IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 5 November 2023, accepted 27 November 2023, date of publication 5 December 2023,
date of current version 13 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3339766

==l RESEARCH ARTICLE

Distributed Service Choreography Framework for
Interoperability Among Prosumers and Electric
Power System

PETRI KANNISTO “''-2, (Member, IEEE),

ERDEM GUMRUKCU"3, (Graduate Student Member, IEEE),
FERDINANDA PONCI"“3, (Senior Member, IEEE),
ANTONELLO MONTI “34, (Senior Member, IEEE),

SAMI REPO“3, AND DAVID HASTBACKA'!, (Member, IEEE)

! Department of Computing Sciences, Tampere University, 33014 Tampere, Finland

2VDEh-Betriebsforschungsinstitut (BFI), 40237 Diisseldorf, Germany

3nstitute for Automation of Complex Power Systems, E.ON Energy Research Center, RWTH Aachen University, 52074 Aachen, Germany
“#Fraunhofer Institute for Applied Information Technology (FIT), 52062 Aachen, Germany

SDepartment of Electrical Engineering, Tampere University, 33014 Tampere, Finland

Corresponding author: Petri Kannisto (petri.kannisto @iki.fi)

This work was supported in part by the Projects Distributed Management of Electricity System (DisMa) through Academy of Finland
under Grant 322676 and Grant 322673, in part by the Functional ICT Interoperability in Digital Energy Systems for Green Transition
through Walter Ahlstrom Foundation in Program Tutkijat maailmalle under Grant 20220033, in part by the Flexible Energy Systems
Leveraging the Optimal Integration of EVs Deployment Wave (FLOW) through Horizon Europe under Grant 101056730, and in part by
the Interoperability Network for the Energy Transition (intNET) through Horizon Europe under Grant 101070086.

ABSTRACT The electric power system is transforming from a strict hierarchy into a distributed scheme
that consists of prosumers and other service providers. Some services require interactions more complex
than request-response. To reach functional interoperability, such services necessitate an agreement about
what actions happen, in which order, and in which conditions. Such agreements can be modeled as service
choreographies, a concept familiar from microservice architectures (MSA). However, the management of
choreographies is demanding, especially in inter-organizational (or actor-to-actor) schemes, if changes
occur frequently or the number of participants and choreography instances is high. This article proposes
Discografia, a framework to support the distributed execution of service choreographies modeled with
the standard Business Process Model and Notation 2.0 (BPMN2). Beyond distributed execution, certain
operations must be centralized, specifically for security as well as lifecycle and execution support. The
framework is proven with a software prototype to demonstrate applicability. The prototype coordinates the
charging of electric vehicles (EV) among competing aggregators operating in urban charging hubs (UCH).
Additionally, the concept is evaluated with theoretical calculations that suggest reduced manual effort in
communicating choreography specifications. Thus, this paper argues that Discografia concept for distributed
service choreographing facilitates inter-organizational interoperability, an essential factor in future power
system.

INDEX TERMS Functional interoperability, business process execution, microservice architecture (MSA),
service-oriented architecture (SOA), electric vehicles, Internet of Things (IoT), smart grid, green transition,

Discografia.
I. INTRODUCTION
The electric power system of the future forms a complex
system-of-systems (SoS) environment due to the interactions
The associate editor coordinating the review of this manuscript and required between the various participants. SoS refers to
approving it for publication was Alexander Micallef . architectures where the systemic complexity is present not

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
VOLUME 11, 2023 For more information, see https://creativecommons.org/licenses/by/4.0/ 137969

https://orcid.org/0000-0002-0613-8639
https://orcid.org/0000-0002-6326-1668
https://orcid.org/0000-0003-0431-9169
https://orcid.org/0000-0003-1914-9801
https://orcid.org/0000-0002-7303-8283
https://orcid.org/0000-0001-8442-1248
https://orcid.org/0000-0002-9497-5604

IEEE Access

P. Kannisto et al.: Distributed Service Choreography Framework for Interoperability

only inside one system but also in the mutual interaction
between multiple systems [1]. The SoS in power sys-
tems originates from the interdependency of the physical,
automation-related, commercial, and regulatory aspects of
the entities with own goals. The entities include, for instance,
power plants, Transmission System Operators (TSO) for
delivery via main lines, Distribution System Operators (DSO)
for local delivery, aggregators that group consumption or
production and often operate in the market without any
physical assets, and customers. This work considers that
the “customer” is primarily the end customer, although
industrial customers can take an analogous yet more powerful
role. In modern schemes, the customer is often referred
to as prosumer due to its ability to both consume and
produce electricity [2]. Prosumers operate in distribution
grids, forming microgrids or energy communities that sell
services to other prosumers, microgrids, and operators [3].
This trend receives boost from renewable energy sources,
which are leading to a widely distributed energy production
while requiring flexibility services from smaller-scale actors
[4]. Overall, the number of actors is arbitrary and they can
have many roles, which makes the SoS complex.

Interaction within the power system necessitates inter-
operability, which refers to the ability of systems and
organizations to cooperate thanks to data and information
exchange. The various definitions of interoperability can
stress devices and systems [5] or organizations [6]. This work
considers that the “organization” can refer to any business
actor, including a natural person that purchases or sells
services. In the power system, interoperability is challenging
as the actors must communicate over organizational borders
and the subsystems and devices are designed by separate
vendors according to specific standards and for specific
functions, and not intended for the broad cooperation
needs of modern power systems. On the other hand,
interoperability requires continuous attention due to repeated
changes in technology and the business environment, such
as the spread of electric vehicles (EV) and new prosumer
schemes.

To facilitate interoperability, it is possible to model
multi-actor system-to-system interactions as service chore-
ographies. A service choreography describes how a group of
systems reaches a common goal by executing a collaborative
workflow that defines certain pieces of interaction and
therefore helps in reaching functional interoperability. The
execution can occur in a distributed way instead of centralized
coordination (or orchestration), because distribution enables
more flexible schemes and reduces the need for manual
configuration. The choreographies can be modeled in Busi-
ness Process Model and Notation 2.0 (BPMN?2 [7]), which
is a standard, providing both a modeling technique and a
graphical notation for visualization. BPMN is supported by
a range of open or commercial tools.

This work proposes a service choreography framework
based on the hypothesis that commonly agreed chore-
ographies can be executed in a distributed fashion in

137970

horeography specification

B
! ~

' .
'

'

L

Distributed execution of
choreography

Participants
with local copy of
choreography spec.

“No centralized engine for
coordination or orchestration!

FIGURE 1. Service choreography executed in a distributed fashion.

inter-organizational schemes, each participant taking care
of its own responsibilities (see Figure 1). To enable the
scheme, there should be a software system framework to
support choreography management and participation. This
work introduces such a framework, called Discografia, and
demonstrates this with a software prototype. The prototype
coordinates the charging of EVs in urban charging hubs
(UCH), where competing aggregators provide services for
customers but the whole should be coordinated by a UCH
broker to both help the customer and protect the network from
overloading. Thus, the research objectives are:

1) Outline the architecture of Discografia, a software sys-
tem framework to communicate inter-organizational,
machine-readable system-to-system and actor-to-actor
choreography specifications and support the distributed
execution of the choreographies.

2) Prove the framework with a prototype to execute the
distributed choreography of coordinating the charging
spot reservations for electric vehicles in urban charging
hubs with multiple competing aggregators.

3) To indicate the potential advantage of the software
framework in supporting distributed service chore-
ographing, quantitatively estimate the reduction of
manual work compared to the manual communication
of choreography specifications.

Although everyday systems already execute distributed
choreographies, these are typically implicit and hard-coded
in the software systems and therefore lack the adaptability of
choreography modeling. As an alternative, explicit choreog-
raphy specifications provide an agreement of the workflow
that can be implemented by any new actor joining the
value network. On the other hand, the specification enables
explicit version control to support evolution without conflicts.
Besides, the advantages are beneficial even beyond the
electricity domain, applying to modern systems-of-systems
that are commonly designed as Microservice Architectures
(MSA). MSAs in general encourage choreographing over
centralized orchestration [8].

VOLUME 11, 2023

P. Kannisto et al.: Distributed Service Choreography Framework for Interoperability

IEEE Access

Il. METHODOLOGY AND STRUCTURE
This work applies the research method of Design Science
Research (DSR), where the idea is to design artifacts that
solve or relieve real-life problems. The term artifact can refer
to both design concepts and software [9]. DSR can be seen to
consist of three cycles: relevance cycle to observe a real-life
problem and return a solution, rigor cycle to both apply
scientific knowledge and contribute to it, and finally, design
cycle for the design process itself [10].

In this article, DSR is applied with the following sequence,
taking iterations as necessary:

o Section III: background. Establish the scientific
background.

o Section IV: solution design. Outline the architectural
principles of the choreography framework.

« Section V: proof of concept. Indicate relevance and
feasibility with a proof of concept.

e Section VI: evaluation. Evaluate the framework
proposal and show the advantages.

« Section VII: assessment of results.

o Sections VIII and IX: discussion and conclusions.

These steps cover the three cycles as defined in [10].
Section III forms the relevance cycle by associating the
scientific background. Sections IV and V provide the design
cycle, producing artifacts. Finally, the rigor cycle stems from
the research as a whole, contributing to scientific knowledge,
but the core rigor still comes from the design of Section IV.

Ill. BACKGROUND OF SERVICE CHOREOGRAPHIES

The state of art of this work includes interoperability,
microservices, choreography modeling, and the execution
of these models. Additionally, the whole is motivated by
the electricity-domain-specific development towards more
flexible value chains built upon servitization.

From the viewpoint of DSR method, this section estab-
lishes the scientific background. That is, it provides the
foundation of the relevance cycle, although the full relevance
can only be reached once the proposed framework is
implemented in an everyday business environment.

A. SERVITIZATION IN POWER SYSTEMS

Within the power systems domain, the application of services
is currently emerging to replace the conventional hierarchical,
centrally managed systems. This subsection provides an
overview of the progress, supported with examples.

The breakdown of the hierarchy receives support from
the concepts prosumers [11] and microgrids [12] that sell
or produce power in addition to the conventional, centrally
controlled market actors. These efforts can offer added
value, such as microgrid blackstarting in a self-configurable,
distributed fashion [13]. As the new service-oriented market
appears, the operators likely want to still retain the
technical control, whereas the added value is generated by
communication service providers that build on top of the
technical layer [14].

VOLUME 11, 2023

In addition, the earlier monoliths are broken down into
modular, service-based concepts, such as the platform
Service-based Open-source Grid Automation Platform for
Network Operation of the Future (SOGNO). SOGNO
provides a service-oriented solution for distribution grid
automation, facilitating software maintenance and relieving
the vendor lock-in experienced by DSOs [15]. SOGNO
has even been adopted as a project of Linux Foun-
dation Energy [16]. Later, SOGNO has been extended
with electricity-market-related aspects to widen the original
scope [17].

SOGNO has later been implemented into Platone frame-
work. This aims is to involve actors from any level, such
as TSOs, DSOs, aggregators, and customers. Platone applies
distributed ledgers to reach trust between the participants.
The use cases include but are not limited to voltage
management, congestion management, state estimation, and
energy management [18].

Servitization helps the data access from Internet of Things
(IoT) devices once suitable technologies are applied. Such
technologies can be, for instance, FIWARE to collect and
distribute data as well as Message Queueing Telemetry
Transport (MQTT) to route and deliver the data. This
can facilitate the realization of services, such as energy
management, service restoration, network configuration, and
monitoring [19].

The service paradigm is more abstract and there-
fore more complex compared to the earlier operational
technologies, but it is necessary to reach convergence
between information technologies and operational tech-
nologies (IT/OT). The complexity can be problematic in
control or protection activities that require deterministic,
millisecond-grade response times. As reviewed in [20],
IT/OT convergence can be contributed to by defining the
functionality in software rather than hardware. According
to the study, the goal is currently hindered by difficulties
in the transition, including interoperability and stakeholder
readiness.

