-
nications or sounds for exploitation. PDOs have sounds or
signals for several situations, including the threat of predatory
and abundance of food. To meet their nutritional demand and
be able to defend themselves against predators, they need to
be able to communicate effectively.

These two activities can lead the PDs closer to a specific
location. The PDO algorithm consists of four phases:
initialization, fitness function, exploration, and exploitation.

The computation complexity of the PDO algorithm is
defined as follows:

O(t) = O((N × dim× T) + t2) (20)

1) THE REASONS FOR CHOOSING THE PDO ALGORITHM
ARE
The first reason is that the PDO was tested on 22 benchmarks
and ten CEC-2020. Also, it has been applied to solve
twelve real-world optimization problems. The results showed
that the PDO performed better than other meta-heuristic
algorithms. The second reason is that we searched in
ACM, Scholar, IEEE, and Science Direct databases, and this
algorithm has yet to be used to estimate software effort. The
third reason is that the PDO algorithm was proposed in 2022,
so it was interesting to use it in optimizing parameters for
the old models, such as the basic COCOMO model, which
was offered in 1981, and the two Sheta’s models, which were
proposed in 2006.

The fourth reason is due to its advantages, which are:
• It can keep up with a balanced exploration and

exploitation approach.
• It is more capable and efficient when compared to other

methods.
• It can predict global optimum for real-world optimization

problems with uncertain global optimal.
• It shows more consistent convergence.
• The models of the searching and burrow-building

activities, which are exploration, anti-predation, and commu-
nication, which are exploitation activities, include the digging
strength and predator impact features, specifically affecting
the PDO updating process.

E. WHITE SHARK OPTIMIZATION ALGORITHM
The WSO is inspired by the dynamic behavior of a white
shark, known as a white pointer or a huge white shark [72].

• Tracking the victim
They use their sense of smell to scan a vast area for a victim

while tracking prey, as well as their sense of hearing to hear
from all parts of their body.

VOLUME 11, 2023 143561

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

TABLE 12. Setting the parameters for pod algorithm.

Algorithm 4 Pseudo-Code of PDO
Set the parameters of PDO: n, m, p, ϵ Set G Best and
C Best as φ Initialize the candidate solution CT and
PD while iter < Max − iter do

for i=1 to m do
for i=1 to m do

Calculate the fitness of PD Find the best
solution so far(C Best) Update G Best
Update DS and PE Update CPDij
if (iter < Maxiter

4) then
(foraging activities)
PDi+1,j+1 = GBesti,j − eGBesti,j ×
p− CPDi,j × Levy(n)

end
else if (Maxiter4 < iter < Maxiter

2) then
(burrowing activities)
PDi+1,j+1 =

GBesti,j − eGBesti,j × DS × Levy(n)
end
else if (Maxiter2 < iter < 3Maxiter4) then

(food alarm)
PDi+1,j+1 = GBesti,j − eGBesti,j ×
ϵ − CPDi,j × rand

end
else

(anti predation alarm)
PDi+1,j+1 = GBesti,j × PE × rand

end
end

end
iter = iter + 1

end
Return best solution (G Best)

• Search for the victim (exploration)
Through two lines on both sides of the white shark,

it can hear unusually, and these lines can find changes in
the water pressure emitted by the victim. It can determine
the electromagnetic waves produced during the prey’s
movement. They can pinpoint the place and size of the victim,
and when they locate the victim, it moves quickly toward the
target.

• Search for the victim (exploitation)
White sharks use their keen sense of smell in every possible

area in the search space to identify the prey’s location.
When the white shark is nearer to the victim, the sense of

smell increases exponentially to identify the prey’s location
accurately. In most cases, the white shark is tricked by the
fragrance that the prey, like seals, leave behind after they
depart the area to mislead the white shark. In this case,
it searches randomly and explores other areas, aided by its
senses.

The computation complexity of the WSO algorithm is
defined as follows:

O(t) = O(kcn+ knd) (21)

1) THE REASONS FOR CHOOSING THE WSO ALGORITHM
ARE
The first reason is that the WSO was tested on 29 benchmark
test optimization problems with various dimensions related to
the CEC-2017. Also, it has been applied to solve real-world
optimization problems suggested for the CEC-201. The
results showed that the WSO performed better than other
algorithms, such as TLBO, SFS, DE, GA, GSK, AMO, PSO,
BBO, and ACO [72].
The second reason is that we searched in ACM, Scholar,

IEEE, and Science Direct databases, and this algorithm has
yet to be used to estimate software effort. The third reason is
that the WSO algorithm is new, as it was proposed in 2022,
so it was interesting to use it in optimizing parameters for
the old models, such as the basic COCOMO model, which
was offered in 1981, and the two Sheta’s models which were
proposed in 2006.

The fourth reason is due to its advantages, which are:
• It’s anticipated flexibility to handle various optimization

problems.
• High convergence speed.
• The WSO has a small set of tuning parameters.
• The WSO is considered a strong candidate interested in

creating effective, low-cost, and strong solutions to difficult
optimization challenges abroad.

•The simplicity and strength ofWSO are expected tomake
it quick and accurate to identify the solution for challenging
optimization.

TABLE 13. Setting the parameters for the wso algorithm.

143562 VOLUME 11, 2023

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

Algorithm 5 Pseudo-Code of WSO
Initialize the parameters of the problem
Initialize the parameters of the WSO
Randomly generate the initial positions of WSO
Initialize the velocity of the initial population
Evaluate the position of the initial population
while (iter < Max − iter) do

Update the parameters v,p1, p2,µ, a, b, w0,f, mv ;
and ss
for (i=1 to n) do

vik+1 = µ[vik + p1](wgbestk − wik) × c1 +

p2(wbest (vk)i − wik)
end
for (i = 1ton) do

if (rand < mv) then
wik+1 = wik .

⊗
w0 + u.a+ l.b else

wi(k+1) = wik + (vik)/f
end
for (i = 1ton) do

if (rand < ss) then
Dw = |rand < (wgbestk − wik)| if
(i == 1) then
wik+1 =

wgbestk + r1Dwsgn(r1 − 0.5) else
wik+1 =

wgbestk+r1Dwsgn(r1 − 0.5)
end

wik+1 =
(wik+1+w

i
k+1)

(2rand)
end

end
end

end
Adjust the position of the white sharks that
proceed beyond the boundary.
Evaluate and update the new positions
k = k + 1.

end
Return the optimal solution obtained so far

VI. THE PROPOSED METHOD
The proposed models, which are used in this study, include
five separate meta-heuristic algorithms. The primary objec-
tive task is to identify the generalized optimal values of all
parameters for the three COCOMO-based models: basic-
COCOMO, Sheta’s Model 1, which is called Model I, and
Sheta’s Model 2, which is called Model II. One of the five
meta-heuristic algorithms is applied each time, including
GWO, ZOA, MFO, PDO, and WSO. The proposed method
consists of two parts:

A. PART1: THE TRAINING OF MODELS
The actual effort, KLOC, and ME are the inputs. The
outcomes are the optimized values for the three COCOMO-
based models. The parameters of the proposed model A and
B in the basic COCOMO, whereby A, B, and C are the

parameters in the COCOMO Model I, and A, B, C, and D
represent the parameters in the COCOMO Model II; these
are set in this section, and the goal is to produce optimized
coefficients using five meta-heuristic algorithms.

In other words, in the basic COCOMO, the goal is to
determine an equation of independent variables [Kilo Line Of
Code(KLOC)] and one dependent variable [Effort] that suits
a given training sample.

The goal for the COCOMO Model I is to determine
an equation of 2 independent variables [Kilo Line Of
Code (KLOC), Methodology(ME)] and one dependent vari-
able[Effort], which suits a given training sample.

Moreover, the goal of COCOMOModel II is to determine
an equation of 3 independent variables [Kilo Line Of
Code (KLOC), Methodology (ME), D bias factor], and one
dependent variable [Effort], which suits a given training
sample.

Initially, all the projects in the NASA 18 dataset were split
into two groups: 70% training, which includes 13 projects,
and 30% testing, which consists of 5 projects. A total of five
meta-heuristic algorithms were applied separately. For the
GWO Matlab implementation by [73], ZOA by [68], PDO
by [71], WSO by [72], and MFO developed by [68].

Then, the meta-heuristic algorithms were used separately
to optimize the coefficients to reduce the difference between
each project’s predicted and actual effort. Through the
optimization of coefficients, in these proposed models, MAE
is set as the cost function for all the meta-heuristic algorithms.
The suitability function fitness is to minimize the MAE as
much as possible, and meta-heuristic algorithms are repeated
until the MAE is further reduced to the favored rate.

It evaluates each member in the population and gives each
of them a fitness value depending on their quality. This study
aims to minimize the errors, thus increasing the accuracy of
the three COCOMO-based models. The reason for using the
same cost function for all the meta-heuristic algorithms is to
test them all under equal conditions.

For comparison, the set of parameters used in this study
is discussed in [67] and [76]. The population size is unified
for all the algorithms set to 100. The maximum iteration is
500. The parameters for the problem are the dimension’s size,
which is equal to the number of coefficients in each model,
such as the dim is 2 for the basic COCOMOmodel, the dim is
3 for the COCOMOModel I, and the dim is 4 for COCOMO
Model II. For each model, the lower bounds are−5,−30, and
−30, and the upper bounds are 5, 30, and 30, respectively. All
these processes are shown in Figure 1.

B. PART2: THE TESTING OF THE MODELS
This section presents the results of the training section,
which are the coefficients of the three utilized COCOMO-
based models used to evaluate the optimized models. The
data used in this section are the testing data. The optimized
coefficients are used to estimate the effort of each project.
After calculating the effort for all projects, the six evaluation

VOLUME 11, 2023 143563

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

FIGURE 1. The training stage in the proposed method.

metrics are evaluated for eachmeta-heuristic algorithm for all
the testing projects.

