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ABSTRACT This paper provides an integrated solution of sensor selection and multi-sensor tracking to
localize an underwater target using passive angle-only measurements received from sonobuoys, floating in
a large surveillance region. It is evident that sonobuoys, airdropped in the surveillance region, undergo drift
due to the influence of sea currents. To accurately capture this behavior, the positions of the sonobuoys
are modeled using a stochastic difference equation. Due to some physical limitations, only a few selected
sensors are allowed to send the measurement data for an interval of time, and they are chosen by solving
an optimization problem whose cost function is formulated based on the Fisher information matrix. The
effect of uncertainty in sensor location on measurement noise covariance matrix is calculated and the shifted
Rayleigh filter (SRF) is modified so that it can be applied to a system with a nonlinear process model.
The combined method of sensor selection and target localization is used to track a target moving in (i) a
nearly straight path, and (ii) taking a turn with a constant but unknown turn rate. The tracking performance
of the developed method is compared with the conventional Gaussian filters in terms of root mean square
error (RMSE), averaged normalized estimation error squared (ANEES), percentage of track divergence, and
execution time. The proposed methodology with the SRF provides an improved result when other existing
Gaussian filters are compared.

INDEX TERMS Bearing only tracking, fisher information matrix (FIM), sensor management, shifted
rayleigh filter, underwater target localization.

I. INTRODUCTION
For underwater surveillance, tracking algorithms play a
significant role, and passive tracking is preferred for its stealth
feature. To track an underwater object, a single sensor bearing
only tracking (BOT) is prevalent in literature [1], [2], [3], [4].
However, for a target following a straight line motion, single
sensor system suffers from observability issues [1], [5] and
therefore maneuvering the observer is indispensable [6], [7].
To overcome the limitation of the single sensor system and
improve the tracking performance, a multi-sensor tracking
system is advocated [8], [9], [10].

The associate editor coordinating the review of this manuscript and
approving it for publication was Manuel Rosa-Zurera.

This paper considers thatmany battery-powered sonobuoys
are airdropped over the water surface in the surveillance
region. These sensors are assumed to be distributed
uniformly, and they are passive sonar which measures the
direction of arrival of a sound signal generated by an
underwater target moving in the surveillance region. Further,
we consider a centralized network architecture approach
[11], [12] in which all the sensors send data to a central fusion
center where the tracking algorithms are being run to locate
the target. However, due to the constraint of communication
bandwidth, it is not always possible to send all sensors’
measurement data together. Further, due to the limited battery
power of the sensors, it is not practical to set all the sensors
always in active transmitting mode. So, at any point during
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tracking, a user-defined number of sensors are allowed to
send data to the central processing unit.

The method of sensor selection is available in the literature
with other different names viz., sensor management [13],
optimal sensor selection [14], and sensor control [15].
A thorough research work has been carried out in [16], [17],
and [18] for optimal placement of sensors to track a target.
In order to select a predefined number of sensors from which
accurate tracking can be achieved, we adopt the approach of
[13] and [19] and formulate a cost function based on the FIM.
The optimization problem has been solved with the local
search method [20]. As the target location is not known to
the designer, a prior estimate is used before we formulate the
cost function.

In a real-time scenario, the position of the aircraft is
known with GPS, and at that point, as the angle of release
and the wind velocity direction is known, the initial hitting
point of sonobuoys to the sea surface is known with some
uncertainty. Further, they are subjected to drift due to sea
currents and to address that, we need to model the sensor
motion [21]. As both the sensor location and measurements
have uncertainty, a modified noise parameter is calculated
for various tracking filters including the SRF. The developed
tracking methods estimate not only the states of the target but
also the location of the sensors. By estimating both the sensor
states and the target states simultaneously, we can improve the
applicability and accuracy of the tracking system, ultimately
leading to better performance in real-world applications.
Similar interests for sensor location uncertainty are also
found in recent literature for tracking multitarget in radar
network [22], imaging [23], and localization [24].

In this work, tracking and sensor selection algorithms
are co-designed with the existing Gaussian filters. Two
different scenarios have been addressed viz. (i) the target
moves at a nearly constant velocity in a particular direction,
(ii) the target executes a maneuver with a constant but
unknown turn rate. Amongst the well known nonlinear
filters, the extended Kalman filter (EKF) [25] is widely
used but it has limited accuracy. Sigma point Kalman
filters such as cubature Kalman filter (CKF) [26], cubature
quadrature Kalman filter (CQKF) [27], unscented Kalman
filter (UKF) [28], Gauss-Hermite filter (GHF) [29] are the
preferred alternatives of the EKF as they overcome the
shortcomings of the EKF. Moreover, for BOT, SRF [30], [31]
is reported to improve estimation performance. As in the
second case, the system dynamics is nonlinear, the SRF is
modified with the deterministic sample points during the
process update step. A comparative study of conventional
Gaussian filters with the modified SRF has been made.
The SRF is found to exhibit a superior performance over
its competing algorithms as evaluated in terms of root
mean square error (RMSE), track divergence, and compu-
tation time. Salient contributions to this paper are enlisted
below:
i. Consideration of drift in the sensor location due to ocean

current and uncertainty.

ii. Selection of cost function based on FIM with the
consideration of drift and uncertainty in the sensor
location.

iii. Modifying the SRF so that it can be applied to a nonlinear
process.

iv. Co-design of sensor selection and target tracking
algorithms.

v. Performance comparison of the proposed SRF with the
conventional filters in terms of performance metrics.

The remaining part of the paper is organized as follows:
The tracking problem with multiple sensors is formulated in
Section II. Section III derives an expression of equivalent
measurement noise covariance matrix for different filters to
incorporate the effect of sensor location uncertainty. Different
sensor selection criteria and their solutions are presented in
Section IV. An algorithm is presented for tracking along
with sensor selection in Section V. The simulation results are
reported in Section VI, and the paper ends with a conclusion.