Servitization does not limit to electricity but spans over the
whole energy system. In this effort, Multi Energy Semantic
Platform (MESP) suggests a platform for interoperability,
building upon standardized information models and a mes-
sage broker. Furthermore, MESP proposes that the services
should be containerized for easier management, which is a
common approach in microservices [21].

As the aforementioned examples have shown, various
service concepts and platforms have emerged for the power
system, but choreographing remains absent. Servitization
reaches actors in any role, and IoT and hardware are
involved too. Thus, service interfaces and networks are
becoming the state-of-art method for all communication.
However, no references have been discovered regarding
functional interoperability through choreographing. It can be
argued that choreographing is a higher-level problem, waiting
to build upon the lower-level solutions that are currently
appearing.

137971

IEEE Access

P. Kannisto et al.: Distributed Service Choreography Framework for Interoperability

EIF SGAM
Legal ~ ------- | Legal
_.Organizational . """ SEEED
i Functional ~ : ------- Functional
- -S-e-rﬁantlc ----------- Information
Technical ~ F------ Communication
Component

FIGURE 2. Interoperability layers after EIF and SGAM along with implicit
layers surrounded by a dashed border. Synthesized from [6] and [22].

B. FOUNDATIONS OF CHOREOGRAPHING

Service choreographies reside in a layer called functional
interoperability in interoperability models. Multiple models
present a layered approach, and among these, two are
considered the most important in this work: European
Interoperability Framework (EIF) and Smart Grid Archi-
tecture Model (SGAM). EIF covers not only technical and
semantic but also organizational and legal interoperability
and remarks that all-pervasive governance is necessary [6].
EIF is domain-agnostic but useful due to its emphasis on
organizations. SGAM was modeled especially for power
systems and has three dimensions: interoperability layers
from component to business, zones from process to market,
and domains from generation to customers [22]. Figure 2
shows how the layers of EIF and SGAM align with each other.
Functional interoperability, i.e., where choreographies are
located, is omitted in EIF but can considered an implicit part
of organizational interoperability. Respectively, SGAM lacks
legal interoperability as a layer but considers this to reside in
business interoperability. It can be argued that the functional
layer is particularly difficult, because it should specify
what activities are expected and with which participants,
including special cases and the related conditions. It is more
straightforward to agree about communication protocols and
syntaxes (technical interoperability) or to follow certain
legislation (legal interoperability) than to encounter the
variety in the workflows of commercial actors. On the other
hand, semantics and business aspects bring heterogeneity as
well but are out of scope in this work.

Service choreographies resemble Multi-agent Systems
(MAS) as both refer to reaching goals with collaborative
actions, but the paradigms have a different viewpoint.
A choreography describes the mutual interaction of parties,
especially what messages and in which situation each should
exchange to enable a collaborative process to reach its
goals [23]. The MAS is concerned with the environment
of operation, the actions the agents can perform to affect
the environment, and the individual goals and decision
making of the agents [24]. That is, in the scope of the
interaction, a service choreography describes a business
process with a predefined contract, whereas MAS assumes
a world of possibilities. Although an agent can agree to join a
choreography, the modeling of the business process is not the
primary focus in MAS. Thus, unlike MAS, choreographing

137972

suits for scenarios where a predefined agreement is necessary
to reach the common goal and recognize the potential
outcomes and status of the workflow. On the other hand, there
are suggestions for choreographies that adapt to emerging
needs (e.g., [25]), which introduces strengths similar to MAS.
In microservices, choreographies typically take place in
an event-driven, asynchronous manner [26, p. 192]. Cloud-
based choreographies open opportunities for parallelization
through the paradigm Function as a Service (FaaS), but this
adds difficulty to the control of execution [27]. Regarding
choreography-based systems, a concrete example is the
architecture Coordinating Optimisation of Complex Indus-
trial Processes (COCOP), where service-oriented software
systems communicate via a message broker, executing
collaborative workflows implemented as services rather than
being centrally orchestrated [28]. The platform Simulation
Environment of Complex Energy System (SimCES) follows a
similar approach to simulate power systems and markets [29].
However, both COCOP and SimCES lack the tools to monitor
or control choreography execution and rather rely on logs in
case of problems. It can be argued that this is the usual case in
state-of-art MSAs, but the limitations could be relieved with
choreography-execution-related tools.

C. MODELING WITH BPMN

As the choreography specification method, this work selects
collaboration diagrams and models from BPMN 2.0, i.e.,
the most recent version [7]. Among the modeling techniques
of BPMN, not only collaboration but also choreography
diagrams can describe choreographies between service-
oriented systems. Collaboration diagrams can lead to ambigu-
ous interpretations due to the lack of formal semantics
[30]. Therefore, the selected modeling method could be
complemented in the future, because ambiguity is a potential
problem regarding functional interoperability, the goal of
Discografia.

Besides the diagram notation, BPMN provides an under-
lying modeling technique. Because BPMN is an open
standard, the models enable the service choreographies
to be interpreted by software regardless of the vendor.
On the other hand, the choreographies can as well be
executed in a business process engine, such as the Java-based
Camunda [31], Python-based SpiffWorkflow [32], or WSO2
Enterprise Integrator [33], to mention a few. Because BPMN
is a vendor-independent technology and enables modeling,
visualisation as well as execution, it contributes to functional
interoperability and therefore the main goal of Discografia.
The models are serialized as Extensible Markup Language
(XML), which is widely supported among the libraries of
programming languages.

BPMN has both advantages and shortcomings. The
visual appearance of BPMN increases the expressiveness of
workflow descriptions but only if the readers are educated
for BPMN [34]. An evaluation of BPMN has shown
shortcomings regarding choreography modeling. The most

VOLUME 11, 2023

P. Kannisto et al.: Distributed Service Choreography Framework for Interoperability

IEEE Access

significant issues are the limitations of graphical expression,
lack of understandability of the metamodel due to the focus
on technical questions, the insufficient definition of the
semantics of the choreography diagram, and the absence
of a tool to trace choreographies and technical services
[35]. Despite a few open issues, BPMN is considered the
best modeling tool for Discografia due to its combina-
tion of expressiveness and machine-readable, standardized
modeling.

D. CHOREOGRAPHY-RELATED CONCEPTS

Not all choreography-related concepts are clear without
an explanation, and some concepts of this work lack an
established meaning among choreographers. The later parts
of this work builds upon the following definitions.

« Choreography specification is a computationally inter-
pretable and executable description of a collaborative
workflow of business parties, containing activities,
conditions, and events

o Choreography release is cither the first publication of
a choreography specification or an update to an existing
one

« Choreography instance is a joint effort of business
parties to execute a choreography specification with
computational systems

o Choreography role is a part of choreography specifica-
tion, specifying what tasks a business party must fulfil
and in which situation (“‘partnerRole”” in BPMN [7])

o Choreography participant executes a choreography
role in a choreography instance (the concept appears
with no restriction to instances in BPMN [7])

o Choreography specifier creates a choreography spec-
ification and communicates this to any business parties
interested to become a choreography participant

o Choreography implementer develops and maintains
software to become a choreography participant in
choreography instances

E. REQUIREMENTS FOR DISTRIBUTED
CHOREOGRAPHING

Discografia aims to enable and support distributed service
choreographing, which has multiple requirements to fulfil.
The following requirements summarize the foundation of
Discografia design.

1) DISTRIBUTED CHOREOGRAPHY EXECUTION

There must not be a single engine for the execution.
Instead, the environment must enable the execution to
span over multiple participants that are interested only in
their own choreography role. Therefore, the execution of
choreographies should scale to any number of participants.
In practice, this necessitates an at-least-de-facto-standardized
method for choreography modeling. Such a method provides
a common language, enabling the implementers to interpret
the choreography specifications.

VOLUME 11, 2023

2) INTER-ORGANIZATIONAL CHOREOGRAPHIES

The environment must target at choreography execution that
spans over organizational borders (where *‘organization” can
refer to any business actor, including a natural person). Other-
wise, organizations and actors cannot use the choreographies
as a tool for collaboration and interoperability.

3) COMMON INTER-ORGANIZATIONAL EXECUTION
LANGUAGE

As choreographies are executed, interoperability is possible
only if they are communicated between organizations in
a commonly used format. The format can be BPMN but
any other commonly used language as well, including the
common smart contract languages in the case of distributed
ledgers (such as Solidity! or Vyper?).

4) SUPPORTING SERVICES

There must be a service framework to support execution
in a distributed manner. First, the framework must enable
the participants to distribute and retrieve choreography
specifications. Second, to support choreography execution,
the participants should be able to authorize themselves,
discover relevant services, and communicate with other
participants as modeled in each choreography specification.
Such a framework has multiple advantages. It enables the
choreography specifications to evolve but still be supported
by participants, because the specification explicitly indicates
the requirements of interaction. On the other hand, discovery
enables choreography instances to start between any partic-
ipants (such as EV recharging regardless of geographical
location and the charging operator). Finally, authorization
realizes access control and trust.

5) LIGHTWEIGHT COMMUNICATION METHOD

If the use case involves constrained devices, the commu-
nication within choreography workflows should prefer a
low computational overhead. This is especially important
not only in IoT devices, such as wireless sensors, but also
vehicles and mobile machines. The requirement can hamper
especially distributed ledger technologies that necessitate
cryptographical computation to validate activities through
a consensus within the network, causing overhead and
delays. Such computation might face no issues in cloud
systems, but this work assumes that the computation can
occur in constrained machines. Still, Nguyen et al. have
envisioned that distributed ledgers have future potential even
for industrial IoT [36], but the vision necessitates additional
work for verification.

6) APPLICATION IN POWER SYSTEMS

A generic choreography framework is, in principle, applica-
ble in any domain. However, an application in power systems
is included in the criteria to indicate the research gap where

1 https://soliditylang.org/
2https://docs.vyperlang.org/

137973

IEEE Access

P. Kannisto et al.: Distributed Service Choreography Framework for Interoperability

TABLE 1. Summary of how BPMN-supporting choreography execution environments support the requirements of fully distributed, inter-organizational

choreographies.

Distributed Inter- Common Supporting | Lightweight Application
choreography | organizational inter-organizational services communication | in power
execution choreographies execution language method systems

Arrowhead [37] - - - - v -

Blockchain extension for Camunda [38] | v/ v v - - -

Caterpillar [39] v v v v - -

ChorChain [40] v v v v - -

CHOReVOLUTION [41] - v - v v -

CoPuB [42] v - - - -

Lorikeet [43] v v v - - -

Discografia is situated. The requirement exists to reflect to
the ongoing transformation of the centrally controlled power
system into a distributed, service-oriented design for more
adaptability and flexibility as required by the ever-changing
business environment and renewable energies.

F. RELATED WORK AND RESEARCH GAPS

Earlier, multiple works have proposed environments for
service choreographing. This subsection surveys how they
meet the requirements specified in Section III-E to indicate
the research gap. The survey is limited to BPMN-supporting
environments, because BPMN is considered the only feasible
standard to support choreography modeling, visualization,
and execution. Table 1 summarizes the results that are
elaborated in the following paragraphs.

Arrowhead is a generic service-oriented framework with
an extension for choreographing [37]. Arrowhead assumes a
centralized management scheme for choreography execution.
One entity should deploy the final choreography logic to
executors, and the choreographies are intended to execute
within a single enterprise. There is no service to distribute
choreography specifications to implementers. For a strength
of Arrowhead, the communication protocol can be any in
principle and therefore a lightweight infrastructure is possible
if only the supporting services, such as authenticator and
orchestrator, have the sufficient resources. Another advantage
of Arrowhead is that it can support workflows executed by
external systems [44].

A blockchain extension to Camunda brings the support
for distributed ledgers to a widely used workflow manage-
ment system [38]. The system assumes that each participant
can execute their own choreography specification, relying on
smart contacts. The smart contract language is either Solidity
or Vyper. However, the system lacks a service to discover
other parties at runtime. Furthermore, the distributed ledger
brings computational overhead.

Caterpillar builds choreography execution upon dis-
tributed ledgers and is therefore both distributed and
inter organizational [39]. The smart contracts, generated
for execution, are expressed in Solidity. The essential
supporting services are provided, including event monitoring,
choreography specification storage and distribution, and trust

137974

between the participants. However, the distributed ledger
causes overhead.