Once the result of each algorithm is obtained, the results
are illustrated in tables and compared with the existing
results in the literature. VAF, MSE, MAE, MMRE, RMSE,
and R2 of the testing dataset are compared. This phase
determines the algorithm for better tuning coefficients of the
three COCOMO-based models. To determine the difference
between the predicted effort and the actual effort of each
project, the difference should be as low as possible, which
means that the accuracy of the prediction is high. All these
processes are shown in Figure 2.

VII. FINDINGS
A. EXPERIMENTAL RESULTS FOR THE BASIC COCOMO ON
THE NASA18 DATASET
The basic COCOMO computes software development effort,
duration, and cost. In the basic COCOMO, the values
A = 2.4 and B = 1.05 are obtained, respectively.

First, using the GWO on the training dataset, the following
newly optimized coefficient values of A and B for the
basic COCOMO model are obtained, i.e., A = 1.9045 and
B = 0.9200. These new values of A and B are used
to calculate the software project’s effort to highlight the
proposed model’s effect on the software effort estimation.

Second, using the ZOA, a new optimized coefficient value
of A and B for the basic COCOMO model has been found as
follows: A = 3.5466 and B = 0.7876.

Third, using the PDO, a new optimized coefficient value
of A and B for the basic COCOMO model is obtained,
i.e., A = 3.3722 and B=0.7999.

After that, using the WSO, a new optimized coefficient
value of A and B for the basic COCOMO model is obtained:
A = 1.5153 and B = 0.9898.

FIGURE 2. The testing stage in the proposed method.

Then, using the MFO, a new optimized coefficient value
of A and B for the basic COCOMO model has been found,
i.e., A = 3.3339 and B = 0.8051, as shown in Table 14.

TABLE 14. BASIC COCOMO coefficient values using GWO and other
algorithms.

Table 15 illustrates the estimated effort for the NASA
dataset using the new optimized coefficient values of A and
B for all the five utilized algorithms. Based on Table 15, the
second column indicates the actual effort provided by the
NASA dataset. The third column up to the seventh column
presents the estimated effort for eachmodel, respectively. The
estimated effort comparison based on Table 15 showed that all
the projects have a good estimation value to the actual effort in
the GWO model. It is more accurate than ZOA, PDO, WSO,
and MFO.

Based on Figure 3, the suggested GWOmodel graph is the
closest to the actual effort compared to other algorithms. This
shows that the GWO model is superior to other models in
estimating software’s effort.

143564 VOLUME 11, 2023

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

TABLE 15. Estimated effort for the basic COCOMO.

FIGURE 3. The effort graph of the basic COCOMO for the NASA, GWO, ZOA, WSO, PDO, and MFO algorithms.

The optimized coefficients are used to estimate the
effort of each project, which is presented in Table 15 by
replacing optimized coefficients in Equation (7) with the old
ones.

After calculating the effort for all projects, the six
evaluation metrics are estimated for each meta-heuristic
algorithm for all the testing projects.

Once the result of each algorithm is obtained, the results
are compared with the existing results in the literature, FA,

VOLUME 11, 2023 143565

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

TABLE 16. Computed evaluation metrics for basic COCOMO model.

FIGURE 4. The evaluation metrics for the basic COCOMO model.

PSO, and GA. VAF, MSE, MAE, MMRE, RMSE, and R2
of the testing dataset are compared.

Here, we will explain how we obtained the results in
Table 16 mathematically for each algorithm that we used,

which are GWO, ZOA, PDO, WSO, and MFO:

Act = [8.4, 98.7, 15.6, 23.9, 138.3]

Est-GWO = [8.37208, 105.5771, 15.4032, 19.45083,

143566 VOLUME 11, 2023

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

132.7286]

Est-ZOA = [12.59856222, 110.3181593, 21.23213308,

25.92618024, 134.1954296]

Est-PDO = [12.21854325, 110.6781315, 20.76022396,

25.42913828,

135.0459001]

Est-WSO = [7.453138, 113.9168, 14.36168, 18.45951,

145.7216]

Est-MFO = [12.18129, 111.9328, 20.76837, 25.47269,

136.7536]

A) The Variance Accounted For (VAF)

var(act) = (8.4−56.98)2+(98.7−56.98)2+(15.6−56.98)2

+ (23.9 − 56.98)2 + (138.3 − 56.98)2/4

= 13520.108/4 = 3380.027.

According to Equation (1)
1) GWO

var(act-est) = 23.97517.

VAF-GWO = [1 −
23.97517
3380.027

] × 100

= [1 − 0.0070931889] × 100 = 99.29%.

2) ZOA

var(act-est) = 32.5601.

VAF-ZOA = [1−
32.5601
3380.027

] × 100 = [1−0.0096330887]

× 100 = 99.04%.

3) PDO

var(act-est) = 30.909692.

VAF-PDO = [1 −
30.909692
3380.027

]

× 100 = [1 − 0.0091448062] × 100 = 99.09%.

4) WSO

var(act-est) = 68.39592.

VAF-WSO = [1−
68.39592
3380.027

]

×100 = [1−0.0202353176] × 100 = 97.98%.

5) MFO

var(act-est) = 30.58404746.

VAF-MFO = [1 −
30.58404746
3380.027

]

× 100 = [1 − 0.0090484625] × 100 = 99.10%.

B) The Mean Squared Error (MSE)
According to Equation (2)
1) MSE-GWO =

1
5 × (8.4 − 8.37208)2 + (98.7 −

105.5771)2 + (15.6 − 15.4032)2 + (23.9 − 19.45083)2 +

(138.3 − 132.7286)2 =
1
5 × (0.02792)2 + (−6.877)2 +

(0.1968)2 + (4.44917)2 + (5.5714)2 =
1
5 × 98.16832353 =

19.63.
2) MSE-ZOA =

1
5 × (8.4 − 12.59856222)2 +

(98.7 − 110.3181593)2 + (15.6 − 21.23213308)2 + (23.9 −

25.92618024)2 + (138.3 − 134.1954296)2 =
1
5 ×

(−4.19856)2+(−11.6182)2+(−5.63213)2+(−2.02618)2+
(4.10457)2 =

1
5 × 205.2842659278 = 41.06.

3) MSE-PDO =
1
5 × (8.4 − 12.21854325)2 +

(98.7 − 110.6781315)2 + (15.6 − 20.76022396)2 +

(23.9 − 25.42913828)2 + (138.3 − 135.0459001)2 =
1
5 × (−3.8185433)2 + (−11.978132)2 + (−5.160224)2 +

(−1.5291383)2+(3.2540999)2 =
1
5×14.58127+143.4756+

26.62791 + 2.338264 + 10.58917 =
1
5 × 197.612214 =

39.52.
4) MSE-WSO =

1
5 × (8.4 − 7.453138)2 + (98.7 −

113.9168)2 + (15.6 − 14.36168)2 + (23.9 − 18.45951)2 +

(138.3 − 145.7216)2 =
1
5 × (0.946862)2 + (−15.2168)2 +

(1.23832)2+(5.44049)2+(−7.4216)2 =
1
5 × 318.660064 =

63.73.
5) MSE-MFO =

1
5 × (8.4 − 12.18129)2 + (98.7 −

111.9328)2 + (15.6 − 20.76837)2 + (23.9 − 25.47269)2 +

(138.3 − 136.7536)2 =
1
5 × (−3.78129)2 + (−13.2328)2 +

(−5.16837)2 + (−1.57269)2 + (1.5464)2 =
1
5 ×

220.981907 = 44.20.
C) The Mean of Absolute Error (MAE)
According to Equation (3)
1) MAE-GWO =

1
5 × |8.4 − 8.37208| + |98.7 −

105.5771|+|15.6−15.4032|+|23.9−19.45083|+|138.3−

132.7286| =
1
5 × |0.02792| + | − 6.877| + |0.1968| +

|4.44917| + |5.5714| =
1
5 × 17.12229 = 3.42.

2) MAE-ZOA =
1
5 × |8.4 − 12.59856222| +

|98.7 − 110.3181593| + |15.6 − 21.23213308| + |23.9 −

25.92618024|+|138.3−134.1954296| =
1
5×|−4.19856|+

| − 11.6182| + | − 5.63213| + | − 2.02618| + |4.10457| =
1
5 × 27.57964 = 5.52.
3) MAE-PDO =

1
5 × |8.4 − 12.21854325| +

|98.7 − 110.6781315| + |15.6 − 20.76022396| + |23.9 −

25.42913828| + |138.3 − 135.0459001| =
1
5 × | −

3.8185433|+|−11.978132|+|−5.160224|+|−1.5291383|+
|3.2540999| =

1
5 × 25.7401375 = 5.15.

4) MAE-WSO =
1
5 × |8.4 − 7.453138| + |98.7 −

113.9168|+|15.6−14.36168|+|23.9−18.45951|+|138.3−

145.7216| =
1
5 × |0.946862| + | − 15.2168| + |1.23832| +

|5.44049| + | − 7.4216| =
1
5 × 30.264072 = 6.05.

5) MAE-MFO =
1
5 × |8.4 − 12.18129| + |98.7 −

111.9328|+|15.6−20.76837|+|23.9−25.47269|+|138.3−

136.7536| =
1
5×|−3.78129|+|−13.2328|+|−5.16837|+

| − 1.57269| + |1.5464| =
1
5 × 25.30155 = 5.06.

D) The Mean Magnitude Relative Error (MMRE)
According to Equation (4)
1) MMRE-GWO =

1
5 ×

|8.4−8.37208|
8.4 +

|98.7−105.5771|
98.7 +

|15.6−15.4032|
15.6 +

|23.9−19.45083|
23.9 +

|138.3−132.7286|
138.3 =

1
5 ×

0.312058621 = 0.06.

VOLUME 11, 2023 143567

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

2) MMRE-ZOA=
1
5×

|8.4−12.59856222|
8.4 +

|98.7−110.3181593|
98.7 +

|15.6−21.23213308|
15.6 +

|23.9−25.92618024|
23.9 +

|138.3−134.1954296|
138.3 =

1
5×

|−4.19856|
8.4 +

|−11.6182|
98.7 +

|−5.63213|
15.6 +

|−2.02618|
23.9 +

|4.10457|
138.3 =

1
5 × 1.0930309529 = 0.22.
3) MMRE-PDO=

1
5×

|8.4−12.21854325|
8.4 +

|98.7−110.6781315|
98.7 +

|15.6−20.76022396|
15.6 +

|23.9−25.42913828|
23.9 +

|138.3−135.0459001|
138.3 =

1
5 ×

|−3.8185433|
8.4 +

|−11.978132|
98.7 +

|−5.160224|
15.6 +

|−1.5291383|
23.9 +

|3.2540999|
138.3 =

1
5 × 0.9942410301 = 0.20.