II. PROBLEM FORMULATION
A. PROCESS MODEL OF THE TARGET
1) SCENARIO 1
In this scenario, the target moves in a straight line with a
nearly constant velocity [32]. The process equation is given
by

X tk+1 = FX tk + ηk , (1)

where X tk =
[
x tk ẋ

t
k y

t
k ẏ

t
k

]τ is a target state vector. xk ,
yk are positions along X and Y axis, respectively at time
step k . F is the system matrix which can be expressed as

F = diag([F1, F1]), where F1 =

[
1 T
0 1

]
, and T is the

sampling interval. ηk is the process noise which is assumed
to be white, Gaussian with zero mean and covariance Qtk i.e.
ηk ∼ N (0,Qtk ). The expression of Qtk is

Qtk = diag([Q1, Q1]), (2)

where Q1 = q̄1

[
T 3

3
T 2

2
T 2

2 T

]
, and q̄1 is the intensity of process

noise.

2) SCENARIO 2
In this scenario, the target moves in a coordinated turn
(CT) [33] model in the x − y plane with a nearly constant
turn rate. The process model is given by

X tk+1 = f (X tk ) + ηk = F(ωk )X tk + ηk , (3)

where X tk =
[
x tk ẋ

t
k y

t
k ẏ

t
k ωk

]τ , ωk is the angular turn rate of
the target and the expression of F is given by

F =


1 sinωkT

ωk
0 −(1−cosωkT )

ωk
0

0 cosωkT 0 − sinωkT 0
0 −(1−cosωkT )

ωk
1 − sinωkT

ωk
0

0 sinωkT 0 cosωkT 0
0 0 0 0 1

 . (4)
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The process noise covariance matrixQtk corresponding to this
system is given by Qtk = diag([q̄1Q2, q̄2T ]), where

Q2 =



2sωk
ω3
k

cωk T

ω2
k

0
sωk
ω2
kcωk

ω2
k

T −
sωk
ω2
k

0

0 −
sωk
ω2
k

2sωk
ω3
k

cωk
ω2
ksωk

ω2
k

0
cωk
ω2
k

T

 , (5)

where sωk = ωkT − sinωkT , cωk = 1 − cosωkT and q̄2 is
the process noise intensity corresponding to its turn rate.

B. MEASUREMENT MODEL
In both scenarios, each sensor provides a bearing angle of the
target with reference to its own position. The mathematical
model of the i-th sensor’s measurement at k-th instant is given
by

Yk,i = θk,i + wk,i, i = 1, · · · , ns, (6)

θk,i = h(X tk ,X
s
k,i) = tan−1

(x tk − xsk,i
ytk − ysk,i

)
, (7)

where θk is all the four quadrants’ true bearing angle of
the target to the sensor; so θk ∈ [−π, π) and ns is the
total number of sensors. The sensor state vector is X sk,i =

[xsk,i, ẋ
s
k,i, y

s
k,i, ẏ

s
k,i]

τ , andwk,i is an additive noise associated
with i-th sensormeasurement. This measurement noise is also
assumed as white, Gaussian with zero mean and covariance
Rk,i i.e.E[w2

k,i] = Rk,i. At a particular time instant, the tracker
selects only n number of sensors out of ns available sensor
set and these selected sensors send their measurement to the
tracker. So, at a time instant k , the measurement received by
the tracker is given by

Yk =
[
Yk,1, · · · , Yk,n

]τ
. (8)

C. MODELING OF SEA CURRENT
The sensors are floating on the surface of the water, and due
to external forces such as intensive wind velocity and ocean
currents, their positions are drifting with time. This uncertain
position of sensors can be modelled by a random walk
[34], [35] and its state equation is represented by

X sk+1,i = FX sk,i + vk,i, i = 1, · · · , ns, (9)

where F is a sensor transition matrix, vk,i is the process
noise associated with the sensor position to compensate
for the external disturbance. The sensor process noise is
assumed as white, Gaussian with zero mean and covariance
Qsk,i i.e. vk,i ∼ N (0,Qsk,i) and mutually independent with
other sensor states. The sensors are deployed from a moving
platform (such as airplane), and the initial sensor location is
assumed to be X s0,i ∼ N (X̄ s0,i,P

s
0,i), i = 1, · · · , ns. The initial

sensor state mean is X̄ s0,i, and the related covariance matrix
is Ps0,i.

III. EQUIVALENT MEASUREMENT NOISE COVARIANCE
The measurement equation for each sensor is a nonlinear
function of target and sensor states. Sensors are floating
on the sea surfaces and they drift due to ocean currents,
and their location becomes uncertain. This uncertainty in
the sensors’ position leads to an additional error while
estimating the target states. To incorporate such an effect
in our estimation, equivalent measurement error covariance
is required to calculate. Without loss of generality, here we
consider a single sensormeasurement to derive the expression
for equivalent covariance. Let us consider themeasurement of
i-th sensor at k-th instant i.e.

Yk,i = h(X tk ,X
s
k,i) + wk,i.

As the true position of sonobuoy is unknown, we replace
it with the estimated position and thus the measurement
equation becomes

Yk,i = h(X tk , X̂
s
k|k−1,i) + esYk,i + wk,i, (10)

where X̂ sk|k−1,i is the prior position of the i-th sensor and
the term esYk,i is an additional error in measurement due
to uncertainty in sensor position. We can write the above
equation as

Yk,i = h(X tk , X̂
s
k|k−1,i) + w′

k,i,

where w′
k,i is the updated measurement noise constructed by

incorporating the effect of sensor location uncertainty with
mean zero and covariance E[w′2

k,i] = R̂k,i.
The expression of R̂k,i will depend on the choice of the

filter used for estimation. In the following three Lemmas,
we provide the final expression of resultant or equivalent
measurement noise covariance when the estimators are
the EKF, deterministic sample point filters, and the SRF,
respectively. Although, the final expressions of R̂k,i for the
EKF and sampling point filters are available in literature [35],
we provide a proof in Lemma 1 and 2 for completeness of the
work.
Lemma 1: In the extended Kalman filter (EKF), the

equivalent measurement noise covariancematrix is expressed
as

R̂k,i = Hk,iPsk|k−1,iH
τ
k,i + Rk,i, (11)

whereHk,i =
∂h(X tk ,X

s
k,i)

∂X sk,i
|X sk,i=X̂

s
k|k−1,i

is the Jacobianmatrix,

and Psk|k−1,i is the predicted error covariance matrix of i-th
sensor.

