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ABSTRACT One of the Software Development Life Cycle phases is planning the software project.
Estimating the software effort is another task in this project planning phase. Software effort estimation is the
method of determining how many workers are required to create a software project. Many researchers have
focused on this field to increase the precision of software effort estimation and used both algorithmic and
non-algorithmic techniques. The most widely used method is the Constructive Cost Model (COCOMO).
However, the COCOMO model has a limitation related to the precision of the software effort estimation.
Meta-heuristic algorithms are preferred with parameter optimization because they can provide nearly optimal
solutions at a reasonable cost. This study aims to enhance the precision of effort estimation by modifying the
three COCOMO-based models’ coefficients and assess the efficiency of Grey Wolf Optimization (GWO)
in finding the optimal value of effort estimation through applying four other algorithms, including Zebra
Optimization (ZOA), Moth-Flame Optimization (MFO), Prairie Dog Optimization (PDO), and White Shark
Optimization (WSO) with NASA18 dataset. These models include the basic COCOMO model, and another
two models were also suggested in the published research as a modification of the basic COCOMO model.
The six most used software effort estimation metrics are used to assess the performance of the proposed
models. The results show high accuracy and significant error minimization of the GWO over other algorithms
involving ZOA, MFO, PDO, WSO, and other existing models.

INDEX TERMS COCOMO, Grey Wolf Optimization, software effort estimation, software cost estimation,
Moth-Flame Optimization, NASA18 dataset, Prairie Dog Optimization, White Shark Optimization, Zebra
Optimization.

I. INTRODUCTION Non-algorithmic techniques, on the other hand, depend on

The early stage of software cost estimation of software
project development is the most challenging and least
accurate task [1]. Software cost estimation is a hot topic and
gained attention through continuous research. Researchers
concentrate on developing a helpful model that accurately
estimates software cost estimation. This has, in turn, led to the
development of numerous software cost-estimating models.
In general, these techniques are divided into algorithmic
and non-algorithmic techniques. The algorithmic methods
depend on mathematic formalities to estimate the effort,
such as COCOMO, SLM (Software Life Cycle), Function
Point, Use Case Point analysis, and Putnam’s Model [2].
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computation from previous similar project experiences, such
as Analog Techniques, Expert Judgment, Parkinson’s Law,
and Pricing to Win [3].

Software has become a system’s primary expense due
to the increasing cost or effort associated with software
development. The National Aeronautics and Space Admin-
istration (NASA) and the Air Force have estimated that
the cost of software development can exceed 50% of the
overall expenditure due to the highly developed systems
used in NASA software projects, both in terms of hardware
and software [4]. This has contributed considerably to
designing a new model to estimate software effort. There
are several precise models for estimating software effort;
however, there is still a dire need for more accurate
models.
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The Constructive Cost Model (COCOMO) is one of
the effective methods that measures a project’s early-stage
effort. This may help reduce the project’s overall cost [5].
It has gained considerable popularity, and its flexibility
covers a wide range of factors and may be applied in
various environments. However, the COCOMO model has
a limitation related to the precision of the software effort
estimation due to the problem’s deterministic nature, and
it has coefficients that affect its accuracy. The coefficients’
values are fixed for projects of the same kind, but these
parameters differ between organizations.

Therefore, fine-tuning the coefficients is required to
achieve accurate estimation. Additionally, the meta-heuristic
algorithms improve the COCOMO’s parameters, which are
regarded as successful in accurately estimating the effort
of software projects because they rely on population-based
search. They also include some equations that use local
search to converge to the solution rather than global search to
prevent local optimum. This makes it successful in optimizing
parameters and feature selection, such as GWO, ZOA, MFO,
PDO, and WSO.

By referring to the advantages of GWO, this study
suggests that the Grey Wolf Optimization (GWO) algorithm
optimizes the parameter values for the three COCOMO-
based models, including the basic COCOMO model, Sheta’s
Model 1 (also called Model I), and Sheta’s Model 2 (also
called Model II). To assess the efficiency of GWO in
finding the optimal value of effort estimation, four other
algorithms are applied, including Zebra Optimization (ZOA),
Moth-Flame Optimization (MFO), Prairie Dog Optimization
(PDO), White Shark Optimization (WSO), and other existing
models.

The proposed models are trained with the Nasal8 projects
dataset, which represents 70% of the dataset for training
and 30% for testing. To assess the performance of the
proposed models, the six most employed software effort
estimation metrics are used, including VAF, MSE, MMRE,
MAE, RMSE, and R?.

The motivation for this work is that in software project
management, approximately 65% of projects fail because
of management factors. In addition, the most important
one of these factors is inaccurate estimation. To get an
accurate software effort estimation, it is necessary to obtain
an accurate prediction method. It is highly expected to get
an accurate effort estimation. Still, no such model can predict
the effort to develop software projects due to the uncertainties
and imprecision associated with the software development
process. Due to this real-life optimization problem and
because of its importance in successful or unsuccessful
software projects.

Most researchers focus their work on COCOMO to
develop software effort estimation. Even though many
researchers have done software effort estimation, none of
them can achieve a satisfactory result that can help the
software product deliver on time, on budget, and as per the
requested quality. This research aims to improve the accuracy
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of software effort estimation by optimizing the coefficients
of three COCOMO-based models. These models include the
basic COCOMO model and another two models that have
been suggested in the literature as extensions of the basic
COCOMO model, which are called Sheta’s Model I, and
Sheta’s Model II using meta-heuristic algorithms, including
(GWO), (ZOA), (MFO), (PDO), and (WSO).

The limitation of this study is that the estimation process
is not beyond the system level. In other words, a software
project in the COCOMO is considered a homogeneous entity
composed of a single sub-system. However, in reality, a soft-
ware system may composed of smaller and heterogeneous
sub-systems. Moreover, the study had a limited sample size,
but it could improved by increasing it. Also, the study does
not consider certain factors for software cost estimation, such
as hardware, personal quality, experiences, and tools.

This work explores a study of how the Gray Wolf
Optimization algorithm (GWO) enhances the software effort
estimation process overall. Where the significant contribu-
tions are:

e Proofing the convenience of the Gray Wolf Optimization
algorithm can generate general prediction models in the field
of software effort estimation.

e The significant improvement in performance over the
pre-existing models.

e The machine learning approach is a convenient software
effort prediction using a small number of dataset projects and
input variables.

This paper is organized as follows: section II describes
some related works, section III presents the dataset and
the evaluation metrics, section IV explains software effort
estimation models, section V interprets the utilized meta-
heuristic algorithms, section VI introduces the proposed
method, section VII provides the finding, section VIII
provides the conclusion and future work.

Il. RELATED WORK

The most critical task in developing software is to estimate
the cost correctly because any estimation error might result
in either an overestimate or an underestimate, which could
impact the project’s resources. This section presents previous
studies and methods previously used for effort estimation and
improving the existing models’ coefficients in a similar field.
Examples of these techniques are GA [6], HACO-BA [7],
HWA [8], FPA [9], and eDTO [10].

Almost three decades ago, when Boehm introduced
COCOMO [11], several academics presented various
cost-estimating models to address a variety of optimization
problems. The extensive spread may be noticed in the field
of optimizing the basic COCOMO Model [4], [5], [12], [13],
(141, [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [301, [31], [32], [33], [34], [35],
[36], [37], [38].

In 2006, Sheta introduced two models, Sheta’s Model 1
and Sheta’s Model 11, as extensions of the basic COCOMO
Model. Researchers moved to develop models because the
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parameters proposed by Sheta improved the accuracy and
quality of the basic model [39], [40], [41], [42], [43], [44],
[45], [46], [47], [48], [49], [50]. However, those researches
were excluded form comparison with our study because those
researches were not under equal conditions; the differences
in the kind of datasets and how to divide the dataset into
training and testing, the evaluation metrics, fitness functions,
the platforms that were used, and the set of parameters, such
as the number of iterations, population size... etc.

Verma et al. employed GA to optimize the intermediate
COCOMO model’s coefficients and used the NASA dataset
to achieve the results. They carried out their study by utilizing
the model’s organic mode. The fitness function is Manhattan
Distance (MD). The applied methodology yielded better
results than the intermediate COCOMO coefficients [6].

Khan et al. analyzed the algorithms from two angles.
The first is to compare the efficiency of the Ant Colony
Optimization (ACO), the Bat Algorithm (BA), and the Hybrid
of Ant Colony Optimization with the Bat Algorithm (HACO-
BA) in improving COCOMO II's parameters. The second
is that the authors used HACO-BA to enhance the deep
learning training process to minimize the training delays.
The results confirmed the superiority of the HACO-BA
over BA and ACO. Moreover, HACO-BA performed more
effectively when DNN was optimized for execution speed and
precision [7].

Chhabra et al. suggested two models. Firstly, the fuzzy
techniques create a fuzzy technique for each cost driver, and
secondly, they use a Genetic Algorithm to select parameters,
characterizing fuzzy sets for the proposed fuzzy technique.
COCOMO NASA and COCOMO NASA 2 datasets are used
to validate the proposed model. The results are compared to
the values that match the COCOMO model, and the proposed
GA-optimized fuzzy COCOMO provided the best result with
reduced MMRE and increased Pred (25%) level [51].

Fadhil and Alsarraj applied the Humpback Whale Algo-
rithm on COCOMO 1I to find the optimal coefficient values.
The authors used NASA93. For performance evaluation, they
used MRE and MMRE. A comparison is also conducted
between the proposed model and previous similar completed
models, including Hybrid Cuckoo Optimization, Harmony
Search Algorithm, and CSHS. The results showed that the
Whale Algorithm outperformed COCOMO II and CSHS,
whereby MMRE is 57.40 for COCOMO 11, 54.04 for CSHS,
and 50.6122 for the Whale Algorithm [8].

Suherman et al. attempted to verify whether the tuning
parameters, which utilize machine learning, such as Random
Forest Regression, can outperform the constant parameters
of COCOMO II with accurate results or vice versa. The
proposed method is implemented on NASA 93. Their results
showed that Random Forest Regression outperformed SVR
and Bee Colony [52].

Puspaningrum et al. applied the Flower Pollination Algo-
rithm in several iterations: 500, 1000, 1500, 2000, and
2500. The authors used 500 iterations to compare with

VOLUME 11, 2023

COCOMO 11, Cuckoo Search Algorithm, and PSO. Besides,
they used NASA 93, and the results showed the superiority
of the Flower Pollination Algorithm versus other algorithms,
obtaining 5248% [9].

Shweta et al. applied the Ensemble Duck Traveler
Optimization Algorithm (eDTO) to enhance COCOMO 1I's
accuracy in estimating the time and effort required to develop
software and assess the performance of the proposed model.
The authors used NASA93 and evaluation metrics ACC,
VAR, BRE, MRE, and MMRE to compare the results with
the existing COCOMO II model, Neural Network, and
Strawberry Algorithm. The results verified the superiority of
eDTO over other algorithms in all evaluation metrics [10].

Two models are proposed by Fadhil et al. to optimize the
parameters of COCOMO II: firstly, by using the Dolphin
Algorithm, and secondly, by employing the hybrid Dolphin
and Bat Algorithm (DOLBAT) on two datasets, NASA93
and NASAG60. To carry out the performance evaluation, the
authors used MRE and MMRE. The results showed that
DOLBAT outperformed GA, CSHS, Bat, and Dolphin. For
NASA93, the MMRE of the DOLBAT is 50.27, while for
the Dolphin, it is 51.8755. Moreover, for NASAG60, the
MMRE of the DOLBAT is 14.57, while for the Dolphin, it
is 16.65 [53].

Fadhil and Bahnam proposed a hybrid model of the Ant-
Lion Optimization and Cuttlefish Algorithms (HALOCF) to
improve the COCOMO IT’s parameters. The authors used two
datasets, including NASA 93 and NASA 60. For evaluation,
they used the MMRE metric. They compared the results
with several algorithms, such as COCOMO II, CSHS, Bat,
ALO, and CF. The results demonstrated that the HALOCF
outperformed compared with other algorithms in MMRE in
two datasets [54].

Saleem et al. proposed a systematic review to discuss
several software cost estimation techniques and identified
their strengths and weaknesses. The authors focused on
understanding issues that cause cost estimation problems
in software projects. They concluded that some models
performed better in large projects, others in small projects,
and some on global software. Therefore, to obtain the best
efficiency, the authors recommended using the collaborative
methods [55].

Khan et al. proposed the Flower Pollination Algorithm
(FPA) to optimize intermediate COCOMO’s coefficients.
They used NASA93, NASA 63, and NASA 60 datasets. It was
found that the FPA has effectively solved this optimization
problem and obtained the best results when compared to the
normal value of COCOMO’s parameters. The results showed
that the improvement on NASA93 is 10.17%, NASA 63 is
77.38%, and NASA 60 is 22.96% [56].

Sethy et al. employed the TLBO algorithm to increase
the precision of the COCOMO model by refining the
COCOMO'’s coefficients. They used the IVR dataset, which
includes 47 projects. The authors compared the results with
previous models, such as Bailey, COCOMO 2, Hastead, SEI,
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and BCO. The TLBO algorithm provided high accuracy by
obtaining the lowest value of MMRE [57].

Ullah et al. suggested a Biogeography-Based Optimiza-
tion (BBO) model to improve the existing coefficients
of COCOMO 1I. They used two datasets, NASA93 and
Turkish industry software projects evaluated by MD and
MMRE. The results demonstrated that the proposed model
has significant precision and reduces error compared to
COCOMO I, PSO, FPA, GA, and other high-cost estimation
models [58].

Sunindyo and Rudiyanto suggested combining
COCOMO 1II and the K-Means clustering approach to
increase the precision of the COCOMO II by determining
new values of a and b. They used the COCOMO NASA2
dataset and the Turkish Software Industry. The results showed
that the proposed model could reduce the amount of MRE
COCOMO 1II from 1.32 to 0.85 and improve the amount of
PRED (0.3) from 32% to 54% [59].

Singal et al. applied the Differential Evolution Algorithms
to optimize the COCOMO and COCOMO II parameter
values. The parameter values are obtained by using three
mutation techniques in Differential Evolution. The proposed
model is tested on the COCOMO 81 and NASA93 datasets.
The test results showed the proposed model’s superiority on
the COCOMO and COCOMO 1I while obtaining the lowest
MMRE for the two datasets [60].