4) MMRE-WSO =
1
5 ×

|8.4−7.453138|
8.4 +

|98.7−111.9328|
98.7 +

|15.6−14.36168|
15.6 +

|23.9−18.45951|
23.9 +

|138.3−145.7216|
138.3 =

1
5 ×

|0.946862|
8.4 +

|−15.2168|
98.7 +

|1.23832|
15.6 +

|5.44049|
23.9 +

|−7.4216|
138.3 = =

1
5 × 0.6275720091 = 0.13.
5) MMRE-MFO =

1
5 ×

|8.4−12.18129|
8.4 +

|98.7−111.9328|
98.7 +

|15.6−20.76837|
15.6 +

|23.9−25.47269|
23.9 +

|138.3−136.7536|
138.3 =

1
5 ×

|−3.78129|
8.4 +

|−13.2328|
98.7 +

|−5.16837|
15.6 + |

−1.57269|
23.9 +

|1.5464|
138.3 =

1
5 × 0.992514681 = 0.20.
E) The Root Mean Squared Error (RMSE)
According to Equation (5)
1) RMSE − GWO =

√
19.63 = 4.43.

2) RMSE − ZOA =
√
41.06 = 6.41.

3) RMSE − PDO =
√
39.52 = 6.29.

4) RMSE −WSO =
√
63.733 = 7.98.

5) RMSE −MFO =
√
44.20 = 6.65.

F) The R-Squared (R2)
According to Equation (6)

Mean(act) =
(8.4 + 98.7 + 15.6 + 23.9 + 138.3)

5
= 56.98.

1) R2 − GWO = ((8.4 − 56.98)2 + (98.7 − 56.98)2 +

(15.6 − 56.98)2 + (23.9 − 56.98)2 + (138.3 − 56.98)2) −

98.16832353)/((8.4 − 56.98)2 + (98.7 − 56.98)2 + (15.6 −

56.98)2 + (23.9 − 56.98)2 + (138.3 − 56.98)2) =
(13520.108−98.16832353)

13520.108 = 0.9927.
2) R2 − ZOA = (8.4 − 56.98 + 98.7 − 56.98 + 15.6 −

56.98 + 23.9 − 56.98 + 138.3 − 56.98)2 − 205.283346)/
(8.4−56.98+98.7−56.98+15.6−56.98+23.9−138.3)2 =
(13520.108−205.283346)

13520.108 = 0.9848.
3) R2 − PDO = (8.4−56.98)2+(98.7−56.98)2+(15.6−

56.98)2+(23.9−56.98)2+(138.3−56.98)2)−197.612071)/
(8.4−56.98)2 + (98.7−56.98)2 + (15.6−56.98)2 + (23.9−

56.98)2 + (138.3 − 56.98)2) =
(13520.108−197.612071)

13520.108 =

0.9854.
4) R2 −WSO = (8.4−56.98)2+(98.7−56.98)2+(15.6−

56.98)2+(23.9−56.98)2+(138.3−56.98)2)−318.660064)/
(8.4−56.98)2 + (98.7−56.98)2 + (15.6−56.98)2 + (23.9−

56.98)2 + (138.3 − 56.98)2) =
(13520.108−318.660064)

13520.108 =

0.9764.
5) R2 −MFO = (8.4−56.98)2+(98.7−56.98)2+(15.6−

56.98)2+(23.9−56.98)2+(138.3−56.98)2)−220.981907/
(8.4−56.98)2 + (98.7−56.98)2 + (15.6−56.98)2 + (23.9−

56.98)2 + (138.3 − 56.98)2) =
(13520.108−220.981907)

13520.108 =

0.9837.
Table 16 compares the GWO model’s accuracy with ZOA,

PDO, WSO, MFO, Firefly, PSO, and GA models found in

previous studies [76]. Using six different estimation metrics.
From the evaluation metrics, the VAF value is expected to
be high because it is associated with the fit quality of the
estimation.

Moreover, if R2 = 1, this indicates that 100% percent
of the increase in the dependent variable is because of an
increase in the independent variable, and if R2 = 0, there is
no relationship between the variables. Regarding the metric
R2, the closer the value is to one, the better the data fit the
model can provide. For the rest of the evaluation metrics, the
value should be as low as possible to be better because it is a
relative error found in the estimation process.

Based on Table 16, it can be observed that the VAF of
the GWO model is 99.29%, which is the maximum value
foundwhen compared with other models. The VAF of Firefly,
GA, PSO, ZOA, PDO, WSO, and MFO models are 98.16%,
97.97%, 97.98%, 99.04%, 99.09%, 97.98%, and 99.10%,
respectively.

Also, the R2 of the GWO model is 0.9927, and the R2 of
Firefly, GA, PSO, ZOA, PDO, WSO, and MFO models are
0.9781, 0.9763, 0.9765, 0.9848, 0.9854, 0.9764, and 0.9837,
respectively. According to the comparison, the GWO model
has lower relative errors and higher VAF and R2 values.

For example, the MSE of GWO is 19.63, and the MSE for
Firefly, GA, PSO, ZOA, PDO, WSO, and MFO models are
59.14, 63.96, 63.68, 41.06, 39.52, 63.73, 44.20, respectively.
These values show that the GWO model can reduce errors
by 39.51, 44.33, 19.63, 21.43, 19.63, 44.1, and 24.57,
respectively.

By using the MAE as an evaluation metric, the MAE of
the GWO model is 3.42, which obtained better results than
other models. The MAE for Firefly, GA, PSO, ZOA, PDO,
WSO, andMFOmodels are 5.65, 6.06, 6.04, 5.52, 5.15, 6.05,
and 5.06, respectively. Compared with the GWO model, the
GWO model could reduce 2.23, 2.64, 2.62, 2.1, 1.73, 2.63,
and 1.64 percent of mean absolute errors.

RegardingMMRE, the GWOmodel obtained better results
by 0.05, 0.07, 0.06, 0.16, 0.14, 0.07, and 0.14.

By using the RMSE as an evaluation metric, the RMSE of
the GWOmodel is 4.43, and the RMSE for Firefly, GA, PSO,
ZOA, PDO, WSO, and MFO models are 7.67, 8.00, 7.98,
6.41, 6.29, 7.98, and 6.65, respectively. Compared with the
GWO model, the GWO model could reduce errors by 3.24,
3.57, 3.55, 1.98, 1.86, 3.55, and 2.22, respectively.

The GWOmodel has lower relative errors, higher VAF, and
R2 values in the six evaluation metrics. Therefore, the GWO
model is efficient, and the basic COCOMO model software
projects’ effort should be estimated with the new parameters.

B. EXPERIMENTAL RESULTS FOR THE COCOMO MODEL I
ON THE NASA18 DATASET
COCOMOModel I is a new model structure that can be used
to estimate the software effort for projects proposed by [67].
It considered the effect of the methodology as linearly related
to effort estimation. It has three parameters: A, B, and C.

143568 VOLUME 11, 2023

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

First, using the GWO, the following newly optimized
coefficient values of A, B, and C for the COCOMO Model I
are obtained, i.e., A = 1.9496, B = 0.9165, and C = 0.0287.
These new values of A, B, and C are used to calculate the
software project’s effort to highlight the effect of the proposed
models on the software effort estimation.

Second, using the ZOA, a new optimized coefficient value
of A, B, and C for the COCOMO Model I has been found:
A = 8.7353, B = 0.6133, and C = −0.6982.
Third, using the PDO, a new optimized coefficient value

of A, B, and C for the COCOMOModel I model is obtained,
i.e., A = 14.8136, B = 0.5151, and C = −1.1591.

After that, using the WSO, a new optimized coefficient
value of A, B, and C for the COCOMO Model I is obtained:
A = 8.9746, B = 0.6111, and C = −0.7792.

Then, using the MFO, a new optimized coefficient value
of A, B, and C for the COCOMO Model I have been found,
i.e.,. A = 12.8178, B = 0.541, and C = −1.0211, as shown
in Table 17.

TABLE 17. Cocomo modeli coefficient values using GWO and other
algorithms.

Table 18 illustrates the estimated effort for the NASA
dataset using the new optimized coefficient parameters’
values of A, B, and C for all the five applied algorithms. The
estimated effort comparison based on Table 18 showed that all
the projects have a good estimation value to the actual effort
in the GWO model, and it is more accurate than ZOA, PDO,
WSO, and MFO.

As shown in Figure 5, the proposed GWO model graph is
almost in line with the actual effort. This demonstrates that
the GWO model is superior to other models in estimating the
effort of software.

The optimized coefficients are used to estimate the effort of
each project, which is presented in Table 18 by replacing the
optimized coefficients in Equation (8) with the old ones. After
the calculation of the effort for all projects,the six evaluation
metrics are estimated for each meta-heuristic algorithm for
all the testing projects.

Once the result of each algorithm is obtained, the results are
compared with the existing results in the literature, FA, PSO,
and GA. The testing dataset’s VAF, MSE, MAE, MMRE,
RMSE, and R2 are compared. Here, we will explain how
we obtained the results in Table 19 mathematically for each
algorithm that we used, which are GWO, ZOA, PDO, WSO,

and MFO:

Act = [8.4, 98.7, 15.6, 23.9, 138.3]

Est-GWO = [9.354496, 107.4434, 16.41796,

20.5111, 134.6714]

Est-ZOA = [3.19212, 102.5445, 16.3423,

22.26478, 124.1721]

Est-PDO = [0.32518, 99.71053, 16.45137,

23.11433, 120.0474]

Est-WSO = [1.400129, 101.9415, 14.93913,

20.97006, 123.9356]

Est-MFO = [1.004651, 100.167, 16.24875,

22.69254, 120.7666]

A) The Variance Accounted For (VAF)

var(act) = (8.4 − 56.98)2 + (98.7 − 56.98)2

+ (15.6 − 56.98)2 + (23.9 − 56.98)2

+ (138.3 − 56.98)2/4

= 13520.108/4 = 3380.027.