ChorChain [40] exploits distributed ledgers for chore-
ographing as the smart contracts force the correct workflow
to occur. The smart contract language is Solidity. supporting
services are provided for choreography publishing and
distribution as well as service discovery, and the ledger
infrastructure provides trust. Nevertheless, the distributed
ledger increases the amount of computation during execution.

CHOReVOLUTION [41] aims to enable distributed
choreographies between organizations but still assumes a
centralized cloud infrastructure to coordinate the execu-
tion. The system has features for choreography modeling,
storage, and instantiation. A service inventory enables
discovery, whereas identity management realizes trust.
The choreographed services can have Restful interfaces
and are therefore considered lightweight to the clients.
CHOReVOLUTION has been evaluated at least in the
domains of smart mobility and tourism [41] as well as
marketing and sales [45].

CoBuP [42] is another distributed-ledger-based approach.
It does not execute BPMN models but converts these into a
custom-made JSON format for execution, which reduces the
advantage of the standard. Distributed, inter-organizational
execution is the goal. However, the services focus on
choreography creation and publishing, lacking discovery.

Lorikeet [43], similar to many others, applies dis-
tributed ledgers, therefore it supports distributed and inter-
organizational execution. The smart contract language is
Solidity. The ledgers enable a trusted environment with
services for publishing and trust, but there is no discovery
functionality. The overhead from ledgers is again a drawback.

Table 1 shows that a research gap remains, because no
earlier work can meet all the requirements. To realize dis-
tributed, inter-organizational execution, distributed ledgers
are often suggested. However, the related overhead during
execution cannot necessarily be afforded in IoT or other
resource-constrained schemes, such as electric mobility.
Instead, Discografia suggests a simpler approach to reach
trust, authenticating the connected systems and software with
keys and tokens. The communication occurs via a message
broker, a technology that can be designed to bring only a
low overhead (e.g., Message Queue Telemetry Transport or

VOLUME 11, 2023

P. Kannisto et al.: Distributed Service Choreography Framework for Interoperability

IEEE Access

Request to
reserve charging Reservation ack.
g &] (with prefs.) received
9 Give charging Ny E'
3 preferences d
(&) —
Decision to
charge I
|
[_ — =
e p——
' [
| Reserve one _ »
2 Request for price Price offers aggregator and Resewa@lon ack. Send reject (rest |
'E offers received g Algorithm: UCH received of aggregators)
o choose one
2 aggregator
S Reservation A and UCH A Send reservation
request received | | I | | acknowledgment
I 1
_____ J ' —) ' |
I f t t
| I I I
| I T t OE]
g | | | I Reject received
‘g | I | I Notify about net
g YV g Y Undat ‘ behavior
2 Algorithm: Reserve UCH pdate ne
dynamic pricing and time behavior of
UCH location
Price request Send price offer . . Reservation Send reservation
X Wait for either .
received reservation or request received acknowledgment |
reject |

The aggregators can
be many as shown by

three vertical lines

Store net
behavior

DSO

Net behavior
received

FIGURE 3. The UCH brokering process modeled with the collaboration notation of BPMN.

MQTT [46]). This difference in the communication medium
could be explored further in future research, because there
can be implications to not only performance but also trust
between the participants and the entire system architecture.
As a common denominator to all surveyed technologies,
none has applications in power systems. In general, the litera-
ture searches returned no matches for service choreographing
within the domain. Still, it can be argued that the servitization
of power systems will eventually lead to the deployment and
advancement of choreography management methods. These
implications both introduce a clear research gap and suggest
that Discografia has novelty in especially power systems.

IV. CHOREOGRAPHY FRAMEWORK DESIGN

Discografia aims to provide a framework to support chore-
ography execution in a distributed fashion. For this aim,
multiple aspects must be covered from security and the
management of choreography specifications to the concrete
communication of the participants. Because the framework
concept is abstract, this section starts by defining a running
example for a later reference.

Regarding the three-cycle DSR method, this section not
only forms the design cycle but also contributes to the rigor
cycle. The rigor comes from the novel scientific knowledge
as well as from the application of existing knowledge in the
design.

VOLUME 11, 2023

A. EXAMPLE PROCESS FROM EV CHARGING SPOT
RESERVATION

For a case process, this article presents a choreography of
EV charging in UCHs. It is expected that the number of
EVs and therefore the volume of charging load will increase
rapidly in the future. With the proliferation of EV charging
infrastructure in publicly available parking lots, some urban
districts can evolve into UCHs where multiple operators
(or aggregators) compete for customers in the same area
(as earlier proposed in [47]). In this competition, price and
the availability of resources are the main market drivers,
but the electricity network must still be protected from
situations where the selfishness of aggregators could cause
problems, such as overloading. Such protection necessitates
a coordinating service, which is called UCH brokering
in this use case. The brokering performs the selection of
one aggregator (i.e., from multiple aggregators offering
charging services) for the customer (i.e., EV driver) whenever
they search for a charging service in a specific area. The
selection is based on not only prices and charger-specific
availability and capabilities but also on the load situation of
the distribution grid.

Figure 3 illustrates the BPMN model of UCH brokering.
The participants are customers, UCH brokering service,
aggregators, and the local DSO. After receiving a request
from the customer, the UCH brokering service asks for actual

137975

IEEE Access

P. Kannisto et al.: Distributed Service Choreography Framework for Interoperability

dynamic price signals from multiple aggregators operating
in UCHs in the nearby area. Once the prices have been
received, it chooses the best aggregator and UCH based on
pricing, charging capacity, and the distance to drive to reach
the UCH. The UCH broker acknowledges this choice to
the selected aggregator, which reserves the required capacity
for the customer and informs the DSO about the updated
net behavior. Finally, the UCH broker rejects the rest of
aggregators and informs the customer about the choice. The
process, physically an XML document, was modeled with the
online tool BPMN.io.?

The choreography includes two algorithms, namely
Dynamic Pricing executed by the aggregators and Smart
Routing by the UCH brokering, respectively. Dynamic Pric-
ing is a rule-based algorithm that determines the fluctuations
in the EV charging price per kWh over the estimated parking
period within the scope of one aggregator. The algorithm
enables the aggregator to express its preferred consumption
pattern by assigning high or low prices during periods when it
is necessary to reduce or increase the charging load based on
existing or predicted commitments. UCH brokering utilizes
these indicators in Smart Routing to determine the optimal
charging profile and location for the EVs by solving an
optimization problem, which covers the customer’s input
(e.g., the target state-of-charge or SOC at the end of
the charging period) and the aggregators’ price signals
produced through Dynamic Pricing. This considers peak
power limits (PPL) as well. The mathematical formulation of
both algorithms is presented in [47].

From the perspective of service choreographing, the
interaction between the UCH broker and aggregators requires
most specification. These participants exchange multiple
messages in a certain order. If this order is violated, the
required functional interoperability will not realize, leaving
one or more parties unaware of the status. To maintain
interoperability, the BPMN process explicitly indicates what
to do and when. On the other hand, from the viewpoint of the
customer and DSO, the steps are simple.

The UCH brokering process has two purposes in this work.
It provides, first, a running example for the design and,
second, the case process for the prototype implementation
in Section V. Still, it is notable that Discografia is a generic
choreography framework and not designed for this specific
use case.

B. THREE-LAYER ARCHITECTURE

Discografia specifies a three-layer framework to enable the
distributed execution of service choreographies based on
pre-defined choreography models (see Figure 4). The core
layer is called framework layer, which is generic and supports
security, the lifecycle of choreography specifications, and
execution. On top of this, next comes service communication
layer, which is domain specific and enables the communi-
cation between network nodes. Finally, the top layer is for

3 https://bpmn.io/

137976

Participant layer

Service instances | Choreography execution

Service communication layer (domain specific)

Data model | Message broker |

Framework layer (generic)

Execution support services

Event
logging

Choreography
instance support

Discovery of
service instances

Specification lifecycle services

Specification
management

Specification
storage

Specification
distribution

Security principles

Data autonomy;
Trust .
data sovereignty

Authentication Authorization

Confidentiality |

Integrity

| Availability

FIGURE 4. The elements of the framework.

choreography participants and the actual service instances
being provided.

Although the framework concept focuses on functional
interoperability, it would be incomplete without security,
a communication protocol, and data model. All of these
must be acknowledged, as seen in the security principles and
service communication layer of Figure 4. The figure as a
whole receives an elaboration in the following subsections.

C. FRAMEWORK LAYER

1) SECURITY PRINCIPLES

All modern information systems, including Discografia, must
consider security in the design. Security builds upon confi-
dentiality, integrity, and availability (CIA [48]). Discografia
refines these further to goals, such as authentication,
authorization, privacy, and non-repudiation.

In Discografia, the common security-related principles
form the basis for trust and data autonomy, which bring an
inter-organizational aspect to security. The service chore-
ographies necessitate data sharing between customers and
organizations. Data sharing necessitates that the business
partners trust each other. Trust can be reached with data
autonomy, which refers to the ability of the data owner to
control who exploits the data for what and where physically.
Although data-autonomy-related efforts usually consider the

VOLUME 11, 2023

P. Kannisto et al.: Distributed Service Choreography Framework for Interoperability

IEEE Access

sharing of data sets, the concept could be extended to
online data sharing too [49]. On the other hand, even data
sovereignty, that is, the consideration of local laws in data
processing, is important. The efforts for data autonomy
and sovereignty have recently been researched related to
International Data Spaces (IDS [50]) and Gaia-X [51].

In the UCH brokering example, the customer must
provide their personal information, at least location and
customership-related data, to the UCH broker, which will
share this information with the aggregators. The customer
can share information only if they can trust the other actors.
Respectively, all other actors should trust each other too.

2) SPECIFICATION LIFECYCLE SERVICES

Distributed choreography execution necessitates a common
version of the choreography among all participants, which
is what the lifecycle services accomplish. Three aspects
are considered. First, management enables the choreography
specifier to publish new versions while keeping old versions
available in case some services still want to support these.
When executed, the participants will have to agree on the
version used. Second, the various specifications and their
versions must be stored somewhere. Third, the participants
need a means to access the specifications, that is, there must
be a means for distribution.

In the UCH brokering example, the lifecycle services
enable an agreement, i.e., an up-to-date choreography spec-
ification, among the participants about the UCH brokering
workflow. For these needs, the choreography specifier
(whichever organization this is) utilizes the specification
management and storage services of the framework. This
functionality must be centralized to enable a single location
for the specification although the execution itself occurs in a
distributed manner. Eventually, the specification distribution
service makes this available to the participants.

3) EXECUTION SUPPORT SERVICES

Although the execution of choreographies is distributed,
certain execution-related support must be centralized. The
goal of the framework is, however, to keep this in the bare
minimum.

The execution support services are choreography instance
support, the discovery of service instances, and event logging.
The choreography instance support maintains a correlation
ID to distinguish between the instances of choreography
execution. The ID is generated upon a request to start
a choreography instance. Discovery is necessary in any
scheme where the potential service providers are unknown.
Finally, event logging helps in debugging any error situations
that eventually happen in distributed execution. Earlier, this
approach has proven beneficial in message-broker-enabled
choreographies [29]. Additionally, there can be local logging
in the participating software, but the centralized logging
records at least the messages being exchanged.

All execution support services help the UCH example
as well. To start a choreography, the customer requests

VOLUME 11, 2023

the framework to start an instance. The discovery helps
especially when UCH brokering ask for price offers from the
aggregators that are many and can enter or exit the business
environment at any time. In these conditions, discovery
removes the need of UCH brokering to explicitly know which
aggregators to contact. Finally, the event logging service
enables the monitoring and tracking of the choreography
execution.

D. SERVICE COMMUNICATION LAYER

The execution of choreographies necessitates common con-
cepts understood by all participants, hence a data model
is necessary. Because Discografia focuses on functional
interoperability and remains domain agnostic, it specifies no
concrete data model but still acknowledges the need for such.
In the electricity domain, whenever energy management is the
concern, a potential candidate is Common Information Model
(CIM) standardized as IEC 61970. The concrete syntax can
be, e.g., XML or JavaScript Object Notation (JSON).