Singh et al. suggested an Enhance-Based Differential
Evaluation Algorithm (EABMO) to tune the parameters of
the semidetached model. The performance of the developed
model was tested on NASA and compared to other modern
DE algorithms, PSO, and GA. The result showed that the
proposed EABMO algorithm outperformed DE, PSO, and
GA [61].

Vats et al. proposed a Genetic Algorithm to develop a cost
estimation framework using an object-oriented perspective
and a prediction model using regression techniques and
GA. The evaluation metrics used RMSE and MAE. The
result showed that GA outperformed on regression in the
RMSE 96.31 for regression, GA is 61.66, MAE 0.17188, and
0.098818 for GA [62].

Reddy and Behera surveyed to study the benefit of PSO
in software estimation. They analyzed the previous works.
They concluded that the datasets most frequently used are
COCOMO81, NASA, Maxwell, and ISBSG. They used the
evaluation metrics that most frequently applied MMRE,
PRED, MARE, and MDMRE [63].

Kumar and Behera proposed several machine learning
methods, such as KNN, SVM, Neural Networks, Random
Forests, and Backpropagation Algorithms, for estimating
software effort estimation. They used COCOMOS81 and
Desharnais. They divided the dataset into 80% for training
and 20% for testing. The orange tool for comparing. The
results, it is found that the software effort estimation using
KNN is better than other models [64].
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The research gaps that were found in previous works:

e Lack of estimation accuracy.

e Their focus was on improving one model.

e They did not use unseen data in the testing phase, which
makes the models unable to generalize.

e Use one or at most two metrics to measure the model’s
performance.

e The experimental result could improve the original
COCOMO. However, there are higher relative errors to the
actual effort of projects.

e They didn’t consider the effect of methodology.

IIl. DATASET DESCRIPTION AND EVALUATION METRICS
This research examines a famous and public dataset to
produce comparable results with [76] under equal conditions,
namely the NASA projects’ effort dataset. The dataset is
challenging due to the few cases and the small number of
variables. However, the dataset is considered sufficient for
this study’s objectives. The dataset for this study is taken from
NASA software project data, which is collected by Bailey
dataset and Basili [65].

The dataset has 18 software projects; each project has three
variables. First, the Kilo Line Of Code (KLOC), which is
presented in Kilo Line of Code and chiefly determines the
effort of a software project. Second, the Methodology (ME)
has a real effect on the cost of a particular software project.
The last one is the measured effort, which is described in man-
months. It is worth mentioning that 70% of the dataset is used
for estimating the model’s parameters and 30% for testing
their performance. The utilized dataset in this study has been
used by many researchers. Table 2 presents the dataset in this
study.

In this study, the first 13 projects’ data were used
to optimize the parameter values, while the remaining
5 projects’ data were used to test the models. The evaluation
metrics, which are used for calculating the differences, are as
follows:

“Variance — Accounted — For (VAF) as in (1)” (5]
var(act — est)

vAF = [1 - =25 100 9% (1

var(act)

“Mean Squared Error (MSE) asin (2)” (28]
n

MSE = 1/n Z(act — est)? 2
i=1

“Mean of Absolute Error (MAE) as in (3)" [39]
n

MAE = 1/n)_ |act — est| 3)

i=1
“Mean Magnitude Relative Error(MMRE)as in(4)" [5]
n
lact — est|
MMRE = 1/n S 2L~ 0 4
/ ; — “)

Root Mean Squared Error (RMSE) as in (5)" [66]
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TABLE 1. Summary of related works.

Algorithm Dataset Evaluation Model Fitness function
Reference :
used used metric used used
[12] Nature-Inspired Algorithm(NIA) Nasa 18 MAE Basic COCOMO MAE
. o Basic COCOMO,
39] Dléeclted Aﬁlﬁc{alllBee Nasa 18 MMRE, MRE, and PRED(N) Sheta’s model 1, | MRE
olony Algorithm and Sheta’s model 2
[13] Strawberry Plant Nasa 93 MMRE and MRE Basic COCOMO MMRE
[4] Differential Evaluation (DE) Nasa 18 MMRE and VAF Basic COCOMO VAF
[14] Simplified GA Nasa 18 MMRE, MD, and VAF Basic COCOMO MD
: . Basic COCOMO
Directed Artificial B '
39] léecl ¢ Arll Cl.ah € Nasa 18 MMRE, MRE, and PRED(N) Sheta’s model 1, | MRE
olony Algorithm and Sheta’s model 2
(33] Fuzzy Logic technique Nasa 18 MMRE and RMSE BasicCOCOMO | MRE
(37] Bee Colony Algorithm IVR dataset MMRE and RMSE Basic COCOMO MRE
(34] Genetic Programming (GP) Nasa 18 VAF and MMRE Basic COCOMO MRE
[41] Genetic Algorithm (GA) Nasa 18 MMRE, VAF, MRE, and PRED(N) Basic COCOMO MRE
Basic COCOMO,
[42] Genetic Algorithm (GA) Nasa 18 MMRE, MAMRE, MRE, and PRED(N) | Sheta’s model I, | MRE
and Sheta’s model 2
Basic COCOMO,
[43] Particle Swarm Optimization(PSO) | COCOMO8I1 MMRE, MRE, and VAF Sheta’smodel I, | MRE
and Sheta’s model 2
[26] Human Opinion Dynamic- Nasa 93 MMRE Basic COCOMO | MMRE
COCOMO (HOD-COCOMO) . e
Teaching-Learning based .
(28] . . Nasa 18 MRE Basic COCOMO MRE
optimization Algorithm
Greyrelation Analysis (GRA
9] reyrelation Analysis (GRA) Kermer dataset | MMRE and MRE Basic COCOMO | MRE
and Bat Algorithm
(30] Cuckoo Search (CS) Algorithm Nasa 18 MMRE and PRED(N) Basic COCOMO MRE
Bacterial Foraging optimization _ i
2 . M D MMRE,MRE and PRED(N B M MMRE
(32] Algorithm (BFOA) artins Dataset \ and (N) asic COCOMO
Nasa 60,
Bat insprid Gravitational Search Nasa 93, .
[17] (BATGSA) COCOMO 81, MAE and NE Basic COCOMO MAE
and Kermer
(18] Harmony Search Algorithm Nasa 93 MMRE Basic COCOMO MMRE
. .. Basic COCOMO
Particl '
[44] article SW&;;I(? plimization Nasa 18 ARE, MARE, and VAF Sheta's model 1, | VAF
(P50) and Sheta’s model 2
n 5 IV. SOFTWARE EFFORT ESTIMATION MODELS
RMSE = Z(ac 1 —est) (3)  Software effort estimation is the method of determining
i=1

“R — Squared (R*) as in (6)"

R? =

> (act — mean(act))* — YL (act — est)?
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> (act — mean(act))?

how many workers are required to create a software

[28] project. The Constructive Cost Models COCOMO and its
modification COCOMO II are well-known and often-used
(6) effort estimation models. COCOMO, sometimes known as

COCOMO 81, is used as a cost, effort, and schedule
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TABLE 2. NASA 18 software projects.

Project No. KLOC Methodology (ME) Measured Effort
1 90.2 30 115.8
2 46.2 20 96
3 46.5 19 79
4 54.5 20 90.8
5 31.1 35 39.6
6 67.5 29 98.4
7 12.8 26 18.9
8 10.5 34 10.3
9 21.5 31 28.5
10 3.1 26 7
11 4.2 19 9
12 7.8 31 7.3
13 2.1 28 5
14 5 29 8.4
15 78.6 35 98.7
16 9.7 27 15.6
17 12.5 27 239
18 100.8 34 138.3

estimation model for planning new software development
activities. The COCOMO was defined in 1981 [11].

Meanwhile, COCOMO 1II is a later extension of the
model that was initially established. In this study, the three
COCOMO-based model coefficients are being optimized.
The first is the basic COCOMO, represented in Equation (7).
The other two models are modifications of the basic
COCOMO model, which are the proposed models by Sheta
[67], which are based on the Boehm Constructive Cost
Model(COCOMO), are tuned in this work. Sheta made
some adjustments to Boehm’s basic model for software
cost estimation to obtain a generalized model for estimating
the effort for all types of projects. He applied a Genetic
Algorithm to tune the parameters of the proposed models to
forecast the precise estimation of effort.

Sheta has also added methodology to the COCOMO to
increase the prediction accuracy and quality of the COCOMO
model. He has also discovered that adding a bias term
comparable to the regression model classes stabilizes the
model and lessons the impact of measurement noise. The
models created by Sheta [67] were successful in enhancing
the estimated effort’s performance relative to the VAF
criteria.

A and B are parameters in the basic model in Equation (7).
Other parameters, i.e., C and D, were added to the basic model
to improve the prediction accuracy, as shown in Equations
(8,9). Sheta’s Model 1, which is called Model I, and Sheta’s
Model 2, which is called Model II, are given below:

E = A(KLOC)® (7
E = A(KLOC)® + C(ME) (8)
E = A(KLOC)® + C(ME)+ D 9)
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Here, E denotes the estimated effort, A and B denote
multiplicative and exponential constant, respectively, KLOC
is the software project’s size, and ME is the methodology.

A. SOFTWARE COST ESTIMATION STEPS
According to software engineering economics, estimating the
cost of a software project includes four steps [11]. Each step
gives an input to the next one. Software size is used as an input
in effort estimation along with other attributes that influence
the software effort needed to develop software. The software
size and effort estimation are used to determine the calendar
time or schedule that was required to construct the software.
The steps to determine the cost of a particular software project
are as follows:

e Software size estimation.

e Software effort estimation.

e Software time estimation.

e Software dollar cost estimation.

1) SOFTWARE SIZE ESTIMATION
The most crucial software management task is size estima-
tion, the first step in software engineering economics that
calculates the software project effort. Due to subsequent
work, estimating effort and time depends on software size.
The project manager must be aware of the project size of a
particular software project to calculate the software cost and
identify how many people should be allocated.

Lawrence H. Putnam LOC, the Line Of Code and Function
Point Analysis was used to estimate the line of code.

a: LAWERECE H.PUTNAM LOC ESTIMATION

In this method, the Line Of Code is estimated by dividing the
system into smaller parts and calculating the SLOC of each
one. In this approach, for each part of the software system,
the smallest piece SLOC, most likely SLOC, and the largest
possible SLOC estimates are made by up to three to four
specialists for part of a software system. Then, the predicted
SLOC is calculated for each part of the software system using
Equation (10).

a+4m+b

Ei= 6 (10)

where a represents the smallest possible SLOC, b represents
the largest possible SLOC, and m is most likely SLOC,
respectively. Then, the expected software size for the
SOLC of the entire system and computed by the following
Equation (11).

E=S" Ei (11)

=

where n, represents the total number of parts in the whole
system.

b: FUNCTION POINT ANALYSIS

According to this method, the software size is cal-
culated using units. Counting the number of external
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components(such as inputs, outputs, inquiries, and interfaces)
that the system is made up. The system’s input files,
tables, forms, screens, and messages will be counted as a
component of software size from the external inputs. External
I/O inquiries that demand a response, such as prompts,
interruptions, calls, etc. ..., are counted. Software size is also
affected by libraries or programs that are passed through and
out of the system. The following steps are being taken to
assess the software size of a project:

1. Estimate or count each external type’s occurrences
(inputs, outputs, inquiries, and interfaces).

2. Each occurrence should be given a complexity weight.

3. To calculate the function count, multiply each occur-
rence by its complexity weight, then add the results.

4. To determine the function point count, multiply the
function count by a value adjustment multiplier (VAM).

VAM = Z vi x 0.01 + 0.065 (12)

The following table can multiply each occurrence by its
complexity weight.

TABLE 3. Complexity weight.

Description Low | Medium | High
Externals inputs 3 4 6
Externals outputs 4 5 7
Externals inquiries | 3 4 6
Externals interfaces | 5 7 10
Internal data files 7 10 15

2) SOFTWARE EFFORT ESTIMATION TECHNIQUES

Software effort and cost estimation techniques are divided
into algorithmic and non-algorithmic techniques. The algo-
rithmic methods depend on mathematical formalities to
estimate the effort, such as the Constructive Cost Model
(COCOMO), SLM (software life cycle), Function Point, Use
Case Point analysis, and Putnam’s Model [2].

a: CONSTRUCTIVE COST MODEL (COCOMO)
The Constructive Cost Model (COCOMO), which Barry
Boehm proposed in 1981 based on an analysis of 63 projects,
is one of the most significant, well-documented, commonly
used algorithmic models [11]. Using the software’s size and
other cost drivers, this model calculates the cost and effort
of the software. The basic COCOMO Model, intermediate
COCOMO Model, and advanced COCOMO Model are the
three basic variations of the model. The COCOMO model
measures effort in terms of person-months and measures code
size in lines of code (LOC) or thousand lines of code (KLOC).
i) BASIC COCOMO MODEL

The basic Constructve Cost Model needs the software
size estimated by Line Of Code or Function Point Analysis.
The project types in this model are organic, semidetached,
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and embedded. Its classification is mainly based on the
project’s size, which is the organic less than 50 KLOC, the
semidetached is 50-300 for KLLOC, and the embedded is over
300 KLOC, represented by Equation (7).

TABLE 4. Coefficients value in basic COCOMO model.

Basic-COCOMO projects | A | B

organic 24 | 1.05
semidetached 3.0 | 1.12
embedded 3.6 | 1.20

ii) INTERMEDIATE-COCOMO MODEL

The intermediate-COCOMO model includes cost drives
and the line of code used in the basic COCOMO model.
Cost drives consist of products, personnel, hardware, and
projects. So, the estimated cost and effort combine the line
of code and the cost drives. In the intermediate-COCOMO
model, nominal effort estimation is calculated using the
power function of A and B, with the value slightly different
from the basic COCOMO model. The cost factors range
from 0.7 to 1.66, and the estimated effort is calculated using
Equation (7).

E = A(KLOC)® x EMF (13)

where EMF, is the product of all the cost factors.