Proof: From (10) substituting the error expression,

Yk,i ≈ h(X tk , X̂
s
k|k−1,i) + H s

k,i(X
s
k,i − X̂k|k−1,i) + wk,i,

= h(X tk , X̂
s
k|k−1,i) + H s

k,iX̃
s
k|k−1,i + wk,i,

= h(X tk , X̂
s
k|k−1,i) + w′

k,i,
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where w′
k,i = H s

k,iX̃
s
k|k−1,i + wk,i, with E[w′

k,i] = 0 and
covariance

R̂k,i = E[w′2
k,i]

= E[(H s
k,iX̃

s
k|k−1,i + wk,i)(H s

k,iX̃
s
k|k−1,i + wk,i)τ ]

= E[H s
k,iX̃

s
k|k−1X̃

sτ
k|k−1,iH

sτ
k,i + w2

k,i]

= H s
k,iP

s
k|k−1,iH

sτ
k,i + Rk,i.

Lemma 2: In deterministic sample point filters, the expres-
sion for the equivalent measurement noise covariance matrix
is expressed as

R̂k,i =

np∑
j=1

Wj(Ysk|k−1,j − Ŷsk|k−1)
2
+ Rk,i, (12)

where np is the total number of deterministic sample points,
Wj and Ysk|k−1,j are j-th weight and predictive measurements

respectively. Ŷsk|k−1 is the mean of predictive measurements.
Proof: Sample points are generated by

X̂ s
k|k−1,j = X̂ sk|k−1,i + Ssk|k−1ξj, j = 1, · · · , np,

where Psk|k−1,i = Ssk|k−1S
sτ
k|k−1, and ξ is a set of support

points for unity covariance matrix. Expected measurements
are Ŷsk|k−1 =

∑np
j=1WjYsk|k−1,j, where Ysk|k−1,j =

h(X̂t,k|k−1, X̂ s
k|k−1,j). The errors for a nonlinear system is,

esYk,i = Ysk|k−1 − Ŷsk|k−1 = Ỹsk|k−1 and from (10)

Yk,i = h(X tk , X̂
s
k|k−1,i) + Ỹsk|k−1 + wk,i,

= h(X tk , X̂
s
k|k−1,i) + w′

k,i,

where w′
k,i = Ỹsk|k−1+wk,i, with E[w′

k,i] = 0 and covariance

R̂k,i = E[w′2
k,i] = E[(Ỹk|k−1 + wk,i)2] = E[Ỹs

2

k|k−1 + w2
k,i]

=

np∑
j=1

Wj(Ysk|k−1,j − Ŷsk|k−1)
2
+ Rk,i.

The SRF is a superior filtering technique commonly used
in BOT applications. This filter transforms the original
measurement into the relative position of the target to
the sensor and then uses the transformed measurement to
track the target. To design the SRF, the uncertainty of
sensor location is directly incorporated into the transformed
measurement instead of the original measurement. This
approach yields better accuracy and is widely documented in
the literature.
Lemma 3: In the SRF, the covariance matrix of the

transformed measurement, Yk,i, is estimated as

R̂k,i = {||H (X̂ tk|k−1 − X̂ sk|k−1,i)||
2
+ trace(HPtk|k−1H

τ )

+ trace(HPsk|k−1,iH
τ )}Rk,iI2×2 + HPsk|k−1,iH

τ ,

(13)

where H =

[
1 0 0 0
0 0 1 0

]
.

Proof: Consider the measurement of i-th sensor at k-th
step

Yk,i = h(X tk ,X
s
k,i) + wk,i.

The measurement Yk,i is transformed to relative position
target to the sensor i.e. given by

Zk,i = HXk,i + ρk,i, (14)

where relative state vector Xk,i = X tk − X sk,i and ρk,i is
transformed noise of wk,i with mean E[ρk,i] = 0 and
covariance

Qmk,i = E[ρk,iρτ
k,i] =

[
σ 2
xk σxkyk

σykxk σ 2
yk

]
.

By assuming same variance in both x and y position, σxk =

σyk = σk,i and both of them are uncorrelated i.e. σxk ,yk = 0,

Qmk,i =

[
σ 2
k,i 0
0 σ 2

k,i

]
= σ 2

k,iI2×2. (15)

The measurement Yk,i = h(Xk,i) + wk,i, and its noise free
measurement is given by Yk,i = h(Xk,i) = tan−1( xkyk ), where
xk = x tk − xsk,i, yk = ytk − ysk,i. By differentiating the above
equation

1Yk,i =
yk

x2k + y2k
1xk −

xk
x2k + y2k

1yk .

Covariance of Yk,i is given by

Rk,i = E[1Y2
k,i] = E[(

yk
x2k + y2k

)21x2k + (
xk

x2k + y2k
)21y2k ]

= E[
1

x2k + y2k
]σ 2
k,i,

or,

σ 2
k,i = E[x2k + y2k ]Rk,i = (x̂2k + ŷ2k + Pxkxk + Pykyk )Rk,i.

(16)

By substituting Pxkxk = Ptxkxk + Psxkxk , and Pykyk = Ptykyk +

Psykyk in (16),

σ 2
k,i = {||H (X̂ tk|k−1 − X̂ sk|k−1,i)||

2
+ trace(HPtk|k−1H

τ )

+ trace(HPsk|k−1,iH
τ )}Rk,i.