For the communication protocol, Discografia suggests the
concept of message broker due to the application of the
publish-subscribe paradigm. There are three reasons for this.
First, the paradigm provides loose coupling in “‘time, space,
and synchronization” [52]. Concretely, this means that for
the participants to communicate, there is no need to know
the exact network address or location of one another, and
neither they need to strictly synchronize the processing of
messages. Second, service choreographies inherently operate
with asynchronous, event-driven communication [26, p. 192].
This is what message brokers have been designed for. Third,
publish-subscribe enables topic-based one-to-many scenarios
where one message is routed to multiple listeners, whoever is
interested and authorized. The concrete examples of message
brokers include but are not limited to the standards MQTT
and Advanced Message Queueing Protocol (AMQP [53]) as
well as the open-source product Apache Pulsar [54].

In the UCH brokering example, each participant must
implement a support for the chosen data model and message
broker. For instance, as the customer sends a request to the
UCH broker, the data model enables a mutual understanding
about the parameters of the request, such as the time slot of
charging, the targeted state of charge, and the desired area.
On the other hand, the message broker enables asynchronous
communication and even topic-based routing to multiple
participants without a need for manual configuration. The
UCH broker needs to publish the request for price offers from
aggregators only once, but the broker routes this to all the
aggregators available, providing service discovery.

E. PARTICIPANT LAYER

1) EXPLICIT AND IMPLICIT EXECUTION

Discografia builds upon the idea of purely distributed
choreographies, which means that choreography execution
occurs in the software of the participants. The framework

137977

IEEE Access

P. Kannisto et al.: Distributed Service Choreography Framework for Interoperability

supplies the participants with a communication medium and
the services necessary to enable the distributed execution.

The participants can execute a choreography implicitly,
which means that any updates in the workflow are applied
manually offline. This means that no workflow engine
is necessary but the software developers will fetch the
choreography specification and implement the required logic
into the software considering the choreography role. The
resulting application logic is, therefore, hard coded and
cannot dynamically adapt to a new choreography version.

The other execution approach is explicit, where the chore-
ography specification, i.e., the BPMN model, is executed
with an interpreter engine. This is possible due to the
executability of BPMN in any compliant process engine (such
as Camunda [31] or SpiffWorkflow [32]). In principle, the
explicit approach enables any workflow to be modeled by
the choreography specifier and deployed to the participants
automatically. However, BPMN cannot express all of the
complexity required for execution, especially the details
of data mapping and network communication. BPMN has
no formal semantics either [55]. Furthermore, there are
security implications in case of a malicious actor editing the
specification.

The choice of explicit or implicit workflows is a trade-off
between responsiveness to changes and the simplicity of
software logic. The explicit approach is more flexible
regarding changes. On the other hand, a change can be fully
dynamic only when it is limited to the workflow expressed
in BPMN. The implicit approach is most straightforward but
requires additional manual work if the BPMN content of the
choreography specification is complex. However, depending
on the case, not all parts of the specification changes
frequently and some choreography roles require only simple
logic. Finally, regardless if the choice is explicit or implicit,
the BPMN choreography specification always provides an
agreement of the correct activities and the order of these.
This contributes to functional interoperability compared to a
situation either without a choreography specification or with
one presented in a non-standard format.

The UCH brokering example provides potential for both
implicit and explicit choreography execution. Implicit suits
especially for the customer and DSO because their workflow
contains only single task. In contrast, UCH brokering
and aggregators have multiple steps to perform, which
increases the advantages of explicit execution although
implicit execution is still possible.

Regardless of whether explicit or implicit execution is in
place, version control is essential for interoperability. That is,
the participants must be able to recognize which version of
the choreography to execute and potentially negotiate to find
a version supported by all participants.

2) WORKFLOWS OF IMPLEMENTATION AND PARTICIPATION
To participate in choreographies via the framework, a chore-
ography implementer must accomplish certain steps depend-
ing on whether it provides services or acts as a client to

137978

a) Develop new service for choreography
b) Update service after choreography update

Framework

Service endpoint

Authorize with public key

Authorization token

Get choreography specification

v

Choreography specification

needed to fulfil the choreography rol

Develop software (updates) if B‘
e

¢) Service registration

. Framework Message
Service .
endpoint broker
Authorize with public key
»
»
Authorization token
4.
Get message broker endpoint
»
»
Broker address
4. _______________________
Subscribe to relevant topics -
5% U

FIGURE 5. The workflows of service setup.

another participant. A service provider must make its offering
available, whereas a participant must request for a chore-
ography to start. Although the actual choreography-related
communication occurs via the message broker, certain pre-
liminary actions are necessary to implement the features of
the framework, such as security, discovery, and choreography
distribution.

Figure 5 illustrates the workflow of service development
(a, b) and service registration (c). In all the workflows, the
first step is authorization, where the participant provides
its public key to the framework that, if the authorization
succeeds, returns a token. Token-based authorization is a
widely used state-of-art scheme and appears in, for instance,
OAuth [56]. The workflow (a) depicts the development of
a new service, whereas (b) refers to an update after a fresh
choreography release. (a) and (b) are identical on a high level
as both may require new software to be developed if the
choreography specification necessitates functionality not yet
supported. Once either (a) or (b) has finished, (c) enables
participation by registering the service to the relevant topics
in the message broker. The current (c) workflow omits any
situations where the message broker or its address changes.
Regarding (b), the workflow should be triggered by an update
in the choreography specification. This can be triggered via
a communication medium, such as a message broker, but
the implementers can as well check for new choreography
versions periodically.

VOLUME 11, 2023

P. Kannisto et al.: Distributed Service Choreography Framework for Interoperability

IEEE Access

Framework
endpoint

Message

Participant broker

Authorize with publickey
>

Authorization token

Start choreography instance

>
Message broker address; correlation ID

Invoke choreography via message broker

Services interacting via
message broker

Result

FIGURE 6. A possible workflow for choreography invocation.

Figure 6 depicts the invocation of a choreography.
It assumes that the invocation is triggered by a customer
expecting a business outcome although any event could
invoke a choreography without any particular response
message. Such an event could be, for example, the detection
of an emergency where the subsequent activities can take
long. In the illustrated workflow, the customer starts with
authorization and then requests for the choreography to
start. The start request generates a correlation ID to identify
the choreography instance (enabling parallel execution) and
the address of the message broker. The correlation ID will
be included in the topic name to enable efficient message
subscription and filtering by message broker clients.

Although the workflows appear complex compared to
direct service invocations in the request-response fashion,
it enables dynamic, adaptable choreographies. Any node
can authorize itself, retrieve and implement the choreogra-
phy specification, and discover other participants with the
message-broker-based infrastructure (receiving the advan-
tages of loose coupling due to publish-subscribe [52]). That
is, dynamism and increased management possibilities come
with the cost of additional complexity.

F. ADDITIONAL DESIGN CONSIDERATIONS

The design could still be extended to cover aspects that
remain unspecified, the first of which is the management of
the versions of the choreography specifications. There should
be a support for metadata to enable references to certain
specification versions (as the current BPMN specification
[7] seems to omit such a feature). The participants would,
then, negotiate about the version being executed for each
choreography instance. For a concrete example, Transport
Layer Security (TLS [57]), a mainstream technology for the
encryption of data traffic, has exploited the multi-version
approach for years, enabling a peer to select which versions
to accept. Furthermore, the framework could provide a
notification to implementers whenever a fresh version of
a choreography is released. Any older versions could be
declared obsolete due to security reasons or because of the
price of maintaining a support for multiple versions.

VOLUME 11, 2023

Global
cloud

& 1

Local clouds
% \

FIGURE 7. The global cloud of services consists of local clouds. Idea
based on [63].

In the service communication layer, there is no tool to
specify the data model and communication protocol because
the choreographies are in BPMN that provides no such
support. Additionally, there is no way to indicate which
topic names to use in the message broker although these
are necessary for interoperability. This question could be
somehow included in the framework, or otherwise the
participants might select a variety of non-interoperable
technologies. The existing technologies for similar needs
include at least Web Services Description Language (WSDL
[58]) and OpenAPI [59] for service descriptions as well as
XML Schema [60] and JSON Schema [61] for data models.

Furthermore, the framework is scalable only if it considers
the interconnection of separate value chains or framework
instances. The design builds all communication upon ser-
vices, but there is currently no indication which organization
would maintain the whole. Because Discografia is a frame-
work rather than a platform, it assumes multiple instances.
In a single logical entity, such as a city, there could be an
agreement that all aggregators or UCH brokers connect to the
same message broker and provide their services via the same
framework instance, but this restricts any further scaling.
On the other hand, Discografia is supposed to enable many
kinds of services beyond UCH brokering and not restricting
to the electricity domain. Then, even cross-ecosystem, cross-
domain services would be possible and boost industrial
innovations [62]. Therefore, for concrete interoperability
regardless of the geographical location and service providers,
there should be as many instances as needed and these
should be interconnected. This vision, which is called local
and global clouds and enables the consumption of services
regardless of physical borders (see Figure 7), has earlier been
introduced in Arrowhead framework [63]. The global cloud
sets requirements especially to authorization to enable trust
between the participants.

V. PROTOTYPE IN UCH BROKERING

To prove the choreography framework concept, this section
presents an implementation for the UCH brokering process
modeled in Section IV-A. Figure 8 depicts the system,
showing which components are implemented in each layer.
The participant layer has a component for each participant:

137979

IEEE Access

P. Kannisto et al.: Distributed Service Choreography Framework for Interoperability

Explicit choreography execution .
— ;} E Choreography specification
Implicit choreography execution (BPMN)
----- >
< /4 i 13
Participant / :
UCH
layer Customer brokering Aggregator / DSO
UCH operator
Service T Datamodel
communication : (JSON-based) Message broker (MQTT)
layer 000 oeeeReoomeeeeeosheooo
Framework . .
Ve (e Choreography instance Event logging Dllsco.very of
support service instances
——Execution support services: |
- Specification I
Secgnty Authorization lifecycle Sp'ec!flca'tlon
services . distribution
services

FIGURE 8. The prototype system, including a partial implementation for the layers.

customer, UCH brokering service, aggregators, and DSO.
The service communication layer contains MQTT as the mes-
sage broker and a custom-made, JSON-based data model. The
framework layer is a subset of the full framework, proving
services for execution support, specification lifecycle, and
security. The implementation of the layers is explained in
more detail in the following subsections. Furthermore, the
implementation is available as open source.*

Considering DSR method, this section provides a concrete,
credible use case for the results for design and rigor cycles
as introduced in Section IV. The use case and the related
prototype prove the concept.

A. IMPLEMENTATION OF FRAMEWORK SERVICES

Table 2 shows how the services of the framework were
developed, grouped after the categories security, lifecycle,
execution, and service communication. The services are
elaborated in the following paragraphs.

Among security and lifecycle services, which form the
basis of choreography execution, authorization and specifica-
tion distribution were developed. Both are REST endpoints.
Authorization must occur before the framework can be used.
The service is, however, a mockup that accepts any public key
of the participant if provided as expected. It returns a token
that the rest of framework services will accept. Specification
distribution simply returns the current version of the BPMN
process, which is physically an XML document.

For execution support services, there is choreography
instance support, event logging, and the discovery of

4https:// gitlab.com/tau-tase/discografia

137980

TABLE 2. The implementation of the framework services in the prototype.

Service ‘ Implementation Platform

Security services

Authorization HTTP REST endpoint | Python, Docker

(mockup)

Specification lifecycle services
HTTP REST endpoint

Specification
distribution

Python, Docker

Execution support services

Choreography instance | HTTP REST endpoint
support

Python, Docker

MQTT client Python, Docker

Discovery of service in- | (Based on MQTT top- | —
stances ics)

Event logging

Service communication layer
| HiveMQ

Message broker

‘ Docker

service instances. Instance support is a REST endpoint
that generates a correlation ID, the unique identifier of a
choreography instance. This ID is included in each MQTT
topic name to enable the separation of messages. The event
logging service is an MQTT client that subscribes for all
choreography-related topics with a wildcard. It prints any
received messages, enabling monitoring and debugging, but
any larger-scale implementation would necessitates a logging
database for more usability (similar to [29]). The discovery
is based on MQTT topic names. That is, to discover any
aggregators available, the UCH broker publishes its request
to a topic that all aggregators listen to.