TABLE 5. Coefficients value in intermediate COCOMO model.

INTERMEDIATE-COCOMO projects | A | B

organic 32| 1.05
semidetached 3.0 | 1.12
embedded 2.8 | 1.20

iii) DETAILED COCOMO MODEL

The intermediate-COCOMO version’s features are
included in the detailed COCOMO, along with an evaluation
of how the cost driver affects each phase of the software
engineering process. The detailed COCOMO uses various
effort multipliers, and we use COCOMO in each module to
estimate work before adding it all up.

The stages of software development used in the detailed
COCOMO Model to calculate software effort are detailed
design (DD), code and unit testing (CUT), requirement
design and product design (RPD), and integration and test
(IT). Each software module’s estimated effort determines the
effort of the entire system. Table 7 shows the rating scale for
each cost driver in the four phases of the detailed COCOMO
Model.

3) COCOMO Il MODEL

The COCOMO Model was created based on the waterfall
software development process paradigm. COCOMO II was
designed to incorporate the most recent model for the
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TABLE 6. Cost factor and their weight in intermediate COCOMO.

Effort
Multipliers
Code

Multipliers
name

Rating

Personnel

. L
Attributes Verylow ow

Nominal

High

Very high

Extra high

Analyst

ACAP capability

1.46 1.19

1.00

0.86

0.71

Application

AEXP .
experience

1.00

0.91

0.82

Programmer

PCAP capability

1.00

0.86

0.70

Virtual
VEXP Machine 1.21 1.10
experience

0.90

Language

LEXP .
experience

0.95

Project
attributes

Model
MODP Programming 1.24 1.10
practice

0.91

0.82

Development

TOOL schedule

0.91

0.83

SCED Software 1.23 1.08
tools

Product
attributes

Required
RELY Software 0.75 0.88
reliability

DATA Database . 0.94
S1z¢e

Product

CPLX ;
complexity

0.70 0.85

1.65

Computer
attributes

Execution
TIME Time - -
constraint

1.66

Mai
STOR ain storage _ _
constraint

1.56

Virtual
VIRT Machine - 0.87
volatility

Computer
TURN Turnaround - 0.87
time

software development process. The COCOMO II model can
be used to determine the effort of a software project when
the development process is incremental, iterative, or spiral or
when re-engineering is necessary. Equation (14) determines
a project’s effort during either the early design phase or post-
architecture. The unit of measurement for effort is Person-
Month (PM). Person Month is the time that one person works
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on the software project development for one month.

n
PM = A x Size® x H x EMF

i=2
5

E =B+001 xeSF

J=0

(14)

15)
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TABLE 7. Effort multiplier rating scale and its value for detailed COCOMO
model.

Rating RPD | DD | CUT | IT
Very low | 1.80 | 1.35 | 0.0287 | 1.50
Low 0.85 | 0.85 | 0.85 | 1.20
Nominal | 1.00 | 1.00 | 1.00 | 1.00
High 0.75 | 090 | 0.90 | 0.85
Very high | 0.55 | 0.75 | 0.75 | 0.70

where n, represents the number of effort multiplier in the
early design or post-architecture, n is 17 for post-architecture,
and 7 for the early design model. SF represents the five
scale factors in COCOMO 1I. A and B are constants whose
value is derived from 161 software projects. EM is the
product of 17 effort multipliers. The five scale factors in
the COCOMO 1I are precedentedness (PREC), development
flexibility (FLEX), risk resolution (RESL), team cohesion
(TEAM), and process maturity (PMAT), and there are 17 of
them. The COCOMO I effort multipliers are represented in
Table 8, along with their corresponding values.

B. SLIM MODEL

Software Life Cycle Management is one algorithmic model
used for large projects. It is sometimes referred to as a
macro estimation model. It was one of the first models
of empirical and algorithmic software cost estimation. The
method describes the time and software effort required
to construct a software project. Using Equation (16), the
software effort is estimated.

Size

Effort = [ 1 xB (16)

(productivity x Time)(%)
where Size, is the estimated size of the software prod-
uct, productivity is the productivity of the organizational
process.

C. EXPERIENCE BASED ESTIMATION

The estimation technique for software projects is commonly
utilized when gathering requirements and data is challenging.
The estimation is calculated using residents’ experiences.

D. ESTIMATION BY ANALOGY

The technique of developing a solution using similar tasks
that have already been done and applying that answer to
a new problem area is known as estimation measurement.
The analogy technique is identical to experience-based
estimation, except it only uses prior projects’ knowledge and
experience. While estimating by analogy is a data-intensive
strategy based on one or more identified prospective similar
projects, experience-based estimation is a human-intensive
approach.
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E. TOP DOWN AND BOTTOM UP APPROACH

The estimated total effort is either determined as the
sum of the project activity estimates or is based on the
characteristics of the project as a whole. The accuracy with
which algorithmic methods and experience-based estimation
techniques may estimate the effort value of software projects
is limited. The use of meta-heuristic algorithms in estimating
the time and cost of software projects is currently prevalent
and results in better estimates.

V. THE META-HEURISTIC ALGORITHMS

A. GREY WOLF OPTIMIZATION ALGORITHM

The GWO algorithm is mainly motivated by the gray wolves’
social hierarchy and hunting method. The social hierarchy is
separated into four levels. The alpha («), beta (8), delta (6),
and omega (w).

The alphas are leaders who may be females or males. They
are not necessarily the strongest, but they can best manage
the herd. They are responsible for making orders regarding
hunting, where to sleep, when to wake up, and so on. The
alpha wolf is known as the dominant wolf because the rest of
the herd must follow the orders it gives.

The beta is the second level of the hierarchys; it is an advisor
to the alpha and helps the alpha make decisions, and it takes
orders from the alpha and gives orders to the rest of the herd.
If the alpha wolf dies, it becomes the first candidate to be the
herd leader.

The third level is the delta wolf; it obeys the alpha and
beta commands and controls the omega. They are the scouts,
elders, and caretakers who look after the herd’s injured and
weak wolves.

The lowest rank is the omega wolf, which plays the role of
a scapegoat and must obey all orders of the alpha and beta,
and it is the last wolf allowed to eat [73].

The main phases of gray wolves’ hunting are as follows:

e Chasing, pursing, and closing in on the prey.

e Chasing the victim until it stops moving, then surround-
ing and pestering it.

e Attacking the victim.

The computation complexity of the GWO algorithm is
defined as follows:

O(m(dn + n + nlogn + n) a7n

1) THE REASONS FOR CHOOSING THE GWO ALGORITHM
ARE
The first reason is that the GWO has proven its efficiency in
studies similar to the nature of our research problem, such as
in [74], where they proposed a model to predict rainfall based
on the input time-series weather data using GWO in India,
Jammu, and Kashmir. They used four datasets. The result
demonstrated that it outperformed the proposed Accuracy,
MSE, and PRD methods.

The second reason is that this study [75] demonstrated that
the GWO algorithm has attracted from several sources and
is being used in a variety of fields, including job scheduling,
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TABLE 8. COCOMO Il effort multipliers.

Factors Tow Low Nominal Hish nish ‘nish
RELY 0.82 0.92 1.00 1.10 1.26

DATA 0.90 1.00 1.14 1.28

CPLX 0.73 0.87 1.00 1.17 1.34 1.74
RUSE 0.95 1.00 1.07 1.15 1.24
DOCU 0.81 0.91 1.00 1.11 1.23 1.24
TIME 1.00 1.11 1.29 1.63
STOR 1.00 1.05 1.17 1.46
PVOL 0.87 1.00 1.15 1.30

ACAP 1.42 1.19 1.00 0.85 0.71

PCAP 1.34 1.15 1.00 0.88 0.76

PCON 1.29 1.12 1.00 0.90 0.81

APEX 1.22 1.10 1.00 0.88 0.81

PLEX 1.19 1.09 1.00 0.91 0.85

LTEX 1.20 1.09 1.00 0.91 0.84

TOOL 1.17 1.09 1.00 0.90 0.78

SITE 1.22 1.09 1.00 0.93 0.86

SCED 1.43 1.14 1.00 1.00 1.00

Surface Waves, Unmanned Combat Ariel Vehicles (UCAVSs),
Optimum Reactive Power Dispatch (ORPD), Bankruptcy
Prediction, and Smart Green House. According to results
from applications of the GWO, The GWO performed better
than other bio-inspired algorithms, including BA, GA, FA,
PSO, and others.

The third reason is that our research problem is a
single-objective optimization problem, and the GWO solves
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single-objective and multi-objective optimization problems.
The fourth reason is that according to the advantages of the
GWO, which are:

e Ease of implementation.

e Its simplicity because it has the two primary parameters
to be adjusted (a and C).

e The social hierarchy assists GWO in saving the fittest
solutions obtained so far developed throughout the iteration.
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e The encircling mechanism establishes a hyper-spherical
neighborhood in higher dimensions around the solutions.

¢ Candidate solutions are helped to have hyperspheres with
various random radii by the random parameters A and C.

e The hunting technique enables possible solutions to
identify the likely location of the prey.

e The a and A adaptive values ensure exploration and
exploitation.

e The smooth transition between exploration and exploita-
tion is made possible by GWO’s values for the parameters a
and A.

e As A decreases, exploration takes up half of the
iterations, and exploitation takes up the other half.

TABLE 9. Setting the parameters for the GWO algorithm.

Parameter Value
Maximum iteration | 500
Wolves No 100

a 2

t 1

Algorithm 1 Pseudo-code of GWO

Initialization of grey wolves Wn where n=1,2,... N
According to given upper bound(UB) and lower
bound (LB) values.

Initialize a, A and C.

Evaluation the fitness of all search agents

Select alpha, beta and delta as:

Wa = best search agent

W B = second best search agent

W = third best search agent

Initialize i = 0 and Max-it = Maximum number of
iterations allowed.

while i < Max — it do

for each search agent do
| Update the position of the current search agent

end
Update a, A and C.
Evaluate the fitness of all search agents.
If any better solution then update Wo,W 8, and
Wé
i=i+1.

end
Stop the process and visualize the first best agent Wo

B. ZEBRA OPTIMIZATION ALGORITHM

The ZOA algorithm was primarily inspired by the social
behavior of herds of zebras in the wild. In particular, this
mimics zebras’ two most important social behaviors: foraging
and defense strategies. The ZOA is a population-based
algorithm, whereas the population is zebras. Each zebra
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is a candidate solution in the search space. Zebra can be
represented as a vector, and the values inside this vector are
the variables of the problem, i.e., the fitness function values.
In contrast, the population of zebras is represented as a metric.

The location of every zebra in the search space determines
the values of the parameters for the optimization problem; the
initial position is assigned randomly. The zebras is compared
based on the zebra’s fitness function value in the population,
and it can represent the best one based on the type of fitness
function, whether maximum or minimum.

In ZOA, the population’s best member is the pioneer zebra,
representing the global best and leading other zebras toward
its position.

In each iteration, the location of all zebras is updated, and
the best solution is generated each time. The update is carried
out depending on two phases: 1) Foraging and 2) Defense
strategies.

In the first phase, the members update their position based
on simulating the behaviors of zebras when searching for
food, and the best member is the pioneer zebra, which leads
other zebras to their position in the search space.

In the second phase, the behavior of zebras in defense
against predators is used to update the position of zebras in
search space. It depends on the type of predator; if it is a lion,
then the strategy they use is to escape in a zigzag pattern. If
it were a smaller animal like a dog, zebras would gather to
confuse and scare it [68].

The computation complexity of the ZOA algorithm is
defined as follows:

O(N.m.(1 +2.T)) (18)

1) THE REASONS FOR CHOOSING THE ZOA ALGORITHM
ARE

The first reason is that sixty-eight benchmark functions,
which include unimodal, high-dimensional multimodal,
fixed-dimensional multimodal, CEC2015, and CEC2017
kinds, were used to assess ZOA’s performance in solving
optimization problems. The optimization findings demon-
strated that ZOA can offer the best solutions for cost functions
by achieving the proper balance between exploitation and
exploration.

Moreover, four engineering design problems were used
to examine ZOA’s capacity to optimize real-world issues:
welded beam, tension/compression spring, pressure vessel,
and speed reducer. It was proven that the ZOA algorithm out-
performed other known algorithms in most cases, including
GWO, TLBO, GA, MPA, PSO, TSA WOA, and GSA [68].

The second reason is that the ZOA algorithm was proposed
in 2022, so it was interesting to use it in optimizing
parameters for the old models, such as the basic COCOMO
model, which was offered in 1981, and the two Sheta’s
models, which were proposed in 2006.

The third reason is that we searched in ACM, Scholar,
IEEE, and Science Direct databases, and this algorithm has
yet to be used to estimate software effort.
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TABLE 10. Setting the parameters for the ZOA.

Parameter Value
Maximum iteration | 500
Search agents NO 100

C. MOTH-FLAME OPTIMIZATION ALGORITHM

The MFO is a meta-heuristic algorithm, which is a
population-based algorithm. It was created by Sayedali in
2015 [69]. The MFO algorithm imitates the behavior of moths
naturally through the moths’ crosswise movements.

Real moths use a clever way of flying through the darkness
to cover large distances in a straight line by keeping a steady
and specific degree toward the moon’s position as a light
source. However, as soon as the moths see the artificial light
nearer than the moonlight, they finally converge on it. They
keep the same degree before becoming caught in a spiraling
motion around it.

The MFO algorithm consists of two elements: moths and
flames. Each moth in the MFO algorithm indicates a solution,
and the variables in each problem are determined by the
positions of the moths in the search space. The moth is
regarded as a search agent that gets the search. By updating
their position, the moths could be searched in multiterminal
spaces.

The moths’ number and flames’ dimensions are stored in
an array to keep each moth’s best position. Both moths and
flames metrics allow each moth to search the area and update
the flame, which is the best position if a better solution is
discovered.

The following can be used to present the MFO algorithm
generally: MFO is (I, P, T). There are three-tuple estimation
methods in the MFO algorithm: the method I randomly
initializes the population, and P describes a method for
searching for nearby moth solutions until the termination
condition is satisfied, where T is a procedure that returns
whether or not the termination condition has been met.