By substituting the value of σ 2
k,i in (15), the covariance of

transformed measurement is obtained by

Qmk,i = {||H (X̂ tk|k−1 − X̂ sk|k−1)||
2
+ trace(HPtk|k−1H

τ )

+ trace(HPsk|k−1,iH
τ )}Rk,iI2×2. (17)

By taking the transformed measurement from (14)

Zk,i = H (X tk − X sk,i) + ρk,i,

= H (X tk − {X̂ sk|k−1,i + X̃ sk|k−1,i}) + ρk,i,

= H (X tk − X̂ sk|k−1,i) + ρ′
k,i,
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where the updated noise ρ′
k,i = ρk,i − HX̃ sk|k−1,i with mean

E[ρ′
k,i] = 0 and covariance

R̂k,i = E[ρ′
k,iρ

′τ
k,i],

= E[(ρk,i − HX̃ sk|k−1,i)(ρk,i − HX̃ sk|k−1,i)
τ ],

= E[ρk,iρτ
k,i + HX̃ sk|k−1,iX̃

sτ
k|k−1,iH

τ ],

= Qmk,i + HPsk|k−1,iH
τ ,

= {||H (X̂ tk|k−1 − X̂ sk|k−1,i)||
2
+ trace(HPtk|k−1H

τ )

+ trace(HPsk|k−1,iH
τ )}Rk,iI2×2 + HPsk|k−1,iH

τ .

IV. SELECTION OF SENSORS
A. COST FUNCTIONS
For effective sensor management, a sensor selection algo-
rithm needs to be incorporated with the tracking algorithm.
Towards this objective, different cost functions have been
proposed in the earlier literature [13] and [19] based on
Euclidean distance (ED) and the FIM. By optimizing the
cost functions, the tracker selects a user-specified number of
sensors that have the capability to provide accurate tracking.

1) ED-BASED COST FUNCTION
The predicted distance between each sensor and the target is
computed to generate the cost function. Let Si represents the
selection status of the sensor. If the ith sensor is selected, then
Si = 1 otherwise set to be 0, so Si ∈ {0, 1}, and S∗

k is an
optimal status of sensor set, given by

S∗
k = arg min

Si

ns∑
i=1

Si{(x̂ tk|k−1 − x̂sk|k−1,i)
2

+ (ŷtk|k−1 − ŷsk|k−1,i)
2
}, (18)

subjected to
ns∑
i=1

Si = n, where ns and n are the number

of total and selected sensors respectively. x̂k|k−1 is the
predicted x position of target at time k .

2) FIM-BASED COST FUNCTION
The FIM is a mathematical tool used in statistics to quantify
the amount of information that an observable random variable
Y contains about an unknown parameter X . It is defined
as the negative of the expected value of the Hessian of the
log-likelihood function with respect to X :

FIM = −E
[
∇

2
X {logL(X )}

]
,

where L(X ) = p(Y|X ) is the likelihood function of the
observed data given the parameter X , and E[.] denotes the
expected value. In simpler terms, the FIM measures how
sensitive the likelihood function is w.r.t the variation of X .
It is a symmetric, positive definite matrix that contains
information about the covariance of the estimators.

Let Jk represents the FIM, and is defined by the
relation [36]

Pk|k ≜ E[(X̂ tk − X tk )(X̂
t
k − X tk )

τ ] ≥ J−1
k , (19)

where X̂ tk and Pk|k are the estimated state of the target and
corresponding error covariance matrix. The value of J−1

k
is the posterior Cramer-Rao lower bound (PCRLB) matrix,
always less or equal to Pk|k . FIM is initialized by the inverse
of an initial error covariance matrix, and its initialization
will be discussed in the simulation. The value of FIM at
the current instant is calculated recursively from its previous
instant by combining with the current information gained by
the sensors, i.e.

Jk = JX tk + JYk , (20)

where JX tk is the predicted information of the target received
from the previous FIM and JYk represents the measurement
information matrix at time instant k . Under the assumption
that the measurement of sensors is mutually independent, the
total information available at tracker JYk is calculated as the
sum of all the selected sensors measurement information, i.e.

JYk =

n∑
i=1

JYk,i . (21)

FIM calculation is presented in [21], and it can be calculated
recursively by

Jk = D22
k −D21

k [Jk−1 +D11
k ]−1D12

k︸ ︷︷ ︸
JX tk

+JYk , (22)

where

D11
k = E{−1k−1

k−1 ln p(X
t
k |X

t
k−1)},

D12
k = E{−1k−1

k ln p(X tk |X
t
k−1)},

D21
k = (D12

k )τ ,

D22
k = E{−1k

k ln p(X
t
k |X

t
k−1)},

JYk = E{−1k−1
k ln p(Yk |X tk )},

and p is used to represent the probability density function
(pdf), and 1 is a second order partial derivative operator.

For a system that consists of a nonlinear process and
measurement, the values of D11

k , D12
k , D21

k , D̃22
k and JYk are

given by [36]

D11
k = FτQtk

−1F,

D12
k = −FτQtk

−1
,

D21
k = (D12

k )τ ,

D̃22
k = Qtk

−1
,

JYk =

n∑
i=1

E[JYk,i ] =

n∑
i=1

E[H tτ
k,iR̂

−1
k,iH

t
k,i],

where F is a Jacobian matrix of process function, H t
k,i =

∇X tk
h(X tk ,X

s
k,i)|X tk=X̂ tk|k−1

is the Jacobian matrix of i− th

sensor’s measurement, and R̂k,i is the Taylor series based
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equivalent measurement noise covariance matrix as given
in (11).

The FIM based cost function can be formed by following
two different ways:

(i) Method 1 (FIM-1) : The FIM only at an instant of
selection is used to define the cost function. An optimal
sensor set S∗

k is given by [13]

S∗
k = arg min

Si
trace

{[
JX tk +

ns∑
i=1

SiJYk,i

]−1}
, (23)

subjected to
ns∑
i=1

Si = n.

(ii) Method 2 (FIM-2) : If we want to select the sensors
at an interval that is more than the sampling time, all
past measurement information received in that interval
should be considered, which is not the case in the
above cost function. To overcome it, the following cost
function (FIM-2) is presented which considers the FIM
at each time step until the next selection of the sensors
happens [13]:

S∗
k = arg min

Si

k+l−1∑
τ=k

trace
{[
JX tτ +

ns∑
i=1

SiJYτ,i

]−1}
,

(24)

subjected to
∑ns

i=1 Si = n, where Ts is the sensor
selection interval, and l = Ts/T .