According to Equation (1)
1) GWO

var (act-est) = 25.05771.

VAF-GWO = [1 −
25.05771
3380.027

]

×100= [1−0.0074134644]×100 = 99.26%.

2) ZOA

var(act-est) = 47.75908.

VAF-ZOA = [1 −
47.75908
3380.027

]

×100= [1−0.0141297925]×100 = 98.59%.

3) PDO

var(act-est) = 68.29972.

VAF-PDO = [1 −
68.29972
3380.027

]

×100= [1−0.0202068563] × 100 = 97.98%.

4) WSO

var(act-est) = 45.14172.

VAF-WSO = [1 −
45.14172
3380.027

]

×100= [1−0.0133554318] × 100 = 98.66%.

5) MFO

var(act-est) = 62.68643.

VAF-MFO = [1 −
62.68643
3380.027

]

× 100 = [1 − 0.0185461329]

× 100 = 98.15%.

VOLUME 11, 2023 143569

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

TABLE 18. Estimated effort for the cocomo model I.

FIGURE 5. The effort graph of COCOMO Model I for the NASA, GWO, ZOA, WSO, PDO, and MFO.

B) The Mean Squared Error (MSE)
According to Equation (2)
1) MSE-GWO= 1

5 × (8.4 − 9.354496)2 + (98.7 −

107.4434)2 + (15.6 − 16.41796)2 + (23.9 − 20.5111)2 +

(138.3 − 134.6714)2 =
1
5 × (−0.954496)2 + (−8.7434)2 +

(−0.81796)2+ (3.3889)2+ (3.6286)2 =
1
5 ×102.6785459 =

20.54.

2) MSE-ZOA= 1
5×(8.4−3.19212)2+(98.7−102.5445)2+

(15.6 − 16.3423)2 + (23.9 − 22.26478)2 + (138.3 −

124.1721)2 =
1
5 × (5.20788)2 + (−3.8445)2 + (−0.7423)2 +

(1.63522)2 + (14.1279)2 =
1
5 × 244.7247065 =

48.95.
3) MSE-PDO= 1

5×(8.4−0.32518)2+(98.7−99.71053)2+
(15.6 − 16.45137)2 + (23.9 − 23.11433)2 + (138.3 −

143570 VOLUME 11, 2023

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

TABLE 19. Computed evaluation metrics for the COCOMO model I.

FIGURE 6. The evaluation metrics for the COCOMO Model I.

120.0474)2 =
1
5 × (8.07482)2 + (−1.01053)2 +

(−0.85137)2 + (0.78567)2 + (18.2526)2 =
1
5 ×

400.7234038991 = 80.14.

4) MSE-WSO= 1
5 × (8.4 − 1.400129)2 + (98.7 −

101.9415)2 + (15.6 − 14.93913)2 + (23.9 − 20.97006)2 +

(138.3 − 123.9356)2 =
1
5 × 274.8628011871 = 54.97.

VOLUME 11, 2023 143571

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

5) MSE-MFO= 1
5×(8.4−1.004651)2+(98.7−100.167)2+

(15.6 − 16.24875)2 + (23.9 − 22.69254)2 + (138.3 −

120.7666)2 =
1
5 × 366.1422276059 = 73.23.

C) The Mean of Absolute Error (MAE)
According to Equation (3)
1)MAE-GWO= 1

5×|8.4−9.354496|+|98.7−107.4434|+
|15.6−16.41796|+|23.9−20.5111|+|138.3−134.6714| =
1
5 × 17.533356 = 3.51.
2)MAE-ZOA= 1

5 × |8.4− 3.19212| + |98.7− 102.5445| +
|15.6−16.3423|+|23.9−22.26478|+|138.3−124.1721| =
1
5 × |5.20788| + | − 3.8445| + | − 0.7423| + |1.63522| +

|14.1279| =
1
5 × 25.5578 = 5.11.

3) MAE-PDO= 1
5 ×|8.4−0.32518|+ |98.7−99.71053|+

|15.6−16.45137|+|23.9−23.11433|+|138.3−120.0474| =
1
5 × |8.07482| + | − 1.01053| + | − 0.85137| + |0.78567| +
|18.2526| =

1
5 × 28.97499 = 5.8.

4)MAE-WSO= 1
5 ×|8.4−1.400129|+|98.7−101.9415|+

|15.6−14.93913|+|23.9−20.97006|+|138.3−123.9356| =
1
5 × 28.19658 = 5.64.
5) MAE-MFO= 1

5 ×|8.4−1.004651|+ |98.7−100.167|+
|15.6−16.24875|+|23.9−22.69254|+|138.3−120.7666| =
1
5 × 28.251959 = 5.65.
D) The Mean Magnitude Relative Error (MMRE)
According to Equation (4)
1) MMRE-GWO= 1

5 ×
|8.4−9.354496|

8.4 +
|98.7−107.4434|

98.7 +
|15.6−16.41796|

15.6 +
|23.9−20.5111|

23.9 +
|138.3−134.6714|

138.3 =
1
5 ×

0.4226815672 = 0.08
2) MMRE-ZOA= 1

5 ×
|8.4−3.19212|

8.4 +
|98.7−102.5445|

98.7 +
|15.6−16.3423|

15.6 +
|23.9−22.26478|

23.9 +
|138.3−124.1721|

138.3 =
1
5 ×

0.8770936753 = 0.18.
3) MMRE-PDO= 1

5 ×
|8.4−0.32518|

8.4 +
|98.7−99.71053|

98.7 +
|15.6−16.45137|

15.6 +
|23.9−23.11433|

23.9 +
|138.3−120.0474|

138.3 =
1
5 ×

1.1909530242 = 0.24.
4) MMRE-WSO= 1

5 ×
|8.4−1.400129|

8.4 +
|98.7−101.9415|

98.7 +
|15.6−14.93913|

15.6 +
|23.9−20.97006|

23.9 +
|138.3−123.9356|

138.3 =
1
5 ×

1.1349790784 = 0.23.
5) MMRE-MFO= 1

5 ×
|8.4−1.004651|

8.4 +
|98.7−100.167|

98.7 +
|15.6−16.24875|

15.6 +
|23.9−22.69254|

23.9 +
|138.3−120.7666|

138.3 =
1
5 ×

1.1141478085 = 0.22.
E) The Root Mean Squared Error (RMSE)
According to Eq (5)
1)RMSE − GWO =

√
20.54 = 4.53.

2)RMSE − ZOA =
√
48.95 = 7.

3)RMSE − PDO =
√
80.14 = 8.95.

4)RMSE −WSO =
√
54.97 = 7.41.

5)RMSE −MFO =
√
73.23 = 8.56.

F)The R-Squared (R2)
According to Equation (6)
Mean(act) =

(8.4+98.7+15.6+23.9+138.3)
5 = 56.98.

1) R2 − GWO = ((8.4−56.98)2+(98.7−56.98)2+(15.6−
56.98)2+(23.9−56.98)2+(138.3−56.98)2)−102.6785459)/
((8.4−56.98)2+ (98.7−56.98)2+ (15.6−56.98)2+ (23.9−

56.98)2 + (138.3 − 56.98)2) =
(13520.108−102.6785459)

13520.108 =

0.9924.

2) R2 − ZOA = ((8.4−56.98)2+(98.7−56.98)2+(15.6−

56.98)2+(23.9−56.98)2+(138.3−56.98)2)−244.7247065)/
((8.4−56.98)2+ (98.7−56.98)2+ (15.6−56.98)2+ (23.9−

56.98)2 + (138.3 − 56.98)2) =
(13520.108−244.7247065)

13520.108 =

0.9819
3) R2 − PDO = (((8.4−56.98)2+(98.7−56.98)2+(15.6−

56.98)2+(23.9−56.98)2+(138.3−56.98)2)−400.7234030)/
((8.4−56.98)2+ (98.7−56.98)2+ (15.6−56.98)2+ (23.9−

56.98)2 + (138.3 − 56.98)2) =
(13520.108−400.7234030)

13520.108 =

0.9704.
4) R2 −WSO = ((8.4−56.98)2+(98.7−56.98)2+(15.6−

56.98)2+(23.9−56.98)2+(138.3−56.98)2)−273.1948372)/
((8.4−56.98)2+ (98.7−56.98)2+ (15.6−56.98)2+ (23.9−

56.98)2 + (138.3 − 56.98)2) =
(13520.108−273.1948372)

13520.108 =

0.9797.
5) R2 −MFO = ((8.4−56.98)2+(98.7−56.98)2+(15.6−

56.98)2+(23.9−56.98)2+(138.3−56.98)2)−367.6289426/
((8.4−56.98)2+ (98.7−56.98)2+ (15.6−56.98)2+ (23.9−

56.98)2 + (138.3 − 56.98)2) =
13520.108−367.6289426)

13520.108 = 0.9729.
Table 19. presents the accuracy comparison of the GWO

model with ZOA, PDO, WSO, MFO, Firefly, PSO, and GA
models established in previous studies [76].

Using six different estimation metrics for all the testing
projects. First, using the VAF as an evaluation metric, the
VAF of GWO is 99.26%, which is the maximum value
when compared with ZOA, PDO, WSO, MFO, PSO, and GA
models.

From the evaluation metrics, the VAF value for Firefly,
GA, PSO, ZOA, PDO, WSO, and MFO models is 98.62%,
97.97%, 98.528%, 98.59%, 97.98%, 98.66%, and 98.15%,
respectively. Themodel generated by the GWO algorithm has
the best quality among all other models.