The computation complexity of the MFO algorithm is
defined as follows:

Ot(n* +n x d)) = O(mn* + md) (19)

1) THE REASONS FOR CHOOSING THE MFO ALGORITHM
ARE
The first reason is that we searched in ACM, Scholar,
IEEE, and Science Direct databases, and this algorithm
has yet to be used to estimate software effort. The second
reason is that the MFO algorithm has been proven efficient
against several algorithms such as SOS, GA, PSO, ABC,
and more when used in various fields, including engineering,
chemical and medical research, machine Learning, and image
processing. .. etc [70].

The third reason is due to its advantages, which are:

e It is a mechanism for primarily enhancing exploitation;
updating positions enables gathering nearby solutions around
the flames.
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Algorithm 2 Pseudo-code of ZOA

Input: the optimization problem information

Set the number of iterations(T) and the number of
zebras’ population(N).

Initialization of the position of zebras and evaluation
of the objective function.

Evaluation the fitness of all search agents

for t=1:T do

Update pioneer zebra(PZ)

for i=/:N do

Phase 1: Foraging behavior

Calculate new status of ith zebra by

xrew Pl xjj + r.(PZ; — I x;5) Update the ith

i
zebra by

xinjew,Pl , Finew,Pl < Fi;
X; =
X; else,

Phase 2: Defense strategies against
predators
if Ps < 0.5, Ps = rand then
Strategyl: against lion (exploitation
phase)
Calculate new status of the zebra using

mode S1
end

S1:x;+R.Q2r—1)

t
¥ — (= =).x, Ps < 0.5;
=
S2: x?jew’m =xj+r
(AZ; — I .x;), else,
else

Strategy2:against other predator
(exploration phase)
Calculate new status of the zebra using

mode S(2)
end
Update the ith zebra by
Xi _ x;ew,PZ’ Finew,P2 < Fi;
X; else,

end
Save best candidate solution so far

end
Return the best solution obtained by ZOA for given
optimization problem

e Over several iterations, the adaptive convergence param-
eter (r) towards the flame leads to increased exploitation
surrounding the flames.

e Due to the use of a population of moths by MFO for
optimization, local optimal avoidance is highly effective.
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e Each moth is given a flame, leading to search space
exploration and lowering the possibility that local optima
would stop.

e The search space balances exploitation and exploration
by reducing the flame count.

e Using the most recent and successful solution so far as
the flames, moths might use the promising solutions as their
guides.

e To ensure their preservation, only the fittest solutions are
saved.

e Because moths constantly update their positions about
flames, representing the most promising solutions so far
throughout iterations, the convergence of the MFO algorithm
is ensured.

e The MFO method can handle complex real-world issues
with uncertain and limited search spaces. [69]

Algorithm 3 Pseudo-Code of MFO
Initialization parameters of Moth-Flame
Initialization Moth position M; randomly
fori=1:ndo

| Calculate the fitness function
end

while iteration < Max — iteration do
Update the position of M; Calculate the number of
flames Evaluate the fitness function if
iteration == 1 then
| F=sort(M) and OF=sort(OM)
end
else
| F = sort(M;_1, M;)andOF = sort(M;_1, M;)
end
fori=1:ndo
forj=1:ddo
Update the values of r and t Calculate the
value of D respect to its corresponding
moth Update M (i, j) respect to

corresponding moth
end

end

end
Print the best solution

TABLE 11. Setting the parameters for MFO algorithm.

Parameter Value
Maximum iteration | 500
Search agents NO 100

D. PRAIRIE DOG OPTIMIZATION ALGORITHM

The PDO algorithm is primarily inspired by the movements
of a type of American rodent known as prairie dog (PD) [71].
The PDO algorithm mimics four prairie dog behaviors for
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the exploration and exploitation stages. The PDO is given
exploratory behavior through the PDs’ foraging and nest-
building activities.

The PDs build their nests around a plentiful food resource.
When a food source is exhausted, they search for a new one
and construct new nests around it, thereby motivating the
PDOs’ exploration phase.

On the other hand, they respond to two different commu-
nications or sounds for exploitation. PDOs have sounds or
signals for several situations, including the threat of predatory
and abundance of food. To meet their nutritional demand and
be able to defend themselves against predators, they need to
be able to communicate effectively.

These two activities can lead the PDs closer to a specific
location. The PDO algorithm consists of four phases:
initialization, fitness function, exploration, and exploitation.

The computation complexity of the PDO algorithm is
defined as follows:

O)=O0(N xdimxT)+tp) (20)

1) THE REASONS FOR CHOOSING THE PDO ALGORITHM
ARE

The first reason is that the PDO was tested on 22 benchmarks
and ten CEC-2020. Also, it has been applied to solve
twelve real-world optimization problems. The results showed
that the PDO performed better than other meta-heuristic
algorithms. The second reason is that we searched in
ACM, Scholar, IEEE, and Science Direct databases, and this
algorithm has yet to be used to estimate software effort. The
third reason is that the PDO algorithm was proposed in 2022,
so it was interesting to use it in optimizing parameters for
the old models, such as the basic COCOMO model, which
was offered in 1981, and the two Sheta’s models, which were
proposed in 2006.

The fourth reason is due to its advantages, which are:

e It can keep up with a balanced exploration and
exploitation approach.

e It is more capable and efficient when compared to other
methods.

e It can predict global optimum for real-world optimization
problems with uncertain global optimal.

e It shows more consistent convergence.

e The models of the searching and burrow-building
activities, which are exploration, anti-predation, and commu-
nication, which are exploitation activities, include the digging
strength and predator impact features, specifically affecting
the PDO updating process.

E. WHITE SHARK OPTIMIZATION ALGORITHM
The WSO is inspired by the dynamic behavior of a white
shark, known as a white pointer or a huge white shark [72].
e Tracking the victim
They use their sense of smell to scan a vast area for a victim
while tracking prey, as well as their sense of hearing to hear
from all parts of their body.
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TABLE 12. Setting the parameters for pod algorithm.

Parameter Value
Maximum iteration | 500
prairie dogs NO 100

t 1
rho 0.005
epsPD 0.1

Algorithm 4 Pseudo-Code of PDO

Set the parameters of PDO: n, m, p, € Set G Best and
C Best as ¢ Initialize the candidate solution CT and
PD while iter < Max — iter do

for i=1 to mdo

for i=1 to m do
Calculate the fitness of PD Find the best

solution so far(C Best) Update G Best
Update DS and PE Update CPD;;

if (iter < %) then

(foraging activities)

PDjy1 j+1 = GBest;j — eGBest; j X
p — CPD; ; x Levy(n)

end
else if(% < iter < %} then
(burrowing activities)
PDityjy1 =
GBest; j — eGBest; j x DS x Levy(n)

end

else if(% < iter < 3%) then

(food alarm)

PD;y 1 j+1 = GBest; j — eGBest; j x
€ — CPD;j x rand

end

else

(anti predation alarm )

PDi+l,j+l = GBest,-,j x PE x rand

end

end

end
iter = iter + 1

end
Return best solution (G Best)

e Search for the victim (exploration)

Through two lines on both sides of the white shark,
it can hear unusually, and these lines can find changes in
the water pressure emitted by the victim. It can determine
the electromagnetic waves produced during the prey’s
movement. They can pinpoint the place and size of the victim,
and when they locate the victim, it moves quickly toward the
target.

e Search for the victim (exploitation)

‘White sharks use their keen sense of smell in every possible
area in the search space to identify the prey’s location.
When the white shark is nearer to the victim, the sense of
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smell increases exponentially to identify the prey’s location
accurately. In most cases, the white shark is tricked by the
fragrance that the prey, like seals, leave behind after they
depart the area to mislead the white shark. In this case,
it searches randomly and explores other areas, aided by its
senses.

The computation complexity of the WSO algorithm is
defined as follows:

O(t) = O(ken + knd) 21

1) THE REASONS FOR CHOOSING THE WSO ALGORITHM
ARE

The first reason is that the WSO was tested on 29 benchmark
test optimization problems with various dimensions related to
the CEC-2017. Also, it has been applied to solve real-world
optimization problems suggested for the CEC-201. The
results showed that the WSO performed better than other
algorithms, such as TLBO, SFS, DE, GA, GSK, AMO, PSO,
BBO, and ACO [72].

The second reason is that we searched in ACM, Scholar,
IEEE, and Science Direct databases, and this algorithm has
yet to be used to estimate software effort. The third reason is
that the WSO algorithm is new, as it was proposed in 2022,
S0 it was interesting to use it in optimizing parameters for
the old models, such as the basic COCOMO model, which
was offered in 1981, and the two Sheta’s models which were
proposed in 2006.

The fourth reason is due to its advantages, which are:

e It’s anticipated flexibility to handle various optimization
problems.

e High convergence speed.

e The WSO has a small set of tuning parameters.

e The WSO is considered a strong candidate interested in
creating effective, low-cost, and strong solutions to difficult
optimization challenges abroad.

e The simplicity and strength of WSO are expected to make
it quick and accurate to identify the solution for challenging
optimization.

TABLE 13. Setting the parameters for the wso algorithm.

Parameter Value
Maximum iteration | 500
Search agents NO 100
Fmax 0.75
Fmin 0.07
tau 4.11
Pmin 0.5
Pmax 1.5
a0 6.250
al 100
a?2 0.0005
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Algorithm 5 Pseudo-Code of WSO

Initialize the parameters of the problem

Initialize the parameters of the WSO

Randomly generate the initial positions of WSO

Initialize the velocity of the initial population

Evaluate the position of the initial population

while (iter < Max — iter) do

Update the parameters v,p1, p2,i, a, b, wo,f, mv ;

and sy

for (i=1ton)do

Vﬁc+1 = ,u,[v;'( +p1](wgbestk — w;;) X c] +
pa(wpestve) — wh)

end

for (i = 1ton) do

if (rand < mv) then

w;ﬁq = wf(. ®W0 +u.a+ 1.b else
Weyny = Wi + O/f

end

for (i = 1ton) do

if (rand < s;) then

Dy, = |rand < (ngestk - W,ZI()l if

(i ==1) then
Wisl =
webesty + r1Dysgn(r; — 0.5) else
Wis1 =
ng@ka+r1 Dwsgn(r1 —0.5)
end
N OVt T 1)
k+1 — (2rand)
end
end
end

end

Adjust the position of the white sharks that
proceed beyond the boundary.

Evaluate and update the new positions
k=k+1.

end
Return the optimal solution obtained so far

VI. THE PROPOSED METHOD

The proposed models, which are used in this study, include
five separate meta-heuristic algorithms. The primary objec-
tive task is to identify the generalized optimal values of all
parameters for the three COCOMO-based models: basic-
COCOMO, Sheta’s Model 1, which is called Model I, and
Sheta’s Model 2, which is called Model II. One of the five
meta-heuristic algorithms is applied each time, including
GWO, ZOA, MFO, PDO, and WSO. The proposed method
consists of two parts:

A. PARTI1: THE TRAINING OF MODELS

The actual effort, KLOC, and ME are the inputs. The
outcomes are the optimized values for the three COCOMO-
based models. The parameters of the proposed model A and
B in the basic COCOMO, whereby A, B, and C are the
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parameters in the COCOMO Model I, and A, B, C, and D
represent the parameters in the COCOMO Model II; these
are set in this section, and the goal is to produce optimized
coefficients using five meta-heuristic algorithms.

In other words, in the basic COCOMO, the goal is to
determine an equation of independent variables [Kilo Line Of
Code(KLOC)] and one dependent variable [Effort] that suits
a given training sample.

The goal for the COCOMO Model I is to determine
an equation of 2 independent variables [Kilo Line Of
Code (KLOC), Methodology(ME)] and one dependent vari-
able[Effort], which suits a given training sample.

Moreover, the goal of COCOMO Model 11 is to determine
an equation of 3 independent variables [Kilo Line Of
Code (KLOC), Methodology (ME), D bias factor], and one
dependent variable [Effort], which suits a given training
sample.

Initially, all the projects in the NASA 18 dataset were split
into two groups: 70% training, which includes 13 projects,
and 30% testing, which consists of 5 projects. A total of five
meta-heuristic algorithms were applied separately. For the
GWO Matlab implementation by [73], ZOA by [68], PDO
by [71], WSO by [72], and MFO developed by [68].

Then, the meta-heuristic algorithms were used separately
to optimize the coefficients to reduce the difference between
each project’s predicted and actual effort. Through the
optimization of coefficients, in these proposed models, MAE
is set as the cost function for all the meta-heuristic algorithms.
The suitability function fitness is to minimize the MAE as
much as possible, and meta-heuristic algorithms are repeated
until the MAE is further reduced to the favored rate.

It evaluates each member in the population and gives each
of them a fitness value depending on their quality. This study
aims to minimize the errors, thus increasing the accuracy of
the three COCOMO-based models. The reason for using the
same cost function for all the meta-heuristic algorithms is to
test them all under equal conditions.

For comparison, the set of parameters used in this study
is discussed in [67] and [76]. The population size is unified
for all the algorithms set to 100. The maximum iteration is
500. The parameters for the problem are the dimension’s size,
which is equal to the number of coefficients in each model,
such as the dim is 2 for the basic COCOMO model, the dim is
3 for the COCOMO Model I, and the dim is 4 for COCOMO
Model II. For each model, the lower bounds are —5, —30, and
—30, and the upper bounds are 5, 30, and 30, respectively. All
these processes are shown in Figure 1.

B. PART2: THE TESTING OF THE MODELS

This section presents the results of the training section,
which are the coefficients of the three utilized COCOMO-
based models used to evaluate the optimized models. The
data used in this section are the testing data. The optimized
coefficients are used to estimate the effort of each project.
After calculating the effort for all projects, the six evaluation
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PDO [thrae COCOMO-based models
wso
MFO

Fitness function (MAE)

Stop condition

YES

Optimized coefficients

FIGURE 1. The training stage in the proposed method.

metrics are evaluated for each meta-heuristic algorithm for all
the testing projects.