In the service communication layer, the message broker is
HiveMQ [64], which is a commercial product but provides a

VOLUME 11, 2023

P. Kannisto et al.: Distributed Service Choreography Framework for Interoperability

IEEE Access

TABLE 3. The implementation of the participants in the prototype.

Participant Choreography | Implementation'

— Enclosed component execution

Customer Implicit Python application
UCH broker Explicit Java application

— Camunda BPMN parser Java component

— Smart Routing algorithm? Python web service
Aggregator Implicit Python application
— Dynamic Pricing algorithm? Python web service
DSO Implicit Python application

'All participants and enclosed components have a dedicated Docker
container.

2Introduced in [47].

free version with limited functionality. HiveMQ is extensible
and therefore a candidate for future implementations with the
Discografia-specific authorization that no existing product
can provide. The concept of customized authorization
schemes aligns with the philosophy of MQTT standard,
which states that “it is the implementer’s responsibility to
include the appropriate features as part of their design™ [46].

B. IMPLEMENTATION OF PARTICIPANTS

Table 3 provides an overview of the details of participating
software. All of these operate as a Docker container.
Only the UCH brokering service executes the choreography
specification (see Section IV-A) explicitly, whereas the others
rely on an implicit, hard-coded implementation. The implicit
version can be faster to develop but lacks the advantages
of adaptability if the choreography specification is updated.
However, both the customer and DSO have a little of
choreographical interaction, as the customer performs solely
a single request and DSO receives only one message per
choreography instance. All of the functionality, as explained
in the following paragraphs, is based on the choreography
specification in Figure 3.

The customer performs a single request to receive a
UCH and aggregator to go to, but certain preparations are
necessary for the choreography. First, the customer must
authorize itself with its public key. Next, it retrieves the
latest version of the choreography specification in case
of modifications. Finally, it performs another call to the
framework to instantiate the choreography and to receive
the information required, namely the related correlation ID
and the address of the message broker. The correlation
ID is included in each choreography-specific topic name
and therefore enables a separation of messages per the
choreography instance. Finally, the customer publishes a
request to the UCH brokering service via MQTT and waits
for a reply.

Once the request has appeared from the customer, the UCH
brokering service asks for price and availability information
from the aggregators and decides which to choose for the
customer for EV charging. This choice is based on the
algorithm called Smart Routing, which the UCH broker

VOLUME 11, 2023

executes. This algorithm was earlier introduced in [47]. The
algorithm has been implemented as a mixed integer linear
program utilizing the optimization modeling library, Pyomo
[65]. The specific instances of the Smart Routing algorithm
are solved with the open-source optimization solver GLPK
[66], which has been containerized within the computer
program run in UCH brokering.

Because UCH brokering executes the choreography explic-
itly, it needs a BPMN parser, for which Camunda [31] was
chosen. Camunda (made in Java) was chosen due to its
comprehensive documentation. In addition to mere parsing,
Camunda provides a complete BPMN engine, but it remains
future work to integrate such an engine into the prototype.

The task of the aggregators is to wait for requests from
UCH brokering, then provide price information and, if the
UCH broker selects the aggregator, send the updated net
behavior to the DSO. The generation of prices re-uses
Dynamic Pricing algorithm published in [47]. The Python
implementation of the algorithm can be found in datafev
framework [67].

In the choreography, the DSO receives only a message
about the net behavior of the selected aggregator. There is
no need for any awareness about the choreography instance,
because the reporting of net behavior is a generic operation.
Still, the DSO must be authorized and know the address of
the message broker similar to all other nodes.

Listing 1 shows the MQTT messages logged during a test
run. Each line starts with a timestamp, followed by the MQTT
topic name and the actual message. In each topic name, the
substring starting with “corr-" is the correlation ID. The
messaging sequence starts with the customer publishing a
request to the UCH brokering service, after which this asks
for price information from the aggregators. Then, the UCH
broker selects one of the aggregators, rejecting the others.
The full messaging sequence took approximately 3 seconds,
which is a reasonable response time considering everything
executed as Docker containers in a virtual machine in a
laptop. Still, the full execution time varied between 40-60
seconds, but most of it was consumed waiting for the startup
of the containers. In a real implementation with proper
resources for each node, the execution should take a few
seconds at maximum to enable a decent user experience.
The development environment was Ubuntu 20.04 in a virtual
machine (VM) operated in a laptop, and the VM had 6 GB of
RAM and three processor cores.

The prototype shows that the choreography framework
concept can operate in practice. Although there is a cen-
trally managed choreography specification, the participants
executed their part on their own, which resulted in a fully
distributed execution. The participants were authorized to
enable trust. To enable the communication, the framework
provided the address of the message broker and fulfilled the
discovery of aggregators with MQTT messaging. Finally, the
framework logged all execution, enabling monitoring and
debugging if any incompatibility would occur between the
participants.

137981

IEEE Access

P. Kannisto et al.: Distributed Service Choreography Framework for Interoperability

$ docker logs discografia—framework—monitoring —1
Subscribed with topic pattern: 'discografia/#’

10:34:12.018252 discografia/corr —1685097251.8024755/UchBroker/ReservationRequest/uchbrokerl: {

"customer_id": "customer_ x"

"battery capacity kwh": 110,

"v2g allowance kwh": 0,

"soc _arrival": 0.4,

"soc_ target": 0.8,

"power charge kw": 11,

"power discharge kw": 11,

"time arrival": "2023—-05—26T10:44:004+00:00",

"time departure": "2023—-05—26T12:14:004-00:00"

by
10:34:12.214070 discografia/corr —1685097251.8024755/ Aggregator/OfferRequest: {

b
10:34:12.305094 discografia/corr —1685097251.8024755/ Aggregator/OfferResponse /AggregatorC: {

"charger id": "cu_AggregatorC_03",

¥
10:34:12.326026 discografia/corr —1685097251.8024755/ Aggregator/OfferResponse/AggregatorF: {

"charger id": "cu AggregatorF_ 03",

¥
10:34:12.373248 discografia/corr —1685097251.8024755/ Aggregator/OfferResponse /AggregatorN: {

"charger id": "cu_ AggregatorN_ 03",

¥
10:34:14.438119 discografia/corr —1685097251.8024755/ Aggregator/ReservationAcceptRequest/AggregatorN: {

"charging unit_id":
"response": "accept"

"cu_AggregatorN_03",

¥
10:34:14.822841 discografia/corr —1685097251.8024755/ Aggregator/ReservationAcceptResponse/AggregatorN: {

"response": "ok"

¥

10:34:14.822951 discografia/Dso/NetBehavior: {
"aggregator id": "AggregatorN",
"net behavior": ".. ."

}
10:34:14.829505 discografia/corr —1685097251.8024755/ Aggregator/ReservationRejectRequest/AggregatorC: {

"response": "reject"

¥
10:34:14.831774 discografia/corr —1685097251.8024755/ Aggregator/ReservationRejectRequest/AggregatorF: {

"response ": reject"

by
10:34:14.833364 discografia/corr —1685097251.8024755/UchBroker/ReservationResponse/uchbrokerl: {

"charging unit_id": "cu_ AggregatorN_ 03"

Listing. 1. Log output from the monitoring service, showing the timestamps and topic names of the MQTT messages exchanged between the
participants (some JSON content replace with “...” to save space). The aggregator “N” was selected for charging.

VI. WORK AMOUNT EVALUATION

Although Section V provides a proof of concept, this section
further shows the expected advantages of the proposed
software system framework. Considering DSR method, this
section is a quantitative indication of the benefits resulting
from the design cycle and contributing to the scientific rigor.

Discografia can be evaluated quantitatively with the
hypothesis that it reduces the amount of work required
in the implementation and maintenance of choreographies.
The hypothesis receives support from [68, p. 14]. Still, the
concrete advantages depend on the degree of automation in
communication and the software development required for
implementation.

The advantages can be quantified by estimating the overall
manual work required in choreographing. Work is necessary
whenever a new choreography is created or an existing one
is modified. Let the total work be W, defined as the sum of
individual work items: Wjp, for specifying the choreography,
Weom for communicating it to any interested parties, and W,
for developing the required changes in whichever system or
software that implements a part of the choreography. This is

137982

expressed as in (1).
W = Wspe + Weom + Waey (D

The extent of some but not all work items depends on
the number of parties. Let the number of implementers
in the business network be 7. It can be assumed that Wy,
occurs only once for each choreography version regardless if
nis 2, 10, or 1,000. However, W, and W,, must occur for
each choreography implementer (see Figure 9). Thus, W (n)
becomes (2).

n
W) = Wope + D> (Weom(@) + Waer@) (2)

i=1
In the UCH brokering example, the work items would
appear as follows during an update. Wy, is the effort
required to model the choreography, similar to Figure 3.
Weom 1S necessary to communicate the specification to all
implementers, that is, at least UCH brokers and aggregators.
Respectively, Wg,, is required from UCH brokers and

aggregators to develop any software updates required.

VOLUME 11, 2023

IEEE Access

P. Kannisto et al.: Distributed Service Choreography Framework for Interoperability

TABLE 4. Scenarios and the amount of manual work they require for a

Waer() choreography release.

Wdev(Z)

Wdev(3)

Choreography
specifier

Wdev(l)

Service providers
and consumers (n)

FIGURE 9. The work items required in choreography releases.

For simplicity, let us assume that W, and W, are equal
in all parties. Although this is untrue in a single choreography
release, the overall W, and Wy,, are proportional to n in the
large scale over a longer period with repeated choreography
releases. W(n) becomes (3).

Wn) = Wspe + n(Weom + Waey) 3)

Let us consider four scenarios, So—S3, with a varying
amount of automation and therefore manual work (see
Table 4). Wy, is assumed always manual because it requires
a human user to specify the business process explicitly. Let
the work amount of Wy, be x. In So, both W, and Wy,
are fully manual too. For simplicity, let both of these require
x amount of work as well. In S;, the business network
takes a partial advantage from ICT tools in choreographing,
reducing W, and Wy, by 50 %, which drops the amount
of work to 0.5x for both individually. For W,,,, such an
advantage can occur when the choreography is distributed in
an electronic format but still requires manual implementation
in the receiving system. Respectively, Wy,, reduces when the
execution logic is generated automatically but still requires
manual programming to be complete. In S, W, remains at
0.5x, but W, is fully automatic and therefore practically 0.
Finally, S3 assumes full automation in both W, and Wg,,.
It is notable that Wy, is the most difficult item to automatize.
Whether this is feasible depends not only on technology but
also the simplicity of the new choreography logic. It should
be possible to describe all of the logic in the respective
choreography specification.

Therefore, W depends on not only 7 but also s, the scenario.
We get (4).

W(n,s) = Wspe(s) + n(Weom(s) + Waey(s)) 4)

As we assign values from Table 4 to (4), we get, for
example, (5) and (6).

w10, Sp) = x + 10(x + x) = 21x (@)
w10, S1) = x + 10(0.5x + 0.5x) = 11x (6)

By calculating W with (4), we get Table 5, which groups
the work amount calculated for each scenario s by the

VOLUME 11, 2023

s — scenario Wspe | Weom | Waew
So — no automation T x T
S1 — partial automation x| 0.5z| 0.5z
So — partial automation x 0| 0.5z
S5 — full automation T 0 0

Wspe: Work for specification
Weom: Work for communication to implementers
Waew: Work for software development by implementers

TABLE 5. The relative benefit regarding manual work in each scenario
when n grows.

n|s |W(n,s)|W(n,s)/W(n,So)
10| So 21z 100.0 %
S1 11z 52.4 %

Sa 6x 28.6 %

S3 T 4.8 %

100 | So 201z 100.0 %
S1 101z 50.2 %

Sa 51z 25.4 %

S3 T 0.5 %
1000 | Sp 2001z 100.0 %
S1 1001z 50.0 %

Sa 501z 25.0 %

S3 x <0.1 %

n: Number of choreography implementers
W (n, s): Manual work total

implementer count n being either 10, 100, or 1000. In the
rightmost column, the table shows the relative W(n, s) as
compared to W(n, Sp), which assumes automation in neither
Weom nor Wy, (i.e., choreography-related distribution and
software updates). For example, W(10, S1) is only 52.4 %
of W(10,S1) and W(10, S>2) is 28.6 % respectively. The
calculations show that the larger the network, the more
advantage the choreography framework can provide. Yet the
benefits depend on the degree of automation in W, and
Wiey.