B. OPTIMIZATION OF THE COST FUNCTIONS
All the three cost functions (18), (23) and (24) are minimized
using direct search method. For a small number of total
engaged sensors (ns) and selected sensors (n), a combinatorial
optimization [37] is best suited as a search algorithm. This
method generates all the possible sensor combinations, and
the function is compared to find the active sensor set. This
method is not useful for large values of ns and n because the
total number of possible combinations will be nsCn, and it
becomes time and memory-consuming due to large possible
combinations. So, the selection-based local search method is
developed as an alternative to find the optimum solution, and
we used it here to optimize the cost function. The algorithm
of the local search method is presented in the Algorithm 1.

V. SENSOR SELECTION AND TRACKING CO-DESIGN
A. SRF WITH NONLINEAR PROCESS
Traditional SRF deals with linear process equations. So,
in a scenario when the process equation becomes nonlinear,
we need to modify the SRF so that a nonlinear system
with bearing measurements can be tracked. To deal with
nonlinear target dynamics, deterministic sample points are
generated from posterior pdf. The process update is done on
the deterministic sample points and updated mean and error
covariance are calculated. Those prior mean and covariance
are used in shifted Rayleigh measurement update. We may

Algorithm 1 Local Search Method [37]
[S∗
k , Yk ] = Local_Search(obj, n, ns)

- Initialize the universal sensor set
U = {1, 2, · · · , ns},

- Initially put all the sensors in passive mode
S∗
k = 01×n,and Yk = [ ].

- Initialize the optimal sensor set
Cs = U1:n, U = U − Cs.

for i = 1 : n
for j = 1 : ns − n
- Generate the immediate neighbor point by:

Ns = Cs, Nsi = Uj
if obj(Ns) < obj(Cs)

- Update the j-th value of U by:
Uj = Csi , and Cs = Ns.
else
- Cs holds the previous value

end if
end for
- Update the S∗

k and Yk by
S∗
k (Csi ) = 1, Yk = [Yk ; Yk,Csi ].

end for

call this algorithm as deterministic sample point-based SRF
(DS-SRF).

Prior to conducting a measurement update of a target,
it is necessary to estimate the sensor state perfectly and
to calculate an equivalent measurement covariance. It is
already mentioned that the tracker possesses initial position
information for all sensors with some uncertainty and each
sensor state model is linear and Gaussian, so it is possible
to obtain both the predictive state and its corresponding
covariance by

X̂ sk|k−1,i = FX̂ sk−1|k−1,i, (25)

Psk|k−1,i = FPsk−1|k−1,iF
τ

+ Qsk,i. (26)

In addition to the bearing angles of all sensors, the tracker
also possesses bearing angle information of all sensors
w.r.t its own location. By incorporating this information
along with the aforementioned sensor bearing angles into
a deterministic sample points based approach, the tracker
can obtain a posterior estimate and corresponding covariance
(X̂ sk|k,i,P

s
k|k,i) for each sensor. To perform the measurement

update of the target, a projection of sensor measurement is
made on a unit circle, given by

bk,i = [sinYk,i, cosYk,i]τ . (27)

The shifted Rayleigh variable zk is computed as

zk = [bk,iτV
−1
k bk,i]−1/2bk,iτV

−1
k [HX̂k|k−1,i], (28)

where X̂k|k−1,i is predictive relative state vector from target
to sensor i.e. X̂k|k−1,i = X̂ tk|k−1 − X̂ sk|k−1,i, and Vk =

HPtk|k−1H
τ

+ R̂k,i. The mean, ζk and covariance, δk of zk
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is computed by

ζk = [bk,iτV
−1
k bk,i]−1/2ρ(zk ), (29)

δk = [bk,iτV
−1
k bk,i]−1(2 + zkρ(zk ) − ρ2(zk )), (30)

where constants ρ(zk ), is given by

ρ(zk ) =
zke−z

2
k/2 +

√
2π (z2k + 1)F(zk )

e−z
2
k/2 +

√
2πzkF(zk )

, (31)

where F(zk ) is the cumulative distribution function of a
standard normal variable. The Kalman gain of the filter is
calculated by

Kk = Ptk|k−1H
τVk−1. (32)

The posterior mean and covariance are computed by

X̂k|k,i = X̂k|k−1,i + Kk [ζkbk,i−HX̂k|k−1,i], (33)

Ptk|k = (I − KkH )Ptk|k−1 + δkKkbk,ibk,iτKk τ , (34)

and

X̂ tk|k = X̂k|k,i + X̂ sk|k,i. (35)

B. CO-DESIGN
Now, sensor selection and tracking filters should run together.
The prior estimate from the tracking filter is used in the
sensor selection problem and once sensors are selected,
their measurements are used to estimate the states of the
target. A complete algorithm of sensor selection and tracking
with the DS-SRF is presented in the Algorithm 2. We also
implemented popular deterministic sample points filters such
as the CKF, the UKF, the CQKF, and the GHF along with the
sensors selection algorithms. A detailed comparison of such
results is provided in the next section.

VI. SIMULATION RESULTS
In this work, we choose a D-shaped surveillance area which
is a combination of a rectangle and a semicircle as shown
in Fig. 1. Let the area of the rectangle is Ar and that of the
semicircular is As. Suppose we have to generate a total N
number of uniformly distributed samples in our surveillance
region. The selection probability of each part is calculated by[

pr
ps

]
=

1
(Ar + As)

[
Ar
As

]
. (36)

First, we generate the nr number of random samples
inside the rectangle (Let the set is denoted by Qr ) and
ns number of samples in a semicircle (Let the set is Qs).
Concatenating the samples nr and ns (nr + ns = N ), the
total number of uniformly distributed sample points i.e.Q =

[Qr Qs] obtained. For a detailed discussion about uniformly
distributed randomnumber generation in any arbitrary region,
please see Appendix A. In this section, we consider two
engagement scenarios: (i) a target moving in a straight line
with a nearly constant velocity (ii) a target maneuvering with
a constant but unknown turn rate. The results of tracking
along with sensor selection are presented in this section.