Once the result of each algorithm is obtained, the results
are illustrated in tables and compared with the existing
results in the literature. VAF, MSE, MAE, MMRE, RMSE,
and R?> of the testing dataset are compared. This phase
determines the algorithm for better tuning coefficients of the
three COCOMO-based models. To determine the difference
between the predicted effort and the actual effort of each
project, the difference should be as low as possible, which
means that the accuracy of the prediction is high. All these
processes are shown in Figure 2.

VII. FINDINGS

A. EXPERIMENTAL RESULTS FOR THE BASIC COCOMO ON
THE NASA18 DATASET

The basic COCOMO computes software development effort,
duration, and cost. In the basic COCOMO, the values
A = 2.4 and B = 1.05 are obtained, respectively.

First, using the GWO on the training dataset, the following
newly optimized coefficient values of A and B for the
basic COCOMO model are obtained, i.e., A = 1.9045 and
B = 0.9200. These new values of A and B are used
to calculate the software project’s effort to highlight the
proposed model’s effect on the software effort estimation.

Second, using the ZOA, a new optimized coefficient value
of A and B for the basic COCOMO model has been found as
follows: A = 3.5466 and B = 0.7876.

Third, using the PDO, a new optimized coefficient value
of A and B for the basic COCOMO model is obtained,
i.e., A =3.3722 and B=0.7999.

After that, using the WSO, a new optimized coefficient
value of A and B for the basic COCOMO model is obtained:
A =1.5153 and B = 0.9898.

143564

Testing
dataset

For all projects the following actions are
run

l

Extract of coefficients

l

Effort Estimation using the three
COCOMO-based models formals

l

Calculation evaluation metrics

}

General evaluation

A.B.C,andD
from training
phase

FIGURE 2. The testing stage in the proposed method.

Then, using the MFO, a new optimized coefficient value
of A and B for the basic COCOMO model has been found,
i.e., A =3.3339 and B = 0.8051, as shown in Table 14.

TABLE 14. BASIC COCOMO coefficient values using GWO and other
algorithms.

Algorithm | A B

GWO 1.9045 | 0.9200
ZOA 3.5466 | 0.7876
PDO 3.3722 | 0.7999
WSO 1.5153 | 0.9898
MFO 3.3339 | 0.8051

Table 15 illustrates the estimated effort for the NASA
dataset using the new optimized coefficient values of A and
B for all the five utilized algorithms. Based on Table 15, the
second column indicates the actual effort provided by the
NASA dataset. The third column up to the seventh column
presents the estimated effort for each model, respectively. The
estimated effort comparison based on Table 15 showed that all
the projects have a good estimation value to the actual effort in
the GWO model. It is more accurate than ZOA, PDO, WSO,
and MFO.

Based on Figure 3, the suggested GWO model graph is the
closest to the actual effort compared to other algorithms. This
shows that the GWO model is superior to other models in
estimating software’s effort.
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TABLE 15. Estimated effort for the basic COCOMO.

Project No. | Measured Effort  Estimate by GWO | Estimate by ZOA Estimate by PDO | Estimate by WSO  Estimate by MFO
1 1158 119.8315 122.9512303 123.5614606 130.5455 125.0516
2 96 64.75176 72.59124244 72.35364927 67.32266 7297193
3 79 63.13849 72.96223945 72.72922187 67.75534 73.35318
4 90.8 75.38167 82.67954823 82.57657888 79.28369 83.3538
5 39.6 44.99047 53.15085953 52.71963068 45.50225 53.06082
6 98.4 91.77839 97.85248545 97.98811697 97.98137 99.02048
7 18.9 19.8799 26.41501015 25.9161556 18.89797 25.96374
8 103 16.56819 22.59960777 22.11885514 15.53359 22.13666
9 28.5 32.03497 39.74117841 39.2401671 3157521 39.41838
10 7 5.393041 8.645869575 8.335920094 4.643532 8.289873
1 9 7131327 10.98204834 10.62797273 6.271779 10.58597
12 1.3 12.60399 17.88240468 17.43812541 11.57428 1742521
13 5 3.76897 6.361977462 6.10459052 3.158139 6.058587
14 84 8.37208 1259856222 1221854325 7.453138 12.18129
15 98.7 105.5771 110.3181593 110.6781315 113.9168 111.9328
16 15.6 15.4032 21.23213308 20.76022396 14.36168 20.76837
17 239 19.45083 25.92618024 25.42913828 18.45951 25.47269
18 1383 132.7286 134.1954296 135.0459001 145.7216 136.7536

Effort

50 [~

f\\\/\/\”\g\\z/

GWO
zoa
PDO
—— WSO
MFO

T
NASA Effort

\ %/ |

I
8
Projects

—_—
L L
10 12 1

16

FIGURE 3. The effort graph of the basic COCOMO for the NASA, GWO, ZOA, WSO, PDO, and MFO algorithms.

18

After calculating the effort for all projects, the six
evaluation metrics are estimated for each meta-heuristic
algorithm for all the testing projects.

Once the result of each algorithm is obtained, the results
are compared with the existing results in the literature, FA,

The optimized coefficients are used to estimate the
effort of each project, which is presented in Table 15 by
replacing optimized coefficients in Equation (7) with the old
ones.
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TABLE 16. Computed evaluation metrics for basic COCOMO model.

GWO FA GA PSO ZOA PDO WSO MFO
VAF 99.29% | 98.16% | 97.97% | 97.98% | 99.04% | 99.09% | 97.98% | 99.10%
MSE 19.63 59.14 63.96 63.68 41.06 39.52 63.73 44.20
MAE 3.42 5.65 6.06 6.04 5.52 5.15 6.05 5.06
MMRE | 0.06 0.11 0.13 0.12 0.22 0.20 0.13 0.20
RMSE | 4.43 7.67 8.00 7.98 6.41 6.29 7.98 6.65
R? 0.9927 | 0.9781 0.9763 0.9765 0.9848 | 0.9854 | 0.9764 | 0.9837
The VAF The MSE
120 T T T T T T T Tsﬂ T T T
1f
10}

GWO  FA

GA  PSO  Z0A

The MAE

PDO WSO NFO

GWO  FA

GA PSO Z0A

The RMSE

e

PDO WSO NFO

GWO  FA

GA  PSO Z0A

PDO WSO NFO

FIGURE 4. The evaluation metrics for the basic COCOMO model.

PSO, and GA. VAF, MSE, MAE, MMRE, RMSE, and R2

of the testing dataset are compared.
Here, we will explain how we obtained the results in

Table 16 mathematically for each algorithm that we used,

143566

05

04r
03

g |

02

01

GO FA

GA  PSO Z0A

The MMRE

PO WSO MFO

GO FA

GA  PSO Z0A

The R2

PDO - WSO MFO

GWO  FA

GA P30 Z0A

PO WSO MFO

Act = [8.4,98.7, 15.6, 23.9, 138.3]

which are GWO, ZOA, PDO, WSO, and MFO:

Est-GWO = [8.37208, 105.5771, 15.4032, 19.45083,

VOLUME 11, 2023



N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

IEEE Access

132.7286]

Est-ZOA = [12.59856222, 110.3181593, 21.23213308,

25.92618024, 134.1954296]

Est-PDO = [12.21854325, 110.6781315, 20.76022396,
25.42913828,
135.0459001]

Est-WSO = [7.453138, 113.9168, 14.36168, 18.45951,
145.7216]

Est-MFO = [12.18129, 111.9328, 20.76837, 25.47269,
136.7536]

A) The Variance Accounted For (VAF )

var(act) = (8.4—56.98)%+(98.7—56.98)> +(15.6 —56.98)°
+(23.9 — 56.98)% + (138.3 — 56.98)% /4
= 13520.108/4 = 3380.027.

According to Equation (1)

1) GWO
var(act-est) = 23.97517.
23.97517
VAF-GWO =[1 — —————] x 100
3380.027
=[1—-0.0070931889] x 100 = 99.29%.
2) ZOA
var(actest) = 32.5601.
VAEZOA =[1 32.5601 ] x 100 = [1—-0.0096330887]
© T 3380.027 B '
x 100 = 99.04%.
3) PDO
var(act-est) = 30.909692.
30.909692
VAF-PDO = [1 — ————]
3380.027
x 100 = [1 — 0.0091448062] x 100 = 99.09%.
4) WSO
var(actest) = 68.39592.
68.39592
VAEWSO = [ ———]
3380.027
x 100 = [1-0.0202353176] x 100 = 97.98%.
5) MFO
var(act-est) = 30.58404746.
.5840474
VAE-MFO = [1  ~%:28404746
3380.027

x 100 = [1 — 0.0090484625] x 100 = 99.10%.

B) The Mean Squared Error (MSE)

According to Equation (2)

1) MSE-GWO = 1§ x (8.4 — 8.37208)> + (98.7 —
105.5771)% + (15.6 — 15.4032)% + (23.9 — 19.45083)% +
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(1383 — 132.7286)> = 1 x (0.02792)* + (—6.877)> +
(0.1968)? + (4.44917)? + (5.5714)* = 1 x 98.16832353 =
19.63.

2) MSE-ZOA = 1% (84 — 12.59856222)7 +
(98.7 — 110.3181593)% + (15.6 — 21.23213308)% + (23.9 —
25.92618024)° + (138.3 — 134.1954296)> = 1 x
(—4.19856) +(—11.6182)> +(—5.63213)> +(—2.02618)> +
(4.10457)% = 1 x 205.2842659278 = 41.06.

3) MSE-PDO = L ox (84 — 12218543257 +
(98.7 — 110.6781315)> + (15.6 — 20.76022396)*> +
(23.9 — 25.42913828)% + (138.3 — 135.0459001)2 =
1 x (—3.8185433)% + (—11.978132)? + (—5.160224)% +
(—1.5291383)?+(3.2540999)% = £ x 14.58127+143.4756+
26.62791 + 2.338264 + 10.58917 = 1 x 197.612214 =
39.52.

4)MSE-WSO = 1 x (8.4 — 7.453138)% + (98.7 —
113.9168)% + (15.6 — 14.36168)% + (23.9 — 18.45951)% +
(138.3 — 145.7216)> = 1 x (0.946862)* + (—15.2168)* +
(1.23832)?+(5.44049)* +(—7.4216)> = 1 x 318.660064 =
63.73.

S)MSE-MFO = 1 x (8.4 — 12.18129)> + (98.7 —
111.9328)% + (15.6 — 20.76837)% + (23.9 — 25.47269)> +
(138.3 — 136.7536)* = £ x (—3.78129)> + (—13.2328)> +
(—5.16837)% + (—1.572697 + (1.5464)> = 1§ x
220.981907 = 44.20.

C) The Mean of Absolute Error (MAE)

According to Equation (3)

1) MAE-GWO = 1 x [8.4 — 8.37208| + [98.7 —
105.5771|4]15.6 — 15.4032| 4-123.9 — 19.45083| + |138.3 —
132.7286] = 1 x [0.02792| + | — 6.877| + [0.1968| +
4.44917| + |5.5714] = % x 17.12229 = 3.42.

2) MAE-ZOA = L ox |84 — 1259856222 +
198.7 — 110.3181593| + [15.6 — 21.23213308| + [23.9 —
25.92618024|+|138.3—134.1954296] = 1x|—4.19856|+
| — 11.6182| + | — 5.63213| + | — 2.02618| + |4.10457| =
1 x 27.57964 = 5.52.

3) MAE-PDO = 1 x84 — 1221854325 +
198.7 — 110.6781315| + |15.6 — 20.76022396| + |23.9 —
25.42913828| + |138.3 — 135.0459001] = 1 x| —
3.8185433|+|—11.978132|4|—5.160224|+|—1.5291383 |+
3.2540999] = 1 x 25.7401375 = 5.15.

4)MAE-WSO = 1 x [8.4 — 7.453138] + [98.7 —
113.9168|+]15.6—14.36168| +]23.9—18.45951| +|138.3—
145.7216] = 1 x |0.946862| + | — 15.2168| + |1.23832| +
|5.44049| + | — 7.4216] = % x 30.264072 = 6.05.

5) MAEEMFO = 1 x |84 — 12.18129] + [98.7 —
111.9328|+]15.6—20.76837|+|23.9—25.47269| +|138.3 —
136.7536] = 1x|—3.78129|+|—13.2328|+|—5.16837|+
| — 1.57269] + |1.5464| = % x 25.30155 = 5.06.

D) The Mean Magnitude Relative Error (MMRE)

According to Equation (4)

1) MMRE-GWO = % > \8.478.27208| + |98.779180g.5771| +
|15.6—15.4032| + [23.9-19.45083| + 2T138.37132.7286| I |
23.9 - 5

15.6 1383
0.312058621 = 0.06.

X
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+

2) MMRE-ZOA= %X |8.4_12£35,491856222| + |98.7—1;g:3181593\
|15.6—21.23213308]| + [23.9-25.92618024| + [138.3—134.1954296|

]f% 23.9 ]38.%
1y |—4.19 56|+ [—11.6182] _’_|75.632]3| + |72.026l8|+ 4.10457] __
3 8.4 98.7 15.6 23.9 1383

1% 1.0930309529 = 0.22.

5
3) MMRE-PDO= | 5412218343251 | 98.7-1106781315]
115.6-20.76022396] | |33.9-2542013828] | |138.3—1350459001]
56 73 + 1333 =
1 =58 85433 n I—11.976137] L 1=5160224] | [ST5201383)
987 5.6 239

8.4 K
f3,2540999| 1 _

4) MMRE-WSO = 1 |8.4—7.453138| + 198.7—111.9328|
N 8.4 98.7
|15.6—14.36168| + \23.971§.45951| + [138.3—145.7216]  _

15.6 3. 1383 =
10.946862| |—15.2168| ?1.23832| |5‘4404§| |=7.4216] _ __
8.4 + 98.7 + 15.6 + 23.9 + 138.3
1 % 0.6275720091 = 0.13.

5
5) MMRE-MFO = % x |8.4—182.18129| + 198.7—111.9328|
— . N
|15.6—20.76837| [23.9-25.47269| + [138.3-136.7536] _ 1

13, 239 1383 = 3
|—3.78D98)] 4 1213.2328 ZUIoS06837] | —157369] | |1.5464
| 84 937 5.6 239 1383
= x 0.992514681 = 0.20.