Second, by using the MSE as an evaluation metric, the
MSE of GWO is 20.54, and the MSE for Firefly, GA, PSO,
ZOA, PDO, WSO, and MFO models are 47.74, 98.17, 60.07,
48.95, 80.14, 54.97, and 73.23, respectively. These values
indicate that the GWO model can reduce 27.2, 77.63, 39.53,
28.41, 59.6, 34.43, and 52.69 errors, respectively.

Third, by using theMAE as an evaluation metric, the MAE
of GWO is 3.51, and the MAE for Firefly, GA, PSO, ZOA,
PDO, WSO, and MFO models are 5.56, 7.70, 5.63, 5.11, 5.8,
5.64, and 5.65, respectively. These values indicate that the
GWO model can reduce errors by 2.05, 4.19, 2.12, 1.6, 2.29,
2.13, and 2.14, respectively.

Fourth, the MMRE of GWO is 0.08, and for Firefly, GA,
PSO, ZOA, PDO, WSO, and MFO models are 0.24, 0.29,
0.23, 0.18, 0.24, 0.23, 0.22, respectively. This means the
GWO can reduce the errors by 0.16, 0.21, 0.15, 0.1, 0.16,
0.15, and 0.14, respectively.

Fifth, the RMSE ofGWO is 4.53, and for Firefly, GA, PSO,
ZOA, PDO, WSO, and MFO models are 6.82, 9.39, 7.72, 7,
8.95, 7.41, and 8.56, respectively. This means the GWO can
reduce the errors by 2.29, 4.86, 3.19, 2.47, 4.42, 2.88, and
4.03, respectively.

143572 VOLUME 11, 2023

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

Sixth, the R2 as an evaluation metric is used to measure the
extent of the relationship between the independent variable
and the dependent variable. It can be observed that GWO has
the highest value among all other models. TheR2 of the GWO
is 0.9924%, while the Firefly, GA, PSO, ZOA, PDO, WSO,
andMFOmodels are 0.9823, 0.9637, 0.9778, 0.9819, 0.9704,
0.9797, and 0.9729, respectively.

Based on the results of previous evaluation metrics, it can
be concluded that the GWO algorithm obtained the highest
value in the VAF and R2 and the lowest value in relative
errors. Therefore, the COCOMO Model I, proposed by [67]
as an extension of the basic COCOMO software projects
effort, should be estimated with the new parameter values
generated by the GWO model.

C. EXPERIMENTAL RESULTS FOR THE COCOMO MODEL II
ON THE NASA18 DATASET
The COCOMO Model II is a new model structure that can
be used to estimate project software effort by adding a new
bias called D, which was proposed by [67]. It is a modified
version of the famous COCOMOmodel. It is an extension of
the famous basic COCOMO by adding a new bias parameter
to the basic COCOMO. It has four parameters: A, B, C, andD.

First, using the GWO, the following newly optimized
coefficient values of A, B, C, and D for COCOMO Model
II are obtained. A = 2.5663, B = 0.8736, C=-1.2078, and
D=29.5778. These new values of A, B, C, and D are used to
calculate the software projects’ effort to show the proposed
models’ effect on software effort estimation.

Second, using the ZOA, a new optimized coefficient value
of A, B, C, and D for the COCOMOModel II has been found.
A=4.1863, B=0.7751, C=−0.8405, and D=12.783.

Third, using the PDO, a new optimized coefficient value
of A, B, C, and D for the COCOMO Model II is found.
A = 7.8707, B = 0.63641, C=-0.89707, and D=5.7518.

TABLE 20. Cocomo model II coefficient values using GWO and other
algorithms.

After that, using the WSO, a new optimized coefficient
value of A, B, C, and D for COCOMO Model II has been
found. A=2.1805, B=0.91133, C=-1.1185, and D=27.803.
Then, using theMFO, a new optimized coefficient value of A,
B, C, andD for the COCOMOModel II is found. A=2.93417,
B=0.841854, C=-1.18803, and D=27.5938, as shown in
Table 20.
Table 21. displays the estimated effort for the NASA

dataset using the new optimized coefficient values of A, B,

and C for all the five applied algorithms. The estimated effort
comparison based on Table 21 shows that all the projects
have a good estimation value to the actual effort in the GWO
model, which is more accurate than other models.

As shown in Figure 7, the proposed GWO model graph
almost aligns with the actual effort. This indicates that the
GWO model is more efficient in estimating the effort of
software than other models. The optimized coefficients
are used to estimate the effort of each project, which is
presented in Table 21 by replacing optimized coefficients in
Equation (9) with the old ones.
After calculating the effort for all projects, the six

evaluation metrics are estimated for each meta-heuristic
algorithm for all the testing projects. Once the result of
each algorithm is obtained, the results are compared with
the existing results in the literature, FA, PSO, and GA. The
testing dataset’s VAF, MSE, MAE, MMRE, RMSE, and R2
are compared.

Here, we will explain how we obtained the results in
Table 22 mathematically for each algorithm that we used,
which are GWO, ZOA, PDO, WSO, and MFO:

Act = [8.4, 98.7, 15.6, 23.9, 138.3]
Est-GWO = [5.02114, 103.4894, 15.6461, 20.27858,

132.9004]
Est-ZOA = [2.98328, 106.6681, 14.44949, 19.74091,

133.7306]
Est-PDO = [1.656988, 100.9093, 14.95078, 20.80425,

123.5154]
Est-WSO = [4.819038, 105.0444, 14.89492, 19.39078,

135.7797]
Est-MFO = [4.515002, 101.6651, 15.38723, 20.11632,

129.7965]

A) The Variance Accounted For (VAF)

var(act) = (8.4 − 56.98)2

+ (98.7 − 56.98)2+(15.6 − 56.98)2

+ (23.9 − 56.98)2+ (138.3 − 56.98)2/4

= 13520.108/4 = 3380.027.

According to Eq (1)
1) GWO

var(act-est) = 16.29589.

VAF-GWO = [1 −
16.29589
3380.027

]

× 100 = [1 − 0.0048212307] × 100 = 99.52%.

2) ZOA

var(act-est) = 30.39845.

VAF-ZOA = [1 −
30.39845
3380.027

]

× 100 = [1 − 0.0089935524]

× 100 = 99.101%.

VOLUME 11, 2023 143573

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

TABLE 21. Estimated effort for the COCOMO model II.

FIGURE 7. The effort graph of COCOMO Model II for the NASA, GWO, ZOA, WSO, PDO, and MFO.

3) PDO

var(act-est) = 43.13894.

VAF-PDO = [1 −
43.13894
3380.027

]

× 100 = [1 − 0.012762898 × 100 = 98.72%.

143574 VOLUME 11, 2023

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

TABLE 22. Computed evaluation metrics for the COCOMO model II.

FIGURE 8. The evaluation metrics for the COCOMO Model II.

4) WSO

var(act-est) = 18.82858

VAF-WSO = [1 −
18.82858
3380.027

]

× 100 = [1 − 0.0055705413] × 100 = 99.44%.

5) MFO

var(act-est) = 18.6344.

VAF-MFO = [1 −
18.6344
3380.027

]

× 100 = [1 − 0.0055130921] × 100 = 99.45%.

VOLUME 11, 2023 143575

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

B) The Mean Squared Error (MSE)
According to Equation (2)
1)MSE-GWO =

1
5 × (8.4 − 5.02114)2 + (98.7 −

103.4894)2 + (15.6 − 15.6461)2 + (23.9 − 20.27858)2 +

(138.3 − 132.9004)2 =
1
5 × (3.37886)2 + (−4.7894)2 +

(−0.0461)2+ (3.62142)2+ (5.3996)2 =
1
5 ×76.62753545 =

15.33.
2)MSE-ZOA =

1
5 × (8.4 − 2.98328)2 + (98.7 −

106.6681)2 + (15.6 − 14.44949)2 + (23.9 − 19.74091)2 +

(138.3 − 133.7306)2 =
1
5 × (5.41672)2 + (−7.9681)2 +

(1.15051)2 + (4.15909)2 + (4.5694)2 =
1
5 × 17.62792 +

134.9816 + 31.72092 + 4.105406 + 16.8475 =
1
5 ×

132.3325924 = 26.47.
3)MSE-PDO =

1
5 × (8.4 − 1.656988)2 + (98.7 −

100.9093)2 + (15.6 − 14.95078)2 + (23.9 − 20.80425)2 +

(138.3 − 123.5154)2 =
1
5 × (6.743012)2 + (−2.2093)2 +

(0.64922)2+(3.09575)2+(14.7846)2 =
1
5 ×278.9387692 =

55.79.
4)MSE-WSO =

1
5 × (8.4 − 4.819038)2 + (98.7 −

105.0444)2 + (15.6 − 14.89492)2 + (23.9 − 19.39078)2 +

(138.3 − 135.7797)2 =
1
5 × (3.580962)2 + (−6.3444)2 +

(0.70508)2 + (4.50922)2 + (2.5203)2 =
1
5 × 80.25681511 =

16.05.
5)MSE-MFO =

1
5 × (8.4 − 4.515002)2 + (98.7 −

101.6651)2 + (15.6 − 15.38723)2 + (23.9 − 20.11632)2 +

(138.3 − 129.7965)2 =
1
5 × (3.884998)2 + (−2.9651)2 +

(0.21277)2 + (3.78368)2 + (8.5035)2 =
1
5 × 110.5560451 =

22.11.
C) The Mean of Absolute Error (MAE)
According to Equation (3)
1) MAE-GWO= 1

5 ×|8.4−5.02114|+|98.7−103.4894|+
|15.6−15.6461|+|23.9−20.27858|+|138.3−132.9004| =
1
5 × ×17.23538 = 3.45.
2)MAE-ZOA=

1
5 ×|8.4−2.98328|+|98.7−106.6681|+

|15.6−14.44949|+|23.9−19.74091|+|138.3−133.7306| =
1
5 × 23.26382 = 4.65.
3)MAE-PDO=

1
5×|8.4−1.656988|+|98.7−100.9093|+

|15.6−14.95078|+|23.9−20.80425|+|138.3−123.5154| =
1
5 × 27.481882 = 5.5.
4) MAE-WSO =

1
5 × |8.4 − 4.819038| + |98.7 −

105.0444|+|15.6−14.89492|+|23.9−19.39078|+|138.3−

135.7797| =
1
5 × 17.659962 = 3.53.