Algorithm 2 Pseudo-Code for Sensor Selection and Tracking
With DS-SRF

• Initialization

– Initialize the filter with X̂ t0|0 from (37), and X̂ s0|0,i ∼

N (X s0,i,P
s
0|0,i), i = 1, · · · , ns.

• Time update for target

– Generate support points X̂ t
k−1|k−1,j from X̂ tk−1|k−1,

and Ptk−1|k−1.
– Update the mean:

X̂ tk|k−1 =

np∑
j=1

Wjf (X̂ t
k−1|k−1,j).

– Update the error covariance:

Ptk|k−1 =

np∑
j=1

Wj(f (X̂ t
k−1|k−1,j) − X̂ tk|k−1)

(f (X̂ t
k−1|k−1,j) − X̂ tk|k−1)

τ
+ Qtk .

• Update for sensors:

X̂ sk|k,i = X̂ sk|k−1,i = FX̂ sk−1|k−1,i,

Psk|k,i = Psk|k−1,i = FPsk−1|k−1,iF
τ

+ Qsk,i.

• Sensor selection

– Calculate cost function and select sensor set.
• Measurement update for target
for (i = 1 : ns)&&(S∗

k (i) == 1)
– Calculate overall measurement noise covariance
R̂k,i, using (13).

– Obtain posterior estimate and error covariance by
(27)-(34).

end

A. TRACKING FILTER INITIALIZATION
The target’s position is initialized using triangulation of
two bearing angles received from two measurement sensors.
Target velocity is initialized from two successive positions.
So, at 0−th instance, the x position and y position are given
as

x t0 = (xs0,2 tanY0,1 − xs0,1 tanY0,2 + (ys0,1 − ys0,2) tanY0,1

tanY0,2)/(tanY0,1 − tanY0,2),

and

yt0 = xs0,2 − xs0,1 + ys0,1 tanY0,1 − ys0,2 tanY0,2)/(tanY0,1

− tanY0,2),

where Y0,1 represents the measurement at 0-th step obtained
from 1st sensor. Similarly x t1 and yt1 are calculated and the
state vector is initialized as

X̂ t0|0 = [x t0,
x t1 − x t0
T

, yt0,
yt1 − yt0
T

]τ . (37)
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TABLE 1. Tracking parameters.

To calculate the initial error covariance, we consider an
augmented vector V = [xs0,1 y

s
0,1 x

s
0,2 y

s
0,2 Y0,1 Y0,2]τ . Next,

we calculate the Jacobian of the initial target state vector as
H = ∇V X̂ t0|0, and initialize the sensor error covariance by
Ps0|0,i = diag([σ 2

p , σ 2
v , σ 2

p , σ 2
v ]). The error covariance ofV is

given by PVV = diag([HPs0|0,1H
τ , HPs0|0,2H

τ , R0,1, R0,2]).
The error covariance of the target state is initialized by
Pt0|0 = HPVVHτ .

B. SIMULATION RESULTS OF SCENARIO-1
In scenario-1, we consider a target moving in a straight line
with a nearly constant velocity. In this case, the target is
represented with the model as described in (1). The target
starts from a location of (12.5, 8.5) km and moves towards
the southwest with a velocity of 10 knots and at a coarse
angle of −120◦ with respect to the true north. The simulation
parameters are taken from [13] and [31] and are listed
in Table 1. The sensors are uniformly distributed in the
surveillance region and are drifting due to sea currents as

FIGURE 1. Tracking scenario-1: target and sensor trajectories along with
selected sensors at an instant k = 36, when the target moves with a near
constant velocity.

shown in Fig. 1. Sensors are selected at every Ts minute,
where during the simulation Ts is taken as 1, 3, 6, and
9 minutes. It means that the tracker receives a total (L =

Ts
T )

number of measurement samples in a single sensor selection
interval. Several deterministic sample point filters such as the
CKF, UKF, CQKF, GHF, and SRF are applied along with
the sensor selection algorithm which selects a user-defined
number of sensors at each interval. The estimator uses the
measurements received by the selected sensor to track the
target. Selected sensors obtained from ED, FIM-1 and FIM-2
cost functions (for Ts = 3, σp = 10) at any arbitrary k = 36,
are shown in Fig. 1. In this figure, black dots are the sensors’
initial positions, and sensors’ drifts are shown using black
dotted lines.

Cramer-Rao lower bound (CRLB) is initialized by the
initial state error covariance matrix defined earlier in this
section. The CRLBs are computed for Ts = 3, σp = 10,
with 2 and 4 sensors and for different selection methods and
they are plotted in Fig.2 and 3. The figures show that FIM-2

FIGURE 2. CRLB of position (for Ts = 3, σp = 10) using different sensor
selection methods and varying the number of selected sensors when
target moves with a constant velocity (scenario-1).

FIGURE 3. CRLB of velocity (for Ts = 3, σp = 10) using different sensor
selection methods and varying the number of selected sensors when
target moves with a constant velocity (scenario-1).
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FIGURE 4. RMSE of position (for Ts = 3, n = 3, σp = 10) by using different
filtering techniques with FIM-2 based sensor selection for a target moving
in a near constant velocity (scenario-1).

FIGURE 5. RMSE of velocity (for Ts = 3, n = 3, σp = 10) by using different
filtering techniques with FIM-2 based sensor selection for a target moving
in a near constant velocity (scenario-1).

based selection provides the lowest and most smooth CRLB
of both position and velocity among all three methods. It can
also be seen that more the number of selected sensors lower
be the CRLB.

We have experimented with several noise covariances
in the range of (1◦)2 to (7◦)2 and tested in the designed
algorithm. It is found that by increasing the noise covariance,
the Cramer- Rao bound shifts up, and a slight increase in the
track divergences occurs during tracking.