’ E) The Root Mean Squared Error (RMSE)
According to Equation (5)
1) RMSE — GWO = /19.63 = 4.43.
2) RMSE — ZOA = +/41.06 = 6.41.
3) RMSE — PDO = +/39.52 = 6.29.
4) RMSE — WSO = /63.733 = 7.98.
5) RMSE — MFO = /44.20 = 6.65.
F) The R-Squared (R?)
According to Equation (6)

(8.4+498.7+415.6 +23.9 + 138.3)
5

DR —GWO = ((8.4 — 56.98)% + (98.7 — 56.98)% +
(15.6 — 56.98)% + (23.9 — 56.98)2 + (138.3 — 56.98)?) —
98.16832353)/((8.4 — 56.98)% + (98.7 — 56.98)% + (15.6 —

56.98)2 + (23.9 — 56.98)2 + (138.3 — 56.98)%) =
(13520.108—98.16832353) — 0.9927
13520.108 . .

2)R* —ZOA = (8.4 — 56.98 + 98.7 — 56.98 + 15.6 —
56.98 + 23.9 — 56.98 + 138.3 — 56.98)%> — 205.283346)/

(8.4—56.98+98.7—56.98+15.6—56.98+23.9—138.3)> =
(13520.108—205.283346) __
13520.108 = 0.9848.

3) R — PDO = (8.4—56.98)*+(98.7—56.98)>+(15.6—
56.98)24(23.9—56.98)>4(138.3—56.98)2)— 197.612071)/
(8.4 —56.98)> 4 (98.7 — 56.98)> + (1&?23 1502.91%)72;lr2 (()%3).9 —
369.3212 + (138.3 — 56.98)?) = BRI

4) R? — WSO = (8.4—56.98)>+(98.7—56.98)%+(15.6—
56.98)24(23.9—56.98)24(138.3—56.98)%)—318.660064) /
(8.4 —56.98)> 4 (98.7 — 56.98)> + (1(%?25 1502.93%2;6% 8%%’9 —
369.325 + (138.3 — 56.98)}) = BEA

5) R> — MFO = (8.4—56.98)>+(98.7—56.98)> +(15.6 —
56.98)2 +(23.9—56.98)2 +(138.3 — 56.98)%) —220.981907/
(8.4 —56.98)> +(98.7 — 56.98)> + (135?25 %2.92%%2& 5373)'9 —
369.22)72 + (138.3 — 56.98)}) = Rk

Table 16 compares the GWO model’s accuracy with ZOA,
PDO, WSO, MFO, Firefly, PSO, and GA models found in

+

n|—
X

+

X

Mean(act) = = 56.98.
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previous studies [76]. Using six different estimation metrics.
From the evaluation metrics, the VAF value is expected to
be high because it is associated with the fit quality of the
estimation.

Moreover, if R2 = 1, this indicates that 100% percent
of the increase in the dependent variable is because of an
increase in the independent variable, and if R? = 0, there is
no relationship between the variables. Regarding the metric
R2, the closer the value is to one, the better the data fit the
model can provide. For the rest of the evaluation metrics, the
value should be as low as possible to be better because it is a
relative error found in the estimation process.

Based on Table 16, it can be observed that the VAF of
the GWO model is 99.29%, which is the maximum value
found when compared with other models. The VAF of Firefly,
GA, PSO, ZOA, PDO, WSO, and MFO models are 98.16%,
97.97%, 97.98%, 99.04%, 99.09%, 97.98%, and 99.10%,
respectively.

Also, the R? of the GWO model is 0.9927, and the R* of
Firefly, GA, PSO, ZOA, PDO, WSO, and MFO models are
0.9781, 0.9763, 0.9765, 0.9848, 0.9854, 0.9764, and 0.9837,
respectively. According to the comparison, the GWO model
has lower relative errors and higher VAF and R? values.

For example, the MSE of GWO is 19.63, and the MSE for
Firefly, GA, PSO, ZOA, PDO, WSO, and MFO models are
59.14, 63.96, 63.68, 41.06, 39.52, 63.73, 44.20, respectively.
These values show that the GWO model can reduce errors
by 39.51, 44.33, 19.63, 21.43, 19.63, 44.1, and 24.57,
respectively.

By using the MAE as an evaluation metric, the MAE of
the GWO model is 3.42, which obtained better results than
other models. The MAE for Firefly, GA, PSO, ZOA, PDO,
WSO, and MFO models are 5.65, 6.06, 6.04, 5.52, 5.15, 6.05,
and 5.06, respectively. Compared with the GWO model, the
GWO model could reduce 2.23, 2.64, 2.62, 2.1, 1.73, 2.63,
and 1.64 percent of mean absolute errors.

Regarding MMRE, the GWO model obtained better results
by 0.05, 0.07, 0.06, 0.16, 0.14, 0.07, and 0.14.

By using the RMSE as an evaluation metric, the RMSE of
the GWO model is 4.43, and the RMSE for Firefly, GA, PSO,
ZOA, PDO, WSO, and MFO models are 7.67, 8.00, 7.98,
6.41, 6.29, 7.98, and 6.65, respectively. Compared with the
GWO model, the GWO model could reduce errors by 3.24,
3.57,3.55, 1.98, 1.86, 3.55, and 2.22, respectively.

The GWO model has lower relative errors, higher VAF, and
R? values in the six evaluation metrics. Therefore, the GWO
model is efficient, and the basic COCOMO model software
projects’ effort should be estimated with the new parameters.

B. EXPERIMENTAL RESULTS FOR THE COCOMO MODEL |
ON THE NASA18 DATASET

COCOMO Model I is a new model structure that can be used
to estimate the software effort for projects proposed by [67].
It considered the effect of the methodology as linearly related
to effort estimation. It has three parameters: A, B, and C.
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First, using the GWO, the following newly optimized
coefficient values of A, B, and C for the COCOMO Model 1
are obtained, i.e., A = 1.9496, B = 0.9165, and C = 0.0287.
These new values of A, B, and C are used to calculate the
software project’s effort to highlight the effect of the proposed
models on the software effort estimation.

Second, using the ZOA, a new optimized coefficient value
of A, B, and C for the COCOMO Model I has been found:
A =8.7353, B =0.6133, and C = —0.6982.

Third, using the PDO, a new optimized coefficient value
of A, B, and C for the COCOMO Model I model is obtained,
ie., A=14.8136,B =0.5151,and C = —1.1591.

After that, using the WSO, a new optimized coefficient
value of A, B, and C for the COCOMO Model I is obtained:
A =8.9746,B =0.6111, and C = —0.7792.

Then, using the MFO, a new optimized coefficient value
of A, B, and C for the COCOMO Model I have been found,
ie.,. A=12.8178, B =0.541, and C = —1.0211, as shown
in Table 17.

TABLE 17. Cocomo modeli coefficient values using GWO and other
algorithms.

Algorithm | A B C
GWO 1.9496 | 0.9165 | 0.0287
ZOA 8.7353 | 0.6133 | -0.6982
PDO 14.8136 | 0.5151 | -1.1591
WSO 8.9746 | 0.6111 | -0.7792
MFO 12.8178 | 0.541 | -1.0211

Table 18 illustrates the estimated effort for the NASA
dataset using the new optimized coefficient parameters’
values of A, B, and C for all the five applied algorithms. The
estimated effort comparison based on Table 18 showed that all
the projects have a good estimation value to the actual effort
in the GWO model, and it is more accurate than ZOA, PDO,
WSO, and MFO.

As shown in Figure 5, the proposed GWO model graph is
almost in line with the actual effort. This demonstrates that
the GWO model is superior to other models in estimating the
effort of software.

The optimized coefficients are used to estimate the effort of
each project, which is presented in Table 18 by replacing the
optimized coefficients in Equation (8) with the old ones. After
the calculation of the effort for all projects,the six evaluation
metrics are estimated for each meta-heuristic algorithm for
all the testing projects.

Once the result of each algorithm is obtained, the results are
compared with the existing results in the literature, FA, PSO,
and GA. The testing dataset’s VAF, MSE, MAE, MMRE,
RMSE, and R2 are compared. Here, we will explain how
we obtained the results in Table 19 mathematically for each
algorithm that we used, which are GWO, ZOA, PDO, WSO,
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and MFO:

Act = [8.4,98.7, 15.6,23.9, 138.3]

Est-GWO = [9.354496, 107.4434, 16.41796,
20.5111, 134.6714]

Est-ZOA = [3.19212, 102.5445, 16.3423,
22.26478, 124.1721]

Est-PDO = [0.32518, 99.71053, 16.45137,
23.11433, 120.0474]

Est-WSO = [1.400129, 101.9415, 14.93913,
20.97006, 123.9356]

Est-MFO = [1.004651, 100.167, 16.24875,
22.69254, 120.7666]

A) The Variance Accounted For (VAF )

var(act) = (8.4 — 56.98)% + (98.7 — 56.98)*
+ (15.6 — 56.98)? + (23.9 — 56.98)°
+(138.3 — 56.98)% /4
= 13520.108/4 = 3380.027.

According to Equation (1)

1) GWO
var (act-est) = 25.05771.
25.05771
VAF-GWO =[1 — ————]
3380.027
x100=[1-0.0074134644]x 100 = 99.26%.
2) ZOA

var(act-est) = 47.75908.
47.75908

VAF-ZOA = [1 — ———]
3380.027
x 100=[1-0.0141297925]x 100 = 98.59%.
3) PDO
var(act-est) = 68.29972.
68.29972
VAF-PDO = [1 — ——]
3380.027
x 100=[1-0.0202068563] x 100 = 97.98%.
4) WSO
var(act-est) = 45.14172.
45.14172
VAF-WSO =[1 — ————]
3380.027
x 100=[1-0.0133554318] x 100 = 98.66%.
5) MFO
var(act-est) = 62.68643.
2.6864
VAF-MFO = [1 — %
3380.027

x 100 = [1 — 0.0185461329]
x 100 = 98.15%.
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TABLE 18. Estimated effort for the cocomo model I.

Project No. Measured Effort | Estimate by GWO  Estimate by ZOA | Estimate by PDO | Estimate by WSO  Estimate by MFO
1 115.8 121.6124 117.2215 115.814 117.1775 115.7802
2 96 65.97583 71.70083 83.50652 77.80115 81.52743
3 79 66.33625 78.76363 85.02191 78.95045 82.90614
4 90.8 76.66844 87.47613 9298384 87.72235 91.05981
5 39.6 46.50964 4747275 46.44397 46.05113 46.56094
6 98.4 93.40916 95.41397 96.08461 95.1374 95.54847
7 189 20.91609 23.5654 24.9422 22.36253 24.36269
8 10.3 17.79733 13.20769 10.3271 11.26997 11.02057
9 285 3333303 35.69641 36.01274 34.35994 35.74633
10 7 6.245134 -0.66964 -3.60515 -2.34134 -2.909
11 9 7.808926 7.797025 9.000995 6.766819 8.459757
12 7.3 13.69973 9.145074 6.743393 7.334905 7.289552
13 5 4.651817 -5.78084 -10.746 -7.69472 -9.44233
14 84 9.354496 319212 0.32518 1.400129 1.004651
15 98.7 107.4434 102.5445 99.71053 101.9415 100.167
16 15.6 16.41796 16.3423 1645137 1493913 16.24875
17 239 20.5111 22.26478 23.11433 20.97006 22.69254
18 138.3 134.6714 1241721 120.0474 123.9356 120.7666

Effort
3
T

NASA Effort
Gwo
zoa
PDO
wso
— MFO

-20

Projects

FIGURE 5. The effort graph of COCOMO Model I for the NASA, GWO, ZOA, WSO, PDO, and MFO.

B) The Mean Squared Error (MSE)

According to Equation (2)

1) MSE-GWO=1 x (8.4 — 9.354496)> + (98.7 —
107.4434)% + (15.6 — 16.41796)> + (23.9 — 20.5111)% +
(138.3 — 134.6714)? = L x (—0.954496)* + (—8.7434)> +
(—0.81796)* +(3.3889)* +(3.6286)* = £ x 102.6785459 =
20.54.
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2) MSE-ZOA=1 x (8.4—3.19212)>+(98.7—102.5445)*+
(15.6 — 16.3423)> + (23.9 — 22.26478)% + (138.3 —
124.1721)? = L x (5.20788)> + (—3.8445)2 + (—0.7423)* +
(1.63522 + (14.1279)> = 1 x 244.7247065 =
48.95.

3) MSE-PDO=1 x (8.4—0.32518)*+(98.7—99.71053)*+
(15.6 — 16.45137)> + (23.9 — 23.11433)2 + (1383 —
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TABLE 19. Computed evaluation metrics for the COCOMO model I.

GWO FA GA PSO Z0A PDO WSO MFO
VAF 99.26% | 98.62% | 97.97% | 98.528% | 98.59% | 97.98 % | 98.66% | 98.15%
MSE 20.54 47.74 98.17 60.07 48.95 80.14 54.97 73.23
MAE 351 5.56 7.70 5.63 5.11 5.8 5.64 5.65
MMRE | 0.08 0.24 0.29 0.23 0.18 0.24 0.23 0.22
RMSE 4.53 6.82 9.39 7.72 7 8.95 7.41 8.56
R2 0.9924 0.9823 0.9637 0.9778 0.9819 0.9704 0.9797 0.9729
The VAF The MSE
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PDO WSO MFO
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T
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GA PSO  Z0A
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FIGURE 6. The evaluation metrics for the COCOMO Model I.

120.0474)2

= 1 x (8.07482)> + (—1.01053)> +

(—0.85137)2 + (0.78567)% + (18.2526)% =

400.7234038991 = 80.14.
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The MMRE

PSO  ZOA PDO WSO MFO

The R2

GWO FA GA

PSO  ZOA PDO WSO MFO

4) MSE-WSO=% x (8.4 — 14001297 + (98.7 —

x  101.9415) 4 (15.6 — 14.93913)% + (23.9 — 20.97006)* +
(138.3 — 123.9356)> = 1 x 274.8628011871 = 54.97.
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5) MSE—MFO:% % (8.4—1.004651)*4(98.7—100.167)>+
(15.6 — 16.24875)> + (23.9 — 22.69254)> + (138.3 —
120.7666)* = % x 366.1422276059 = 73.23.