5) MAE-MFO =
1
5 × |8.4 − 4.515002| + |98.7 −

101.6651|+|15.6−15.38723|+|23.9−20.11632|+|138.3−

129.7965| =
1
5 × 19.350048 = 3.87.

D) The Mean Magnitude Relative Error (MMRE)
According to Equation (4)
1) MMRE-GWO =

1
5 ×

|8.4−5.02114|
8.4 +

|98.7−103.4894|
98.7 +

|15.6−15.6461|
15.6 +

|23.9−20.27858|
23.9 +

|138.3−132.9004
138.3 =

1
5 ×

0.6442916992 = 0.13.
2) MMRE-ZOA =

1
5 ×

|8.4−2.98328|
8.4 +

|98.7−106.6681|
98.7 +

|15.6−14.44949|
15.6 +

|23.9−19.74091|
23.9 +

|138.3−133.7306|
138.3 =

1
5 ×

1.0063890272 = 0.20.

3) MMRE-PDO = 1
5 ×

|8.4−1.656988|
8.4 +

|98.7−100.9093|
98.7 +

|15.6−14.95078|
15.6 +

|23.9−20.80425|
23.9 +

|138.3−123.5154|
138.3 =

1
5 ×

1.1031718572 = 0.22.
4) MMRE-WSO =

1
5 ×

|8.4−4.819038|
8.4 +

|98.7−105.0444|
98.7 +

|15.6−14.89492|
15.6 +

|23.9−19.39078|
23.9 +

|138.3−135.7797|
138.3 =

1
5 ×

0.7426757914 = 0.15.
5) MMRE-MFO =

1
5 ×

|8.4−4.515002|
8.4 +

|98.7−101.6651|
98.7 +

|15.6−15.38723|
15.6 +

|23.9−20.11632|
23.9 +

|138.3−129.7965|
138.3 =

1
5 ×

0.7259792754 = 0.15.
E) The Root Mean Squared Error (RMSE)
According to Equation (5)
1)RMSE − GWO =

√
15.33 = 3.91.

2)RMSE − ZOA =
√
26.47 = 5.14.

3)RMSE − PDO =
√
55.79 = 7.47.

4)RMSE −WSO =
√
16.05 = 4.01.

5)RMSE −MFO =
√
22.11 = 4.70.

F)The R-Squared (R2)
According to Equation (6)
Mean(act) =

(8.4+98.7+15.6+23.9+138.3)
5 = 56.98.

1) R2 − GWO = ((8.4−56.98)2+(98.7−56.98)2+(15.6−
56.98)2+(23.9−56.98)2+(138.3−56.98)2)−76.62753545)/
((8.4−56.98)2+ (98.7−56.98)2+ (15.6−56.98)2+ (23.9−

56.98)2 + (138.3 − 56.98)2) =
(13520.108−76.62753545)

13520.108 =

0.9943.
2) R2 − ZOA = ((8.4−56.98)2+(98.7−56.98)2+(15.6−

56.98)2+(23.9−56.98)2+(138.3−56.98)2)−132.3325924)/
((8.4−56.98)2+ (98.7−56.98)2+ (15.6−56.98)2+ (23.9−

56.98)2 + (138.3 − 56.98)2) =
(13520.108−132.3325924)

13520.108 =

0.9902.
3) R2 − PDO = ((8.4−56.98)2+(98.7−56.98)2+(15.6−

56.98)2+(23.9−56.98)2+(138.3−56.98)2)−278.9387692)/
((8.4−56.98)2+ (98.7−56.98)2+ (15.6−56.98)2+ (23.9−

56.98)2 + (138.3 − 56.98)2) =
(13520.108−278.9387692)

13520.108 =

0.9794.
4) R2 −WSO = ((8.4 − 56.98)2 + (98.7 − 56.98)2 +

(15.6 − 56.98)2 + (23.9 − 56.98)2 + (138.3 − 56.98)2) −

80.2568151102)/((8.4 − 56.98)2 + (98.7 − 56.98)2 +

(15.6 − 56.98)2 + (23.9 − 56.98)2 + (138.3 − 56.98)2) =
(13520.108−80.2568151102)

13520.108 = 0.9941.
5) R2 −MFO = ((8.4−56.98)2+(98.7−56.98)2+(15.6−

56.98)2+(23.9−56.98)2+(138.3−56.98)2)−110.5560451/
((8.4 − 56.98)2 + (98.7 − 56.98)2 + (15.6 − 56.98)2 +

(23.9−56.98)2+(138.3−56.98)2) =
13520.108−110.5560451

13520.108 =

0.9918.
Table 22. First, using the VAF as an evaluation metric,

the VAF of GWO is 99.52%, which is the maximum value
found when compared with ZOA, PDO, WSO, MFO, and the
models’ values proposed by [76]. The VAF values for Firefly,
GA, PSO, ZOA, PDO, WSO, and MFO models are 98.63%,
97.60%, 98.70%, 99.101%, 98.72%, 99.44%, and 99.45%,
respectively.

Second, by using the MSE as an evaluation metric, the
MSE of GWO is 15.33, and the MSE for Firefly, GA, PSO,
ZOA, PDO, WSO, and MFO models are 45.02, 114.79,

143576 VOLUME 11, 2023

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

52.85, 26.47, 55.79, 16.05, and 22.11, respectively. These
values indicate that the GWOmodel can reduce 29.69, 99.46,
37.52, 11.14, 40.46, 0.72, and 6.78 errors, respectively.

Third, by using theMAE as an evaluation metric, the MAE
of GWO is 3.45, and the MAE for Firefly, GA, PSO, ZOA,
PDO, WSO, and MFO models are 5.57, 7.83, 5.29, 4.65, 5.5,
3.53, and 3.87, respectively. These values indicate that the
GWO model can reduce the errors by 2.12, 4.38, 1.84, 1.2,
2.05, 0.08, and 0.42.

Fourth, the MMRE of GWO is 0.13, and for Firefly, GA,
PSO, ZOA, PDO, WSO, and MFO models are 0.24, 0.27,
0.21, 0.20, 0.22, 0.15, and 0.15, respectively. This means that
the GWO can reduce the errors by reducing 0.11, 0.14, 0.08,
0.07, 0.09, 0.02, and 0.02, respectively.

Fifth, the RMSE ofGWO is 3.91, and for Firefly, GA, PSO,
ZOA, PDO, WSO, and MFO models are 6.62, 9.86, 7.19,
5.14, 7.47, 4.01, and 4.70, respectively. This means the GWO
can reduce the errors by 2.71, 5.95, 3.28, 1.23, 3.56, 0.1, and
0.79, respectively.

Sixth, it is observed that the GWO has the highest value
among all other models. The R2 of GWO is 0.9943%, while
the Firefly, GA, PSO, ZOA, PDO, WSO, and MFO models
are 0.9833, 0.9575, 0.9805, 0.9902, 0.9794, 0.9941, and
0.9918, respectively.

It can be concluded that the GWO algorithm obtained the
highest value in the VAF and R2 and the lowest value in
relative errors. Therefore, the COCOMO Model II proposed
by [67] as an extension 2 of the basic COCOMO software
project effort, should be estimated with the new parameter
values generated by the GWO model.

After the GWO proved its efficiency in the three
COCOMO-based models against other algorithms, and
when compared with the three proposed models, which
resulted from the employment of the GWO in each model,
i.e., the basic-COCOMO, and another twomodels COCOMO
Model I, COCOMO Model II.

It is observed that the COCOMO Model II outperformed
the basic COCOMO with four evaluation metrics, which
are VAF, MSE, RMSE, and R2, and it also outperformed
the COCOMO Model I with five evaluation metrics: VAF,
MSE, MAE, RMSE, and R2. Therefore, using the COCOMO
Model II structure proposed by [67] is highly recommended
instead of the basic COCOMO and the COCOMOModel I in
estimating the value of software effort, but using the improved
optimized parameters using the GWO in Table 20.

The COCOMO Model has been widely used in many
real-world applications, proving its usefulness in estimating
and administrating industry projects, government initiatives,
aerospace and defense, enterprise solutions, healthcare soft-
ware, gaming industry, web and mobile, and infrastructure
software.

VIII. CONCLUSION AND FUTURE WORK
The estimated effort exerts a significant impact on cost
estimation. In the area of software engineering, a lot of
scholars have endeavored to introduce methods and models

for precisely estimating effort. Accurate effort estimation
enables us to finish projects on schedule and within budget.

In this study, the Grey Wolf Optimization is employed
to enhance the coefficients’ values of the basic-COCOMO,
Model I, and Model II found by [67]. Also, the results were
compared against the Firefly Algorithm, Genetic Algorithm,
and PSO Algorithm. Moreover, to check the efficiency of the
GWO in finding the optimal value of effort estimation, four
other algorithms are applied, including ZOA, PDO, WSO,
and MFO. Moreover, a comparison has been carried out to
compare the results with the GWO results. VAF, MSE, MAE,
MMRE, RMSE, and R2 evaluation metrics are employed to
evaluate the optimized models. The results established the
efficiency of the GWO in finding the optimal value of effort
estimation over other meta-heuristic algorithms.

In the future, this work can be extended to optimize the
effort estimation models provided by M. Uysal and the
intermediate COCOMOModel. Moreover, another advanced
meta-heuristic algorithm, which may show more effective-
ness than the GWO, can be used to develop more efficient
models for software effort estimation. The results can be
compared with the GWO. It is also recommended to improve
the results, whether modifying the existing algorithms or
hybridizing the GWO algorithm with other algorithms.
Meanwhile, the hybrid approach of multiple algorithms
increases the probability of finding the optimal solution
efficiently and rapidly. Besides, it is helpful to concentrate
on using the GWO algorithm in tuning parameters for other
effort estimation models. Another suggested work to be
carried out in the future is the optimization of COQUAMO
model parameters. Also, some statistical tests, such as
Wilcoxon and ANOVA, could be performed to ensure the
quality of the proposed models.