Similarly in the UCH brokering example, the overall
advantages are higher when the size of network grows.
The current example contains only one UCH broker, but
these could be many as well. On the other hand, the
number of recharging service providers could be higher.
The aggregators could be joined by microgrids [12] or
smaller-scale prosumers [11] that produce, for instance,
solar electricity. Such a business scheme would lead to
a growing number of participants and therefore receive a
considerable advantage from automatically distributed and
executed choreographies.

VII. ASSESSMENT OF RESULTS
The main contribution of this study is to suggest an
architectural framework as a solution to problems that

137983

IEEE Access

P. Kannisto et al.: Distributed Service Choreography Framework for Interoperability

have not yet been addressed in power systems, in par-
ticular from the viewpoint of value chains and business
networks. Currently, there is no off-the-shelf solution for
the problem although there are software tools that can
serve as the foundational building blocks. To elaborate the
contribution of this work, this section provides an overview
and critical analysis of the suggested software-architectural
framework.

From the DSR viewpoint, this section elaborates the
results. It does not provide new results to the three cycles but
rather explains the expected value and therefore contributes
to the communication of the scientific rigor.

A. NOVELTY, ORIGINALITY, AND SIGNIFICANCE

The novelty of this work comes from the proposed method,
that is, the software system framework for the distributed
execution and the communication of choreography specifica-
tions, built upon standard-based technologies. The selected
standards are BPMN, MQTT, and Restful API technologies,
but they could be any respective standards. Although software
systems communicate even today, the current approaches
lack a similar level of scalability regarding manual work
in the efforts required for interoperability (see Section VI).
It can be claimed that the limitations of current software
systems hinder new added value and services from appearing,
because there is too much manual work in the communication
of choreography specifications and no system to help in
distributed choreography execution.

Respectively, the originality comes from the new under-
standing regarding the framework design. The design
(Section 1V) suggests a framework and its functionality,
the prototype (Section V) is an indication of feasibility,
and the evaluation (Section VI) suggests quantitative value.
No earlier work has provided similar design knowledge for
the distributed execution of choreographies.

Based on Section III-F, this research is significant as
no earlier work has reached the requirements of distributed
choreography execution and the management of choreogra-
phy specifications. The requirements cover distributed, inter-
organizational choreography execution, common modeling
language, supporting services, lightweight system-to-system
communication, and application in power systems. This
significance applies generally across the application domains
of ICT. Yet, service choreographing, as a tool for functional
interoperability, appears completely unexplored in the power
system domain (see Section III-A). Thus, the results bring a
valuable contribution to the overall servitization of the power
system.

B. THEORETICAL AND PRACTICAL CONTRIBUTIONS

Theoretically, this work contributes to interoperability and
service-oriented systems that operate across value chains.
As illustrated in Figure 2, the interoperability model EIF has
four layers: technical, semantic, organizational, and legal,
and organizational interoperability can be seen to enclose
functional interoperability. As argued in Section III, earlier

137984

works have not provided a similar contribution to functional
interoperability across organizational borders based on a ser-
vice framework to communicate choreography specifications
and to support the actual execution. On the other hand,
current service architectures either focus on the technical and
semantic levels or operate in a value chain restricted to homo-
geneous components, often from a single vendor or platform
(such as the provider of industrial control systems or cloud
services).

Furthermore, the practical contributions of the article are
expected to show in the form of facilitated value chain
coordination in the future. The choreography framework
remains abstract and has this far no prototype with hardware
equipment included. Once the concept is implemented in
a physical system, the advantages suggested in Section VI
are expected to materialize regarding the amount of manual
work saved. Because Discografia is a domain-agnostic
framework, the use case can, in principle, be anything that
encloses cross-organizational, distributedly executed service
choreographies.

Considering UCH brokering, this work brings the use
case closer to an actual service-oriented environment
and helps in functional interoperability. It introduces ser-
vice connections between the participants and enables a
computationally executable choreography that forms an
agreement between the participants. The agreement can
be updated, and the participants can agree to support
the new version. This enables functional interoperability
that stands the evolution in the operation of the value
chain. Respective advantages can be expected in the
other collaborative multi-actor business processes of the
power system now that the conventional actor hierarchy
is transforming into a more flexible service-based scheme
(see Section II1-A).

C. SOFTWARE STABILITY
Discografia is a software system and can therefore be
assessed in terms of software stability, a concept concerned
with persistent reusability. Software stability affects the
amount of re-engineering that is necessary to meet the
required evolution during software lifecycle and is therefore
an essential factor regarding the feasibility of any soft-
ware product [69]. The concept stems from object-oriented
programming but is applicable in systems of systems,
including Discografia, due to its abstract nature. In software
design, a way to increase stability is to model objects after
their function, or the business need, rather than after the
concrete appearance of the objects [70]. Stability can be
analysed from abstract software models and from multiple
viewpoints. For example, AbuHassan and Alshayeb [71]
propose a metrics for structural, functional, and behavioral
stability.

From the start, the design of Discografia has aimed towards
re-usable structures that are abstract and therefore reusable
across business problems and domains. Still, it can be argued

VOLUME 11, 2023

P. Kannisto et al.: Distributed Service Choreography Framework for Interoperability

IEEE Access

that some parts are stabler than others although there is no
way to predict the future.

The layered architecture (see Figure 4) provides a solid
basis for stability. All of the layers (participant, service
communication, and framework) focus purely in high-level
functionality, creating layers of abstraction between one
another. These layers are unlikely to change.

The layers are further split into elements (see Figure 4)
that are assumed to remain useful. Although these are finer
grained, the elements have a function, such as execution,
data model, or discovery, clearly separated from the imple-
mentation. The most concrete of these elements is message
broker, which includes the idea of a certain type of messaging
medium usually based on the publish-subscribe approach.
Still, publish-subscribe is a generic basic pattern and unlikely
to completely vanish from networked systems. Even if there
were a need to re-engineer for another, more powerful
communication pattern, this would likely be complementary
design.

For additional functionality, there have already been
examples of complementing an existing framework. For
instance, Arrowhead framework has received additional
services, such as the workflow choreographer [37] after the
initial publication. Yet the earlier services of Arrowhead, such
as authorization, service registry, and orchestration, remain in
operation.

D. SUITABILITY

There are at least four arguments that support the suitability of
the proposed communication framework. First, it builds upon
commonly used service concepts, such as authorization, dis-
covery, common data models, and microservices. Discografia
is a continuation from these concepts that already deliver
results in everyday systems. Second, the service framework
Arrowhead [63] has earlier provided a generic, domain-
agnostic concept that has resulted in years of additional
research and extensions. Similar advantages can be expected
to apply to Discografia that expands the service concept
to distributed choreography execution. Third, the software
prototype in Section V provides a proof of concept to
show how the various components retrieve the choreography
specification over Internet and then proceed to execute the
choreography together. Fourth, the quantitative evaluation in
Section VI suggests general advantages from the concept
regardless of the use case. The advantages grow when the size
of network participants grows, suggesting scalability, which
is often problematic when the size of a distributed system
grows.

As shown in Section V, the prototype system suggests suit-
ability for the UCH brokering use case. Discografia enabled
the UCH brokering process to execute and to find the most
appropriate charging spot for the EV depending on the load
and availability conditions of the charging services. Besides,
Discografia provided the background functionality provided
the essential auxiliary services and features, such as inter-
operability, authorization, the distribution of choreography

VOLUME 11, 2023

specifications, and service discovery. Therefore, Discografia
appears to support the business model where UCH brokering
and charging services are distributed and even the load
conditions of the distribution system are considered. This is
aligned with the goals of the use case. A similar suitability
can be expected in power systems in general whenever the
value chain includes multiple actors or organizations that
must perform a predefined set of activities to reach a common
business goal.

Because the majority of the work has occurred in a
conceptual level, the concrete future solutions can differ
regarding openness and the chosen technologies. A limitation
is that the proof of concept considers only a single use
case and remains conceptual, not including physical actors
or equipment. Still, because the included design concepts
are generic as suggested in Subsection VII-C, it is safe
to assume that the framework design is transferable across
use cases. However, when software technologies enter the
market, there are always business-related reasons that affect
the final outcome. Often, the highest commercial power
wins, which may give an advantage to proprietary solutions
instead of standard-based, open designs. This does not reduce
the conceptual value of Discografia but reminds that the
idealisms of free software and open standards do not always
win.

VIil. DISCUSSION

This article carries out design science research (DSR) to
introduce a novel service choreography framework for the
electric power system of the future. The research method
includes three cycles: rigor for scientific contribution, design
for the research work itself, and relevance for everyday
benefits [10]. The rigor cycle closes with the scientific
contribution from the choreography framework concept,
whereas the design cycle was an internal effort during
the research. The third cycle, relevance, will become fully
concrete only in the future as explicitly specified service
choreographies enter everyday systems. In DSR, the designed
artifacts are essential, forming the concrete outcome.
The most significant artifact is the framework concept,
whereas the prototype is a secondary artifact proving the
concept.

The results suggest that the choreography framework
is a suitable approach for functional interoperability in a
distributed, inter-organizational scheme. The use case is UCH
brokering, that is, the selection of the chargers available
for the EVs based on the desired time slot, location for
charging, and aggregator pricing, considering the availability
and the scheduled load of aggregators. In the prototype,
a choreography is executed, explicitly by one actor and
implicitly by the others.

The research work has limitations regarding the cover-
age of the software implementation. Of the parts of the
framework, the proof of concept implemented execution
support services, specification distribution, and a mock-up
for authorization. That is, the framework layer received only a

137985

IEEE Access

P. Kannisto et al.: Distributed Service Choreography Framework for Interoperability

partial implementation, and the functionality of the remaining
parts could be developed in another prototype. These parts
include a proper user authentication and authorization as
well as the rest of specification lifecycle services. On top
of security, the achievement of trust between the participants
could be researched further.

Currently, the work considers only one example process,
namely UCH brokering. More processes would provide more
coverage and either provide evidence that the framework is
widely applicable or reveal shortcomings.

On the other hand, the prototype is executed only inside
one computer without any actual hardware or system
interfaces connected. Although UCH brokers are still a future
concept, the prototype could at least connect with actual DSO
interfaces and EVs.

The framework could provide more support for monitoring
choreography execution. There could be status tracking along
with an API for graphical user interfaces to monitor the status
of processes, including potential errors. On the other hand,
the framework could provide functionality for error handling
and especially notifications to choreography participants in
case the execution appears to fail. This would enable error
recovery in the participating software. Still, such centralized
features should be designed sparingly to keep the concept
distributed and therefore scalable.

The framework concept is evaluated quantitatively with the
work amount evaluation. This calculates the expected reduc-
tion of the manual effort required for the communication and
implementation of choreographies. The calculation assumes
that choreography implementations are less laborious thanks
to the automation reached with the visual, computation-
ally interpretable modeling technique of BPMN. However,
because this evaluation is theoretical, there could be more
concrete evidence.

IX. CLOSURE

A. CONCLUSIONS

This work suggests the software framework Discografia
to enable distributed service choreographing with support-
ing services for modeling and execution. The framework
comprises three main layers. First, framework layer pro-
vides generic services for security, specification lifecy-
cle management, and execution support. Second, service
communication layer defines the common communication
protocols and data models to enable information exchange.
Third, participant layer includes the actual choreogra-
phy participants that provide services and/or consume
these.