The filters are initialized as described at the beginning
of this section. The SRF is implemented along with sensor
selection as given in Algorithm 2. Similar algorithms are
implemented for deterministic sample point filters. Root
mean square error (RMSE) of position and velocity of the
target for Ts = 3, σp = 10, n = 3, with FIM-2 based
sensor selection, obtained from different filters are compared
in Fig. 4 and Fig. 5. Note that RMSEs in figures are calculated

FIGURE 6. RMSE of position using SRF (for σp = 10, n = 3) for different
sensor selection interval (Ts in minute) using FIM-2 based sensor
selection for a target moving in a near constant velocity (scenario-1).

FIGURE 7. RMSE of velocity using SRF (for σp = 10, n = 3) for different
sensor selection interval (Ts in minute) using FIM-2 based sensor
selection for a target moving in a near constant velocity (scenario-1).

out of 1000 Monte Carlo runs and by excluding the track lost
cases. From the figures, it is found that the RMSEs of all the
filters are comparable to each other.

The RMSE of SRF for σp = 10, n = 3, FIM-2
based selection for different sensor selection intervals (Ts =

1, 3, 6, 9 minutes) are plotted in Fig. 6 and Fig. 7. From the
figures, it can be seen that the lower be the selection interval,
the smaller be the RMSE of position and velocity. The RMSE
of SRF for Ts = 3, n = 3, FIM-2 based selection are plotted
for various sensor location uncertainties (σp = 0, 10, 25, 50)
in Fig. 8 and Fig. 9. From the figure, it is observed that with
the increase in the sensor location uncertainty, the accuracy
of the estimation decreases.

It has been observed that sometimes the estimators fail
to track the target. A track is said to diverge if the final
estimation error in position is greater than some threshold,
eb. Throughout the simulation, we took the value of eb as
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FIGURE 8. RMSE of position using SRF (for Ts = 3, n = 3) by varying
sensor position uncertainty in scenario-1.

50 meters. We tabulated the percentage of track divergence
calculated out of 1000 Monte Carlo runs for various filters
by varying the sensor selection method, the number of
the selected sensors (n), and sensor position uncertainty
in Table 2. From the table, it is observed that the FIM-2
provides the lowest track divergence. Among the filters, the
performance of the SRF is the best and it provides almost
zero percent track divergence. Also, we note that with the
increase in the number of selected sensor percentage of track
divergence slightly decreases, and with the increase of sensor
location uncertainty it increases rapidly.

FIGURE 9. RMSE of velocity using SRF (for Ts = 3, n = 3) by varying
sensor position uncertainty in scenario-1.

The relative computational time of all filters for various
selection methods and varying the sensor selection interval
are listed in Table 3. From the table, it can be seen that the
computation times of all the filters are comparable. However,
they increase when we select more number of sensors, and
they decrease with the increase in sensor selection interval
time. Further the reader may also note that FIM-based
selection methods take more than double the time to execute,
compared to ED-based selection method.

To check the consistency of the proposed filter, averaged
normalized estimation error squared (ANEES) is calculated

TABLE 2. Percentage of track loss for various sensor selection methods, tracking filters, and sensor position uncertainty.
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TABLE 3. Relative computational time for various sensor selection methods, tracking filters, and sensor selection interval.

by using the formula [31]

ANEES =
1
Mc

Mc∑
j=1

(Xk,j − X̂k|k,j)′P
−1
k|k,j(Xk,j − X̂k|k,j), (38)

where Mc is the number of Monte-Carlo simulations respec-
tively. A filter is considered as consistent if the ANEES lies
between the lower bound (lb) and upper bound (ub) region
i.e. ANEES ∈ [lb, ub]. When the ANEES is less than lb,
it indicates that the estimated posterior error covariance is
very high as compared to the true value. Hence the filter
is said to be under confident. Similarly, if the ANEES is
more than ub, it denotes that the estimated posterior error
covariance is very small as compared to its true value. In such
case, the filter is marked to be over confident. ANEES is
the parameter to determine whether the filter is credible or
not in the sense of self assessment. According to the small
probability event principle [38], an estimator is not credible
if an event having very small probability occurs on a single
trial. This is possible when the ANEES is outside the region
of very high probability (say, 95 %). For 95 % probability
region, the lower bound (lb) and the upper bound (ub) can be
calculated as

lb = nx[(1 −
2

9nxMc
) − 1.96

√
2

9nxMc
]3, (39)

and

ub = nx[(1 −
2

9nxMc
) + 1.96

√
2

9nxMc
]3, (40)

FIGURE 10. ANEES for various estimators (for n = 3, Ts = 3, σp = 10)
when the sensors are selected using FIM-2, for scenario 1.

where nx is the total number of states and in our case nx = 4.
We have calculated ANEES over the 100Monte-Carlo runs at
each estimation step and plotted for σp = 10, Ts = 3, n = 3,
FIM-2 based selection in Fig. 10. The plot shows that almost
all the ANEESs reachwithin the 95 percent confidence region
after the 35-th step, which results in all designed filters
performing adequately over the tracking interval.

C. SIMULATION RESULTS OF SCENARIO-2
Scenario-2 contains a target that is maneuvering with a nearly
constant turn rate. In this case, the target is represented with
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FIGURE 11. Tracking scenario-2: target and sensor trajectories along with
selected sensors at an instant k = 36, when target moves with constant
turn rate following a CT model.

FIGURE 12. CRLB of position (for Ts = 3, σp = 10) when sensors are
selected using ED, FIM-1, FIM-2 cost functions.

a coordinated turn (CT) model as we described in (4). The
target starts from a location of (13.5, 9.5)km and moves
towards the southwest. The simulation parameters are listed
in Table 1. At k = 36, sensor locations using FIM-2 cost
function (for Ts = 3, σp = 10) are shown in Fig. 11.
Similar to scenario-1, the CRLB is computed for Ts = 3,

σp = 10, in scenario-2 with 2 and 4 number of sensors
which are selected using different cost functions. The CRLB
results are plotted in Fig. 12 and Fig. 13. These plots show
that FIM-2 based sensor selection provides the lowest CRLB
among the all three methods. We note that with the increase
in the number of sensors, the CRLB values decrease.