C) The Mean of Absolute Error (MAE)

According to Equation (3)

1) MAE-GWO:% % |8.4—9.354496|+198.7—107.4434|+
[15.6—16.41796|+|23.9—20.5111|+4138.3—134.6714| =
1 x 17.533356 = 3.51.

2)MAE—ZOA=% x |8.4 —3.19212| +198.7 — 102.5445| +
[15.6—16.3423]|+4(23.9—22.26478|4|138.3 —124.1721| =
% x [5.20788| 4 | — 3.8445| + | — 0.7423] + |1.63522| +
[14.1279| = % x 25.5578 = 5.11.

3) MAE—PDO:% % 18.4—0.32518| + (98.7 —99.71053| +
[15.6—16.45137|+(23.9—-23.11433|+|138.3—120.0474| =
% x |8.07482| + | — 1.01053| 4 | — 0.85137| 4 10.78567]| +
|18.2526| = % x 28.97499 = 5.8.

4) MAE—WSO:% % |8.4—1.400129|+198.7—101.9415|+
[15.6—14.93913|+(23.9—-20.97006|+|138.3—123.9356| =
1 x 28.19658 = 5.64.

5) MAE—MFO:% x 18.4—1.004651|+198.7 —100.167| +
[15.6—16.24875|+(23.9—-22.69254|+|138.3—120.7666| =
1 x 28.251959 = 5.65.

D) The Mean Magnitude Relative Error (MMRE)

According to Equation (4)

1 MMRE-GWO=1 x |8.4—9.354496| + 198.7—107.4434| +

5 ! 937
|15.6-1641796] , [23.9-20.5111| 1383 134.6714] " _ 1
5.6 23.9 138.3 = 5
0.4226815672 = 0.08
2) MMRE-ZOA=1 x 34319212 | |98.77910%.5445| I
115.6-163423| \23.8722.26478%' I \138.3424.1%’2” _ 1y
15.6 239 1383 = 5
0.8770936753 = 0.18.
3) MMRE-PDO:% % \844—;).4312518| n \98.7—9989.771053| 4
156-1645137)  [239-2311433]" | [138.3-1200474] _ |
5.6 23.9 138.3 = 5

1.1909530242 = 0.24.
4) MMRE—WSO:% w 18:4-1.400129] | [98.7-101.9415]

|15.6-14.93913 __ [23.9-20.97006] 1383-123.9356] 1
5.6 239 138.3 = 35X
1.1349790784 = 0.23.
5) MMRE-MFO:% w 1841004651 |98.79;070.167| n
1561624875 | [23.9-22.60254] | [138.3-120.7666] _ 1 .
239 1383 = 3

1.1141154678085 =0.22.

E) The Root Mean Squared Error (RMSE)

According to Eq (5)

DRMSE — GWO = +/20.54 = 4.53.
2)RMSE — ZOA = /48.95 = 7.
3)RMSE — PDO = +/30.14 = 8.95.
4)RMSE — WSO = +/54.97 = 7.41.
5)RMSE — MFO = /73.23 = 8.56.

F)The R-Squared (R?)

According to Equation (6)

Mean(act) = (8.4+98.7+15.56+23‘9+138.3) — 56.08.

1) R? — GWO = ((8.4—56.98)>4(98.7—56.98)>+(15.6—
56.98)24(23.9—56.98)%+(138.3—56.98)%)— 102.6785459)/
((8.4—56.98)% +(98.7 —56.98)% +(15.6 — 56.98)% + (23.9 —
5698)2 + (138.3 — 5698)2) — (13520.11%85—2(1).0120.2785459) —
0.9924.
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2) R — ZOA = ((8.4—56.98)24(98.7—56.98)2 +(15.6 —
56.98)2+(23.9—56.98)+(138.3—56.98)%)—244.7247065)/
((8.4—56.98)% +(98.7 — 56.98)2 + (15.6 — 56.98)% +(23.9 —

13520.108—244.7247065)
56.98)% + (138.3 — 56.98)%) = U083 =
0.9819

3) R* — PDO = (((8.4—56.98)%4(98.7—56.98)%+(15.6—
56.98)2+(23.9—56.98)%+(138.3—56.98)%)—400.7234030)/
((8.4—56.98)% +(98.7 — 56.98)2 +(11§5.90—l 0586.‘?0%)3243r4 ((%39 —
56.98) + (138.3 — 56.98)%) = U008 C007234030)
0.9704.

4) R — WSO = ((8.4—56.98)2+(98.7—56.98)%+(15.6—
56.98)2+(23.9—56.98)2+(138.3—56.98)%)—273.1948372)/
((8.4—56.98)% +(98.7 — 56.98)2 +(11§5.g0—1 386.29783)1291% %59 —
56.98)> + (138.3 — 56.98)%) = UD0I08SB 09837
0.9797.

5) R* — MFO = ((8.4—56.98)*+(98.7—56.98)*>+(15.6—
56.98)24(23.9—56.98)2+(138.3—56.98)2)—367.6289426/
((8.4—56.98)% +(98.7 — 56.98)2 4 (15.6 — 56.98)> +(23.9 —

et b33 e 5:990%) =
~13520.108 = 0.9729.

Table 19. presents the accuracy comparison of the GWO
model with ZOA, PDO, WSO, MFO, Firefly, PSO, and GA
models established in previous studies [76].

Using six different estimation metrics for all the testing
projects. First, using the VAF as an evaluation metric, the
VAF of GWO is 99.26%, which is the maximum value
when compared with ZOA, PDO, WSO, MFO, PSO, and GA
models.

From the evaluation metrics, the VAF value for Firefly,
GA, PSO, ZOA, PDO, WSO, and MFO models is 98.62%,
97.97%, 98.528%, 98.59%, 97.98%, 98.66%, and 98.15%,
respectively. The model generated by the GWO algorithm has
the best quality among all other models.

Second, by using the MSE as an evaluation metric, the
MSE of GWO is 20.54, and the MSE for Firefly, GA, PSO,
ZOA, PDO, WSO, and MFO models are 47.74, 98.17, 60.07,
48.95, 80.14, 54.97, and 73.23, respectively. These values
indicate that the GWO model can reduce 27.2, 77.63, 39.53,
28.41, 59.6, 34.43, and 52.69 errors, respectively.

Third, by using the MAE as an evaluation metric, the MAE
of GWO is 3.51, and the MAE for Firefly, GA, PSO, ZOA,
PDO, WSO, and MFO models are 5.56, 7.70, 5.63, 5.11, 5.8,
5.64, and 5.65, respectively. These values indicate that the
GWO model can reduce errors by 2.05, 4.19, 2.12, 1.6, 2.29,
2.13, and 2.14, respectively.

Fourth, the MMRE of GWO is 0.08, and for Firefly, GA,
PSO, ZOA, PDO, WSO, and MFO models are 0.24, 0.29,
0.23, 0.18, 0.24, 0.23, 0.22, respectively. This means the
GWO can reduce the errors by 0.16, 0.21, 0.15, 0.1, 0.16,
0.15, and 0.14, respectively.

Fifth, the RMSE of GWO is 4.53, and for Firefly, GA, PSO,
ZOA, PDO, WSO, and MFO models are 6.82, 9.39, 7.72, 7,
8.95, 7.41, and 8.56, respectively. This means the GWO can
reduce the errors by 2.29, 4.86, 3.19, 2.47, 4.42, 2.88, and
4.03, respectively.
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Sixth, the R? as an evaluation metric is used to measure the
extent of the relationship between the independent variable
and the dependent variable. It can be observed that GWO has
the highest value among all other models. The R? of the GWO
is 0.9924%, while the Firefly, GA, PSO, ZOA, PDO, WSO,
and MFO models are 0.9823, 0.9637,0.9778, 0.9819, 0.9704,
0.9797, and 0.9729, respectively.

Based on the results of previous evaluation metrics, it can
be concluded that the GWO algorithm obtained the highest
value in the VAF and R2 and the lowest value in relative
errors. Therefore, the COCOMO Model I, proposed by [67]
as an extension of the basic COCOMO software projects
effort, should be estimated with the new parameter values
generated by the GWO model.

C. EXPERIMENTAL RESULTS FOR THE COCOMO MODEL Il
ON THE NASA18 DATASET

The COCOMO Model II is a new model structure that can
be used to estimate project software effort by adding a new
bias called D, which was proposed by [67]. It is a modified
version of the famous COCOMO model. It is an extension of
the famous basic COCOMO by adding a new bias parameter
to the basic COCOMO. It has four parameters: A, B, C, and D.

First, using the GWO, the following newly optimized
coefficient values of A, B, C, and D for COCOMO Model
II are obtained. A = 2.5663, B = 0.8736, C=-1.2078, and
D=29.5778. These new values of A, B, C, and D are used to
calculate the software projects’ effort to show the proposed
models’ effect on software effort estimation.

Second, using the ZOA, a new optimized coefficient value
of A, B, C, and D for the COCOMO Model II has been found.
A=4.1863, B=0.7751, C=-0.8405, and D=12.783.

Third, using the PDO, a new optimized coefficient value
of A, B, C, and D for the COCOMO Model II is found.
A =17.8707, B =0.63641, C=-0.89707, and D=5.7518.

TABLE 20. Cocomo model Il coefficient values using GWO and other
algorithms.

Algorithm | A B C D
GWO 2.5663 | 0.8736 -1.2078 | 29.5778
ZOA 4.1863 | 0.7751 -0.8405 12.783
PDO 7.8707 | 0.63641 -0.89707 | 5.7518
WSO 2.1805 | 091133 | -1.1185 | 27.803
MFO 2.93417 | 0.841854 | -1.18803 | 27.5938

After that, using the WSO, a new optimized coefficient
value of A, B, C, and D for COCOMO Model II has been
found. A=2.1805, B=0.91133, C=-1.1185, and D=27.803.
Then, using the MFO, a new optimized coefficient value of A,
B, C, and D for the COCOMO Model I1 is found. A=2.93417,
B=0.841854, C=-1.18803, and D=27.5938, as shown in
Table 20.

Table 21. displays the estimated effort for the NASA
dataset using the new optimized coefficient values of A, B,
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and C for all the five applied algorithms. The estimated effort
comparison based on Table 21 shows that all the projects
have a good estimation value to the actual effort in the GWO
model, which is more accurate than other models.

As shown in Figure 7, the proposed GWO model graph
almost aligns with the actual effort. This indicates that the
GWO model is more efficient in estimating the effort of
software than other models. The optimized coefficients
are used to estimate the effort of each project, which is
presented in Table 21 by replacing optimized coefficients in
Equation (9) with the old ones.

After calculating the effort for all projects, the six
evaluation metrics are estimated for each meta-heuristic
algorithm for all the testing projects. Once the result of
each algorithm is obtained, the results are compared with
the existing results in the literature, FA, PSO, and GA. The
testing dataset’s VAF, MSE, MAE, MMRE, RMSE, and R2
are compared.

Here, we will explain how we obtained the results in
Table 22 mathematically for each algorithm that we used,
which are GWO, ZOA, PDO, WSO, and MFO:

Act = [8.4,98.7, 15.6, 23.9, 138.3]
Est-GWO = [5.02114, 103.4894, 15.6461, 20.27858,

132.9004]
Est-ZOA = [2.98328, 106.6681, 14.44949, 19.74091,

133.7306]

Est-PDO = [1.656988, 100.9093, 14.95078, 20.80425,
123.5154]

Est-WSO = [4.819038, 105.0444, 14.89492, 19.39078,
135.7797]

Est-MFO = [4.515002, 101.6651, 15.38723,20.11632,
129.7965]

A) The Variance Accounted For (VAF )

var(act) = (8.4 — 56.98)>
+(98.7 — 56.98)>+(15.6 — 56.98)*
+ (23.9 — 56.98)>+ (138.3 — 56.98)* /4
= 13520.108/4 = 3380.027.

According to Eq (1)

1) GWO
var(act-est) = 16.29589.
16.29589
VAF-GWO =[1 — —]
3380.027
x 100 = [1 — 0.0048212307] x 100 = 99.52%.
2) ZOA
var(act-est) = 30.39845.
30.39845
AF-ZOA =1 — ——
v © [ 3380.027]

x 100 = [1 — 0.0089935524]
x 100 = 99.101%.
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TABLE 21. Estimated effort for the COCOMO model Il

Project No.

1 1158
2 96
3 79

4 90.8
5 39.6
6 98.4
7 18.9
8 103
9 285
10 7

11 9

12 13
13 5

14 84
15 98.7
16 15.6
17 239
18 138.3

Measured Effort

Estimate by GWO

124.3753
78.45808
80.08003
89.79867
38.99199
96.26711
21.9744
8.530494
29.57512
5070424
15.61998
1.575786
0.666198
5.02114
103.4894
15.6461
20.27858
132.9004

124.7544
71.64898
78.90026
88.8079
43.46473
97.98658
21.13152
10.10925
31.87185
0.992011
9.545918
7.300275
-3.31084
2.98328
106.6681
14.44949
19.74091
133.7306

116.9819
78.05229
79.32184
88.05788
44.50327
94.60517
22.29859
10.40005
33.40399
-1.40162
8.325502
7033137
-6.74565
1.656988
100.9093
14.95078
20.80425
123.5154

126.1935
717.1454
78.68815
88.79849
38.65359
96.67724
20.98531
8.360454
28.84422
4.836328
14.61534
7.305336
0.772501
4.819038
105.0444
14.89492
19.39078
135.7797

Estimate by MFO

121.8154
71771172
79.36374
88.80555
39.00002
94.88099
21.80044
8.441908
29.59814
4.310736
14.84256
7.303468
-0.19147
4.515002
101.6651
15.38723
20.11632
129.7965

Effort
3
I

NASA Effort
GWo
zoa
PDO
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MFO

-20

Projects

FIGURE 7. The effort graph of COCOMO Model Il for the NASA, GWO, ZOA, WSO, PDO, and MFO.

3) PDO

var(act-est) = 43.13894.

143574

VAF-PDO = [1 — 3 7
x 100 = [1 — 0.012762898 x 100 = 98.72%.