ACKNOWLEDGMENT
The authors would like to thank the University of Science
and Technology for their provided facilities, which helped to
improve the quality of this work.

REFERENCES
[1] P. S. Sandhu, P. Bassi, andA. S. Brar, ‘‘Software effort estimation using soft

computing techniques,’’ World Acad. Sci., Eng. Technol., vol. 46, p. 2008,
Dec. 2008.

[2] S. Shekhar and U. Kumar, ‘‘Review of various software cost estimation
techniques,’’ Int. J. Comput. Appl., vol. 141, no. 11, pp. 31–34, May 2016.

[3] L. Nerkar and P. Yawalkar, ‘‘Software cost estimation using algorithmic
model and non-algorithmic model a review,’’ Int. J. Comput. App., vol. 2,
pp. 4–7, 2014.

[4] S. Aljahdali and A. F. Sheta, ‘‘Software effort estimation by tuning
COOCMO model parameters using differential evolution,’’ in Proc.
ACS/IEEE Int. Conf. Comput. Syst. Appl. (AICCSA), May 2010, pp. 1–6.

[5] A. Abu-Srhan, A. Sleit, and A. Sharieh, ‘‘Parameters estimation of the
COCOMOmodel using hybrid algorithm of genetic algorithm and cuckoo
search algorithm,’’ Proc. New Trends Inf. Technol., pp. 67–73, Apr. 2017.

[6] A. Verma and Preeti, ‘‘Calibrating intermediate COCOMO model using
genetic algorithm,’’ in Proc. Int. Conf. Comput., Commun., Intell. Syst.
(ICCCIS), Feb. 2021, pp. 174–179.

[7] C. A. U. Hassan, M. S. Khan, R. Irfan, J. Iqbal, S. Hussain, S. S. Ullah,
R. Alroobaea, and F. Umar, ‘‘Optimizing deep learning model for software
cost estimation using hybrid meta-heuristic algorithmic approach,’’
Comput. Intell. Neurosci., vol. 2022, pp. 1–20, Oct. 2022.

VOLUME 11, 2023 143577

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

[8] A. A. Fadhil and R. G. Alsarraj, ‘‘Exploring the whale optimization
algorithm to enhance software project effort estimation,’’ in Proc. 6th Int.
Eng. Conf. Sustainable Technol. Develop. (IEC), Feb. 2020, pp. 146–151.

[9] A. Puspaningrum, F. P. B. Muhammad, and E. Mulyani, ‘‘Flower
pollination algorithm for software effort coefficients optimization to
improve effort estimation accuracy,’’ JUITA, Jurnal Informatika, vol. 9,
no. 2, pp. 139–144, Nov. 2021.

[10] K. R. Shweta, ‘‘Software cost and effort estimation using ensemble
duck traveler optimization algorithm (eDTO) in earlier stage,’’ Turkish J.
Comput. Math. Educ., vol. 12, pp. 3300–3311, Jun. 2021.

[11] B. Boehm, Software Engineering Economics. Englewood Cliffs, NJ, USA:
Prentice-Hall, 1981.

[12] R. K. Sachan and D. S. Kushwaha, ‘‘Anti-predatory NIA based approach
for optimizing basic COCOMO model,’’ in Proc. 10th Int. Conf. Cloud
Comput., Data Sci. Eng. (Confluence), Jan. 2020, pp. 710–715.

[13] M. S. Khan, C. A. U. Hassan, M. A. Shah, and A. Shamim, ‘‘Software
cost and effort estimation using a new optimization algorithm inspired
by strawberry plant,’’ in Proc. 24th Int. Conf. Autom. Comput. (ICAC),
Sep. 2018, pp. 1–6.

[14] R. K. Sachan, A. Nigam, A. Singh, S. Singh, M. Choudhary, A. Tiwari, and
D. S. Kushwaha, ‘‘Optimizing basic COCOMO model using simplified
genetic algorithm,’’ Proc. Comput. Sci., vol. 89, pp. 492–498, Jan. 2016.

[15] M. Algabri, F. Saeed, H. Mathkour, and N. Tagoug, ‘‘Optimization of soft
cost estimation using genetic algorithm for NASA software projects,’’ in
Proc. 5th Nat. Symp. Inf. Technol., Towards New Smart World (NSITNSW),
Feb. 2015, pp. 1–4.

[16] F. S. Alaa and A. Al-Afeef, ‘‘A GP effort estimation model utilizing line
of code and methodology for NASA software projects,’’ in Proc. 10th Int.
Conf. Intell. Syst. Design Appl., Nov. 2010, pp. 290–295.

[17] D. Nandal and O. Sangwan, ‘‘Software cost estimation by optimizing
COCOMO model using hybrid BATGSA algorithm,’’ Int. J. Intell. Eng.
Syst., vol. 11, no. 4, pp. 250–263, Aug. 2018.

[18] S. M. S. Jafari and F. Ziaaddini, ‘‘Optimization of software cost estimation
using harmony search algorithm,’’ in Proc. 1st Conf. Swarm Intell. Evol.
Comput. (CSIEC), Mar. 2016, pp. 131–135.

[19] A. Sharma and N. Chaudhary, ‘‘Software cost estimation for Python
projects using genetic algorithm,’’ in Proc. ICCIS, 2020, pp. 137–148.

[20] J. Razmi, R. Ghodsi, and M. Jokar, ‘‘Cost estimation of software
development: Improving the COCOMO model using a genetic algorithm
approach,’’ Int. J. Manage. Pract., vol. 3, no. 4, pp. 346–368, 2009.

[21] C. A. U. Hassan and M. S. Khan, ‘‘An effective nature inspired approach
for the estimation of software development cost,’’ in Proc. 16th Int. Conf.
Emerg. Technol. (ICET), Dec. 2021, pp. 1–6.

[22] M. Padmaja and D. Haritha, ‘‘Software effort estimation using grey
relational analysis,’’ Int. J. Inf. Technol. Comput. Sci., vol. 9, no. 5,
pp. 52–60, May 2017.

[23] H. Patra and K. Rajnish, ‘‘A new empirical model to increase the accuracy
of software cost estimation,’’ Int. J. Eng., vol. 30, no. 10, pp. 1487–1493,
Oct. 2017.

[24] M. Kaur, ‘‘Estimation of effort using nature inspired optimization
techniques,’’ Int. J. Acad. Res. Dev., vol. 3, no. 1, pp. 197–199, Jan. 2018.

[25] M. H. Saadi, V. K. Bardsiri, and F. Ziaaddini, ‘‘The application of meta-
heuristic algorithms to improve the performance of software development
effort estimation models,’’ Int. J. Appl. Evol. Comput., vol. 6, no. 4,
pp. 39–68, Oct. 2015.

[26] R. Jain, V. K. Sharma, and S. Hiranwal, ‘‘Reduce mean magnitude relative
error in software cost estimation by HOD-COCOMO algorithm,’’ in Proc.
Int. Conf. Control, Instrum., Commun. Comput. Technol. (ICCICCT),
Dec. 2016, pp. 708–712.

[27] A. F. Sheta, D. Rine, and S. Kassaymeh, ‘‘Software effort and function
points estimation models based radial basis function and feedforward
artificial neural networks,’’ Int. J. Next-Generation Comput., vol. 6,
pp. 192–205, 2015.

[28] E. R. Avasthy, B. Batra, and H. Kundra, ‘‘A hybrid parametric model for
enrichment of software effort estimation,’’ Int. J. Comput. Sci. Inf. Secur.,
vol. 14, no. 10, 2016.

[29] S. M. Padmaja and D. Haritha, ‘‘Software effort estimation using meta
heuristic algorithm,’’ Int. J. Adv. Res. Comput. Sci., vol. 8, 2017.

[30] S. Kumari and S. Pushkar, ‘‘Software cost estimation using cuckoo
search,’’ in Proc. Int. Conf. Comput. Intell., 2017, pp. 167–175.

[31] A. Wadhwa, S. Jain, and C. Gupta, ‘‘An effective precision enhancement
approach to estimate software development cost: Nature inspired way,’’
J. Telecommun., Electron. Comput. Eng., vol. 9, no. 3, pp. 85–91, 2017.

[32] O. Benediktsson and D. Dalcher, ‘‘Effort estimation in incremental soft-
ware development,’’ IEE Proc.-Softw., vol. 150, no. 6, pp. 351–357, 2003.

[33] A. Sheta, D. Rine, and A. Ayesh, ‘‘Development of software effort and
schedule estimation models using soft computing techniques,’’ in Proc.
IEEECongr. Evol. Comput., IEEEWorld Congr. Comput. Intell., Jun. 2008,
pp. 1283–1289.

[34] J. Salt, ‘‘A GP effort estimation model utilizing line of code and
methodology for NASA software projects,’’ IEEE, New York, NY, USA,
Tech. Rep., 2010.

[35] A. Galinina, O. Burceva, and S. Parshutin, ‘‘The optimization of
COCOMO model coefficients using genetic algorithms,’’ Inf. Technol.
Manage. Sci., vol. 15, no. 1, pp. 45–51, Jan. 2012.

[36] N. Dewan and S. Sehra, ‘‘Ant colony optimization based software effort
estimation,’’ Int. J. Comput. Sci. Technol., vol. 5, no. 3, pp. 53–56, 2014.

[37] S. Chalotra, S. K. Sehra, Y. S. Brar, and N. Kaur, ‘‘Tuning of COCOMO
model parameters by using bee colony optimization,’’ Indian J. Sci.
Technol., vol. 8, no. 14, p. 1, Jul. 2015.

[38] A. F. Sheta and A. Al-Afeef, ‘‘Software effort estimation for NASA
projects using genetic programming,’’ J. Intell. Comput., vol. 1, no. 3,
p. 147, Sep. 2010.

[39] T. T. Khuat and M. H. Le, ‘‘Optimizing parameters of software
effort estimation models using directed artificial bee colony algorithm,’’
Informatica, vol. 40, Oct. 2016.

[40] M. Uysal, ‘‘Estimation of the effort component of the software projects
using simulated annealing algorithm,’’ World Acad. Sci., Eng. Technol.,
vol. 41, pp. 258–261, 2008.