In this work, the service choreography refers to a col-
laborative workflow between participants. Choreographies
can be explicitly specified (or modeled) to define the
interaction as a sequence of activities, events, and conditions.
Such specifications enable functional interoperability. In
Discografia, the modeling notation is BPMN 2.0, which is
not only visual but also computationally executable.

137986

To actually execute choreographies, the participants
receive the related specification from Discografia. Then, the
participants accomplish their part of the specification. Thus,
the execution is distributed but aims at a common goal.
During execution, the participants interact via the service
communication layer.

This work evaluates the framework concept in two
ways: with a software prototype demonstration and with
a quantitative calculation of the expected reduction in
choreographing-related efforts compared to existing manual
methods. First, the prototype proves the concept, showing
that independent actors can execute collaborative workflows
in a distributed way with the help of the framework.
On the other hand, the concept enables heterogeneous
software platforms, as Python and Java co-exist in the
prototype. Second, the quantitative evaluation suggests that
the wider the value network, the more overall advantage
is reached. The advantage comes from reducing the effort
required for the communication and implementation of the
choreography specifications.

Discografia brings novelty regarding at least two main
factors. First, the execution of choreography models occurs
in a fully distributed way as the framework provides
only what is necessary to manage the specifications
and to support the communication of participants. Sec-
ond, the modeling and execution of service choreogra-
phies seem previously unexplored in the power systems
domain.

B. FUTURE WORK

There are multiple possibilities for future research. As out-
lined in Section I'V-F, the further design of the framework
could consider the version management and negotiation of
choreography specifications, the specification of data models
and the communication protocol, and the interconnection of
local and global service clouds.

The prototype could implement all of the framework
features, such as a proper authorization method, and
specification lifecycle services. On the other hand, a standard-
based data model could be chosen, potentially IEC 61970.
Furthermore, a participant could integrate a full workflow
engine instead of a plain BPMN parser. As a longer-term goal,
the prototype could consider data autonomy and sovereignty
to guarantee trust similar to International Data Spaces (IDS
[50]) and Gaia-X [51].

On the other hand, distributed-ledger-based systems have
been proposed for distributed service choreographies [38],
[39], [40], [42], [43]. In Discografia, the network builds the
trust upon key- and token-based authorization. The approach
is simpler compared to distributed ledgers and therefore
considered more suitable for IoT, electric mobility, and
other mobile machines. Nevertheless, to resolve the concrete
implications of this difference, there could be a comparative
work.

Finally, more use cases could be explored. Service-
oriented architectures are exploited in multi-party schemes

VOLUME 11, 2023

P. Kannisto et al.: Distributed Service Choreography Framework for Interoperability

IEEE Access

in a variety of domains, such as industrial production
[28], smart cities [72], and mobile machinery [49]. All
of these areas could benefit from distributed choreography
modeling and execution especially when the number of
choreography implementers is high and they come from
separate organizations.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

C. Keating, R. Rogers, R. Unal, D. Dryer, A. Sousa-Poza, R. Safford,
W. Peterson, and G. Rabadi, “System of systems engineering,” Eng.
Manag. J., vol. 15, no. 3, pp. 3645, 2003.

Y. Parag and B. K. Sovacool, ““Electricity market design for the prosumer
era,” Nature Energy, vol. 1, no. 4, p. 16032, Mar. 2016.

A. Kulmala, M. Baranauskas, A. Safdarian, J. Valta, P. Jarventausta, and
T. Bjorkqvist, “Comparing value sharing methods for different types of
energy communities,” in Proc. IEEE PES Innov. Smart Grid Technol. Eur.
(ISGT Europe), Oct. 2021, pp. 1-6.

M. Grzanic, T. Capuder, N. Zhang, and W. Huang, “Prosumers as active
market participants: A systematic review of evolution of opportunities,
models and challenges,”” Renew. Sustain. Energy Rev., vol. 154, Feb. 2022,
Art. no. 111859.

A Compilation of IEEE Standard Computer Glossaries, IEEE Stan-
dard 610, 1991, doi: 10.1109/IEEESTD.1991.106963.

European Commission. (2017). New European Interoperability Frame-
work. Accessed: Nov. 29, 2022, doi: 10.2799/78681.

(2013). Business Process Model and Notation (BPMN) Version 2.0.2.
OMG. [Online]. Available: http://www.omg.org/spec/BPMN

S. Baskarada, V. Nguyen, and A. Koronios, “Architecting microservices:
Practical opportunities and challenges,” J. Comput. Inf. Syst., vol. 60, no. 5,
pp. 428-436, Sep. 2020.

R. Baskerville, A. Baiyere, S. Gergor, A. Hevner, and M. Rossi,
“Design science research contributions: Finding a balance between
artifact and theory,” J. Assoc. Inf. Syst., vol. 19, no. 5, pp. 358-376,
May 2018.

A. R. Hevner, “A three cycle view of design science research,” Scandin.
J. Inf. Syst., vol. 19, no. 2, pp. 87-92, 2007.

R. Zafar, A. Mahmood, S. Razzaq, W. Ali, U. Naeem, and K. Shehzad,
“Prosumer based energy management and sharing in smart grid,” Renew.
Sustain. Energy Rev., vol. 82, pp. 1675-1684, Feb. 2018.

I. Zenginis, J. S. Vardakas, C. Echave, M. Moratd, J. Abadal, and
C. V. Verikoukis, “Cooperation in microgrids through power exchange:
An optimal sizing and operation approach,” Appl. Energy, vol. 203,
pp. 972-981, Oct. 2017.

M. Tanjimuddin, P. Kannisto, P. Jafary, M. Filppula, S. Repo, and
D. Histbacka, “A comparative study on multi-agent and service-oriented
microgrid automation systems from energy internet perspective,” Sustain.
Energy, Grids Netw., vol. 32, Dec. 2022, Art. no. 100856.

S. Borenius, P. Kekolahti, H. Hdmmiinen, M. Lehtonen, and P.
Mihonen, “Novel industry architectures for connectivity solutions in
the smart distribution grids,” IEEE Access, vol. 11, pp. 68093-68112,
2023.

M. Pau, E. Patti, L. Barbierato, A. Estebsari, E. Pons, F. Ponci, and
A. Monti, “Design and accuracy analysis of multilevel state estimation
based on smart metering infrastructure,” IEEE Trans. Instrum. Meas.,
vol. 68, no. 11, pp. 4300-4312, Nov. 2019.
(May 8, 2023). SOGNO LF Energy.
https://Ifenergy.org/projects/sogno/

M. Pau, M. Mirz, J. Dinkelbach, P. Mckeever, F. Ponci, and A. Monti,
“A service oriented architecture for the digitalization and automa-
tion of distribution grids,” IEEE Access, vol. 10, pp.37050-37063,
2022.

1. Losa, A. Monti, M. Ginocchi, V. Croce, F. Bosco, E. de Luca,
G. Fedele, D. Stratogiannis, and B. Petters, “PLATONE: Towards a
new open DSO platform for digital smart grid services and opera-
tion,” in Proc. 26th Int. Conf. Exhib. Electr. Distribution, Sep. 2021,
pp. 2974-2978.

M. Haghgoo, A. Dognini, T. Storek, R. Plamanescu, U. Rahe, S. Gheorghe,
M. Albu, A. Monti, and D. Miiller, “A cloud-based service-oriented
architecture to unlock smart energy services,” Energy Informat., vol. 4,
no. 1, p. 9, Dec. 2021.

[Online]. Available:

VOLUME 11, 2023

(20]

(21]

(22]

(23]
(24]

(25]

[26]

[27]

(28]

(29]

(30]
(31]
(32]
(33]

(34]

(35]

(36]

(371

(38]

(39]

[40]

(41]

N. Kabbara, M. O. Nait Belaid, M. Gibescu, L. R. Camargo, J. Cantenot,
T. Coste, V. Audebert, and H. Morais, “Towards software-defined
protection, automation, and control in power systems: Concepts, state
of the art, and future challenges,” Energies, vol. 15, no. 24, p. 9362,
Dec. 2022.

G. Paludetto, E. Bionda, and F. Soldan, “MESP—An interoperable
platform for multi-energy systems,” in Proc. AEIT Int. Annu. Conf. (AEIT),
Oct. 2022, pp. 1-6.

(2012). Smart Grid Reference Architecture ~ 3.0. CEN-
CENELEC-ETSI Smart Grid Coordination Group.
Accessed: Nov. 29, 2022. [Online]. Available:

https://www.cencenelec.eu/media/CEN-CENELEC/AreasOfWork/
CEN-CENELEC_Topics/SmartGridsandMeters/SmartGrids/reference_
architecture_smartgrids.pdf

C. Peltz, “Web services orchestration and choreography,” Computer,
vol. 36, no. 10, pp. 46-52, Oct. 2003.

A. Dorri, S. S. Kanhere, and R. Jurdak, “Multi-agent systems: A survey,”
IEEE Access, vol. 6, pp. 28573-28593, 2018.

M. Dalla Preda, M. Gabbrielli, S. Giallorenzo, 1. Lanese, and J. Mauro,
“Dynamic choreographies: Theory and implementation,” Log. Methods
Comput. Sci., vol. 13, no. 2, pp. 1-57, 2017.

C. Surianarayanan, G. Ganapathy, and R. Pethuru, Essentials of Microser-
vices Architecture: Paradigms, Applications, and Techniques. Boca Raton,
FL, USA: Taylor & Francis, 2019.

U. Bharti, A. Goel, and S. C. Gupta, “ReactiveFnJ: A choreographed
model for fork-join workflow in serverless computing,” J. Cloud Comput.,
vol. 12, no. 1, p. 63, Apr. 2023.

P. Kannisto, D. Histbacka, T. Gutiérrez, O. Suominen, M. Vilkko,
and P. Craamer, ‘“‘Plant-wide interoperability and decoupled, data-driven
process control with message bus communication,” J. Ind. Inf. Integr.,
vol. 26, Mar. 2022, Art. no. 100253.

P. Kannisto, V. Heikkild, O. Hylli, M. Attar, S. Repo, and K. Systi,
“SimCES platform for modular simulation: Featuring platform indepen-
dence, container ecosystem, and development toolkit,” SoftwareX, vol. 19,
Jul. 2022, Art. no. 101189.

G. Decker and M. Weske, “Interaction-centric modeling of process
choreographies,” Inf. Syst., vol. 36, no. 2, pp. 292-312, Apr. 2011.

Camunda. Accessed: Apr. 26, 2023. [Online]. Available:
https://camunda.com
SpiffWorkflow. Accessed: Apr. 26, 2023. [Online]. Available:

https://www.spiffworkflow.org

WSO, Enterprise Integrator. Accessed: May 12,2023. [Online]. Available:
https://ei.docs.wso2.com/en/latest/

A. Ottensooser, A. Fekete, H. A. Reijers, J. Mendling, and C. Menictas,
“Making sense of business process descriptions: An experimental
comparison of graphical and textual notations,” J. Syst. Softw., vol. 85,
no. 3, pp. 596-606, Mar. 2012.

M. Cortes-Cornax, S. Dupuy-Chessa, D. Rieu, and N. Mandran, “Eval-
uating the appropriateness of the BPMN 2.0 standard for modeling
service choreographies: Using an extended quality framework,” Softw.
Syst. Model., vol. 15, no. 1, pp. 219-255, Feb. 2016.

L. D. Nguyen, A. Broring, M. Pizzol, and P. Popovski, “Analysis of
distributed ledger technologies for industrial manufacturing,” Sci. Rep.,
vol. 12, no. 1, p. 18055, Oct. 2022.

D. Kozma, P. Varga, and F. Larrinaga, ‘“Dynamic multilevel workflow
management concept for industrial IoT systems,” IEEE Trans. Autom. Sci.
Eng., vol. 18, no. 3, pp. 1354-1366, Jul. 2021.