During estimation, the first four states are initialized in a
similar way to scenario-1. The turn rate is initialized with
a mean 1.84◦/min and covariance 1◦2/min2. RMSE results
obtained from various filters (when sensors are selected using
FIM-2 method) are compared in Fig. 14 and Fig. 15. From
the figures, it is found that the RMSEs of all the filters are
comparable to each other.

FIGURE 13. CRLB of velocity (for Ts = 3, σp = 10) when sensors are
selected using ED, FIM-1, FIM-2 cost functions.

FIGURE 14. RMSE of positions (for Ts = 3, n = 3, σp = 10) obtained by
using different filtering techniques with FIM-2 based sensor selection in
scenario-2.

FIGURE 15. RMSE of velocity (for Ts = 3, n = 3, σp = 10) obtained by
using different filtering techniques with FIM-2 based sensor selection in
scenario-2.

The RMSEs of SRF for Ts = 3, n = 3, with FIM-2
based sensor selection are plotted for various sensor position
uncertainties (σp = 0, 10, 25, 50) in Fig. 16, and Fig. 17.
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FIGURE 16. RMSE of position using SRF (for Ts = 3, n = 3) for various σp
when FIM-2 is used for selecting sensors in scenario-2.

FIGURE 17. RMSE of velocity using SRF (for Ts = 3, n = 3) for various σp
when FIM-2 is used for selecting sensors in scenario-2.

FIGURE 18. ANEES comparison (for n = 3, Ts = 3, σp = 10) when sensors
are selected using FIM-2 in scenario-2.

From the figures, it is noted that with the increase in sensor
location uncertainty, the accuracy of the estimation decreases.

The percentage of track loss for different sensor selection
methods, number of selected sensors, and sensor position

uncertainty are also tabulated in Table 2. The track loss
condition is kept the same as described in scenario-1.
From the table, it is observed that FIM-2 provides the
lowest number of diverged tracks. Among the filters, the
performance of the SRF is the best and it provides almost zero
percent of track loss. With the increased number of selected
sensor, percentage of track loss slightly decreases and with
the increase of sensor location uncertainty it increases rapidly.

The ANEES results for σp = 10, Ts = 3, n = 3, with
FIM-2 based selection are plotted in Fig. 18. From the plot,
it is found that ANEESs of almost all the filters reach within
the 95 percent confidence region after 50-th step of the run.

VII. CONCLUSION AND FUTURE WORK
The paper co-designs tracking and sensor selection to localize
an underwater target using multiple passive sonars, deployed
uniformly over the sea surface of arbitrary contour. The
proposed tracking algorithm is capable of selecting a few
sensors and it tracks the target using the measurements
of those selected sensors in presence of sensor location
uncertainty, and drift due to sea current. The sensor selection
algorithm uses the FIM-based cost functions and for tracking
various Gaussian filters and the SRF are designed. The
co-design of the SRF and FIM-based sensor selection
method provides better performance in terms of RMSE and
percentage of track divergence compared to other Gaussian
filters. The present work is being extended for a decentralized
tracking scenario which would be useful to track a target in a
very large surveillance area.

APPENDIX A
GENERATION OF POINTS, UNIFORMLY DISTRIBUTED IN
THE SURVEILLANCE REGION
Linear congruential generator (LCG) [39] which generates
a uniform random number in between 0 and 1 is a very
popular and most preferable deterministic approach to obtain
independent identically distributed (iid) samples. Amongst n
iid samples, it is assumed that Qi is the ith sample of the
random sequence, and is given by Qi = xi/m, where xi is
calculated recursively as

xi = mod(axi−1 + c,m), i = 1, · · · , n. (41)

Here, mod is a modulo operator which returns the remainder
after the division of axi−1+c bym. The parameters a,m, and c
are known as multiplier, modulus, and increment respectively
and their ranges are as follows: (i) m > 0 (ii) m < a > 0
(iii) 0 ≤ c < m.The value of m is generally chosen to a very
large number to avoid repetition in the sequence. To obtain a
uniform random number within a range in between l1 and l2
(where l2 > l1) linear scaling and point shifting are used and
the random numbers in such intervals are generated as

Qi = l1 +Qi(l2 − l1). (42)

To generate a uniform sample in a two-dimensional (2D)
triangular region, two independent random sequences are
used as described in [40], [41], and [42]. Let us assume
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u1 and u2 are two independent uniform random samples in
between 0 to 1. So the uniform sample in the triangle can be
generated by using the relation

Qi = d1A+ d2B+ d3C, (43)

where d1 = 1−
√
u2, d2 = (1−u1)

√
u2, and d3 = u2

√
u1. A,

B, andC are the column vectors that contain the coordinate of
the vertices of a triangle in which wewant to generate random
points.

Similar to a triangle, a uniform random sample for a
square/rectangle is generated by using the relation

Qi = d ′

1A+ d ′

2B+ d ′

3C + d ′

4D, (44)

where d ′

1 = u1u2, d ′

2 = u1(1−u2), d ′

3 = (1−u1)(1−u2), and
d ′

4 = (1 − u1)u2. A, B, C , and D are the column vectors that
contain the coordinate of the four corners of the rectangle or
square.

The uniform random sample in a circular area centered at
(xc, yc) having radius r is generated [43] by using the relation

Qi =

[
xc + ru1 cos 2πu2
yc + ru1 sin 2πu2

]
. (45)

Uniform random numbers inside a polygon can be generated
by dividing it in many triangles and generating random
samples proportional to the area of the triangle. A uniform
random number for any arbitrary shape surface is generated
by dividing the surface into triangles and circular arcs and
generating proportionate uniform samples from each area.
For a quite odd-shaped surface when it is not easy to divide
it into well known geometric shapes, a sample rejection
method [43] can be used to generate uniform random
samples. In this method, the whole area is first covered with
a rectangle or any other known geometric shape, and random
samples are generated for that shape using the procedure
discussed above. After sampling, we pick a sample if it is in
our region of interest, otherwise, we go for another instance.
This process is repeated until it generates the required number
of samples.
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