43.13894

VOLUME 11, 2023




N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

IEEE Access

TABLE 22. Computed evaluation metrics for the COCOMO model II.

GWO FA GA PSO Z0A PDO WSO MFO
VAF 99.52% | 98.63% | 97.60% | 98.70% | 99.101% | 98.72% | 99.44% | 99.45%
MSE 15.33 45.02 114.79 52.85 26.47 55.79 16.05 22.11
MAE 3.45 5.57 7.83 5.29 4.65 5.5 3.53 3.87
MMRE | 0.13 0.24 0.27 0.21 0.20 0.22 0.15 0.15
RMSE 3.91 6.62 9.86 7.19 5.14 7.47 4.01 4.70
R? 0.9943 0.9833 0.9575 0.9805 0.9902 0.9794 0.9941 0.9918
The VAF The MSE
120 T T T 15‘D T T T T T T T
HiE
1007
90r
80r
0r
601
" GWO FA  GA PSSO ZOA PDO WSO MFO GWO FA GA PSO Z0A PDO WSO MFO
The MAE The MMRE
Iﬁ T T T 05 T T T T T T T
5_
i GWO FA GA PSO ZOA PDO WSO MFO GWO  FA GA  PSO ZOA PDO WSC MFO
The RMSE i The R?
10r ! ‘ . ‘ I
! GWO FA GA PSSO ZOA PDO WSO MFO GWO  FA GA PSO ZOA PDO WSO MFO
FIGURE 8. The evaluation metrics for the COCOMO Model II.
4) WSO 5) MFO
var(act-est) = 18.82858 var(act-est) = 18.6344.
VAF-WSO =[1 — M] VAF-MFO = [1 — M]
3380.027 3380.027

x 100 = [1 — 0.0055705413] x 100 = 99.44%. x 100 = [1 — 0.0055130921] x 100 = 99.45%.
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B) The Mean Squared Error (MSE)

According to Equation (2)

DMSE-GWO = 1 x (8.4 — 5.02114)* + (98.7 —
103.4894)2 + (15.6 — 15.6461)% + (23.9 — 20.27858) +
(138.3 — 132.9004)2 = 1 x (3.37886)% + (—4.7894)” +
(—0.0461)% +(3.62142)* +(5.3996)* = £ x 76.62753545 =
15.33.

2)MSE-ZOA = 1 x (8.4 — 2.98328)> + (98.7 —
106.6681)% + (15.6 — 14.44949)% + (23.9 — 19.74091)? +
(138.3 — 133.7306)> = 1 x (5.41672)> + (—7.9681)> +
(1.15051)? + (4.15909)* + (4.5694)> = 1 x 17.62792 +

134.9816 + 31.72092 + 4.105406 + 16.8475 = 1 x
132.3325924 = 26.47.
3)MSE-PDO = 1 x (84 — 1.656988)> + (98.7 —

100.9093)? + (15.6 — 14.95078)% + (23.9 — 20.80425)% +
(138.3 — 123.5154)? = 1 x (6.743012)? + (—2.2093)* +
(0.64922)? +(3.09575)% +(14.7846)> = 1 x278.9387692 =
55.79.

4HMSE-WSO = 1§ x (8.4 — 4.819038)> + (98.7 —
105.0444)% + (15.6 — 14.89492)> + (23.9 — 19.39078)> +
(138.3 — 135.7797)% = 1 x (3.580962)? + (—6.3444)% +
(0.70508)% + (4.50922)% + (2.5203)% = £ x 80.25681511 =
16.05.

S)MSE-MFO = 1 x (8.4 — 4.515002)* + (98.7 —
101.6651)% + (15.6 — 15.38723)% 4 (23.9 — 20.11632)* +
(138.3 — 129.7965)% = 1 x (3.884998)? + (—2.9651)% +

(0.21277)% 4 (3.78368)% + (8.5035)% =
22.11.

C) The Mean of Absolute Error (MAE)

According to Equatlon 3)

1) MAE-GWO =1 x 8.4 —5.02114| +(98.7 — 103.4894| +
[15.6—15. 6461|—|—|23 9—-20.27858|+]138.3 —132.9004| =
1% x17.23538 = 3.45.

2) MAE-ZOA = % x |8.4—2.98328|+98.7—106.6681|+
|15.6—14.44949|+(23.9—19.74091|+|138.3—133.7306| =
1 x 23.26382 = 4.65.

3) MAE-PDO = % x|8.4—1.656988|+]98.7—100.9093 |+
[15.6—14.95078|+]23.9—20.80425|+|138.3—123.5154| =
1 x27.481882 =5.5.

4) MAE-WSO = % x 8.4 — 4.819038| + [98.7 —
105. O444|+|15 6—14.89492|+4123.9—19.39078|+138.3 —
135.7797| = 5 x 17. 659962 = 3.53.

5) MAE- MFO = 3 x 8.4 — 4.515002| + [98.7 —
101. 6651|+|15 6—15.38723|4123.9—20.11632|+(138.3—
129.7965| = = x 19.350048 = 3.87.

D) The Mean Magnitude Relative Error (MMRE)

According to Equation (4)

1) MMRE-GWO = 1
[15.6— 15 6461| 23.9— 252785& 54 138.3-132.9004

+ + 1383
0. 6442916992 =0 13 18.4—2.98328| | [98.7—106.6681]
|1526) 1\1/%{119{5?0/?23 9310, 74091|8 o |138—§ 133.7306]

+ 39 +

1383 =
1. 0063890272 = 0.20.

£ x 110.5560451

|8.4— 502114| + 198.7—103.4894| +
98.7

W] —

X

wi— 4

143576

3) MMRE-PDO = [8.4—1.656988] + 198.7— 1009093\ +
[15.6— 1495078| + |239 2080425| T |138.3— 1235154\ 87 1y
23.9 138.3 = 3
1. 1031718572 =0.22.
4) MMRE-WSO = 1 |84 4.819038| 198.7—105.0444] i
3 84 937
|15.6-189490| |23 2139_9?9078| IELES -7t I
0. 7426757914 =0.15.
5) MMRE-MFO = |8.4—4.515002] + 198.7— 101 6651| 4
[15.6— 153872%| 23.9— 3011632| 841 138.3-129.79650 >
+ 23.9 + 1383 = X

0. 7259792754 =0.15.
E) The Root Mean Squared Error (RMSE)
According to Equation (5)

DRMSE — GWO = +/15.33 = 3.91.
2)RMSE — ZOA = +/26.47 = 5.14.
3)RMSE — PDO = /55.79 = 7.47.
4)RMSE — WSO = +/16.05 = 4.01.
5)RMSE — MFO = +/22.11 = 4.70.

F)The R-Squared (R?)

According to Equation (6)

Mean(act) = (8.4498.7+15. 6+23 9+138.3) _ 56 08

1) R?> — GWO = ((8.4— 56 98)24(98.7—56.98)>+(15.6—
56.98)%+(23.9—56.98)+(138.3—56.98)%)—76.62753545)/
((8.4—56.98)% +(98.7 —56.98)% + (15.6 — 56.98)*> + (23.9 —
56.98) + (1383 — 56.98)%) = (320108 T6.E2733343) -
0.9943.

2) R?> — ZOA = ((8.4—56.98)>+(98.7—56.98)> +(15.6 —
56.98)%+(23.9—56.98)%+(138.3—56.98)%)—132.3325924)/
((8.4—56.98)%+(98.7 —56.98)% + (15.6 — 56.98)*> + (23.9 —
56.98)% + (1383 — 56.98)%) = (3220I08_123323928)
0.9902.

3) R> — PDO = ((8.4—56.98)%>+(98.7—56.98)>4-(15.6 —
56.98)?4(23.9—56.98)%+(138.3—56.98)%)—278.9387692)/
((8.4—56.98)%+(98.7 —56.98)% + (15.6 — 56.98)*> + (23.9 —
56.98)% + (138.3 — 56.98)?) = (33008 Z78TD)
0.9794.

4)R* — WSO = ((8.4 — 56.98)> + (98.7 — 56.98)> +
(15.6 — 56.98)% + (23.9 — 56.98)% + (138.3 — 56.98)%) —
80.2568151102)/((8.4 — 56.98)% + (98.7 — 56.98)> +

(15.6 — 56.98)% + (23.9 — 56.98)2 + (138.3 — 56.98)?) =
(13520.108—80.2568151102) __ 0.9941.
13520 108 -
5) R2 — MFO = ((8.4—56.98)%+(98.7—56.98)2+(15.6—

56.98)2+(23.9—56.98)>+(138.3—56.98)%)— 110.5560451 /
(8.4 — 56.98)2 + (98.7 — 56.98)% + (15.6 — 56.98)> +
(23.9—56.98)2+(138.3—56.98)?) = 13920108 1103560451
0.9918. '

Table 22. First, using the VAF as an evaluation metric,
the VAF of GWO is 99.52%, which is the maximum value
found when compared with ZOA, PDO, WSO, MFO, and the
models’ values proposed by [76]. The VAF values for Firefly,
GA, PSO, ZOA, PDO, WSO, and MFO models are 98.63%,
97.60%, 98.70%, 99.101%, 98.72%, 99.44%, and 99.45%,
respectively.

Second, by using the MSE as an evaluation metric, the
MSE of GWO is 15.33, and the MSE for Firefly, GA, PSO,
ZOA, PDO, WSO, and MFO models are 45.02, 114.79,

VOLUME 11, 2023



N. M. Alsheikh, N. M. Munassar: Improving Software Effort Estimation Models Using GWO Algorithm

IEEE Access

52.85, 26.47, 55.79, 16.05, and 22.11, respectively. These
values indicate that the GWO model can reduce 29.69, 99.46,
37.52,11.14, 40.46, 0.72, and 6.78 errors, respectively.

Third, by using the MAE as an evaluation metric, the MAE
of GWO is 3.45, and the MAE for Firefly, GA, PSO, ZOA,
PDO, WSO, and MFO models are 5.57, 7.83, 5.29, 4.65, 5.5,
3.53, and 3.87, respectively. These values indicate that the
GWO model can reduce the errors by 2.12, 4.38, 1.84, 1.2,
2.05, 0.08, and 0.42.

Fourth, the MMRE of GWO is 0.13, and for Firefly, GA,
PSO, ZOA, PDO, WSO, and MFO models are 0.24, 0.27,
0.21, 0.20, 0.22, 0.15, and 0.15, respectively. This means that
the GWO can reduce the errors by reducing 0.11, 0.14, 0.08,
0.07, 0.09, 0.02, and 0.02, respectively.

Fifth, the RMSE of GWO is 3.91, and for Firefly, GA, PSO,
ZOA, PDO, WSO, and MFO models are 6.62, 9.86, 7.19,
5.14,7.47,4.01, and 4.70, respectively. This means the GWO
can reduce the errors by 2.71, 5.95, 3.28, 1.23, 3.56, 0.1, and
0.79, respectively.

Sixth, it is observed that the GWO has the highest value
among all other models. The R? of GWO is 0.9943%, while
the Firefly, GA, PSO, ZOA, PDO, WSO, and MFO models
are 0.9833, 0.9575, 0.9805, 0.9902, 0.9794, 0.9941, and
0.9918, respectively.

It can be concluded that the GWO algorithm obtained the
highest value in the VAF and R? and the lowest value in
relative errors. Therefore, the COCOMO Model II proposed
by [67] as an extension 2 of the basic COCOMO software
project effort, should be estimated with the new parameter
values generated by the GWO model.

After the GWO proved its efficiency in the three
COCOMO-based models against other algorithms, and
when compared with the three proposed models, which
resulted from the employment of the GWO in each model,
i.e., the basic-COCOMO, and another two models COCOMO
Model I, COCOMO Model II.

It is observed that the COCOMO Model II outperformed
the basic COCOMO with four evaluation metrics, which
are VAF, MSE, RMSE, and R2, and it also outperformed
the COCOMO Model I with five evaluation metrics: VAF,
MSE, MAE, RMSE, and R2. Therefore, using the COCOMO
Model II structure proposed by [67] is highly recommended
instead of the basic COCOMO and the COCOMO Model I in
estimating the value of software effort, but using the improved
optimized parameters using the GWO in Table 20.

The COCOMO Model has been widely used in many
real-world applications, proving its usefulness in estimating
and administrating industry projects, government initiatives,
aerospace and defense, enterprise solutions, healthcare soft-
ware, gaming industry, web and mobile, and infrastructure
software.

VIIl. CONCLUSION AND FUTURE WORK

The estimated effort exerts a significant impact on cost
estimation. In the area of software engineering, a lot of
scholars have endeavored to introduce methods and models
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for precisely estimating effort. Accurate effort estimation
enables us to finish projects on schedule and within budget.

In this study, the Grey Wolf Optimization is employed
to enhance the coefficients’ values of the basic-COCOMO,
Model I, and Model II found by [67]. Also, the results were
compared against the Firefly Algorithm, Genetic Algorithm,
and PSO Algorithm. Moreover, to check the efficiency of the
GWO in finding the optimal value of effort estimation, four
other algorithms are applied, including ZOA, PDO, WSO,
and MFO. Moreover, a comparison has been carried out to
compare the results with the GWO results. VAF, MSE, MAE,
MMRE, RMSE, and R? evaluation metrics are employed to
evaluate the optimized models. The results established the
efficiency of the GWO in finding the optimal value of effort
estimation over other meta-heuristic algorithms.

In the future, this work can be extended to optimize the
effort estimation models provided by M. Uysal and the
intermediate COCOMO Model. Moreover, another advanced
meta-heuristic algorithm, which may show more effective-
ness than the GWO, can be used to develop more efficient
models for software effort estimation. The results can be
compared with the GWO. It is also recommended to improve
the results, whether modifying the existing algorithms or
hybridizing the GWO algorithm with other algorithms.
Meanwhile, the hybrid approach of multiple algorithms
increases the probability of finding the optimal solution
efficiently and rapidly. Besides, it is helpful to concentrate
on using the GWO algorithm in tuning parameters for other
effort estimation models. Another suggested work to be
carried out in the future is the optimization of COQUAMO
model parameters. Also, some statistical tests, such as
Wilcoxon and ANOVA, could be performed to ensure the
quality of the proposed models.
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