[41] B. KumarSingh and A. K. Misra, ‘‘Software effort estimation by genetic
algorithm tuned parameters of modified constructive cost model for NASA
software projects,’’ Int. J. Comput. Appl., vol. 59, no. 9, pp. 22–26,
Dec. 2012.

[42] N. Sharma, A. Sinhal, and B. Verma, ‘‘Software assessment parameter
optimization using genetic algorithm,’’ Int. J. Comput. Appl., vol. 72, no. 7,
pp. 8–13, Jun. 2013.

[43] P. V. G. D. P. Reddy, ‘‘Particle swarm optimization in the fine-tuning of
fuzzy software cost estimation models,’’ Int. J. Softw. Eng., vol. 1, no. 2,
pp. 12–23, 2010.

[44] P. P. Reddy and C. V. Hari, ‘‘Fuzzy based PSO for software effort
estimation,’’ in Proc. Int. Conf. Adv. Inf. Technol. Mobile Commun., 2011,
pp. 227–232.

[45] P. V. G. D. P. Reddy and C. Hari, ‘‘Software effort estimation using particle
swarm optimization with inertia weight,’’ Int. J. Softw. Eng., vol. 2, no. 4,
pp. 87–96, 2011.

[46] A. Tripathi, K. K. Mishra, S. Tiwari, and N. Kumar, ‘‘Improved software
cost estimation models: A new perspective based on evolution in dynamic
environment,’’ J. Intell. Fuzzy Syst., vol. 35, no. 2, pp. 1707–1720,
Aug. 2018.

[47] S. K. T. Ziauddin, K. Zaman, and S. Zia, ‘‘Software cost estimation using
soft computing techniques,’’ Adv. Inf. Technol. Manage., vol. 2, no. 1,
pp. 233–238, 2012.

[48] T. Singh, R. Singh, and K. K. Mishra, ‘‘Software cost estimation
using environmental adaptation method,’’ Proc. Comput. Sci., vol. 143,
pp. 325–332, Jan. 2018.

[49] S. Bhatia, A. Bawa, and V. K. Attri, ‘‘A review on genetic algorithm to deal
with optimization of parameters of constructive cost model,’’ Int. J. Adv.
Res. Comput. Commun. Eng., vol. 4, no. 4, pp. 405–408, 2015.

[50] M. Uysal, Estimation of the Effort Component of the Software Projects
Using Heuristic Algorithms. Rijeka, Croatia: InTech, 2010.

[51] S. Chhabra and H. Singh, ‘‘Optimizing design parameters of fuzzy model
based COCOMO using genetic algorithms,’’ Int. J. Inf. Technol., vol. 12,
no. 4, pp. 1259–1269, Dec. 2020.

[52] I. C. Suherman, R. Sarno, and Sholiq, ‘‘Implementation of random forest
regression for COCOMO II effort estimation,’’ in Proc. Int. Seminar Appl.
Technol. Inf. Commun. (iSemantic), Sep. 2020, pp. 476–481.

[53] A. A. Fadhil, R. G. H. Alsarraj, andA.M.Altaie, ‘‘Software cost estimation
based on dolphin algorithm,’’ IEEEAccess, vol. 8, pp. 75279–75287, 2020.

[54] A. A. Fadhil and B. S. Bahnam, ‘‘A hybrid model of ant-lion optimization
with cuttlefish algorithm for software effort estimation,’’ Kansai Univ.,
Iraq, Tech. Rep., Nov. 2020.

[55] M.A. Saleem, R. Ahmad, T. Alyas,M. Idrees, A. A. Farooq, A. Shahid, and
K. Ali, ‘‘Systematic literature review of identifying issues in software cost
estimation techniques,’’ Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 8, 2019.

[56] B. Khan, R. Naseem, M. Binsawad, M. Khan, and A. Ahmad, ‘‘Software
cost estimation using flower pollination algorithm,’’ J. Internet Technol.,
vol. 21, no. 5, pp. 1243–1251, 2020.

143578 VOLUME 11, 2023

N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

[57] P. K. Sethy and S. Rani, ‘‘Improvement in COCOMO modal using
optimization algorithms to reduce MMRE values for effort estimation,’’
in Proc. 4th Int. Conf. Internet Things, Smart Innov. Usages (IoT-SIU),
Apr. 2019, pp. 1–4.

[58] A. Ullah, B. Wang, J. Sheng, J. Long, M. Asim, and Z. Sun,
‘‘Optimization of software cost estimation model based on biogeography-
based optimization algorithm,’’ Intell. Decis. Technol., vol. 14, no. 4,
pp. 441–448, Jan. 2021.

[59] W. D. Sunindyo and C. Rudiyanto, ‘‘Improvement of COCOMO II model
to increase the accuracy of effort estimation,’’ in Proc. Int. Conf. Electr.
Eng. Informat. (ICEEI), Jul. 2019, pp. 140–145.

[60] P. Singal, A. C. Kumari, and P. Sharma, ‘‘Estimation of software
development effort: A differential evolution approach,’’ Proc. Comput.
Sci., vol. 167, pp. 2643–2652, Jan. 2020.

[61] S. P. Singh, ‘‘Cost estimation model using enhance-based differential
evolution algorithm,’’ Iran J. Comput. Sci., vol. 3, no. 2, pp. 115–126,
Jun. 2020.

[62] G. Vats, R. Agarwal, and L. U. Biet, ‘‘Software cost estimation model
development and parameter optimization using genetic algorithm,’’ Int. J.
Res. Develop. Appl. Sci. Eng., 2021.

[63] D. K. K. Reddy and H. S. Behera, ‘‘Software effort estimation using
particle swarm optimization: Advances and challenges,’’ in Proc. CIPR,
2020, pp. 243–258.

[64] P. S. Kumar and H. Behera, ‘‘Estimating software effort using neural net-
work: An experimental investigation,’’ in Proc. CIPR, 2020, pp. 165–180.

[65] J. W. Bailey and V. R. Basili, ‘‘A meta-model for software development
resource expenditures,’’ in Proc. 5th Int. Conf. Softw. Eng., 1981,
pp. 107–116.

[66] T. Urbanek, Z. Prokopova, R. Silhavy, and V. Vesela, ‘‘Prediction accuracy
measurements as a fitness function for software effort estimation,’’
SpringerPlus, vol. 4, no. 1, pp. 1–17, Dec. 2015.

[67] A. F. Sheta, ‘‘Estimation of the COCOMOmodel parameters using genetic
algorithms for NASA software projects,’’ J. Comput. Sci., vol. 2, no. 2,
pp. 118–123, Feb. 2006.

[68] E. Trojovská, M. Dehghani, and P. Trojovský, ‘‘Zebra optimization algo-
rithm: A new bio-inspired optimization algorithm for solving optimization
algorithm,’’ IEEE Access, vol. 10, pp. 49445–49473, 2022.

[69] S. Mirjalili, ‘‘Moth-flame optimization algorithm: A novel nature-inspired
heuristic paradigm,’’Knowl.-Based Syst., vol. 89, pp. 228–249, Nov. 2015.

[70] S. K. Sahoo, A. K. Saha, A. E. Ezugwu, J. O. Agushaka, B. Abuhaija,
A. R. Alsoud, and L. Abualigah, ‘‘Moth flame optimization: Theory,
modifications, hybridizations, and applications,’’ Arch. Comput. Methods
Eng., vol. 30, no. 1, pp. 391–426, Jan. 2023.

[71] A. E. Ezugwu, J. O. Agushaka, L. Abualigah, S. Mirjalili, and
A. H. Gandomi, ‘‘Prairie dog optimization algorithm,’’ Neural Comput.
Appl., vol. 34, no. 22, pp. 20017–20065, Nov. 2022.

[72] M. Braik, A. Hammouri, J. Atwan, M. A. Al-Betar, and M. A. Awadallah,
‘‘White shark optimizer: A novel bio-inspired meta-heuristic algorithm for
global optimization problems,’’ Knowl.-Based Syst., vol. 243, May 2022,
Art. no. 108457.

[73] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ‘‘Grey wolf optimizer,’’ Adv.
Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.

[74] R. Mohd, M. A. Butt, and M. Z. Baba, ‘‘Grey wolf-based linear regression
model for rainfall prediction,’’ Int. J. Inf. Technol. Syst. Approach, vol. 15,
no. 1, pp. 1–18, Oct. 2021.

[75] E. Dada, S. Joseph, D. Oyewola, A. A. Fadele, H. Chiroma, and
S. M. Abdulhamid, ‘‘Application of grey wolf optimization algorithm:
Recent trends, issues, and possible horizons,’’ Gazi Univ. J. Sci., vol. 35,
no. 2, pp. 485–504, Jun. 2022.

[76] N. Ghatasheh, H. Faris, I. Aljarah, and R. M. H. Al-Sayyed, ‘‘Opti-
mizing software effort estimation models using firefly algorithm,’’ 2019,
arXiv:1903.02079.

NADA MOHAMMED ALSHEIKH was born in Ibb, Yemen. She received
the B.S. degree (Hons.) in information systems specializing in electronic
commerce from the University of Science and Technology, in 2015, and
the M.S. degree in software engineering from the University of Science and
Technology, Aden, Yemen. Since 2017, she has been an Android Developer
and Web Designer.

NABIL MOHAMMED MUNASSAR was born
in Saudi Arabia, in 1978. He received the B.S.
degree in computer science from the University
of Science and Technology, Hodeidah Branch,
Yemen, in 2001, the M.S. degree in computer
information systems from the Arab Academy for
Banking and Financial Sciences, Sana’a Branch,
Yemen, in 2007, and the Ph.D. degree in computer
sciences from Jawaharlal Nehru Technological
University, Hyderabad, India, in 2015. Since 2001,

he has been a Lecturer with the Faculty of Computers and IT, University of
Science and Technology, Yemen. He is the author of more than 15 articles
and has many funded research projects. His research interests include
information technology, software engineering, databases, system analysis,
and artificial intelligence.

VOLUME 11, 2023 143579