L. Spalazzi, F. Spegni, A. Corneli, and B. Naticchia, “Blockchain based
choreographies: The construction industry case study,” Concurrency
Comput., Pract. Exper., vol. 35, no. 16, p. 6740, Jul. 2023.

O. Lopez-Pintado, L. Garcia-Bafiuelos, M. Dumas, I. Weber, and
A. Ponomarev, “Caterpillar: A business process execution engine on the
Ethereum blockchain,” Softw., Pract. Exper., vol.49,no. 7, pp. 1162-1193,
Jul. 2019.

F. Corradini, A. Marcelletti, A. Morichetta, A. Polini, B. Re, and F. Tiezzi,
“Engineering trustable and auditable choreography-based systems using
blockchain,” ACM Trans. Manag. Inf. Syst., vol. 13, no. 3, pp. 1-53,
Sep. 2022.

M. Autili, A. Di Salle, F. Gallo, C. Pompilio, and M. Tivoli, “CHOReV-
OLUTION: Service choreography in practice,” Sci. Comput. Program.,
vol. 197, Oct. 2020, Art. no. 102498.

137987

http://dx.doi.org/10.1109/IEEESTD.1991.106963
http://dx.doi.org/10.2799/78681

IEEE Access

P. Kannisto et al.: Distributed Service Choreography Framework for Interoperability

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

F. Loukil, K. Boukadi, M. Abed, and C. Ghedira-Guegan, ‘“‘Decentralized
collaborative business process execution using blockchain,” World Wide
Web, vol. 24, no. 5, pp. 1645-1663, Sep. 2021.

Q. Lu, A. Binh Tran, I. Weber, H. O’Connor, P. Rimba, X. Xu, M. Staples,
L.Zhu, and R. Jeffery, “Integrated model-driven engineering of blockchain
applications for business processes and asset management,” Softw., Pract.
Exper., vol. 51, no. 5, pp. 1059-1079, May 2021.

J. G. Represa, F. Larrinaga, P. Varga, W. Ochoa, A. Perez, D. Kozma, and
J. Delsing, “Investigation of microservice-based workflow management
solutions for industrial automation,” Appl. Sci., vol. 13, no. 3, p. 1835,
Jan. 2023.

M. Autili, A. Perucci, L. Leite, M. Tivoli, F. Kon, and A. Di Salle,
“Highly collaborative distributed systems: Synthesis and enactment at
work,” Concurrency Comput., Pract. Exper., vol. 33, no. 6, p. e6039,
Mar. 2021.

(2019). MQTT Version 5.0. OASIS. Accessed: Apr. 27, 2023. [Online].
Available: https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-0s.
html

E. Giimriikcii, J. R. A. Klemets, J. A. Suul, F. Ponci, and A. Monti,
“Decentralized energy management concept for urban charging hubs with
multiple V2G aggregators,” IEEE Trans. Transport. Electrific., vol. 9,
no. 2, pp. 2367-2381, Jun. 2023, doi: 10.1109/TTE.2022.3208627.
National Training Standard for Information Systems Security (INFOSEC)
Professionals, Standard 4011, National Security Telecommunications and
Information Systems Security Committee, 1994.

P. Kannisto and D. Héstbacka, ““Data autonomy in message brokers in edge
and cloud for mobile machinery: Requirements and technology survey,”
in Proc. IEEE 27th Int. Conf. Emerg. Technol. Factory Autom. (ETFA),
Sep. 2022, pp. 1-4.

H. Pettenpohl, M. Spiekermann, and J. R. Both, “International data spaces
in a nutshell,” in Designing Data Spaces: The Ecosystem Approach to
Competitive Advantage, B. Otto, M. T. Hompel, and S. Wrobel, Eds. Cham,
Switzerland: Springer, 2022, pp. 29-40.

H. Tardieu, “Role of Gaia-X in the European data space ecosystem,”
in Designing Data Spaces: The Ecosystem Approach to Competitive
Advantage, B. Otto, M. ten Hompel, and S. Wrobel, Eds. Cham,
Switzerland: Springer, 2022, pp. 41-59.

P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec,
“The many faces of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114-131, Jun. 2003.

(2008). Advanced Message Queueing Protocol Version 0-9-1. AMQP
Working Group 0-9-1. Accessed: Apr. 28, 2023. [Online]. Available:
http://www.amqp.org/specification/0-9-1/amqp-org-download
Apache Pulsar. Accessed: Mar. 23, 2023. [Online].
https://pulsar.apache.org/

T. Najem, “A formal semantics for supporting the automated synthesis
of choreography-based architectures,” in Proc. 13th Eur. Conf. Softw.
Architecture. New York, NY, USA: Association for Computing Machinery,
Sep. 2019, pp. 51-54.

The OAuth 2.0 Authorization Framework, Standard RFC 6749, Internet
Engineering Task Force, 2012.

E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3,
Standard RFC 8446, Internet Engineering Task Force, 2018.

(2007). Web Services Description Language (WSDL) Version 2.0—
Fart 1: Core Language. Accessed: May 11, 2023. [Online]. Available:
http://www.w3.0rg/TR/2007/REC-wsd]120-20070626

OpenAPI Specification V3.1.0. Accessed: May 11, 2023. [Online].
Auvailable: https://spec.openapis.org/oas/v3.1.0

(2012). W3C XML Schema definition language (XSD) 1.1—Part 1: Struc-
tures, W3C Recommendation. Accessed: May 11, 2023. [Online]. Avail-
able: https://www.w3.0rg/TR/2012/REC-xmlschemal 1-1-20120405/
(2020). JSON Schema Specification, Version 2020—-12. Accessed: May 11,
2023. [Online]. Available: https://json-schema.org/specification.html

M. Magas and D. Kiritsis, “Industry commons: An ecosystem approach
to horizontal enablers for sustainable cross-domain industrial innovation
(a positioning paper),” Int. J. Prod. Res., vol. 60, no. 2, pp. 479-492,
Jan. 2022.

P. Varga, F. Blomstedt, L. L. Ferreira, J. Eliasson, M. Johansson, J. Delsing,
and I. M. de Soria, “Making system of systems interoperable—The core
components of the arrowhead framework,” J. Netw. Comput. Appl., vol. 81,
pp. 85-95, Mar. 2017.
HiveM(Q. Accessed:
https://www.hivemq.com/

Available:

Apr. 27, 2023. [Online]. Available:

137988

[65]

[66]

[67]

[68]

[69]
[70]

(71]

(72]

W. E. Hart, C. D. Laird, J.-P. Watson, D. L. Woodruff, G. A.
Hackebeil, B. L. Nicholson, and J. D. Siirola, PYOMO—Optimization
Modeling in Python, vol. 67, 2nd ed. Berlin, Germany: Springer,
2017.

A. Makhorin. GLPK (GNU Linear Programming Kit). Accessed: May 9,
2023. [Online]. Available: https://www.gnu.org/software/glpk/

E. Giimriikcii, A. Ahmadifar, A. Yavuzer, F. Ponci, and A. Monti,
“Datafev—A Python framework for development and testing of man-
agement algorithms for electric vehicle charging infrastructures,” Softw.
Impacts, vol. 15, Mar. 2023, Art. no. 100467.

(Feb. 2016). Interoperability Maturity Model: IMM Full—
Recommendations. European Commission. Accessed: Dec. 29, 2022.
[Online]. Available: https://joinup.ec.europa.eu/collection/semantic-
interoperability-community-semic/document/interoperability-maturity-
model

M. E. Fayad and A. Altman, “An introduction to software stability,”
Commun. ACM, vol. 44, no. 9, p. 95, 2001.

M. Fayad, “Accomplishing software stability,” Commun. ACM, vol. 45,
no. 1, pp. 111-115, Jan. 2002.

A. AbuHassan and M. Alshayeb, “A metrics suite for UML model
stability,” Softw. Syst. Model., vol. 18, no. 1, pp. 557-583, Feb. 2019.

M. Chen, X. Wei, J. Chen, L. Wang, and L. Zhou, “Integration and
provision for city public service in smart city cloud union: Architecture and
analysis,” IEEE Wireless Commun., vol. 27, no. 2, pp. 148-154, Apr. 2020.

PETRI KANNISTO (Member, IEEE) received the
M.Sc. (Tech.) degree in automation engineering
from the Tampere University of Technology,
Finland, in 2011, and the D.Sc. (Tech.) degree in
automation engineering from Tampere University,
Finland, in 2019. He joined the Tampere Univer-
sity of Technology, in 2009, undertaking a position
as a Postdoctoral Research Fellow, in 2019, when
amerger gave birth to the new Tampere University.
Since 2023, he has been a Researcher with

VDEh-Betriebsforschungsinstitut (BFI), Diisseldorf, Germany, and a Vis-
iting Researcher with Tampere University, where the present work was
prepared. His research interests include service architectures, interoperabil-
ity, data autonomy, and data platforms in the application areas of automation,
such as green electricity, mobile machinery, and process industry.

ERDEM GUMRUKCU (Graduate Student
Member, IEEE) received the master’s degree
in electrical power engineering from RWTH
Aachen University, Aachen, Germany, in 2018.
He is currently pursuing the Ph.D. degree in
energy flexibility management and optimization
for large-scale electric vehicle charging. In 2018,
he joined the Institute of Automation Complex
Power Systems, E.ON Energy Research Cen-
ter, RWTH Aachen University, as a Research
Associate.

VOLUME 11, 2023

http://dx.doi.org/10.1109/TTE.2022.3208627

P. Kannisto et al.: Distributed Service Choreography Framework for Interoperability

IEEE Access

FERDINANDA PONCI (Senior Member, IEEE)
received the Ph.D. degree in electrical engineering
from Politecnico di Milano, Milan, Italy, in 2002.
In 2003, she joined the Department of Electri-
cal Engineering, University of South Carolina,
Columbia, SC, USA, as an Assistant Professor,
where she became an Associate Professor, in 2008.
In 2009, she joined the E.ON Research Cen-
ter, Institute for Automation of Complex Power
Systems, RWTH Aachen University, Aachen,
Germany, where she is currently a Professor in monitoring and distributed
control for power systems. Her current research interests include the
automation and advanced monitoring of active distribution systems.

ANTONELLO MONTI (Senior Member, IEEE)
received the M.Sc. (summa cum laude) and Ph.D.
degrees in electrical engineering from Politecnico
di Milano, Italy, in 1989 and 1994, respectively.
He started his career in Ansaldo Industria and
then moved, in 1995, to Politecnico di Milano
as an Assistant Professor. In 2000, he joined the
Department of Electrical Engineering, University
of South Carolina, USA, as an Associate Professor,
and then a Full Professor. Since 2008, he has been
the Director of the E. ON Energy Research Center, Institute for Automation
of Complex Power System, RWTH Aachen University. He is the author or a
coauthor of more than 300 peer-reviewed articles published in international
journals and in the proceedings of international conferences. He was a
recipient of the 2017 IEEE Innovation in Societal Infrastructure Award.
He is an Associate Editor of IEEE Systems JourNaL and IEEE Electrification
Magazine, a member of the Editorial Board of SEGAN journal (Elsevier),
and a member of the Founding Board of the Energy Informatics journal
(Springer).

VOLUME 11, 2023

SAMI REPO received the M.Sc. (Tech.) degree in
electrical engineering and the D.Sc. (Tech.) degree
in electric power engineering from the Tampere
University of Technology, Finland, in 1996 and
2001, respectively. He has been a Professor in
electrical engineering with Tampere University,
since 2011. His research interests include the
various areas of green electricity and energy,
including but not limited to the integration of
distributed generation to electricity distribution
networks, active network management, the application of AMR data
in network management, the application of common information model
(CIM) and IEC 61850, coordinated voltage control, and protection system
management.

DAVID HASTBACKA (Member, IEEE) received
the M.Sc. (Tech.) and D.Sc. (Tech.) degrees in
automation science and engineering from the Tam-
pere University of Technology, Tampere, Finland,
in 2007 and 2013, respectively. He is currently
an Associate Professor with Tampere University,
Tampere. His research interests include system
and software architectures and the interoperability
of software systems in production and energy
systems applications.

137989

